Pipelines for NetRexx
QuickStart Guide

Ed Tomlinson Jeff Hennick René Jansen

Version 3.08-GA of September 6, 2019

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-3-7

Publication Data

©Copyright The Rexx Language Association, 2011- 2019

All original material in this publication is published under the Creative Commons - Share Alike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-3-7

| SBN 978-90-819090- 3-7

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

II

Contents

|lhe NetREXX Programming Serieg i

[ITypographical conventiong iii

1

2 'The Pipeline Concepf 3

R.1 WhatisaPipelineq 3
P2 Stagd 3
2.3 Device Drivey 4

B Running pipelineg 5

B.1 Configuration 5

B.2 From the NetRExX Workspace (nrws) with direct execution 5

B.3 From the command line with direct execution 6

B.4 Precompiled Pipelined 6

B.5 Compiled from an .njp ilg 7

4 Example Session 9

b Write your own Filterg 13

[

More advanced Pipelines 15

<3

Device Driversg 17

[0

Record Selection 19

p__ Filters 21
10 O

ges 23

M1 Multi-Stream Pipelines 25

12 Pipeline Stallg 27

III

13 Ditferences with CMS Pipelines 29

14 How to use a pipe in a NetREXX program| 31

L5 TCP/IP Networking using Pipes for NetREXX| 35

L6 Selecting from databases with Pipelines for NetREXX

7 'The Pipes Runner 39

18 'The Pipes Compiler 41

19 Built-in Stageq 43

20 Append Al 57
65

List of Figures
[istofTabley 65

v

37

The NetRExX Programming Series

This book is part of a library, the NetRExx Programming Series, documenting the
NetRExx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide

This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRExx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide

The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference

Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRExx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRExx QuickStart Guide

The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetREXX.

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:

+ Body text is in this font

 Examples of language statements are in a bold type

« Variables or strings as mentioned in source code, or things that appear on the con-
sole, are in a typewriter type

« Items that are introduced, or emphasized, are in an italic type

+ Included program fragments are listed in this fashion:

Listing 1: Example Listing

-- salute the reader
> say 'hello reader'

« Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

iii

Introduction

A Pipeline, or Hartmann Pipelinel, is a concept that extends and improves pipes as they
are known from Unix and other operating systems. The name pipe indicates an inter-
process communication mechanism, as well as the programming paradigm it has intro-
duced. Compared to Unix pipes, Hartmann Pipelines offer multiple input- and output
streams, more complex pipe topologies, and a lot more.

Pipelines were first implemented on VM/CMS, one of IBM’s mainframe operating sys-
tems. This version was later adapted to run under MUSIC/SP and TSO/MVS (now z/OS)
and has been part of several product configurations. Pipelines are widely used by VM
users, in a symbiotic relationship with REXX, the interpreted language that also has its
origins on this platform.

Pipes for NetRexx is the implementation of Pipelines for the Java Virtual machine. It
is written in NetRExx and pipes and stages can be defined using this language. It can
run on every platform that has a JVM (Java Virtual Machine) installed. This portable
version of Pipelines was started by Ed Tomlinson in 1997 under the name of njPipes,
when NetRExx was still very new, and was open sourced in 2011, soon after the NetRExx
translator itself. The included stages have always been open source. It was integrated into
the NetRExx translator in 2014 and first released with version 3.04.

In version 3.08, there are important improvements that enable pipelines to be run
from the command line, and from the NetRexx REPL program nrws, the NetRExx
Workspace. The pipes compiler has since been renamed pipc, while the pipes runner
component keeps using the name pipe.

lhttp: //en.wikipedia.org/wiki/Hartmann_pipeline

http://en.wikipedia.org/wiki/Hartmann_pipeline

The Pipeline Concept

2.1 What is a Pipeline?

The pipeline terminology is a set of metaphores derived from plumbing. Fitting two or
more pipe segments together yield a pipeline. Water flows in one direction through the
pipeline.

There is a source, which could be a well or a water tower; water is pumped through
the pipe into the first segment, then through the other segments until it reaches a tap,
and most of it will end up in the sink. A pipeline can be increased in length with more
segments of pipe, and this illustrates the modular concept of the pipeline.

When we discuss pipelines in relation to computing we have the same basic structure,
but instead of water that passes through the pipeline, data is passed through a series of
programs (stages) that act as filters.

