
Pipelines for NetRexx
QuickStart Guide
Ed Tomlinson Jeff Hennick René Jansen

Version 3.08-GA of September 6, 2019

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-3-7

Publication Data

©Copyright The Rexx Language Association, 2011- 2019

All originalmaterial in this publication is published under theCreativeCommons - ShareAlike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-3-7

9 789081 909037

ISBN 978-90-819090-3-7

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

II

Contents

The NetRexx Programming Series i

Typographical conventions iii

1 Introduction 1

2 The Pipeline Concept 3

2.1 What is a Pipeline? 3

2.2 Stage 3

2.3 Device Driver 4

3 Running pipelines 5

3.1 Configuration 5

3.2 From the NetRexx Workspace (nrws) with direct execution 5

3.3 From the command line with direct execution 6

3.4 Precompiled Pipelines 6

3.5 Compiled from an .njp file 7

4 Example Session 9

5 Write your own Filters 13

6 More advanced Pipelines 15

7 Device Drivers 17

8 Record Selection 19

9 Filters 21

10 Other Stages 23

11 Multi-Stream Pipelines 25

12 Pipeline Stalls 27

III

13 Differences with CMS Pipelines 29

14 How to use a pipe in a NetRexx program 31

15 TCP/IP Networking using Pipes for NetRexx 35

16 Selecting from databases with Pipelines for NetRexx 37

17 The Pipes Runner 39

18 The Pipes Compiler 41

19 Built-in Stages 43

20 Appendix A 57

List of Figures 65

List of Tables 65

Index 71

IV

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

i

Quick Start Guide This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRexx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRexx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRexx QuickStart Guide The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetRexx.

ii

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the con-

sole, are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing
1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� �
�

�visibility

�

�
�modifier

�

�
�deprecated

�� �

�

�
�unused

�� �

�

iii

iv

1

Introduction

A Pipeline, or Hartmann Pipeline1, is a concept that extends and improves pipes as they
are known from Unix and other operating systems. The name pipe indicates an inter-
process communication mechanism, as well as the programming paradigm it has intro-
duced. Compared to Unix pipes, Hartmann Pipelines offer multiple input- and output
streams, more complex pipe topologies, and a lot more.
Pipelines were first implemented on VM/CMS, one of IBM’s mainframe operating sys-
tems.This versionwas later adapted to run underMUSIC/SP and TSO/MVS (now z/OS)
and has been part of several product configurations. Pipelines are widely used by VM
users, in a symbiotic relationship with REXX, the interpreted language that also has its
origins on this platform.
Pipes for NetRexx is the implementation of Pipelines for the Java Virtual machine. It
is written in NetRexx and pipes and stages can be defined using this language. It can
run on every platform that has a JVM (Java Virtual Machine) installed. This portable
version of Pipelines was started by Ed Tomlinson in 1997 under the name of njPipes,
whenNetRexxwas still very new, andwas open sourced in 2011, soon after theNetRexx
translator itself.The included stages have always been open source. It was integrated into
the NetRexx translator in 2014 and first released with version 3.04.
In version 3.08, there are important improvements that enable pipelines to be run
from the command line, and from the NetRexx REPL program nrws, the NetRexx
Workspace. The pipes compiler has since been renamed pipc, while the pipes runner
component keeps using the name pipe.

1http://en.wikipedia.org/wiki/Hartmann_pipeline

1

http://en.wikipedia.org/wiki/Hartmann_pipeline

2

2

The Pipeline Concept

2.1 What is a Pipeline?

The pipeline terminology is a set of metaphores derived from plumbing. Fitting two or
more pipe segments together yield a pipeline. Water flows in one direction through the
pipeline.
There is a source, which could be a well or a water tower; water is pumped through
the pipe into the first segment, then through the other segments until it reaches a tap,
and most of it will end up in the sink. A pipeline can be increased in length with more
segments of pipe, and this illustrates the modular concept of the pipeline.
When we discuss pipelines in relation to computing we have the same basic structure,
but instead of water that passes through the pipeline, data is passed through a series of
programs (stages) that act as filters.
Data must come from some place and go to some place. Analogous to the well or the
water tower there are device drivers that act as a source of the data, where the tap or the
sink represents the place the data is going to, for example to some output device as your
terminal window or a file on disk, or a network destination.
Just as water, data in a pipeline flows in one direction, by convention from the left to the
right.

