NetRExXX
Programming Guide

RexxLA

Version 3.08-GA of September 6, 2019

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-0-6

Publication Data

©Copyright The Rexx Language Association, 2011- 2019

All original material in this publication is published under the Creative Commons - Share Alike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-0-6

| SBN 978-90-819090-0-6

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

II

Contents

|lhe NetREXX Programming Serieg i

[Typographical conventiong iii

ntroductio v

I Meet the RExX Family 1

.1~ Once upon a Virtual Machinq 1

.2 Once upon another Virtual Maching 1

.3 Features of NetRExy 2

2 Learning to program 3

2.1 Console Based Programgq 3

2.2 Comments in programy 5
2.3 Stringd 5

D .4 auses 6

R.5 When does a Clause Endy 6

2.6 Y S 7
p7 _Loopy 7
2.8 Special Variabley 9

B NetRexx Optiong 11

B NetREXX as a Scripting Languagq 17

b NetRExX as an Interpreted Language 19

b6 NetRexx as a Compiled Language 21

b.1 Programmatic use of the NetRExxC translator] 21

b.2 Compiling from memory stringd 21

b.3 Compile, loadand gg 21

b.4 Using the generated classfiles arrayy 22

5 ISR 22

III

/' Calling non-JVM programg 25

B Using NetREXX classes from Java 29

0 Classey 31

D. asses 31

.2 Dependent Classey 32
9 Prop S 32

10 Using Packages 33

0.1 The package statement 33

10.2 Translator performance consequenced 33

10.3 Some NetRExX package historyy 33
[[0.4 CLASSPATH 34

1 Programming Patterns 35
I1.1 Singleton 35
[1.2 Observable and Eventy 36
[[1.3 Recursive Parsd 36

L1.4 More Observer/Observabld 36

12 Incorporating Class Librarieg 39

2.1 A Word About Java Generic{ 39

12.2 The Collection Classe§ 40

13 Input and Output 43

I[3.1 Improvements in 3.07 to Say and File reading

3.2 'The File Clasy 43

14 Algorithms in NetREXX 47

47
14 b 48

15 Using Parsé 51

5.1 Literal Parsing 51

5.2 Positional Parsing 52

5.3 Variable Templatey 54

16 Using g 55

6.1 Tracing Program Statementdy 55
16.2 'Tracing Variabley 56
16 Dles 56

16.4 Tracing Notey 59

43

v

61
17.1 Threadd 61

I8 User Interfaceq 63

BT AWT 63
18.2 Web Applets using AW'l| 63
18 dg 67

8.4 Web Frameworky 67

19 Network Programming 69

9.1 Using Uniform Resource Locators (URL) 69

9.2 TCP/IP Socket I/Q 69

19.3 RMI: Remote Method Intertacd 69

20 Database Connectivity with JDB({ 71

BT WebSphere MQ 75

PZMQIT 81

R2.1 Pub/Sub with MQ Telemetry| 81

23 Component Based Programming: beans 85

24 Using the NetRexxA API 87

R4.1 'The NetRexxA constructof 88

R4.2 'The parse method 88

4.3 'The getClassObject method 89

R4.4 'The exiting method 89

4.5 Interpreting programs contained in memory stringy 89

25 Interfacing to Scripting Languages 93

R5.1 Which JSR223 engines are on my systemq 93

R5.2 Selecting an engind 94

5.3 Evaluating a scripf 94

5.4 Bindingg 95

5.5 Interpreted execution of NetREXX scripts from jrunscripf 96

5.6 Using JavaScript from NetREXX programyg 96

5.7 Using AppleScript on macO§ 97

R25.8 Execution of NetRExX scripts from ANT tasky 97

P5.9 Integration of NetRexx scripting in applicationy 98

P25.10 Interfacing between ooRexx and NetRExx using BSF4o0Rexy 98

R5.11 General jsr-223 Implementation Notey 99

6 NetRexx Toold 101
R6.1 Editor suppor{ 101

6.2 Javato Nrx (java2nrx) 102

27 Using Eclipse for NetRexx Development 105

7.1 Downloading Eclipsd 105

7.2 Setting up the workspace 105

D K 106

R7.4 Installing Gif 106

7.5 Downloading the NetRexx project from the SVN repositoryy 106

7.6 Setting up the buildg 106

R7.7 Using the NetRexx version of the NetRexx Ant tasy 107

R7.8 Setting up the Eclipse NetRexx Editor Plugin (Optional) 107

28 Platform dependent issues 109

8.1 Mobile Platformd 109

8.2 1BM Maintrame: Using NetREXX programs in z/OJS batch 110

29 Building the NetREXX translatoy 111

pAS D, D

y 111

9.2 'lIhe buildiilg 111

DO g 112

B0 Translator inner workingyg 113

B0.1 ‘Iranslator source fileg 113

B0.2 Method resolution| 116

119

VI

