NetREXX
Language Reference

Mike Cowlishaw and RExxLA

Version 3.08-GA of September 6, 2019

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-1-3

Publication Data

©Copyright The Rexx Language Association, 2011- 2019

All original material in this publication is published under the Creative Commons - Share Alike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-1-3

| SBN 978-90-819090- 1-3

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

II

Contents

11
|lhe NetREXX Programming Serieq i
[Typographical conventiong iii

1
I.1 Language Objectivey 1

.2 Language Concepty 4

I.3 Acknowledgementy 9

2 Introduction to the current edition 11

B NetReExx Language Definition 13

F Nofationy 15

b Characters and Encodings 17

b.1 Character Setq 17

6 Structure and General Syntax 19

p.1 Blanks and White Spacd 19

0. omments 19

0. okens 20

p.4 Implied semicolons and continuation§y 23

b.5 'The case of names and symbold 24

b.6 Hexadecimal and binary numeric symbolg

I/ lypes and Classeg 27

/.1~ Primitive typed 27

/.2 Dimensioned typed 28

/.3 Minor and Dependent classey 28

erms 31

B.1 Simpletermg 31

B.2 Compound term§ 32

B.3 Evaluation of termg 32

B.4 Simple term evaluation 33

8.5 Stub evaluation 33

B.6 Continuation evaluationy 35

B.7 Arraysintermy§ 36

D Methods and Constructorg 37

p.1 ~ Method call instructiongy 38

P.2 Method resolution (search order) 38

P.3 Method overriding 40

P.4 Return Typed 40

P.5 Constructor methody 41

10 Type conversions 43

10.1 Permitted automatic conversiony 43

10.2 Permitted explicit conversiony 45

10.3 Costs of conversiony 45

11 Expressions and Operatorg 47

] Op S 47

] N bers 51

[1.3 Parentheses and operator precedencd 52

12 Clauses and Instructiong 55

13 Assignments and Variableg 57

3.1 The use and scope of variabley 58

13.2 'Terms on the left of assignmenty 60

14 Indexed strings and Arrays 61

141 Array§ 62

I5 Keyword Instructiong 65

16 Annotation instruction 67

v

17 Class instruction 69

] Visibility 70

17. mplements 72

I8 Do instruction 73

19 Exit instruction 75

20 If instruction 77

21 Import instruction 79

22 Iterate instruction 81

23 Leave instruction 83

24 Loop instruction 85

R4.1 Syntax notes] 86

4.2 Indefinite [oopd 86

P4.3 Boundedloopd 86

4.4 Label phrasd 89

R4.5 Protect phrasd 90

24.6 Exceptionsinloopy 90

4.7 Programmer's model - how a typical loop is executed

25 Method instruction 93

Y ATg S 94
D Visib y 94

-

v
\O
(o)}

96
97

\®!
J

)

8 Signaly 97

25.9 Duplicate methodd 97

90

26 Nop instruction 99

27 Numeric instruction 101

28 Options instruction 103

29 Package instruction 107

B0 Parse instruction 109

B1 Properties instruction 111

BT Visibiliy = 112
5T2 Modifie] 112

112
31.4 U d 113

B1.5 Properties in interface classes 113

B2 Return instruction 115

B3 Say instruction 117

B4 Select instruction| 119

B4.1 Label phrasdq 120

B4.2 Protect phrasg 120

34 D qd 121

B4.4 Exceptions in select constructy 122

B5 Signal instruction 123

B6 Trace instruction 125

B6.1 'Tracing claused 126

B6.2 Tracing variableg 126

B6.3 'The format of trace outpuf 127

B7 Program structure 131

B7.1 Program defaultd 132

B8 Minor and Dependent classes 135

B8.1 Minor classe§ 135

B8.2 Dependent classeq 136

38 R S 138

B9 Special names and methods 139

B9.1 Special nameyg 139

B9.2 Special methodd 141

40 Javabean Suppor{ 143

B0.1 Indirect propertiey 143

A1 Parsing templateg 147

#l.1 Introduction to parsing 147

@1.2 Parsing definition 149

42 Numbers and Arithmetid 155

42.1 Introduction 155

i D 156

43 Binary values and operations 165

#3.1 Operations in binary classes and methodg 165

#3.2 Binary constructory 167

v) S 169

g4.1 Syntax and exampld 170

#4.2 Exceptions after catch and finally clauseq 171

4.3 Checked exceptiong 171

45 'lThread Pool Support 173

N

pleg 173

[6 Structured Lists Interfacq 175

B#6.1 Essential List Processing Methodg 175

6.2 Convenience Methody 176

H6.3 NetRexx Structured List Format 176

B6.4 Structured List Ruleset Description 177

A7 Methods for NetREXX strings 179

K#7.1 General notes on the built-in methods] 179

@47.2 'lhe built-in methodd 180

48 Appendix A - A Sample NetRExX Program 197

VII

49 Appendix B - 'The netrexx.lang Packagd

§9.1

Exception classeq 199

92

lhe RExx clasy 200

B9.3

REXX constructory 200

g9.4

REXX arithmetic methody 201

B9.5

RExX miscellaneous methody 204

B9.6

lhe RExxIO clasy 205

B9.7

lhe RExxOperators interface clasy 206

#9.8

‘IThe RExxSet clasy 206

List of Figures 209

199

VIIT

List of Tables

Escape sequencey 21

Concatenation operatorg 48

Arithmetic operatorg 48

Normal comparative operatorg 49

Strict comparative operators 49

Boolean operatorg 50

Operator precedence 52

o N = [N (9N N =

‘Irace 1dentifier tagy 128

IX

The NetRExX Programming Series

This book is part of a library, the NetRExx Programming Series, documenting the
NetRExx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide

This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRExx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide

The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference

Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRexx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRExx QuickStart Guide

The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetREXX.