2.2 Stage

A program that runs in a pipeline is called a stage. A program can run in more than one
place in a pipeline - these occurrences function independent of each other.
The pipeline specification is processed by the pipeline compiler, and it must be contained
in a character string; on the commandline, it needs to be between quotes, while when
contained in a file, it needs to be between the delimiters of a NetRexx string. An solid
vertical bar | is used as stage separator, while other characters can be used as an option
when specifiying the local option for the pipe, after the pipe name.2

When looking a two adjacent segments in a pipeline, we call the left stage the producer
and the stage on the right the consumer, with the stage separator as the connector.

2In versions before Pipelines for NetRexx 3.08, the default was the exclamation mark (!)

3

2.3 Device Driver

A device driver reads from a device (for instance a file, the command prompt, a machine
console or a network connection) or writes to a device; in some cases it can both read
and write. An example of a device drivers are < and > ; these read and write data from
and to files.
A pipeline can take data from one input device and write it to a different device. Within
the pipeline, data can be modified in almost any way imaginable by the programmer.
The simplest process for the pipeline is to read data from the input side and copy it
unmodified to the output side. FigureX shows the currently supported input- and output
devices. The pipeline compiler connects these programs; it uses one program for each
device and connects them together.
The inherent characteristic of the pipeline is that any program can be connected to any
other program because each obtains data and sends data throug a device independent
standard interface. This becomes apparent when data can be in-line (specified or gen-
erated within the pipeline specification), come in (or be outpur) to devices like disk or
tape, or be handled through a network – all these formats can be processed by the same
stages.
The pipeline usually processes one record (or line) at a time. The pipeline reads a record
for the input, processes it and sends it to the output. It continues until the input source
is drained.

4

3

Running pipelines

There are a number of ways to specify and run a pipeline. A little setup is necessary.

3.1 Configuration

The required configuration is minimal. The NetRexxF.jar (java archive file) needs to
be on the classpath environment variable (NetRexxC.jar, which is smaller, will suffice
when there is a working javac compiler). Also, the current directory (.) needs to be on the
classpath. It is convenient to have aliases or shell scripts defined as abbreviations for the
invocation of the pipe, pipc (pipe compiler) and nrc (netrexx compiler) utility programs.
Aliases are preferable because some shell processors have idiosyncrasies in the treatment
of script arguments. With an alias we can be sure that every NetRexx program sees its
arguments the same way.

.bash_aliases:
alias pipc=”java org.netrexx.njpipes.pipes.compiler”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias nrc=”java org.netrexx.process.\nr{}C”

For Windows, the following works:

pipe.bat:
@java org.netrexx.njpipes.pipes.runner %*

These aliases (or command script (in Windows it is called a batch file) enable you to do
the following: To run a pipeline from the commandline, type:

1 pipe 'gen 100 | dup 999 | count words | console'

Remember to use double quotes on Windows shells. When the pipe alias or command
script is not on your path, you can also use:

1 java org.netrexx.njpipes.pipes.runner 'gen 100 | dup 999 | count words | console'

In both cases the answer should be 100000 - you have generated one hundred thousand
lines, but fortunately you did not print them, but only counted them. To see them all,
you can insert a | console | stage in between the dup and the count stage.

3.2 From the NetRexx Workspace (nrws) with direct execution

The first way is the most straightforward, and highly recognizable for users of CMS
Pipelines, as it mimics the way a pipe is run in the CMS 3270 interface. It also yields the

5

best response time, specially when the nrws.input file in your home directory preloads
the Pipes subsystem, as in this example:

-- preload the pipe machinery for good response on first pipe
pipe literal Pipelines processor loaded. | console

This is not magic: we do a Pipe execution (that displays: “Pipe processor loaded”) which
loads all necessary classes and leaves them in memory. We can then type this command
after the nrws> prompt.