The NetRExX Programming Series

This book is part of a library, the NetRExx Programming Series, documenting the
NetRExx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide

This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRExx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide

The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference

Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRexx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRExx QuickStart Guide

The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetREXX.

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:

+ Body text is in this font

 Examples of language statements are in a bold type

« Variables or strings as mentioned in source code, or things that appear on the con-
sole, are in a typewriter type

« Items that are introduced, or emphasized, are in an italic type

+ Included program fragments are listed in this fashion:

Listing 1: Example Listing

-- salute the reader
> say 'hello reader'

« Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

iii

Introduction

The Programming Guide is the book that has the broadest scope of the publications
in the NetRExx Programming Series. Where the Language Reference and the Quickstart
Guide need to be limited to a formal description and definition of the NetRExx language
for the former, and a Quick Tour and Installation instructions for the latter, this book has
no such limitations. It teaches programming, discusses computer language history and
comparative linguistics, and shows many examples on how to make NetRexx work with
diverse techologies as TCP/IP, Relational Database Management Systems, Messaging
and Queumg (MQ)) systems, J2EE Containers as JBOSS™ and IBM WebSphere Appli-
cation Server , discusses various rich- and thin client Graphical User Interface Options,
and discusses ways to use NetREXX on various operating platforms. For many people,
the best way to learn is from examples instead of from specifications. For this reason this
book is rich in example code, all of which is part of the NetRexx distribution, and tested
and maintained.

Terminology

The NetRExx Language Reference (NRL) is the source of the definitive truth about the
language. In this Programming Guide, terminology is sometimes used more loosely than
required for the more formal approach of the NRL. For example, there is a fine line dis-
tinguishing statement, instruction and clause, where the latter is a more Rexx-like con-
cept that is not often mentioned in relation to other languages (if they are not COBOL
or SQL). While we try not to be confusing, clause and statement will be interchangibly
used, as are instruction and keyword instruction.

Acknowledgements

As this book is a compendium of decades of Rexx and NetRExx knowledge, it stands
upon the shoulders of many of its predecessors, many of which are not available in print
anymore in their original form, or will never be upgraded or actualized; we are indebted
to many anonymous! authors of IBM product documentation, and many others that we
do know, and will thank in the following. If anyone knows of a name not mentioned here
that should be, please be in touch. Dave Woodman, thank you for your contributions
to this guide. A big IOU goes out to Alan Sampson, who singlehandedly contributed
more than one hundred NetRExx programming examples. The Redbook authors (Peter

Ibecause they are unacknowledged in the original publications

v

Heuchert, Frederik Haesbrouck, Norio Furukawa, Ueli Wahli, Kris Buelens, Bengt Hei-
jnesson, Dave Jones and Salvador Torres) have provided some important documents
that have shown, in an early stage, how almost everything on the JVM is better and eas-
ier done in NetRexx. Kermit Kiser also provided examples and did maintenance on the
translator. Bill Finlason provided the Eclipse instructions. If anyone feels their copyright
is violated, please do let us know, so we can properly attribute offending passages, or take
them out.?