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:

+ Body text is in this font

 Examples of language statements are in a bold type

« Variables or strings as mentioned in source code, or things that appear on the con-
sole, are in a typewriter type

« Items that are introduced, or emphasized, are in an italic type

+ Included program fragments are listed in this fashion:

Listing 1: Example Listing

-- salute the reader
> say 'hello reader'

« Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

iii

Introduction

NetRExx is a general-purpose programming language inspired by two very different
programming languages, RExx and Java . It is designed for people, not computers. In
this respect it follows RExx closely, with many of the concepts and most of the syn-
tax taken directly from REXX or its object-oriented version, Object RExx. From Java it
derives static typing, binary arithmetic, the object model, and exception handling. The
resulting language not only provides the scripting capabilities and decimal arithmetic
of RExX, but also seamlessly extends to large application development with fast binary
arithmetic.

The open source reference implementation (version 3 and later) of NetRExx produces
classes for the Java Virtual Machine, and in so doing demonstrates the value of that con-
crete interface between language and machine: NetRExx classes and Java classes are
entirely equivalent - NetREXX can use any Java class (and vice versa) and inherits the
portability and robustness of the Java environment.

This document is in three parts:

1. The objectives of the NetRExx language and the concepts underlying its design,
and acknowledgements.

2. An overview and introduction to the NetRExx language.
3. The definition of the language.

Appendices include a sample NetRExx program, a description of an experimental fea-
ture, and some details of the contents of the netrexx.lang package.

1.1 Language Objectives

This document describes a programming language, called NetRexx, which is derived
from both RExx and Java. NetRExX is intended as a dialect of RExx that can be as ef-
ficient and portable as languages such as Java, while preserving the low threshold to
learning and the ease of use of the original RExx language.

1.1.1 Features of RExx

The Rexx programming language¥ was designed with just one objective: to make pro-
gramming easier than it was before. The design achieved this by emphasizing readability
and usability, with a minimum of special notations and restrictions. It was consciously

ICowlishaw, M. E, The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.

1

designed to make life easier for its users, rather than for its implementers. One impor-
tant feature of REXX syntax is keyword safety. Programming languages invariably need
to evolve over time as the needs and expectations of their users change, so this is an
essential requirement for languages that are intended to be executed from source.

Keywords in RExx are not globally reserved but are recognized only in context. This
language attribute has allowed the language to be extended substantially over the years
without invalidating existing programs. Even so, some areas of RExx have proved dif-
ficult to extend - for example, keywords are reserved within instructions such as do.
Therefore, the design for NetRExx takes the concept of keyword safety even further than
in RExx, and also improves extensibility in other areas.

The great strengths of RExx are its human-oriented features, including

« simplicity

« coherent and uncluttered syntax

« comprehensive stringhandling

* case-insensitivity

« arbitrary precision decimal arithmetic.

Care has been taken to preserve these. Conversely, its interpretive nature has always
entailed a lack of efficiency: excellent RExx compilers do exist, from IBM and other
companies, but cannot offer the full speed of statically-scoped languages such as C? or
Javal,

1.1.2 Influence of Java

The system-independent design of RExx makes it an obvious and natural fit to a system-
independent execution environment such as that provided by the Java Virtual Machine
(JVM). The JVM, especially when enhanced with “just-in-time” bytecode compilers that
compile bytecodes into native code just before execution, offers an effective and attractive
target environment for a language like RExx.

Choosing the JVM as a target environment does, however, place significant constraints
on the design of a language suitable for that environment. For example, the semantics of
method invocation are in several ways determined by the environment rather than by
the source language, and, to a large extent, the object model (class structure, etc.) of the
Java environment is imposed on languages that use it.

Also, Java maintains the C concept of primitive datatypes; types (such as int, a 32-bit
signed integer) which allow efficient use of the underlying hardware yet do not describe
true objects. These types are pervasive in classes and interfaces written in the Java lan-
guage; any language intending to use Java classes effectively must provide access to these

types.
Equally, the exception (error handling) model of Java is pervasive, to the extent that meth-

ods must check certain exceptions and declare those that are not handled within the
method. This makes it difficult to fit an alternative exception model.

2Kernighan, B. W,, and Ritchie, D. M., The C Programming Language (second edition), ISBN 0-13-110362-8, Prentice- Hall,
1988.
3Gosling, J. A., et al. The Java Language Specification, ISBN 0-201-63451-1, Addison-Wesley, 1996.

2

The constraints of safety, efficiency, and environment necessitated that NetRExx would
have to differ in some details of syntax and semantics from RExx; unlike Object REXX,
it could not be a fully upwards-compatible extension of the languagell. The need for
changes, however, offered the opportunity to make some significant simplifications and
enhancements to the language, both to improve its keyword safety and to strengthen
other features of the original RExx design. Some additions from Object RExx and ANSI
Rexxf are also included.

Similarly, the concepts and philosophy of the RExx design can profitably be applied to
avoid many of the minor irregularities that characterize the C and Java language fam-
ily, by providing suitable simplifications in the programming model. For example, the
NetRexx looping construct has only one form, rather than three, and exception handling
can be applied to all blocks rather than requiring an extra construct. Also, as in REXX,
all NetRExx storage allocation and de-allocation is implicit — an explicit new operator
is not required.

Further, the human-oriented design features of RExx (case-insensitivity for identifiers,
type deduction from context, automatic conversions where safe, tracing, and a strong
emphasis on string representations of common values and numbers) make program-
ming for the Java environment especially easy in NetRExx.