FIGURE 1: Run in the NetRexx Workspace

1 pipe literal a man a plan a canal panama | reverse | console

Executed this way, the executed class image will not be written to disk.The timing option
is great for prototyping and performance work.

3.3 From the command line with direct execution

The only difference is that after the PIPE command, the rest of the specification needs to
be quoted in the command shells of Linux, Windows and macOS. In CMS, the pipeline
specification can also be quoted - in this way, a pipeline specification can be entirely
portable. Windows needs double quote, zVM/CMS does not need quotes, but if they are
used they need to be double quotes. macOS and Linux can use single or double quotes.

1 pipe "literal a man a plan a canal panama | reverse | console"

FIGURE 2: Run from the OS command line

Executed this way, the executed class image will not be written to disk.

3.4 Precompiled Pipelines

In this mode, which uses the pipc command (for pipe compiler), a .class file will be
persisted to disk. This class can be run as many times as needed, without the overhead of
compilation. This would be the right mode for pipes that take different arguments when
re-run. The pipe name needs to be specified, and will be the class name. When the class
name exists, it will be overwritten.

1 pipc "(test1) literal a man a plan a canal panama | reverse | console"

6

FIGURE 3: Precompile a Pipeline from the OS command line

This will yield a

test1.class

classfile, which can be executed by the java virtual machine.
The file test1.class can be run with the command:

java test1

Be sure to leave out the .class suffix when invoking java.

3.5 Compiled from an .njp file

When compiled from a file, the pipe specificationmust not be quoted. Pipes can be spec-
ified in so-called Portrait Mode, which is the standard for more complex pipelines as it
is easier to read. An example is:

1 pipe (appendtest)
2

3 gen 100 |
4 append gen 50 |
5 rexx locate /0/ |
6 console

Compile from an .njp file with additional stage definitions in NetRexx An example
(length1.njp) is:

1 pipe (lengthp) < output.lst | length1 | console
2

3 import org.netrexx.njpipes.pipes.
4 class length1 extends stage final
5 method run()
6 do
7 loop forever
8 line = rexx peekto()
9 l = line.length

10 output(l l.d2x line)
11 readto()
12 end
13 catch StageError
14 rc = rc()
15 end
16 exit(rc*(rc<>12))

In this example, the name of the generated pipe is lengthp, while the name of the custom
stage is length1. Be sure to invoke the right class, invoking length1 will have the JVM
complain about a non-existing main method. This class (lengthp) will be generated by
the command:

pipc length1

7

note that the .njp suffix is optional when invoking the pipes compiler. When run, it tries
to read the contents of the file length.nrx and will put out its lines, prepended by the line
length in decimal and hex - because that is what the (in NetRexx) specified homegrown
stage does.

8

4

Example Session

Imagine you have landed a job as programmer in an accountants firm, and on your first
day there is a question about backups; the backup process takes too long.There is an urgent
need to identify the files that are produced on this day. You knowhow to this, of course, it
is only some 20 lines of code; use the File() API, fill a collection class (you are thinking of
an ArrayList already), or a TreeMap to sort the File object on last modified date already,
call an instance of the Calender class, run a comparison - get that compiled and test it a
bit - an hour or so would be sufficient. Of course, you need to install the Java compiler,
because all machines have Java nowadays, but just not the compiler. But if you want to
really impress people, you should type in a command line and be done with it. For this
you can useNetRexx pipelines. Fortunately, you emailed theNetRexxF.jar to yourself so
you save it on themachine, and you’re in business right away; you add it to the classpath.
Your first pipeline command should just test the waters. For this chapter, we will use the

nrws

program. You send a command into the pipeline, and get its output:
1 pipe command ls -laFTl | console

FIGURE 4: example 1

The ls command with the flags is the unix way to get a directory listing - for Windows
9

we would use dir. In this case, we send the output into the pipeline, but as the last stage
(called a pipe ’sink’) occurs immediately after that, every line will be echoed on the con-
sole. A number of lines like these will be displayed on the console, as in example 1.
You see straight away that the relevant info is not in the first columns, and not in consec-
utive columns; we want to know the date (whether it is today or not) and not the time.
So we filter this out of every line with a ’spec’ stage, as in example 2.