2 As the usage of all material in this publication is quoted for educational use, and consists of short fragments, a fair use clause
will apply in most jurisdictions.

vi

Meet the RExx Family

1.1 Once upon a Virtual Machine

On the 22nd of March 1979, to be precise, Mike Cowlishaw of IBM had a vision of an
easier to use command processor for VM, and wrote down a specification over the fol-
lowing days. VM (now called z/VM) is the original Virtual Machine operating system,
stemming from an era in which time sharing was acknowledged to be the wave of the
future and when systems as CTSS (on the IBM 704) and TSS (on the IBM 360 Family of
computers) were early timesharing systems, that offered the user an illusion of having a
large machine for their exclusive use, but fell short of virtualising the entire hardware.
The CP/CMS system changed this; CP virtualised the hardware completely and CMS was
the OS running on CP. CMS knew a succession of command interpreters, called EXEC,
EXEC2 and RExx (originally REX - until it was found out, by the IBM legal department,
that a product of another vendor had a similar name) - the EXEC roots are the explana-
tion why some people refer to a NetREXX program as an “exec”. As a prime example of a
backronym, Rexx stands for “Restructured Extended Executor”. It can be defended that
REXX came to be as a reaction on EXEC2, but it must be noted that both command inter-
preters shipped around the same time. From 1988 on RExx was available on MVS/TSO
and other systems, like DOS, Amiga and various Unix systems. RExx was branded the
official SAA procedures language and was implemented on all IBM’s Operating System:s;
most people got to know RExx on OS/2. In the late eighties the Object-Oriented succes-
sor of Rexx, Object Rexx, was designed by Simon Nash and his colleagues in the IBM
Winchester laboratory. RExx was thereafter known as Classic Rexx. Several open source
versions of Classic RExx were made over the years, of which Regina is a good example.

1.2 Once upon another Virtual Machine

In 1995 Mike Cowlishaw ported Java™ to OS/2" and soon after started with an experi-
ment to run RExx on the JVM . With Rexx generally considered the first of the general
purpose scripting languages, NetRexx is the first alternative language for the JVM. The
0.50 release, from April 1996, contained the NetRExx runtime classes and a translator
written in RExx but tokenized and turned into an OS/2 executable. The 1.00 release
came available in January 1997 and contained a translator bootstrapped to NetRExx.
The RExxX string type that can also handle unlimited precision numerics is called RExx
in Java and NetRexx. Where Classic RExx was positioned as a system glue language
and application macro language, NetREXX is seen as the one language that does it all,
delivering system level programs or large applications.

1

Release 2.00 became available in August 2000 and was a major upgrade, in which in-
terpreted execution was added. Until that release, NetRExx only knew ahead of time
compilation (AOT).

Mike Cowlishaw took early retirement from IBM in March 2010. IBM announced the
transfer of NetRExxX source code to the RExx Language Association (RexxLA) on June 8,
2011, 14 years after the v1.0 release, and on the same day; it released the NetRExxX source
code to RexxLA under the ICU open source license. RexxLA shortly after released this
as NetRexx 3.00 and has followed with updates.

1.3 Features of NetREXX

Ease of use The NetRExx language is easy to read and write because many instructions
are meaningful English words. Unlike some lower level programming languages
that use abbreviations, NetRExxX instructions are common words, such as say, ask,
if...then...else, do...end, and exit.

Free format There are few rules about NetRExx format. You need not start an instruc-
tion in a particular column, you can also skip spaces in a line or skip entire lines,
you can have an instruction span many lines or have multiple instructions on one
line, variables do not need to be pre-defined, and you can type instructions in up-
per, lower, or mixed case.

Convenient built-in functions NetRexx supplies built-in functions that perform vari-
ous processing, searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic calcula-
tions.

Easy to debug When a NetREXX exec contains an error, messages with meaningful ex-
planations are displayed on the screen. In addition, the trace instruction provides
a powerful debugging tool.

Interpreted The NetReExx language is an interpreted language. When a NetRExx exec
runs, the language processor directly interprets each language statement, or trans-
lates the program in JVM bytecode.

Extensive parsing capabilities NetRExx includes extensive parsing capabilities for
character manipulation. This parsing capability allows you to set up a pattern
to separate characters, numbers, and mixed input.

Seamless use of JVM Class Libraries NetRExX can use any class, and class library for
the JVM (written in Java or other JVM languages) in a seamless manner, that is,
without the need for extra declarations or definitions in the source code.

e W N =

Learning to program

2.1 Console Based Programs

One way that a computer can communicate with a user is to ask questions and then com-
pute results based on the answers typed in. In other words, the user has a conversation
with the computer. You can easily write a list of NetRExx instructions that will conduct a
conversation. We call such a list of instructions a program. The following listing shows a
sample NetRExx program. The sample program asks the user to give his name, and then
responds to him by name. For instance, if the user types in the name Joe, the reply Hello
Joe is displayed. Or else, if the user does not type anything in, the reply Hello stranger is
displayed. First, we shall discuss how it works; then you can try it out for yourself.