1.1.3 A hybrid or a whole?

As in other mixtures, not all blends are a success; when first designing NetRExX, it was
not at all obvious whether the new language would be an improvement on its parents,
or would simply reflect the worst features of both.

The fulcrum of the design is perhaps the way in which datatyping is automated with-
out losing the static typing supported by Java. Typing in NetRExX is most apparent at
interfaces — where it provides most value — but within methods it is subservient and
does not obscure algorithms. A simple concept, binary classes, also lets the programmer
choose between robust decimal arithmetic and less safe (but faster) binary arithmetic
for advanced programming where performance is a primary consideration.

The “seamless” integration of types into what was previously an essentially typeless lan-
guage does seem to have been a success, offering the advantages of strong typing while
preserving the ease of use and speed of development that RExx programmers have en-
joyed.

The end result of adding Java typing capabilities to the RExx language is a single language
that has both the Rexx strengths for scripting and for writing macros for applications
and the Java strengths of robustness, good efficiency, portability, and security for appli-
cation development.

4Nash, S. C., Object-Oriented REXX in Goldberg, G, and Smith, P. H. I1I, The Rexx Handbook, pp115-125, ISBN 0-07-023682-
8, McGraw-Hill, Inc., New York, 1992.

5See Cowlishaw, M. E, The Early History of REXX, IEEE Annals of the History of Computing, ISSN 1058-6180, Vol 16, No.
4, Winter 1994, pp15-24, and Cowlishaw, M. E, The Future of REXX, Proceedings of Winter 1993 Meeting/SHARE 80, Volume II,
p-2709, SHARE Inc., Chicago, 1993.

See American National Standard for Information Technology - Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

1.2 Language Concepts

As described in the last section, NetRExx was created by applying the philosophy of the
RExx language to the semantics required for programming the Java Virtual Machine
(JVM). Despite the assumption that the JVM is a “target environment” for NetREXX, it is
intended that the language not be environment-dependent; the essentials of the language
do not depend on the JVM. Environment- dependent details, such as the primitive types
supported, are not part of the language specification.

The primary concepts of RExx have been described before, in The RExx Language, but
it is worth repeating them and also indicating where modifications and additions have
been necessary to support the concepts of statically-typed and object-oriented environ-
ments. The remainder of this section is therefore a summary of the principal concepts
of NetREXX.

1.2.1 Readability

One concept was central to the evolution of RExX syntax, and hence NetRExx syntax:
readability (used here in the sense of perceived legibility). Readability in this sense is a
somewhat subjective quality, but the general principle followed is that the tokens which
form a program can be written much as one might write them in Western European
languages (English, French, and so forth). Although NetRexx is more formal than a
natural language, its syntax is lexically similar to everyday text.

The structure of the syntax means that the language is readily adapted to a variety of
programming styles and layouts. This helps satisfy user preferences and allows a lexical
familiarity that also increases readability. Good readability leads to enhanced under-
standability, thus yielding fewer errors both while writing a program and while reading
it for information, debugging, or maintenance.

Important factors here are:

1. Punctuation and other special notations are required only when absolutely nec-
essary to remove ambiguity (though punctuation may often be added according
to personal preference, so long as it is syntactically correct). Where notations are
used, they follow established conventions.

2. The language is essentially case-insensitive. A NetRExx programmer may choose
a style of use of uppercase and lowercase letters that he or she finds most helpful
(rather than a style chosen by some other programmer).

3. The classical constructs of structured and object-oriented programming are avail-
able in NetRExx, and can undoubtedly lead to programs that are easier to read than
they might otherwise be. The simplicity and small number of constructs also make
NetRexx an excellent language for teaching the concepts of good structure.

4. Loose binding between the physical lines in a program and the syntax of the lan-
guage ensures that even though programs are affected by line ends, they are not
irrevocably so. A clause may be spread over several lines or put on just one line;
this flexibility helps a programmer lay out the program in the style felt to be most
readable.

1.2.2 Natural data typing and decimal arithmetic

“Strong typing’”, in which the values that a variable may take are tightly constrained, has
been an attribute of some languages for many years. The greatest advantage of strong typ-
ing is for the interfaces between program modules, where errors are easy to introduce
and difficult to catch. Errors within modules that would be detected by strong typing
(and which would not be detected from context) are much rarer, certainly when com-
pared with design errors, and in the majority of cases do not justify the added program
complexity.

NetRExX, therefore, treats types as unobtrusively as possible, with a simple syntax for
type description which makes it easy to make types explicit at interfaces (for example,
when describing the arguments to methods).

By default, common values (identifiers, numbers, and so on) are described in the form
of the symbolic notation (strings of characters) that a user would normally write to rep-
resent those values. This natural datatype for values also supports decimal arithmetic
for numbers, so, from the user’s perspective, numbers look like and are manipulated as
strings, just as they would be in everyday use on paper.

When dealing with values in this way, no internal or machine representation of charac-
ters or numbers is exposed in the language, and so the need for many data types is re-
duced. There are, for example, no fundamentally different concepts of integer and real;
there is just the single concept of number. The results of all operations have a defined
symbolic representation, and will therefore act consistently and predictably for every
correct implementation.

This concept also underlies the BASICH language; indeed, Kemeny and Kurtz’s vision for
BASIC included many of the fundamental principles that inspired RExx. For example,
Thomas E. Kurtz wrote:

“Regarding variable types, we felt that a distinction between ‘fixed’ and ‘floating’ was less justified in 1964
than earlier ... to our potential audience the distinction between an integer number and a non-integer
number would seem esoteric. A number is a number is a number.8

For RExX, intended as a scripting language, this approach was ideal; symbolic operations
were all that were necessary.