1 pipe command ls -laFTl | rexx specs 42-47 1 58-* 8 | console

FIGURE 5: example 2

For the CMS user, the only difference is the rexx cast before specs (which, itself, is exactly
the same).This is because the JVMhandles in objects, and we need tomake sure that the
output of this stage is of type Rexx.We can easily sort this without a lot of programming:

1 pipe command ls -laFTl | rexx specs 42-47 1 58-* 8 | sort | console

So what now comes out of the pipeline is sorted (see example 3). But this is a bit funny,
we would like to see chronological order of course, so we switch around some columns
with another specs stage:

1 pipe command ls -laFTl | rexx specs 42-47 1 58-* 8 | specs 7-11 1 1-6 7 12-* 12 | sort
| console

which is very near to what we want (see example 4. Only thing to do now is to filter on
the date. We use the locate stage and hardcode the date for now. Let’s say it is the 2nd of
March, 2019:

1 pipe command ls -laFTl | rexx specs 42-47 1 58-* 8 | specs 7-11 1 1-6
2 7 12-* 12 | locate /2019 Mar 2/ | sort | console

As example 5 shows, on that day there were only two files produced. Also, because this
is a short list now, you can see that Pipelines runs this pipe in 0.157 seconds, because we
switched on the time option in nrws. Voila, you have impressed the accountants and now

10

FIGURE 6: example 3

they know there is nothing to this programming thing. Be sure to sit on it for a while
and not raise the expectations too high. Normally, you would specify your pipeline in a
file and use so-called portrait mode: commandtest.njp:

1 pipe (newfiles)
2 command ls -laFTl |
3 rexx specs 42-47 1 58-* 8 |
4 specs 7-11 1 1-6 7 12-* 12 |
5 sort |
6 locate /2019 Mar 2/ |
7 console

The filename is different from the generated class file name, on purpose. You could, and
would, put different related pipelines in one file. Then we do a:

pipe commandtest && java newfiles

If you are on Windows, you can run cmd /c instead of the command stage. If your shell
cannot find the pipe command, you should make one or alias it, it should call

java org.netrexx.njpipes.pipes.compiler

11

FIGURE 7: example 4

FIGURE 8: example 5

12

5

Write your own Filters

So we have seen in the previous example that it is not too hard to make a simple pipeline
out of things called ’device drivers’ (such as command, for OS commands, ’<’ for reading
files on disk, and literal, for inserting literal strings into a pipeline, filters, and sinks.
When a filter is not delivered in the standard set of stages, it is very easy to make one
yourself in the NetRexx language. The model for this closely follows the way it is done
with CMS Pipelines and Classic Rexx. Imagine, for the sake of argument (and a simple
example3), that you have an assignment to quickly reverse a string.

1 /* BAGVENDT REXX -- Reverse the contents of lines in the pipeline */
2 signal on error
3 do forever
4 'peekto data'
5 'output' reverse(data)
6 'readto'
7 end
8 error: exit RC*(RC<>12)

And you would need to remember to call your filetype REXX instead of EXEC. The
‘peekto’ reads the input but does not actually commit the read yet, so you can read it one
more time with knowledge about the contents. The ‘output’ pushes its argument back
into the pipeline. The ‘readto’ reads and commits the read so the line is really processed
and we can go to the next one.
In NetRexx, that would be about the same, but for some small changes incurred by the
object oriented model of NetRexx, which you don’t have in Classic Rexx. Here peekto(),
readto() and output() are method calls on the ’stage’ object. This will be imported by the
import from org.netrexx.njpipes.pipes. (FILE: bagvendt.nrx)