Data must come from some place and go to some place. Analogous to the well or the
water tower there are device drivers that act as a source of the data, where the tap or the
sink represents the place the data is going to, for example to some output device as your
terminal window or a file on disk, or a network destination.

Just as water, data in a pipeline flows in one direction, by convention from the left to the
right.

2.2 Stage

A program that runs in a pipeline is called a stage. A program can run in more than one
place in a pipeline - these occurrences function independent of each other.

The pipeline specification is processed by the pipeline compiler, and it must be contained
in a character string; on the commandline, it needs to be between quotes, while when
contained in a file, it needs to be between the delimiters of a NetRexx string. An solid
vertical bar | is used as stage separator, while other characters can be used as an option
when specifiying the local option for the pipe, after the pipe name.?

When looking a two adjacent segments in a pipeline, we call the left stage the producer
and the stage on the right the consumer, with the stage separator as the connector.

%In versions before Pipelines for NetRExx 3.08, the default was the exclamation mark (!)

3

2.3 Device Driver

A device driver reads from a device (for instance a file, the command prompt, a machine
console or a network connection) or writes to a device; in some cases it can both read
and write. An example of a device drivers are < and > ; these read and write data from
and to files.

A pipeline can take data from one input device and write it to a different device. Within
the pipeline, data can be modified in almost any way imaginable by the programmer.

The simplest process for the pipeline is to read data from the input side and copy it
unmodified to the output side. Figure X shows the currently supported input- and output
devices. The pipeline compiler connects these programs; it uses one program for each
device and connects them together.

The inherent characteristic of the pipeline is that any program can be connected to any
other program because each obtains data and sends data throug a device independent
standard interface. This becomes apparent when data can be in-line (specified or gen-
erated within the pipeline specification), come in (or be outpur) to devices like disk or
tape, or be handled through a network - all these formats can be processed by the same
stages.

The pipeline usually processes one record (or line) at a time. The pipeline reads a record
for the input, processes it and sends it to the output. It continues until the input source
is drained.

Running pipelines

There are a number of ways to specify and run a pipeline. A little setup is necessary.

3.1 Configuration

The required configuration is minimal. The NetRexxFjar (java archive file) needs to
be on the classpath environment variable (NetRExxC.jar, which is smaller, will suffice
when there is a working javac compiler). Also, the current directory (.) needs to be on the
classpath. It is convenient to have aliases or shell scripts defined as abbreviations for the
invocation of the pipe, pipc (pipe compiler) and nrc (netrexx compiler) utility programs.
Aliases are preferable because some shell processors have idiosyncrasies in the treatment
of script arguments. With an alias we can be sure that every NetRExx program sees its
arguments the same way.

.bash_aliases:

alias pipc="”java org.netrexx.njpipes.pipes.compiler”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias nrc="java org.netrexx.process.\nr{}C”

For Windows, the following works:

pipe.bat:
@java org.netrexx.njpipes.pipes.runner %x

These aliases (or command script (in Windows it is called a batch file) enable you to do
the following: To run a pipeline from the commandline, type:
pipe 'gen 100 | dup 999 | count words | console'

Remember to use double quotes on Windows shells. When the pipe alias or command
script is not on your path, you can also use:

java org.netrexx.njpipes.pipes.runner 'gen 100 | dup 999 | count words | console'

In both cases the answer should be 100000 - you have generated one hundred thousand
lines, but fortunately you did not print them, but only counted them. To see them all,
you can insert a | console | stage in between the dup and the count stage.

3.2 From the NetRexx Workspace (nrws) with direct execution

The first way is the most straightforward, and highly recognizable for users of CMS
Pipelines, as it mimics the way a pipe is run in the CMS 3270 interface. It also yields the

5

best response time, specially when the nrws.input file in your home directory preloads
the Pipes subsystem, as in this example:

-- preload the pipe machinery for good response on first pipe
pipe literal Pipelines processor loaded. | console

This is not magic: we do a Pipe execution (that displays: “Pipe processor loaded”) which
loads all necessary classes and leaves them in memory. We can then type this command
after the nrws> prompt.

o0 e java org.vpad.extr: Workspace 35
pipes git:(

an a canal panama reverse

FIGURE 1: Run in the NetRexx Workspace

pipe literal a man a plan a canal panama | reverse | console

Executed this way, the executed class image will not be written to disk. The timing option
is great for prototyping and performance work.