For NetRExx, however, it is recognized that for some applications it is necessary to take
tull advantage of the performance of the underlying environment, and so the language
allows for the use and specification of binary arithmetic and types, if available. A very
simple mechanism (declaring a class or method to be binary) is provided to indicate to
the language processor that binary arithmetic and types are to be used where applicable.
In this case, as in other languages, extra care has to be taken by the programmer to avoid
exceeding limits of number size and so on.

7Kemeny, J. G. and Kurtz, T. E., BASIC programming, John Wiley & Sons Inc., New York, 1967.
8Kurtz, T. E., BASIC in Wexelblat, R. L. (Ed), History of Programming Languages, ISBN 0-12-745040-8, Academic Press, New
York 1981.

1.2.3 Emphasis on symbolic manipulation

Many values that NetRExx manipulates are (from the user’s point of view, at least) in
the form of strings of characters. Productivity is greatly enhanced if these strings can be
handled as easily as manipulating words on a page or in a text editor. NetRExx therefore
has a rich set of character manipulation operators and methods, which operate on values
of type Rexx (the name of the class of NetRExx strings).

Concatenation, the most common string operation, is treated specially in NetRExx. In
addition to a conventional concatenate operator (“||”), the novel blank operator from
REXX concatenates two data strings together with a blank in between. Furthermore, if
two syntactically distinct terms (such as a string and a variable name) are abutted, then
the data strings are concatenated directly. These operators make it especially easy to build
up complex character strings, and may at any time be combined with the other operators.

For example, the say instruction consists of the keyword say followed by any expression.
In this instance of the instruction, if the variable n has the value “6” then

say ’Sorry,’ nx100/50’% were rejected’
would display the string
Sorry, 12% were rejected

Concatenation has a lower priority than the arithmetic operators. The order of evalu-
ation of the expression is therefore first the multiplication, then the division, then the
concatenate-with-blank, and finally the direct concatenation. Since the concatenation
operators are distinct from the arithmetic operators, very natural coercion (automatic
conversion) between numbers and character strings is possible. Further, explicit type-
casting (conversion of types) is effected by the same operators, at the same priority, mak-
ing for a very natural and consistent syntax for changing the types of results. For example,

i=int 100/7

would calculate the result of 100 divided by 7, convert that result to an integer (assuming
int describes an integer type) and then assign it to the variable 1.

1.2.4 Nothing to declare

Consistent with the philosophy of simplicity, NetRExx does not require that variables
within methods be declared before use. Only the properties? of classes — which may form
part of their interface to other classes — need be listed formally.

Within methods, the type of variables is deduced statically from context, which saves
the programmer the menial task of stating the type explicitly. Of course, if preferred,
variables may be listed and assigned a type at the start of each method.

9Class variables and instance variables.

1.2.5 Environment independence

The core NetRExx language is independent of both operating systems and hardware.
NetRExX programs, though, must be able to interact with their environment, which
implies some dependence on that environment (for example, binary representations of
numbers may be required). Certain areas of the language are therefore described as being
defined by the environment.

Where environment-independence is defined, however, there may be a loss of efficiency
- though this can usually be justified in view of the simplicity and portability gained.

As an example, character string comparison in NetRExx is normally independent of case
and of leading and trailing blanks. (The string “ Yes ” means the same as “yes” in most
applications.) However, the influence of underlying hardware has often subtly affected
this kind of design decision, so that many languages only allow trailing blanks but not
leading blanks, and insist on exact case matching. By contrast, NetRExx provides the
human-oriented relaxed comparison for strings as default, with optional “strict com-
parison” operators.

1.2.6 Limited span syntactic units

The fundamental unit of syntax in the NetRexx language is the clause, which is a piece
of program text terminated by a semicolon (usually implied by the end of a line). The
span of syntactic units is therefore small, usually one line or less. This means that the
syntax parser in the language processor can rapidly detect and locate errors, which in
turn means that error messages can be both precise and concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its derivatives)
that have large fundamental syntactic units. For these languages, a small error can often
have a major or distributed effect on the parser, which can lead to multiple error messages
or even misleading error messages.

1.2.7 Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool must,
above all, be reliable. In the case of a language this means that it should do what the user
expects. User expectations are generally based on prior experience, including the use of
various programming and natural languages, and on the human ability to abstract and
generalize.

It is difficult to define exactly how to meet user expectations, but it helps to ask the
question “Could there be a high astonishment factor associated with this feature?”. If a
feature, accidentally misused, gives apparently unpredictable results, then it has a high
astonishment factor and is therefore undesirable.

Another important attribute of a reliable software tool is consistency. A consistent lan-
guage is by definition predictable and is often elegant. The danger here is to assume that
because a rule is consistent and easily described, it is therefore simple to understand. Un-
fortunately, some of the most elegant rules can lead to effects that are completely alien
to the intuition and expectations of a user who, after all, is human.

7

These constraints make programming language design more of an art than a science, if
the usability of the language is a primary goal. The problems are further compounded
for NetRExx because the language is suitable for both scripting (where rapid develop-
ment and ease of use are paramount) and for application development (where some pro-
grammers prefer extensive checking and redundant coding). These conflicting goals are
balanced in NetRExx by providing automatic handling of many tasks (such as conver-
sions between different representations of strings and numbers) yet allowing for “strict”
options which, for example, may require that all types be explicit, identifiers be identical
in case as well as spelling, and so on.

1.2.8 Be adaptable

Wherever possible NetRExx allows for the extension of instructions and other language
constructs, building on the experience gained with RExx. For example, there is a useful
set of common characters available for future use, since only small set is used for the few
special notations in the language.

Similarly, the rules for keyword recognition allow instructions to be added whenever re-
quired without compromising the integrity of existing programs. There are no reserved
keywords in NetRExX; variable names chosen by a programmer always take precedence
over recognition of keywords. This ensures that NetRExx programs may safely be exe-
cuted, from source, at a time or place remote from their original writing — even if in the
meantime new keywords have been added to the language.