1 import org.netrexx.njpipes.pipes.
2 class bagvendt extends stage
3 method run()
4 loop forever
5 line = Rexx peekto()
6 output(line.reverse())
7 readto()
8 catch StageError
9 rc = rc()

10 end
11 exit(rc*(rc<>12))

So that would look fairly familiar, and admittedly, a bit easier for us already well versed
in NetRexx. We can test this by building a pipeline and running the filter on its own
source:

pipe ”literal abcd | bagvendt | console”

3From the document CMS Pipelines Explained, by John P. Hartmann

13

If you have a CMS handy, that would be:

pipe literal abcd | bagvendt | console

on the first, Classic Rexx version of the filter - but the quoted version also works onCMS.

FIGURE 9: BAGVENDT under VM/CMS

FIGURE 10: bagvendt.nrx under NetRexx

14

6

More advanced Pipelines

Admittedly, the examples in the previous chapters could have been done withUnix pipes
or at least with incorporation of stream utilities like awk or sed.
To get a good idea of what can be done with Pipelines for NetRexx, look at the tasktest
pipe in the examples directory. It 4 implements the shell of a multitasking server - using
about eight stages. The file examples/tcptask.njp contains an example of this technique
being used.

1 --tasktest.njp
2

3 pipe (tasktest stall 2000 -gen)
4

5 literal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T |
6 dup 2 |
7 split | -- supply work for task stage
8

9 ptimer |
10 a: deal secondary ? -- send work to task stage requesting work
11 b: faninany |
12 elastic | -- buffer requests to so no deadlocks
13 ptimer |
14

15 a: |
16 copy | -- buffer work so no deadlocks
17 task 1 | -- worker task 1
18 b: ?
19

20 a: |
21 copy |
22 task 2 | -- worker tast 2...
23 b: ?
24

25 a: |
26 copy |
27 task 3 |
28 b:

Before discussing this example in-depth, we need to go into some more basic concepts.

4using code from Melinda Varians ’Cramming for the Journeyman Plumber Exam’ paper

15

16

7

Device Drivers

Pipelines for NetRexx contains the following device drivers:

< read from a fle
> write to a file (which is overwritten if it exists)
» append to a file (which is created if it does not exist)
diskr read from a fle
diskw write to a file (which is overwritten if it exists)
diska append to a file (which is created if it does not exist)
diskslow read, create or append to a file
array manipulate arrays
arraya manipulate arrays
arrayr manipulate arrays
stem manipulate stems
stema manipulate stems
stemr manipulate stems
vector manipulate vectors
vectora manipulate vectors
vectorr manipulate vectors
var read or set a variable in a NetRexx program
zip compress a set of files (0 or more) into a zip archive
unzip decompress a set of files (0 or more) from a zip archive
listzip list a zip file directory
console read from, or write to a terminal (window)
hole destroy data
delay suspend stream
literal write the argument string
strliteral write the argument string
sqlselect select from any jdbc source
xrange write a character range

17

18

8

Record Selection

Various stages can select records and work on data in the pipeline. These are stages
called select, sort, specs, locate, etcetera. For a complete description we refer to the IBM
Pipelines documentation.
These are the main selection stages supported in Pipelines for NetRexx:

between selects records between labels
drop discard records from the beginning or the end of a file
find select lines
strfind select lines
frlabel select records from the first one with leading string
strfrlabel select records from the first one with leading string
inside select records between labels
locate select records between labels
nfind select lines using xedit nfind logic
strnfind select lines using xedit nfind logic
nlocate select lines without a string
notinside select records not between labels
outside select records not between labels
pick select records that satisfy a relation
take select records from the beginning or the end of a file
tolabel select records to the first one with leading string
strtolabel select records to the first one with leading string
unique discard or retain duplicate lines