3.3 From the command line with direct execution

The only difference is that after the PIPE command, the rest of the specification needs to
be quoted in the command shells of Linux, Windows and macOS. In CMS, the pipeline
specification can also be quoted - in this way, a pipeline specification can be entirely
portable. Windows needs double quote, zZVM/CMS does not need quotes, but if they are
used they need to be double quotes. macOS and Linux can use single or double quotes.

1 pipe "literal a man a plan a canal panama | reverse | console"

pipes git:()

amanap lanac a nalp a nam a
pipes git:(

FIGURE 2: Run from the OS command line

Executed this way, the executed class image will not be written to disk.

3.4 Precompiled Pipelines

In this mode, which uses the pipc command (for pipe compiler), a .class file will be
persisted to disk. This class can be run as many times as needed, without the overhead of
compilation. This would be the right mode for pipes that take different arguments when
re-run. The pipe name needs to be specified, and will be the class name. When the class
name exists, it will be overwritten.

1 pipc "(testl) literal a man a plan a canal panama | reverse | console"

6

pipes

FIGURE 3: Precompile a Pipeline from the OS command line

This will yield a
testl.class

classfile, which can be executed by the java virtual machine.

The file testl.class can be run with the command:
java testl

Be sure to leave out the .class suffix when invoking java.

3.5 Compiled from an .njp file

When compiled from a file, the pipe specification must not be quoted. Pipes can be spec-
ified in so-called Portrait Mode, which is the standard for more complex pipelines as it
is easier to read. An example is:

pipe (appendtest)

gen 100 |

append gen 50 |
rexx locate /0/ |
console

L T

Compile from an .njp file with additional stage definitions in NetRExx An example
(length1.njp) is:
pipe (lengthp) < output.lst | lengthl | console

1

2

3 import org.netrexx.njpipes.pipes.
4+ class lengthl extends stage final
s method run()
6 do

7 loop forever

8 line = rexx peekto()
9 1 = line.length

10 output(l 1.d2x line)

1 readto()

12 end

13 catch StageError
14 rc = rc()

15 end

16 exit(rcg(rc<>12))

In this example, the name of the generated pipe is lengthp, while the name of the custom
stage is lengthl. Be sure to invoke the right class, invoking length1 will have the JVM
complain about a non-existing main method. This class (lengthp) will be generated by
the command:

pipc lengthl

note that the .njp sufhix is optional when invoking the pipes compiler. When run, it tries
to read the contents of the file length.nrx and will put out its lines, prepended by the line
length in decimal and hex - because that is what the (in NetRExx) specified homegrown
stage does.

Example Session

Imagine you have landed a job as programmer in an accountants firm, and on your first
day there is a question about backups; the backup process takes too long. There is an urgent
need to identify the files that are produced on this day. You know how to this, of course, it
is only some 20 lines of code; use the File() AP]I, fill a collection class (you are thinking of
an ArrayList already), or a TreeMap to sort the File object on last modified date already,
call an instance of the Calender class, run a comparison - get that compiled and test it a
bit - an hour or so would be sufficient. Of course, you need to install the Java compiler,
because all machines have Java nowadays, but just not the compiler. But if you want to
really impress people, you should type in a command line and be done with it. For this
you can use NetRExx pipelines. Fortunately, you emailed the NetRExxFEjar to yourself so
you save it on the machine, and you're in business right away; you add it to the classpath.
Your first pipeline command should just test the waters. For this chapter, we will use the

nrws

program. You send a command into the pipeline, and get its output:

1 pipe command ls -1aFTl | console

FIGURE 4: example 1

The Is command with the flags is the unix way to get a directory listing - for Windows

9

we would use dir. In this case, we send the output into the pipeline, but as the last stage
(called a pipe sink’) occurs immediately after that, every line will be echoed on the con-
sole. A number of lines like these will be displayed on the console, as in example 1.

You see straight away that the relevant info is not in the first columns, and not in consec-
utive columns; we want to know the date (whether it is today or not) and not the time.
So we filter this out of every line with a spec’ stage, as in example 2.