A language needs to be adaptable because it certainly will be used for applications not fore-
seen by the designer. Like all programming languages, NetRExx may (indeed, probably
will) prove inadequate for certain future applications; room for expansion and change is
included to make the language more adaptable and robust.

1.2.9 Keep the language small

NetRexx is designed as a small language. It is not the sum of all the features of RExx and
of Java; rather, unnecessary features have been omitted. The intention has been to keep
the language as small as possible, so that users can rapidly grasp most of the language.
This means that:

« the language appears less formidable to the new user

 documentation is smaller and simpler

« the experienced user can be aware of all the abilities of the language, and so has the
whole tool at his or her disposal

« there are few exceptions, special cases, or rarely used embellishments

« the language is easier to implement.
Many languages have accreted “neat” features which make certain algorithms easier to
express; analysis shows that many of these are rarely used. As a rough rule-of-thumb,

features that simply provided alternative ways of writing code were added to RExx and
NetRexx only if they were likely to be used more often than once in five thousand clauses.

8

1.2.10 No defined size or shape limits

The language does not define limits on the size or shape of any of its tokens or data (al-
though there may be implementation restrictions). It does, however, define a few min-
imum requirements that must be satisfied by an implementation. Wherever an imple-
mentation restriction has to be applied, it is recommended that it should be of such a
magnitude that few (if any) users will be affected.

Where arbitrary implementation limits are necessary, the language requires that the im-
plementer use familiar and memorable decimal values for the limits. For example 250
would be used in preference to 255, 500 to 512, and so on.

1.3 Acknowledgements

Much of NetRexx is based on earlier work, and I am indebted to the hundreds of people
who contributed to the development of RExx, Object REXX, and Java.

In the 1990s I gained many insights from the deliberations of the members of the X3J18
technical committee, which, under the remarkable chairmanship of Brian Marks, led to
the 1996 ANSI Standard for RExx. Many of the committee’s suggestions are incorporated
in NetREXX.

Equally important have been the comments and feedback from the pioneering users of
NetRExx, and all those people who sent me comments on the language either directly or
in the NetRExx mailing list or forum. I would especially like to thank Ian Brackenbury,
Barry Feigenbaum, Davis Foulger, Norio Furukawa, Dion Gillard, Martin Lafaix, Max
Marsiglietti, and Trevor Turton for their insightful comments and encouragement.

I also thank IBM; my appointment as an IBM Fellow made it possible to make the imple-
mentation of NetREXX a reality in months rather than years. IBM has also donated the
NetRexx implementation to the RExx Language Association, with special thanks due
to Matthew Emmons for piloting NetRexx through the convoluted legal and other pro-
cesses, and to René Jansen for massaging the NetRExx reference implementation into
shape for its Open Source release.

Finally, this document has relied on old but trusted technology for its creation: its GML
markup was processed using macros originally written by Bob O’Hara, and formatted
using SCRIPT/VS, the IBM Document Composition Facility. Geoff Bartlett provided
critical advice on character sets and fonts for the NetRExx book. This version uses a set
of REXX programs to translate that same GML markup to OpenOffice Document Text
format (XML files).

Mike Cowlishaw, 1997 and 2009

10

Introduction to the current edition

After the open sourcing of the NetRExx reference implementation in 2011 the RExxLA
NetRexx ARB (Architecture Review Board), in which Mike Cowlishaw takes part as
Language Architect, took responsibility for the definition of the language. Starting from
version 3.00, changes in the language definition! in this publication will be marked with
the introducing release number, in the form of a margin note.

For this version of the NetRexx Language Reference, a NetREXX program was used to
translate the original GML markup to XqETgX. This edition describes the 3.08-GA ver-
sion of the language and supercedes all earlier versions. The previously included chapter
“A Quick Tour of the NetRexx Language” can now be exclusively found in the NefRexx
Quickstart Guide.

René Vincent Jansen, September 6, 2019

10This publication is traditionally known as NRL, short for NetRexx Language Reference. This title however, has (for reasons of
clarity for new users) been changed in the filename of the PDF version of the book in favour of a longer and more descriptive name.

11

12

NetRexx Language Definition

This part of the document describes the NetRexx language, version 3.08-GA. This ver-
sion includes the original NetRexx language reference together with additions made
from 1997 through 2000 and previously published in the NetRExx Language Supplement.

The language is described first in terms of the characters from which it is composed
and its low-level syntax, and then progressively through more complex constructions.
Finally, special sections describe the semantics of the more complicated areas.

Some features of the language, such as options keywords and binary arithmetic, are
implementation-dependent. Rather than leaving these important aspects entirely ab-
stract, this description includes summaries of the treatment of such items in the ref-
erence implementation of NetRExx. The reference implementation is based on the Java
environment and class libraries.

Paragraphs that refer to the reference implementation, and are therefore not strictly part of
the language definition, are shown in italics, like this one.

1 The NetRexx Language, M. E. Cowlishaw, ISBN 0-13-806332-X, Prentice-Hall, 1997

13

14

Notations

In this part of the book, various notations such as changes of font are used for clarity.
Within the text, a sans-serif bold font is used to indicate keywords, and an italic font is
used to indicate technical terms. An italic font is also used to indicate a reference to a
technical term defined elsewhere or a word in a syntax diagram that names a segment of
syntax.

Similarly, in the syntax diagrams in this book, words (symbols) in the sans-serif bold font
also denote keywords or sub-keywords, and words (such as expression) in italics denote
a token or collection of tokens defined elsewhere. The brackets [and] delimit optional
(and possibly alternative) parts of the instructions, whereas the braces { and } indicate
that one of a number of alternatives must be selected. An ellipsis (...) following a bracket
indicates that the bracketed part of the clause may optionally be repeated.