Listing 2.1: Hello Stranger

/% A conversation 4/

say "Hello! What's your name?"
who=ask

if who = '' then say "Hello stranger"
else say "Hello" who

Briefly, the various pieces of the sample program are:

/* «.. x/ A comment explaining what the program is about. Where RExx programs
on several platforms must start with a comment, this is not a hard requirement for
NetRexx anymore. Still, it is a good idea to start every program with a comment
that explains what it does.

say An instruction to display Hello! What’ s your name? on the screen.

ask An instruction to read the response entered from the keyboard and put it into the
computer’s memory.

who The name given to the place in memory where the user’s response is put.

if An instruction that asks a question.

who = ” A test to determine if who is empty.

then A direction to execute the instruction that follows, if the tested condition is true.
say An instruction to display Hello stranger on the screen.

else An alternative direction to execute the instruction that follows, if the tested con-
dition is not true. Note that in NetRExX, else needs to be on a separate line.

say An instruction to display Hello, followed by whatever is in who on the screen.

The text of your program should be stored on a disk that you have access to with the
help of an editor program. On Windows, notepad or (notepad++), jEdit, X2 or SlickEdit
are suitable candidates. On Unix based systems, including macOS, vim or emacs are

3

plausible editors. If you are on z/VM or z/OS, XEDIT or ISPF/PDF are a given. More
about editing NetRExx code in chapter 26.1], Editor Support, on page [L01].

When the text of the program is stored in a file, let’s say we called it hello.nrx, and you
installed NetRExx as indicated in the NetRExx QuickStart Guide, we can run it with

nrc —exec hello
and this will yield the result:

NetRexx portable processor, version NetRexx after3.01, build 1-20120406-1326
Copyright (c) RexxLA, 2011. A1l rights reserved.

Parts Copyright (c) IBM Corporation, 1995,2008.

Program hello.nrx

===== Exec: hello =====

Hello! What’s your name?

If you do not want to see the version and copyright message every time, which would be
understandable, then start the program with:

nrc —-exec -nologo hello
This is what happened when Fred tried it.

Program hello.nrx

===== Exec: hello =====
Hello! What’s your name?
Fred

Hello Fred

The ask instruction paused, waiting for a reply. Fred typed Fred on the command line
and, when he pressed the ENTER key, the ask instruction put the word Fred into the
place in the computer’s memory called “who”. The if instruction asked, is “who” equal
to nothing:

who = ??
meaning, is the value of “who” (in this case, Fred) equal to nothing:
"Fred = 7°

This was not true; so, the instruction after then was not executed; but the instruction
after else, was.

But when Mike tried it, this happened:

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

Hello stranger
Processing of ’hello.nrx’ complete

Mike did not understand that he had to type in his name. Perhaps the program should
have made it clearer to him. Anyhow, he just pressed ENTER. The ask instruction put

4

” (nothing) into the place in the computer’s memory called “who”. The if instruction
asked, is:

who = ??

meaning, is the value of “who” equal to nothing:

Yy — I

In this case, it was true. So, the instruction after then was executed; but the instruction
after else was not.

2.2 Comments in programs

When you write a program, remember that you will almost certainly want to read it
over later (before improving it, for example). Other readers of your program also need
to know what the program is for, what kind of input it can handle, what kind of output
it produces, and so on. You may also want to write remarks about individual instruc-
tions themselves. All these things, words that are to be read by humans but are not to be
interpreted, are called comments. To indicate which things are comments, use:

/* to mark the start of a comment
%/ to mark the end of a comment.

The /x causes the translator to stop compiling and interpreting; this starts again only
after a x/ is found, which may be a few words or several lines later. For example,

/* This 1is a comment. x/

say text /* This 1is on the same line as the 1dinstruction %/
/* Comments may occupy more

than one line. x/

NetRexx also has line mode comments - those turn a line at a time into a comment. They
are composed of two dashes (hyphens, in listings sometimes fused to a typographical em
dash - remember that in reality they are two n dashes.