1 pipe command ls -1laFTl | rexx specs 42-47 1 58-4 8 | console

FIGURE 5: example 2

For the CMS user, the only difference is the rexx cast before specs (which, itself, is exactly
the same). This is because the JVM handles in objects, and we need to make sure that the
output of this stage is of type Rexx. We can easily sort this without a lot of programming:

1 pipe command ls -1aFTl | rexx specs 42-47 1 58-4 8 | sort | console

So what now comes out of the pipeline is sorted (see example 3). But this is a bit funny,
we would like to see chronological order of course, so we switch around some columns
with another specs stage:

1 pipe command ls -1aFTl | rexx specs 42-47 1 58-4 8 | specs 7-11 1 1-6 7 12-4 12 | sort
| console

which is very near to what we want (see example 4. Only thing to do now is to filter on
the date. We use the locate stage and hardcode the date for now. Let’s say it is the 2nd of
March, 2019:

pipe command ls -1aFTl | rexx specs 42-47 1 58-4 8 | specs 7-11 1 1-6
7 12-4 12 | locate /2019 Mar 2/ | sort | console

[

As example 5 shows, on that day there were only two files produced. Also, because this
is a short list now, you can see that Pipelines runs this pipe in 0.157 seconds, because we
switched on the time option in nrws. Voila, you have impressed the accountants and now

10

R T T

® L java org.vpad.extra.workpad Workspace 3
p ls -laFTL | re 47 1 58-* 8 | sort

FIGURE 6: example 3

they know there is nothing to this programming thing. Be sure to sit on it for a while
and not raise the expectations too high. Normally, you would specity your pipeline in a
file and use so-called portrait mode: commandtest.njp:

pipe (newfiles)

command 1s -1laFTl |

rexx specs 42-47 1 58-4 8 |
specs 7-11 1 1-6 7 12-4 12 |
sort |

locate /2019 Mar 2/ |
console

The filename is different from the generated class file name, on purpose. You could, and
would, put different related pipelines in one file. Then we do a:

pipe commandtest && java newfiles

If you are on Windows, you can run cmd /c instead of the command stage. If your shell
cannot find the pipe command, you should make one or alias it, it should call

java org.netrexx.njpipes.pipes.compiler

11

[XK) java org.vpad.extraworkpad Workspace %3

FIGURE 7: example 4

o0 e java org.vpad.extraworkpad Workspace 33

FIGURE 8: example 5

12

® N R W N =

[N T Y, B VU

Write your own Filters

So we have seen in the previous example that it is not too hard to make a simple pipeline
out of things called device drivers’ (such as command, for OS commands, '<’ for reading
files on disk, and literal, for inserting literal strings into a pipeline, filters, and sinks.
When a filter is not delivered in the standard set of stages, it is very easy to make one
yourself in the NetRExx language. The model for this closely follows the way it is done
with CMS Pipelines and Classic Rexx. Imagine, for the sake of argument (and a simple
exampled), that you have an assignment to quickly reverse a string.

/« BAGVENDT REXX -- Reverse the contents of lines in the pipeline 4/
signal on error
do forever
'peekto data'
'output' reverse(data)
'readto’
end
error: exit RCx(RC<>12)

And you would need to remember to call your filetype REXX instead of EXEC. The
‘peekto’ reads the input but does not actually commit the read yet, so you can read it one
more time with knowledge about the contents. The ‘output’ pushes its argument back
into the pipeline. The ‘readto’ reads and commits the read so the line is really processed
and we can go to the next one.

In NetRexx, that would be about the same, but for some small changes incurred by the
object oriented model of NetRexx, which you don’t have in Classic Rexx. Here peekto(),
readto() and output() are method calls on the ‘stage’ object. This will be imported by the
import from org.netrexx.njpipes.pipes. (FILE: bagvendt.nrx)

import org.netrexx.njpipes.pipes.
class bagvendt extends stage
method run()
loop forever
line = Rexx peekto()
output(line.reverse())
readto()
catch StageError
rc = rc()
end
exit(rcg (rc<>12))

So that would look fairly familiar, and admittedly, a bit easier for us already well versed
in NetRExx. We can test this by building a pipeline and running the filter on its own
source:

pipe ”literal abcd | bagvendt | console”

3From the document CMS Pipelines Explained, by John P. Hartmann

13

If you have a CMS handy, that would be:

pipe literal abcd | bagvendt | console

on the first, Classic Rexx version of the filter - but the quoted version also works on CMS.

- Reverse the contents of lines in the pipeline

‘output' reverse(data)

T: exit RC*(RC<>12)

; T=0. 5 22:08:09
pipe literal abcde endt | console
edcl
Ready; T=0

RUNNING ARUBVMA
37/001|

i Telnet TN3270 INDSFILE 20C1909.L0G 00:08:12 132x38

FIGURE 9: BAGVENDT under VM/CMS

pipes git:() t bagvendt.nrx
import org.netre: pipes.pipes.

method run()

loop for
line = R
output(lin

Compilation o gvendt.nrx' succes
pipes git:("

edc
pipes git:(

FIGURE 10: bagvendt.nrx under NetRExx

14

1
2

3

26
27
28

More advanced Pipelines

Admittedly, the examples in the previous chapters could have been done with Unix pipes
or at least with incorporation of stream utilities like awk or sed.