Occasionally in syntax diagrams (e.g., for indexed references) brackets are "real” (that is,
a bracket is required in the syntax; it is not marking an optional part). These brackets are
enclosed in single quotes, thus: ’[* or *]°.

Note that the keywords and sub-keywords in the syntax diagrams are not case-sensitive:
the symbols "IF” ”If” and "iF” would all match the keyword shown in a syntax diagram
asif.

» »
.

Note also that most of the clause delimiters (”;”) shown can usually be omitted as they
will be implied by the end of a line.

15

16

Characters and Encodings

In the definition of a programming language it is important to emphasize the distinc-
tion between a character and the coded representation 2 (encoding) of a character. The
character "A’, for example, is the first letter of the English (Roman) alphabet, and this
meaning is independent of any specific coded representation of that character. Different
coded character sets (such as, for example, the ASCII 2 and EBCDIC M codes) use quite
different encodings for this character (decimal values 65 and 193, respectively). Except
where stated otherwise, this book uses characters to convey meaning and not to imply
a specific character code (the exceptions are certain operations that specifically convert
between characters and their representations). At no time is NetRExx concerned with
the glyph (actual appearance) of a character.

5.1 Character Sets

Programming in the NetRExx language can be considered to involve the use of two
character sets. The first is used for expressing the NetRExx program itself, and is the
relatively small set of characters described in the next section. The second character set
is the set of characters that can be used as character data by a particular implementation
of a NetRExx language processor. This character set may be limited in size (sometimes
to a limit of 256 different characters, which have a convenient 8-bit representation), or
it may be much larger. The Unicode I3 character set, for example, allows for 1,114,112
code points, of which currently 128,000 are defined as characters. These are represented,
depending on the serialization format, in one to four bytes.

Usually, most or all of the characters in the second (data) character set are also allowed
within a NetREXX program, but only within commentary or immediate (literal) data.
The NetRexx language explicitly defines the first character set, in order that programs
will be portable and understandable; at the same time it avoids restrictions due to the
language itself on the character set used for data. However, where the language itself
manipulates or inspects the data (as when carrying out arithmetic operations), there may
be requirements on the data character set (for example, numbers can only be expressed
if there are digit characters in the set).

12 These terms have the meanings as defined by the International Organization for Standardization, in 1SO 2382 :cit.Data pro-
cessing - Vocabulary:ecit..

13 American Standard Code for Information Interchange.

14 Extended Binary Coded Decimal Interchange Code.

15 The Unicode Standard, version 6.0., The Unicode Consortium, Mountain View, 2011, ISBN 09781936213016.

17

18

Structure and General Syntax

A NetRexx program is built up out of a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (described in this section); zero
or more blanks (again ignored); and the delimiter ”;” (semicolon) which may be implied
by line-ends or certain keywords. Conceptually, each clause is scanned from left to right
before execution and the tokens composing it are resolved.

Identifiers (known as symbols) and numbers are recognized at this stage, comments (de-
scribed below) are removed, and multiple blanks (except within literal strings) are re-
duced to single blanks. Blanks adjacent to operator characters (see page P7) and special
characters (see page 23) are also removed.

6.1 Blanks and White Space

Blanks (spaces) may be freely used in a program to improve appearance and layout, and
most are ignored. Blanks, however, are usually significant

« within literal strings (see below)

+ between two tokens that are not special characters (for example, between two sym-
bols or keywords)

« between the two characters forming a comment delimiter

+ immediately outside parentheses (*(” and ”)”) or brackets (’[” and ”]”).

For implementations that support tabulation (tab) and form feed characters, these char-
acters outside of literal strings are treated as if they were a single blank; similarly, if the
last character in a NetREXX program is the End-of-file character (EOF, encoded in ASCII
as decimal 26), that character is ignored.

6.2 Comments

Commentary is included in a NetRExx program by means of comments. Two forms of
comment notation are provided: line comments are ended by the end of the line on which
they start, and block comments are typically used for more extensive commentary.

Line comments A line comment is started by a sequence of two adjacent hyphens
(“= =7); all characters following that sequence up to the end of the line are then
ignored by the NetRexx language processor.

Example:

19

i=j+7 -- this 1line comment follows an assignment

Block comments A block comment is started by the sequence of characters ”/*”, and is
ended by the same sequence reversed, ”*/”. Within these delimiters any characters
are allowed (including quotes, which need not be paired). Block comments may
be nested, which is to say that ”/*” and ™*/” must pair correctly. Block comments
may be anywhere, and may be of any length. When a block comment is found, it
is treated as though it were a blank (which may then be removed, if adjacent to a
special character).

Example:

/* This 1is a valid block comment x/

The two characters forming a comment delimiter (*/*” or ”*/”) must be adjacent
(that is, they may not be separated by blanks or a line-end).

Note: It is recommended that NetRExxX programs start with a block comment that de-
scribes the program. Not only is this good programming practice, but some implemen-
tations may use this to distinguish NetRExx programs from other languages. Imple-
mentation minimum: Implementations should support nested block comments to a
depth of at least 10. The length of a comment should not be restricted, in that it should
be possible to "comment out” an entire program.

6.3 Tokens

The essential components of clauses are called tokens. These may be of any length, unless
limited by implementation restrictions, ™ and are separated by blanks, comments, ends
of lines, or by the nature of the tokens themselves.