19

20

9

Filters

buffer buffer records
chop truncate the record
join join records
pad expand short records
split split records relative to a target
change substitute contents of records
specs rearrange contents of records
xlate transliterate contents of records
copy copy records
count count lines, words and bytes
dup duplicate the object
reverse reverse contents of records
timestamp prefix date and time to records
append put output from device driver after data on the primary input
casei run selection stage in a case-insensitive manner
not run stages with output streams inverted
prefix Blocks its primary input and excutes stage supplied as an argument
zone run selection stage on subset of input record
elastic buffer sufficient records to prevent stall
fanin concatenate streams
faninany copy records from whichever input stream has one
gate pass records until stopped
juxtapose preface record with marker
overlay overlay data from input streams
command issue a command and write response to pipeline

21

22

10

Other Stages

query check version and level of Pipelines for NetRexx
“– –” insert comments into a pipeline
comment insert comments into a pipeline

23

24

11

Multi-Stream Pipelines

One of the defining differences with Unix pipes is the possibility to define multi-stream
pipelines. The selection stages in the previous chapter all have secondary streams. What
the selection parameters have discarded, seem to have discarded, is in reality not gone.
In fact, Pipelines for NetRexx throws very little away during execution.
The way to use the not-selected part of the data through these secondary streams is ex-
plained in this chapter; it is this capacity that constitutes the freedom to work with many
different streams in one pipeline; where Unix pipes are limited to not very much more
than stdin, stdout, stderr – Pipelines for NetRexx enables the user to define as many
streams as necessary to accomplish the task at hand in an efficient manner.
Let us look at a simple selection like the following:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | locate /oo/ |
2 console

foo

The string that makes it through the selection that is done by the locate is ’foo’ - it is the
only one that is captured by the /oo/ filter.
The rest of the words is not gone, however, and we can use these in further processing
by using the secondary stream that locate provides.
To prepare for this, we give the secondary stream a name by providing a label for it, we
call it, in absence of any creativity, rest. Also, we send the selected output, ’foo’ into a hole
stage, where it disappears.

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 hole

As predicted, there is no output. To get to the rest of the words, unselected by locate, we
connect the secondare output stream to a new pipe, using the ’?’ (the default pipe-end
character) like this:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 hole ? rest: | console

The output is now:

bar
baz
frob
frobnitz
frobbotzim

25

Instead of sending the original output into a black hole, we could have also gone further
with it, and, for example, reverse it:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 reverse | console ? rest: | console

The output is now:

oof
bar
baz
frob
frobnitz
frobbotzim

Likewise, we can specify more filter stages in the second, attached pipeline, and bifurcate
the pipeline even further.

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 reverse | console ? rest: | locate /botzim/ | console

The output is now:

oof
frobbotzim

It is good to define and implement secondary streams when you write your own stages.

26

12

Pipeline Stalls

Withmultistreampipelines a newproblem is introduced,which sometimes rears its head
- aPipeline stall, also called deadlock.This happenswhen stages wait for input that cannot
be delivered, in a way that ensures that it cannot be delivered.
Pipes for NetRexx detects deadlocks and outputs information to allow you to fix the
problem. Consider the following session:

1 pipe literal test | a: fanin | console | a:

FIGURE 11: Deadlock detection

We can see that there are three stages in the Running state. None have any return codes
set. The Flags tell us that all the stages are waiting for an output to complete.
The ’->’ showwhich stream is selected. From this we can see console_3 is trying to output
to fanin_2.Unfortunately fanin_2 iswaiting for output on stream0 to complete, it cannot
read the data waiting on in stream 1. Hence the stall.
The strings after Dumping and Monitored by are the autogenerated class names. When
you name your pipelines with precompiled pipes, the names you have given them will
be displayed here.
When a stream has data being output, there is a boolean flag following the name of the
stage the stream is connected to. This tracks the peek state of the object. For an output

27

stream, true means the following stage has peeked at the value. With input streams, the
current stage has seen the value when its true.
When a stage is multithreaded, like elastic, you can get flags of 3 or 5. This means that
threads are waiting on output and read, or output and any. When using multithreaded
stages, only one thread should use output unless it is serialized using protected or syn-
cronized blocks.
When a stage has a pending sever or autocommit flag bits are set too.