To get a good idea of what can be done with Pipelines for NetRExxX, look at the tasktest
pipe in the examples directory. It B implements the shell of a multitasking server - using
about eight stages. The file examples/tcptask.njp contains an example of this technique
being used.

--tasktest.njp
pipe (tasktest stall 2000 -gen)

literal ® 1 23456 789 ABCDEFGHIJKLMNOPQRST |
dup 2 |
split | -- supply work for task stage

ptimer |
a: deal secondary ? -- send work to task stage requesting work
b: faninany |
elastic | -- buffer requests to so no deadlocks
ptimer |

a: |

copy | -- buffer work so no deadlocks
task 1 | -- worker task 1

b: ?

a: |
copy |
task 2 | -- worker tast 2...
b: ?
a: |
copy |

task 3 |
b:

Before discussing this example in-depth, we need to go into some more basic concepts.

4using code from Melinda Varians ’‘Cramming for the Journeyman Plumber Exam’ paper

15

16

Device Drivers

Pipelines for NetRExx contains the following device drivers:

< read from a fle

> write to a file (which is overwritten if it exists)

» append to a file (which is created if it does not exist)
diskr read from a fle

diskw write to a file (which is overwritten if it exists)
diska append to a file (which is created if it does not exist)
diskslow read, create or append to a file

array manipulate arrays

arraya manipulate arrays

arrayr manipulate arrays

stem manipulate stems

stema manipulate stems

stemr manipulate stems

vector manipulate vectors

vectora manipulate vectors

vectorr manipulate vectors

var read or set a variable in a NetREXX program

zip compress a set of files (0 or more) into a zip archive
unzip decompress a set of files (0 or more) from a zip archive
listzip list a zip file directory

console read from, or write to a terminal (window)

hole destroy data

delay suspend stream

literal write the argument string

strliteral write the argument string

sqlselect select from any jdbc source

Xrange write a character range

17

18

Record Selection

Various stages can select records and work on data in the pipeline. These are stages
called select, sort, specs, locate, etcetera. For a complete description we refer to the IBM
Pipelines documentation.

These are the main selection stages supported in Pipelines for NetRExx:

between selects records between labels

drop discard records from the beginning or the end of a file
find select lines

strfind select lines

frlabel select records from the first one with leading string

strfrlabel select records from the first one with leading string

inside select records between labels
locate select records between labels
nfind select lines using xedit nfind logic

strnfind select lines using xedit nfind logic

nlocate select lines without a string

notinside select records not between labels

outside select records not between labels

pick select records that satisfy a relation

take select records from the beginning or the end of a file
tolabel select records to the first one with leading string

strtolabel select records to the first one with leading string

unique discard or retain duplicate lines

19

20

Filters

buffer buffer records

chop truncate the record

join join records

pad expand short records

split split records relative to a target

change substitute contents of records

specs rearrange contents of records

xlate transliterate contents of records

copy copy records

count count lines, words and bytes

dup duplicate the object

reverse reverse contents of records

timestamp prefix date and time to records

append put output from device driver after data on the primary input
casei run selection stage in a case-insensitive manner
not run stages with output streams inverted

prefix Blocks its primary input and excutes stage supplied as an argument
zone run selection stage on subset of input record
elastic buffer sufficient records to prevent stall

fanin concatenate streams

faninany copy records from whichever input stream has one
gate pass records until stopped

juxtapose preface record with marker

overlay overlay data from input streams

command issue a command and write response to pipeline

21

22

10

Other Stages

query check version and level of Pipelines for NetRExx

<« »

- - insert comments into a pipeline

comment insert comments into a pipeline

23

24

o

11

Multi-Stream Pipelines

One of the defining differences with Unix pipes is the possibility to define multi-stream
pipelines. The selection stages in the previous chapter all have secondary streams. What
the selection parameters have discarded, seem to have discarded, is in reality not gone.
In fact, Pipelines for NetRExx throws very little away during execution.