The tokens are:

Literal strings A sequence including any characters that can safely be represented in
an implementation ™ and delimited by the single quote character (°) or the double-
quote (7). Use ™ to include a ” in a literal string delimited by ”, and similarly use two
single quotes to include a single quote in a literal string delimited by single quotes.
A literal string is a constant and its contents will never be modified by NetRExx.
Literal strings must be complete on a single line (this means that unmatched quotes
may be detected on the line that they occur). Any string with no characters (i.e., a
string of length 0) is called a null string.

Examples:

’Fred’
’Ay’
”Don’t Panic!”

9 09
« X

16 Wherever arbitrary implementation restrictions are applied, the size of the restriction should be a number that is readily mem-
orable in the decimal system; that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512, the number 250 is more
“natural” than 256, and so on. Limits expressed in digits should be a multiple of three.

17 Some implementations may not allow certain “control characters” in literal strings. These characters may be included in literal
strings by using one of the escape sequences provided.

20

TABLE 1: Escape sequences

\t the escape sequence represents a tabulation (tab) character

\n the escape sequence represents a new-line (line feed) character

\r the escape sequence represents a return (carriage return) character

\f the escape sequence represents a form-feed character

\” the escape sequence represents a double-quote character

\V the escape sequence represents a single-quote character

\ the escape sequence represents a backslash character

\- the escape sequence represents a “null” character (the character whose encoding equals

zero), used to indicate continuation in a say instruction

\O(zero) the escape sequence represents a “null” character (the character whose encoding equals

zero); an alternative to \-

\xhh

the escape sequence represents a character whose encoding is given by the two hexadecimal
digits ("hh”) following the "x”. If the character encoding for the implementation requires
more than two hexadecimal digits, they are padded with zero digits on the left.

\uhhhh theescape sequence represents a character whose encoding is given by the four hexadecimal

digits ("hhhh”) following the u”. It is an error to use this escape if the character encoding
for the implementation requires fewer than four hexadecimal digits.

’You shouldn’’t’ /* Same as ”You shouldn’t” x/
0 /* A null string x/

Within literal strings, characters that cannot safely or easily be represented (for ex-
ample “control characters”) may be introduced using an escape sequence. An escape
sequence starts with a backslash (*\”), which must then be followed immediately by
one of the following (letters may be in either uppercase or lowercase) - see table [I.
Hexadecimal digits for use in the escape sequences above may be any decimal digit
(0-9) or any of the first six alphabetic characters (a-f), in either lowercase or up-
percase. Examples:

’You shouldn\’t’ /* Same as ”You shouldn’t” x/

’\x6d\uB066\x63° /*x In Unicode: ’mfc’ x/

’\\\uoosC’ /* In Unicode, two backslashes =*/

Implementation minimum: Implementations should support literal strings of at
least 100 characters. (But note that the length of string expression results, etc.,
should have a much larger minimum, normally only limited by the amount of stor-
age available.)

Symbols Symbols are groups of characters selected from the Roman alphabet in upper-

case or lowercase (A-Z, a-z), the Arabic numerals (0-9), or the characters under-
score, dollar, and euro™ (”_$ €”) Implementations may also allow other alphabetic
and numeric characters in symbols to improve the readability of programs in lan-
guages other than English. These additional characters are known as extra letters
and extra digits. B

Examples:

18 Note that only UTF8-encoded source files can currently use the euro character.
19 1t is expected that implementations of NetRexx will be based on Unicode or a similarly rich character set. However, portability
to implementations with smaller character sets may be compromised when extra letters or extra digits are used in a program.

21

3.03

DanYrOgof

minx

Elan

$Virtual3D

A symbol may include other characters only when the first character of the symbol
is a digit (0-9 or an extra digit). In this case, it is a numeric symbol - it may include
a period (”.”) and it must have the syntax of a number. This may be simple number,
which is a sequence of digits with at most one period (which may not be the final
character of the sequence), or it may be a hexadecimal or binary numeric symbol(see
page 24) , or it may be a number expressed in exponential notation.

A number in exponential notation is a simple number followed immediately by
the sequence ”E” (or ”e”), followed immediately by a sign ("+” or ”-”), & followed
immediately by one or more digits (which may not be followed by any other symbol
characters).

Examples:

1

1.3
12.007
17.3E-12
3e+12
0.03E+9

When extra digits are used in numeric symbols, they must represent values in the
range zero through nine. When numeric symbols are used as numbers, any extra
digits are first converted to the corresponding character in the range 0-9, and then
the symbol follows the usual rules for numbers in NetRexx (that is, the most sig-
nificant digit is on the left, etc.).

In the reference implementation, the extra letters are those characters (excluding A-Z,
a-z, and underscore) that result in 1 when tested with
java.lang.Character.isJavaldentifierPart. Similarly, the extra digits are those char-
acters (excluding 0-9) that result in 1 when tested with java.lang.Character.isDigit.
The meaning of a symbol depends on the context in which it is used. For example,
a symbol may be a constant (if a number), a keyword, the name of a variable, or
identify some algorithm.

It is recommended that the dollar and euro only be used in symbols in mechan-
ically generated programs or where otherwise essential. Implementation mini-
mum: Implementations should support symbols of at least 50 characters. (But note
that the length of its value, if it is a string variable, should have a much larger limit.)

Operator characters The characters + - * % |/ & \= < > are used (sometimes in

combination) to indicate operations (see page 7)) in expressions. A few of these
are also used in parsing templates, and the equals sign is also used to indicate as-
signment. Blanks adjacent to operator characters are removed, so, for example, the
sequences:

345>=123
345 >=123
345 >= 123

20 The sign in this context is part of the symbol; it is not an operator.

22

345 > = 123

are identical in meaning. Some of these characters may not be available in all char-
acter sets, and if this is the case appropriate translations may be used. Note: The
sequences ~-", ”/*”, and "*/” are comment delimiters, as described earlier. The se-
quences “++” and \\” are not valid in NetRExX programs.