-- this is a line comment

2.3 Strings

When the translator sees a quote (either ” or’) it stops interpreting or compiling and just
goes along looking for the matching quote. The string of characters inside the quotes is
used just as it is. Examples of strings are:

’Hello’
”Final result: ”

If you want to use a quotation mark within a string you should use quotation marks of
the other kind to delimit the whole string.

”Don’t panic”
’He said, ”Bother”’

There is another way. Within a string, a pair of quotes (of the same kind as was used to
delimit the string) is interpreted as one of that kind.

’Don’’t panic’ (same as ”Don’t panic”)
”He said, ””Bother””” (same as ’He said, ”Bother”’)

2.4 Clauses

Your NetREXX program consists of a number of clauses. A clause can be:

1. A keyword instruction that tells the interpreter to do something; for example,
say ”the word”
In this case, the interpreter will display the word on the user’s screen.
2. An assignment; for example,
Message = ’Take care!’
3. A null clause, such as a completely blank line, or
>
4. A method call instruction which invokes a method from a class

’hiawatha’.left(2)

2.5 When does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to extend a
clause over many lines. The rules are:

« Usually, each clause occupies one line.

« If you want to put more than one clause on a line you must use a semicolon (;) to
separate the clauses.

« If you want a clause to span more than one line you must put a dash (hyphen) at
the end of the line to indicate that the clause continues on the next line. If a line
does not end in a dash, a semicolon is implied.

What will you see on the screen when this exec is run?

Listing 2.2: RAH Exec

1 /% Example: there are six clauses in this program 4/ say "Everybody cheer!"
2 say "2"; say "4" ; say "6" ; say "8" ; say "Who do we" -
3 "appreciate?"

[T

[

© ® N e U oA W N =

w N =

2.6 Long Lines

Ever since the days of the punch card images are over, the lines in program sources have
become longer and longer, and with NetRExx being a free format language, there is no
real technical reason to limit line length. Still, for readability and for ease access to words
within a line, it is often indicated to keep lines relatively short and tidy. For this reason,
the continuation character ’- can be used. This also makes it possible to split long literal
strings over lines.

Listing 2.3: Long lines

say 'good' -
'night'

This example will concatenate ‘good’ and 'night’ with a space inbetween. When you want
to avoid that, use the’||” concatenation operator.

Listing 2.4: Long lines with string concatenation without space

say 'good' -
|| 'night!

2.7 Loops

We can go on and write clause after clause in a program source files, but some repetitive
actions in which only a small change occurs, are better handled by the loop statement.

Imagine an assignment to neatly print out a table of exchange rates for dollars and euros
for reference in a shop. We could of course make the following program:

Listing 2.5: Without a loop

say 1 'euro equals' 1 4, 2.34 'dollars'
say 2 'euro equals' 2 4 2.34 'dollars'
say 3 'euro equals' 3 4 2.34 'dollars'
say 4 'euro equals' 4 4 2.34 'dollars'
say 5 'euro equals' 5 4 2.34 'dollars'
say 6 'euro equals' 6 x 2.34 'dollars'
say 7 'euro equals' 7 % 2.34 'dollars'
say 8 'euro equals' 8 4 2.34 'dollars'
say 9 'euro equals' 9 4 2.34 'dollars'
say 10 'euro equals' 10 4 2.34 'dollars'

This is valid, but imagine the alarming thought that the list is deemed a success and you
are tasked with making a new one, but now with values up to 100. That will be a lot of
typing.

The way to do this is using the loop? statement.

Listing 2.6: With a loop

loop i=1 to 100
say i 'euro equals' i x 2.34 'dollars'
end

3Note that Classic RExx uses do for this purpose. In recent Open Object RExx versions loop can also be used.

7

Now the loop index variable + varies from 1 to 100, and the statements between loop and
end are repeated, giving the same list, but now from 1 to 100 dollars.

We can do more with the loop statement, it is extremely flexible. The following diagram
is a (simplified, because here we left out the catch and finally options) rundown of the
ways we can loop in a program.