28

13

Differences with CMS Pipelines

The goal of this implementation is to be as close as possible to the the CMS version of
Pipelines. A few differences are unavoidable.
. The character set is Unicode and not EBCDIC, as Unicode is the character set of

the underlying Java platform. As shells are different, many 3270 related stages are not implemented. Pipes need to be quoted on the Windows and Unix command lines; the Workspace
for NetRexx (nrws) environment is an exception to this rule. The mainframe is record-oriented in many stages, Pipelines for NetRexx does an
approximation of this. Pipelines on the mainframe is an interpreted language with components as the
scanner and the dispatcher; the NetRexx version is compiled to Java .class files
by pipc, the pipes compiler, and dispatched as threads by the JVM.. The mainframe pipes dispatcher is not multiprocessor enabled. In Pipelines for
NetRexx all tasks (stages) are dispatched over all available processors in parallel.. The fact that pipes run from NetRexx implies that they can be used in Java source.
In previous releases there was more direct support for this; this has lapsed due to
changes in the way a java toolchain works. This support can be restored in future
releases.. To put the content of a NetRexx variable in a pipe specification in a NetRexx pro-
gram, there is a {} mechanism. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.

29

30

14

How to use a pipe in a NetRexx program

This shows how to use a pipe in a NetRexx program:
1 class testpipe
2

3 method testpipe(avar=Rexx)
4

5 F = Rexx 'abase'
6 T = Rexx 1
7

8 F[0]=5
9 F[1]=222

10 F[2]=3333
11 F[3]=1111
12 F[4]=55
13 F[5]=444
14

15 pipe (apipe stall 1000)
16 stem F | sort | prefix literal {avar} | console | stem T
17

18 loop i=1 to T[0]
19 say 'T['i']='T[i]
20 end
21

22 method main(a=String[]) static
23

24 testpipe(Rexx(a))

A couple of things can be seen in this example. First that it is simple to pass NetRexx
variables to pipes using stem. Also look at the phrase {avar}. It passes the NetRexx
variable’s value to the stage at runtime. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.
Another thing to note is that the pipe extraction program is fairly smart. It detects when
pipes takes several lines. As long as there are stages, or the current line ends with a stage-
sep or stageend character, or the next line starts with a stagesep or stageend character. It
gets added to the pipe.
The arg(), arg(rexx) or arg(null) methods get the arguments passed to a stage or pipe.
To get the complete rexx string of an argument use arg(). To get the nth word of a rexx
argument use arg(n). When using pipes in netrexx code you can use arg(’name’) to get
the named argument. If the class of the argument is not rexx use arg(null) to get the
object.
In .njp files you can use avar phrase actually just shorthand for arg(’avar’). The following
example shows what has to be done in a stage to access the rexx variables passed by VAR,
STEM and OVER. The real over stage is a bit more complete.

1 -- over.nrx
2 class over extends stage final
3

4 method run() public
5 a = getRexx(arg())
6 loop i over a

31

7 output(a[i])
8 catch StageError
9 rc = rc()

10 end
11

12 exit(rc*(rc<>12))

The getRexx method is passed the name of a string by the pipe. In the previous example
it would be passed A and would return an Object pointer to A in testpipe. If you wish to
replace a stream this can be done using connectors. For example look at the following
fragment:

-- examples\calltest.njp
pipe (callt1) literal test | calltest {} | console

1 import org.netrexx.njpipes.pipes.
2

3 class calltest extends stage final
4

5 method run() public
6

7 do
8 a = arg()
9

10 callpipe (cp1) gen {a} | *out0:
11

12 loop forever
13 line = peekto()
14 output(line)
15 readto()
16 end
17

18 catch StageError
19 rc = rc()
20 end
21

22 exit(rc*(rc<>12))

Running the callt1 pipe with an argument of 10 would pass the 10 to calltest via and
arg(). Then cp1’s gen stage would be passed ’a’ which is set to 10. Since gen generate
numbers in sequence, the console stage of callt1 would get the numbers from 1 to 10.
Now cp1 ends and calltest’s output stream is restored and calltest unblocks and reads the
the literal’s data ’test’ and passes it to console.
The use of only works when compiling from .njp files. It will not work from the com-
mand line. The njpipes compiler recognizes connectors as labels with the following
forms:

*in:
*inN:
*out:
*outN

When N is a whole number, the connector connects input or output stream N of the
stage with the connector. When the label *in or *out, the connector connects the stages’s
current input or output stream with the connector. This is used instead of *: due to the
way the compiler/preprocessor works. If you do not want the stage to wait for the called
pipe to complete you can use addpipe. Here is an example.