Special characters The characters.,;) (] [together with the operator characters have
special significance when found outside of literal strings, and constitute the set of
special characters. They all act as token delimiters, and blanks adjacent to any of
these (except the period) are removed, except that a blank adjacent to the outside
of a parenthesis or bracket is only deleted if it is also adjacent to another special
character (unless this is a parenthesis or bracket and the blank is outside it, too).
Some of these characters may not be available in all character sets, and if this is the
case appropriate translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:
’REPEAT’ B + 3;

This is composed of six tokens: a literal string, a blank operator (described later), a sym-
bol (which is probably the name of a variable), an operator, a second symbol (a number),
and a semicolon. The blanks between the "B” and the ”+” and between the ”+” and the
”3” are removed. However one of the blanks between the’REPEAT” and the ”B” remains
as an operator. Thus the clause is treated as though written:

’REPEAT’ B+3;

6.4 Implied semicolons and continuations

A semicolon (clause end) is implied at the end of each line, except if:

1. The line ends in the middle of a block comment, in which case the clause continues
at the end of the block comment.

2. The last token was a hyphen. In this case the hyphen is functionally replaced by a
blank, and hence acts as a continuation character.

This means that semicolons need only be included to separate multiple clauses on a single
line.

Notes:

1. A comment is not a token, so therefore a comment may follow the continuation
character on a line.

2. Semicolons are added automatically by NetRExx after certain instruction keywords
when in the correct context. The keywords that may have this effect are else,
finally, otherwise, then; they become complete clauses in their own right when
this occurs. These special cases reduce program entry errors significantly.

23

6.5 The case of names and symbols

In general, NetREXX is a case-insensitive language. That is, the names of keywords, vari-
ables, and so on, will be recognized independently of the case used for each letter in a
name; the name "Swildon” would match the name “swilDon”.

NetRexx, however, uses names that may be visible outside the NetRExx program, and
these may well be referenced by case-sensitive languages. Therefore, any name that has
an external use (such as the name of a property, method, constructor, or class) has a
defined spelling, in which each letter of the name has the case used for that letter when
the name was first defined or used.

Similarly, the lookup of external names is both case-preserving and case-insensitive. If
a class, method, or property is referenced by the name "Foo”, for example, an exact-case
match will first be tried at each point that a search is made. If this succeeds, the search
for a matching name is complete. If it does not succeed, a case-insensitive search in the
same context is carried out, and if one item is found, then the search is complete. If more
than one item matches then the reference is ambiguous, and an error is reported.

Implementations are encouraged to offer an option that requires that all name matches
are exact (case-sensitive), for programmers or house-styles that prefer that approach to
name matching.

6.6 Hexadecimal and binary numeric symbols

A hexadecimal numeric symbol describes a whole number, and is of the form nXstring.
Here, n is a simple number with no decimal part (and optional leading insignificant
zeros) which describes the effective length of the hexadecimal string, the X (which may
be in lowercase) indicates that the notation is hexadecimal, and string is a string of one
or more hexadecimal characters (characters from the ranges a-f”, "A-F”, and the digits
”0-9”).

The string is taken as a signed number expressed in n hexadecimal characters. If neces-
sary, string is padded on the left with ”0” characters (note, not “sign-extended”) to length
n characters.

If the most significant (left-most) bit of the resulting string is zero then the number is
positive; otherwise it is a negative number in twos-complement form. In both cases it
is converted to a NetRExx number which may, therefore, be negative. The result of the
conversion is a number comprised of the Arabic digits 0-9, with no insignificant leading

» »

zeros but possibly with a leading ”-”.

The value n may not be less than the number of characters in string, with the single
exception that it may be zero, which indicates that the number is always positive (as
though n were greater than the the length of string).

Examples:

1x8 == -8

24

0x08 == 8
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xFO81 == -3967

8xFO81 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except that
the identifying character is B or b, and the digits of string must be either 0 or 1, each
representing a single bit.

Examples:

1bo
1b1l
0b10o 2
0b100 4
4b1000 == -8
8B100O ==

0
-1

Note: Hexadecimal and binary numeric symbols are a purely syntactic device for repre-
senting decimal whole numbers. That is, they are recognized only within the source of
a NetRExX program, and are not equivalent to a literal string with the same characters
within quotes.

25

26

Types and Classes

Programs written in the NetRExx language manipulate values, such as names, numbers,
and other representations of data. All such values have an associated type (also known
as a signature).

The type of a value is a descriptor which identifies the nature of the value and the oper-
ations that may be carried out on that value.

A type is normally defined by a class, which is a named collection of values (called prop-
erties) and procedures (called methods) for carrying out operations on the properties.

For example, a character string in NetRExx is usually of type RExx, which will be im-
plemented by the class called RExx. The class RExXX defines the properties of the string
(a sequence of characters) and the methods that work on strings. This type of string may
be the subject of arithmetic operations as well as more conventional string operations
such as concatenation, and so the methods implement string arithmetic as well as other
string operations.

The names of types can further be qualified by the name of a package where the class is
held. See the package instruction for details of packages; in summary, a package name
is a sequence of one or more non-numeric symbols, separated by periods. Thus, if the
RExX class was part of the netrexx.lang package, & then its qualified type would be
netrexx.lang.REXX.

In general, only the class name need be specified to refer to a type. However, if a class
of the same name exists in more than one known (imported) package, then the name
should be qualified by the package name. That is, if the use of just the class name does
not uniquely identify the class then the reference is ambiguous and an error is reported.

7.1 Primitive types

Implementations may optionally provide primitive types for efficiency. Primitive types
are “built-in” types that are not necessarily implemented as classes. They typically repre-
sent concepts native to the underlying envir