FIGURE 1: Loop

loop

instructionlist

loop

repetitor

f' varc ’—@—4 expri } a

/

~— forever J

conditional

A few examples of what we can do with this:

 Looping forever - better put, without deciding beforehand how many times

Listing 2.7: Loop Forever

1 loop forever

2> say 'another bonbon?'

3 x = ask

4+ 1if x = 'enough already' then leave

s end
The leave statement breaks the program out of the loop. This seems futile, but in
the chapter about I/O we will see how useful this is when reading files, of which we
generally do not know in advance how many lines we will read in the loop.

+ Looping for a fixed number of times without needing a loop index variable

8

Listing 2.8: Loop for a fixed number of times without loop index variable

1 loop for 10
2 in.read() /4 skip 10 lines from the input file 4/
3 end

+ Looping back into the value of the loop index variable

Listing 2.9: Loop Forever

1 loop i = 100 to 90 by -2
2> say i
3 end

This yields the following output:

90
Processing of ’test.nrx’ complete

2.8 Special Variables

We have seen that a variable is a place where some data, be it character date or numerical
data, can be held. There are some special variables, as shown in the following program.

Listing 2.10: NetREXX Special Variables

1 /* NetRexx */

2 options replace format comments java symbols binary
3

4+ class RCSpecialVariables

5

s method RCSpecialVariables()

7 X = super.toString

sy = this.toString

s say '<super>'x'</super>'

1 say '<this>'y'</this>'

n say '<class>'RCSpecialVariables.class'</class>'
12 say '<digits>'digits'</digits>'

13 say '<form>'form'</form>'

u say '<[1, 2, 3].length>"'

15 say [1, 2, 3].length

16 say '</[1, 2, 3].length>'

17 say '<null>'

18 say null

19 say '</null>'

20 say '<source>'source'</source>'

21 say '<sourceline>'sourceline'</sourceline>'
» say '<trace>'trace'</trace>'

23 say '<versijon>'version'</version>'

25 say 'Type an answer:'
6 say '<ask>'ask'</ask>'

8 return

29

3 method main(args = String[]) public static
31

2 RCSpecialVariables()

33
34

return

this The special variables this and super refer to the current instance of the class and
its superclass - what this means will be explained in detail in the chapter Classes
on page B1], as is the case with the class variable.

digits The special variable digits shows the current setting for the number of decimal
digits - the current setting of numeric digits. The related variable form returns the
current setting of numeric form which is either scientific or engineering.

null The special variable null denotes the empty reference. It is there when a variable
has no value.

source The source and sourceline variables are a good way to show the sourcefile and
sourceline of a program, for example in an error message.

trace The trace variable returns the current trace setting, which can be one of the words
off var methods all results.

version The version variable returns the version of the NetRExx translator that was in
use at the time the clause we processed; in case of interpreted execution(see chapter
on [[9, it returns the level of the current translator in use.

The result of executing this exec is as follows:

===== Exec: RCSpecialVariables =====
<super>RCSpecialVariables@4e99353f</super>
<this>RCSpecialVariables@4e99353f</this>
<class>class RCSpecialVariables</class>
<digits>9</digits>

<form>scientific</form>

<[1, 2, 3].length>

3

</[1, 2, 3].length>

<null>

</null>

<source>Java method RCSpecialVariables.nrx</source>
<sourceline>21</sourceline>

<trace>off</trace>

<version>NetRexx 3.02 27 Oct 2011</version>

Type an answer:

hello fifi

<ask>hello fifi</ask>

It might be useful to note here that these special variables are not fixed in the sense of
that they are not Reserved Variables. NetRExx does not have reserved variables and any
of these special variables can be used as an ordinary variable. However, when it is used
as an ordinary variable, there is no way to retrieve the special behavior.

10

NetRExx Options

There are a number of options for the translator, some of which can be specified on the
translator command line, and others also in the program source on the option state-
ment. In the following table, ¢ stands for commandline only, and b stands for both source

and commandline. On the commandline, options are prefixed with a dash (“-”), while in
programsource they are not - there they are preceded by the option statement.