The way to use the not-selected part of the data through these secondary streams is ex-
plained in this chapter; it is this capacity that constitutes the freedom to work with many
different streams in one pipeline; where Unix pipes are limited to not very much more
than stdin, stdout, stderr — Pipelines for NetRExx enables the user to define as many
streams as necessary to accomplish the task at hand in an efficient manner.

Let us look at a simple selection like the following:

pipe literal foo bar baz frob frobnitz frobbotzim | split | locate /oo/ |
console

foo

The string that makes it through the selection that is done by the locate is foo’ - it is the
only one that is captured by the /oo/ filter.

The rest of the words is not gone, however, and we can use these in further processing
by using the secondary stream that locate provides.

To prepare for this, we give the secondary stream a name by providing a label for it, we
call it, in absence of any creativity, rest. Also, we send the selected output, *foo’ into a hole
stage, where it disappears.

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
hole

As predicted, there is no output. To get to the rest of the words, unselected by locate, we
connect the secondare output stream to a new pipe, using the ’?’ (the default pipe-end
character) like this:

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
hole ? rest: | console

The output is now:

bar

baz

frob
frobnitz
frobbotzim

25

N

N

Instead of sending the original output into a black hole, we could have also gone further
with it, and, for example, reverse it:
pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |

reverse | console ? rest: | console

The output is now:

oof

bar

baz

frob
frobnitz
frobbotzim

Likewise, we can specify more filter stages in the second, attached pipeline, and bifurcate
the pipeline even further.

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
reverse | console ? rest: | locate /botzim/ | console

The output is now:

oof
frobbotzim

It is good to define and implement secondary streams when you write your own stages.

26

12

Pipeline Stalls

With multistream pipelines a new problem is introduced, which sometimes rears its head
- a Pipeline stall, also called deadlock. This happens when stages wait for input that cannot
be delivered, in a way that ensures that it cannot be delivered.

Pipes for NetRexx detects deadlocks and outputs information to allow you to fix the
problem. Consider the following session:

1 pipe literal test | a: fanin | console | a:

g=201 waits @ args=test

01 waits @ args=

FIGURE 11: Deadlock detection

We can see that there are three stages in the Running state. None have any return codes
set. The Flags tell us that all the stages are waiting for an output to complete.

The’->’ show which stream is selected. From this we can see console_3 is trying to output
to fanin_2. Unfortunately fanin_2 is waiting for output on stream 0 to complete, it cannot
read the data waiting on in stream 1. Hence the stall.

The strings after Dumping and Monitored by are the autogenerated class names. When
you name your pipelines with precompiled pipes, the names you have given them will
be displayed here.

When a stream has data being output, there is a boolean flag following the name of the
stage the stream is connected to. This tracks the peek state of the object. For an output

27

stream, true means the following stage has peeked at the value. With input streams, the
current stage has seen the value when its true.

When a stage is multithreaded, like elastic, you can get flags of 3 or 5. This means that
threads are waiting on output and read, or output and any. When using multithreaded
stages, only one thread should use output unless it is serialized using protected or syn-
cronized blocks.

When a stage has a pending sever or autocommit flag bits are set too.

28

13

Differences with CMS Pipelines

The goal of this implementation is to be as close as possible to the the CMS version of
Pipelines. A few differences are unavoidable.

The character set is Unicode and not EBCDIC, as Unicode is the character set of
the underlying Java platform

As shells are different, many 3270 related stages are not implemented

Pipes need to be quoted on the Windows and Unix command lines; the Workspace
for NetRExX (nrws) environment is an exception to this rule

The mainframe is record-oriented in many stages, Pipelines for NetRExx does an
approximation of this

Pipelines on the mainframe is an interpreted language with components as the
scanner and the dispatcher; the NetRExx version is compiled to Java .class files
by pipc, the pipes compiler, and dispatched as threads by the JVM.

The mainframe pipes dispatcher is not multiprocessor enabled. In Pipelines for
NetRexx all tasks (stages) are dispatched over all available processors in parallel.
The fact that pipes run from NetRexx implies that they can be used in Java source.
In previous releases there was more direct support for this; this has lapsed due to
changes in the way a java toolchain works. This support can be restored in future
releases.

To put the content of a NetRExx variable in a pipe specification in a NetRExx pro-
gram, there is a {} mechanism. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.