TABLE 1: Options

Option Meaning Place
arg words interpret; remaining words are arguments c
binary classes are binary classes b
classpath specify a classpath c
compile compile (default; -nocompile implies -keep) c
comments copy comments across to generated .java b
compact display error messages in compact form b
console display messages on console (default) c
crossref generate cross-reference listing b
decimal allow implicit decimal arithmetic b
diag show diagnostic messages b
ecj prefer the ecj compiler c
exec interpret with no argument words c
explicit local variables must be explicitly declared b
format format output file (pretty-print) b
java generate Java source code for this program b
javac prefer the javac compiler c
keep keep any completed .java file (as xxx.java.keep) c
keepasjava keep any completed .java file (as xxx.java) c
logo display logo (banner) after starting b
prompt prompt for new request after processing C
savelog save messages in NetRexxC.log c
replace replace .java file even if it exists b
sourcedir force output files to source directory b
strictargs empty argument lists must be specified as () b
strictassign assignment must be cost-free b
strictcase names must match in case b
strictimport | all imports must be explicit b

Continued on next page

11

Table 1 - continued from previous page

strictmethods | superclass methods are not compared to local methods for | b
best match
strictprops even local properties must be qualified b
strictsignal signals list must be explicit b
symbols include symbols table in generated .class files b
time display timings c
trace[n] trace stream [1 or 2], or 0 for NOTRACE b
utf8 source file is in UTF8 encoding b
verbose[n] verbosity of progress reports [0-5] b
warnexit0 exit with a zero returncode on warnings C

Options valid for the options statement and on the commandline

These are the options that can be used on the options statement:

binary All classes in this program will be binary classes. In binary classes, literals are
assigned binary (primitive) or native string types, rather than NetRexx types, and
native binary operations are used to implement operators where appropriate, as
described in “Binary values and operations”. In classes that are not binary, terms in
expressions are converted to the NetREXX string type, Rexx, before use by opera-
tors.

comments Comments from the NetRExx source program will be passed through to the
Java output file (which may be saved with a .java.keep or .java extension by using
the -keep and -keepasjava command options, respectively).

compact Requests that warnings and error messages be displayed in compact form. This
format is more easily parsed than the default format, and is intended for use by edit-
ing environments. Each error message is presented as a single line, prefixed with
the error token identification enclosed in square brackets. The error token iden-
tification comprises three words, with one blank separating the words. The words
are: the source file specification, the line number of the error token, the column in
which it starts, and its length. For example (all on one line):

[D:\test\test.nrx 3 8 5] Error: The external name
’class’ 1is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null ("\0’) character. Additional
words could be added to the error token identification later.

crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the
language processor will report operations that use (or, like normal string com-
parison, might use) decimal arithmetic as an error. This option is intended for
performance-critical programs where the overhead of inadvertent use of decimal
arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed. The
diag option word may also have side-effects.

12

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. This option is intended
to permit the enforcement of “house styles” (but note that the NetRExx compiler
always checks for variables which are referenced before their first assignment, and
warns of variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for im-
proved readability. Note that if this option is in effect, line numbers from the input
file will not be preserved (so run-time errors and exception trace-backs may show
incorrect line numbers).

java Requests that Java source code be produced by the translator. If nojava is specified,
no Java source code will be produced; this can be used to save a little time when
checking of a program is required without any compilation or Java code resulting.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

sourcedir Requests that all .class files be placed in the same directory as the source file
from which they are compiled. Other output files are already placed in that di-
rectory. Note that using this option will prevent the -run command option from
working unless the source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when
no arguments are supplied. Also, if strictargs is in effect, method arguments are
checked for usage — a warning is given if no reference to the argument is made in
the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of arguments
in method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical
to match).

strictimport Requires that all imported packages and classes be imported explicitly us-
ing import instructions. That is, if in effect, there will be no automatic imports,
except those related to the package instruction.

strictmethods Superclass methods are not compared to local methods for best match.

strictprops Requires that all properties, including those local to the current class, be
qualified in references. That is, if in effect, local properties cannot appear as simple
names but must be qualified by this. (or equivalent) or the class name (for static
properties).

strictsignal Requires that all checked exceptions signalled within a method but not
caught by a catch clause be listed in the signals phrase of the method instruction.

symbols Symbol table information (names of local variables, etc.) will be included in
any generated .class file. This option is provided to aid the production of classes that
are easy to analyse with tools that can understand the symbol