29

30

IR ST

14

How to use a pipe in a NetREXX program

This shows how to use a pipe in a NetREXX program:

class testpipe
method testpipe(avar=Rexx)

F
T

Rexx 'abase'
Rexx 1

F[0]=5
F[1]=222
F[2]=3333
F[3]=1111
F[4]=55
F[5]=444

pipe (apipe stall 1000)
stem F | sort | prefix literal {avar} | console | stem T

loop i=1 to T[O]
say 'T['i']="'T[1]
end

method main(a=String[]) static

testpipe(Rexx(a))

A couple of things can be seen in this example. First that it is simple to pass NetRExx
variables to pipes using stem. Also look at the phrase {avar}. It passes the NetRExx
variable’s value to the stage at runtime. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.

Another thing to note is that the pipe extraction program is fairly smart. It detects when
pipes takes several lines. As long as there are stages, or the current line ends with a stage-
sep or stageend character, or the next line starts with a stagesep or stageend character. It
gets added to the pipe.

The arg(), arg(rexx) or arg(null) methods get the arguments passed to a stage or pipe.
To get the complete rexx string of an argument use arg(). To get the nth word of a rexx
argument use arg(n). When using pipes in netrexx code you can use arg('name’) to get
the named argument. If the class of the argument is not rexx use arg(null) to get the
object.

In .njp files you can use avar phrase actually just shorthand for arg(‘avar’). The following
example shows what has to be done in a stage to access the rexx variables passed by VAR,
STEM and OVER. The real over stage is a bit more complete.

-- over.nrx
class over extends stage final

method run() public

a = getRexx(arg())
loop i over a

31

10
11
12

® N s W N =

output(ali])
catch StageError
rc = rc()
end

exit(rcg(rec<>12))

The getRexx method is passed the name of a string by the pipe. In the previous example
it would be passed A and would return an Object pointer to A in testpipe. If you wish to
replace a stream this can be done using connectors. For example look at the following
fragment:

-- examples\calltest.njp
pipe (calltl) literal test | calltest {} | console

import org.netrexx.njpipes.pipes.
class calltest extends stage final
method run() public

do
a = arg()
callpipe (cpl) gen {a} | xoutO:

loop forever
line = peekto()
output(line)
readto()

end

catch StageError
rc = rc()
end

exit(rcg(rec<>12))

Running the calltl pipe with an argument of 10 would pass the 10 to calltest via and
arg(). Then cpl’s gen stage would be passed " which is set to 10. Since gen generate
numbers in sequence, the console stage of calltl would get the numbers from 1 to 10.
Now cp1 ends and calltest’s output stream is restored and calltest unblocks and reads the
the literal’s data ’test’ and passes it to console.

The use of only works when compiling from .njp files. It will not work from the com-
mand line. The njpipes compiler recognizes connectors as labels with the following
forms:

*in:
*inN:
*out:
*oUutN

When N is a whole number, the connector connects input or output stream N of the
stage with the connector. When the label *in or *out, the connector connects the stages’s
current input or output stream with the connector. This is used instead of *: due to the
way the compiler/preprocessor works. If you do not want the stage to wait for the called
pipe to complete you can use addpipe. Here is an example.

-- similar to examples\addtest.njp

a = 100

32

b = 'some text for literal'
addpipe (linktest) literal {b} | dup {a} | xin@:

loop forever

line = Rexx readto()
catch StageError
end

readto() will get some text for literal’ one hundred times.

A quick aside. When writing stages remember that njPipes moves objects through pipes.
Use 'value = peekto()’ instead of *value = rexx peekto()’ when ever possible. Some of the
supplied stages pass objects with classes other than rexx and forcing rexx will cause class-
CastExceptions. If a stage needs a rexx object try using the rexx stage modifier to attempt
to convert the object. Feel free to expand this stage, but please send me the updated ver-
sion.

Serious stage writers will probably want to take a good look at the methods defined in
the NetRExx source package org.netrexx.process.njpipes.stages. There you will
find various methods for parsing ranges. You will also find the stub for the stageExit
compiler exit. It can be used to produce on the fly’ code at compile time. You can also
use it to change the topology of the unprocessed part of the pipe. The major use is to al-
low implementations of stages like prefix, append or zone. Its also used to produce better
performing stages, for an example see specs. The compiler also queries the rexxArg() and
stageArg() methods. If your stage expects objects of class Rexx as arguments rexxArg()
should return the number of variables expected. If your stage expects a stage for an ar-
gument, stageArg() should return the word position of the stage.

33

34

26

36

38
39
40

15

TCP/IP Networking using Pipes for NetRExX

As the built-in stages all work on data that is dispatched through the pipeline, irrespective
of which device driver is used, it is also convenient to do network programming using a
set of pipelines.

The tcplisten stage can be used as a network device driver, as in CMS, but limited to
specification of the port and a timeout value. Below an example of how to implement a
sample TCP/IP client/server application.

-- one shot tcpip server

pipe (tcpserv stall 60000 debug 0)
tcplisten 1958 timeout 15000 | tcpexample

-- one shot tcpip requestor

pipe (tcpreq stall 60000 debug 0)
random {} |
specs x—x 1 ,\n, next |
tcpclient deblock ¢ localhost 1958 timeout 10000 linger 500 oneresponse
rexx to console

-- a single tasking server

options binary
import org.netrexx.njpipes.pipes.
class tcpexample extends stage

method run() public
loop forever
peekto ()

callpipe (tcplog stall 15000 debug 0)
*1n0: |
take first 1 |
console |
f: fanin |
tcpdata timeout 10000 deblock C oneresponse
elastic |
insert /\n/ after |
f:
catch StageError
rc = rc()
end

exit(rcg (re<>12))

This example needs to be compiled with the pipes compiler, see TCP/IP Client/Server
compile, which yields the classes tcpserv and tcpreq, for the server and the requester
component.

Now we can start the generated pipelines each in their own shell window. As can be
seen in TCP/IP server, the class keeps waiting on connections on port 1958 - which is

35

FIGURE 12: TCP/IP Client/Server compile

arbitrary, but specified in the pipeline source.

[J ® java tepserv X3

FIGURE 13: TCP/IP server

In another window, we can start the TCP/IP requestor, which when given port 1958 as
argument, connects to the server, and displays a series of random numbers that is sent
to it.

£l -.xamples/pipes %2

FIGURE 14: TCP/IP requestor

Note that the stage tcpexample from the tcpserver pipeline is a custom stage that is written
in this tcpexample.njp file.

36

16

Selecting from databases with Pipelines for
NetRExx

Using the built-in sqlselect stage you can select data, using SQL, from any jdbc source
available.

An sqlselect.properties file is needed to define the jdbc parameters like the driver to
use, the url of the data source and other arguments, like a password and tracing options,
if needed.

The file looks like this:

jdbcdriver=org.sqlite.JDBC
url=jdbc:sqlite:flightroute-iata.sqgb

This is all that is needed for an sqlite database containing flight data. A simple select *
can then be done with the following pipeline:

pipe literal 4 from FlightRoute where flight = 'KLM765' | sqlselect | console

This yields the following output:

FLIGHT--ROUTE--UPDATETIME--
KLM765 AUA-BON-AMS 1494132448

Note that from the command line, the quotes around the pipe specification and the literal
string in the SQL statement should be opposite, while when the pipeline is issued from
the Workspace for NetRExx, the pipeline does not have to be quoted, but the sql string
needs double quotes instead of the - for SQL statements- normal single quotes.

37

38

17

The Pipes Runner

The pipes compiler is used in both precompiled and directly executed pipelines. When
you directly execute a pipeline from the commandline or from the nrws NetRExx
workspace, the process is optimized to not persist generated NetRExX, Java and Class
files to disk before execution, the whole process runs from memory. The Pipes Runner
uses the Pipes Compiler for this purpose, and as such misses the options for persistence?.

The pipe command alias start the Pipes Runner, which is a command processor that can
execute a pipe from the command line in an OS shell, the OS being Windows, Linux or

macOSE.

A pipe can be run with options prepended within parentheses, like this:

1 pipe '(testl sep ! stall 2000 debug 63) literal abcde ! console'

The following options are available:

pipename Specify the name of the generated class file. This can be useful for debug-

ging purposes but is not mandatory when running a pipe. An unnamed
pipe receives a generated unique name. This option needs to go first.

sep

The default stage separator is the | (pipe) character; this can be overrid-
den with the sep option; a pipe called testl which uses an exclamation
mark as separator character, needs the options (testl sep !).

debug

The debug option specifies a bitmask for debugging the execution of a
pipe; (debug 63), for example, generates a rather complete debugging
trail).

end

The default pipe end character is the ’ ?” (question mark), which can be
overridden here. Note that the backslash, which is an obvious pipe end
character for the z/VM 3270 interface, is not a good choice for Windows
and Unix shells.

stall

The duration in number of seconds of a pipe stall (or deadlock) detection
cycle.

SBut specifying them wil