1 -- similar to examples\addtest.njp
2
3 a = 100

32

4 b = 'some text for literal'
5

6 addpipe (linktest) literal {b} | dup {a} | *in0:
7

8 loop forever
9 line = Rexx readto()

10 catch StageError
11 end

readto() will get ’some text for literal’ one hundred times.
A quick aside.When writing stages remember that njPipes moves objects through pipes.
Use ’value = peekto()’ instead of ’value = rexx peekto()’ when ever possible. Some of the
supplied stages pass objects with classes other than rexx and forcing rexxwill cause class-
CastExceptions. If a stage needs a rexx object try using the rexx stagemodifier to attempt
to convert the object. Feel free to expand this stage, but please send me the updated ver-
sion.
Serious stage writers will probably want to take a good look at the methods defined in
the NetRexx source package org.netrexx.process.njpipes.stages. There you will
find various methods for parsing ranges. You will also find the stub for the stageExit
compiler exit. It can be used to produce ’on the fly’ code at compile time. You can also
use it to change the topology of the unprocessed part of the pipe. The major use is to al-
low implementations of stages like prefix, append or zone. Its also used to produce better
performing stages, for an example see specs.The compiler also queries the rexxArg() and
stageArg() methods. If your stage expects objects of class Rexx as arguments rexxArg()
should return the number of variables expected. If your stage expects a stage for an ar-
gument, stageArg() should return the word position of the stage.

33

34

15

TCP/IP Networking using Pipes for NetRexx

As the built-in stages all work ondata that is dispatched through the pipeline, irrespective
of which device driver is used, it is also convenient to do network programming using a
set of pipelines.
The tcplisten stage can be used as a network device driver, as in CMS, but limited to
specification of the port and a timeout value. Below an example of how to implement a
sample TCP/IP client/server application.

1 -- one shot tcpip server
2

3 pipe (tcpserv stall 60000 debug 0)
4 tcplisten 1958 timeout 15000 | tcpexample
5

6 -- one shot tcpip requestor
7

8 pipe (tcpreq stall 60000 debug 0)
9 random {} |

10 specs *-* 1 ,\n, next |
11 tcpclient deblock c localhost 1958 timeout 10000 linger 500 oneresponse |
12 rexx to console
13

14 -- a single tasking server
15

16 options binary
17 import org.netrexx.njpipes.pipes.
18 class tcpexample extends stage
19

20 method run() public
21

22 loop forever
23

24 peekto()
25

26 callpipe (tcplog stall 15000 debug 0)
27 *in0: |
28 take first 1 |
29 console |
30 f: fanin |
31 tcpdata timeout 10000 deblock C oneresponse |
32 elastic |
33 insert /\n/ after |
34 f:
35

36 catch StageError
37 rc = rc()
38 end
39

40 exit(rc*(rc<>12))

This example needs to be compiled with the pipes compiler, see TCP/IP Client/Server
compile, which yields the classes tcpserv and tcpreq, for the server and the requester
component.
Now we can start the generated pipelines each in their own shell window. As can be
seen in TCP/IP server, the class keeps waiting on connections on port 1958 - which is

35

FIGURE 12: TCP/IP Client/Server compile

arbitrary, but specified in the pipeline source.

FIGURE 13: TCP/IP server

In another window, we can start the TCP/IP requestor, which when given port 1958 as
argument, connects to the server, and displays a series of random numbers that is sent
to it.

FIGURE 14: TCP/IP requestor

Note that the stage tcpexample from the tcpserver pipeline is a custom stage that is written
in this tcpexample.njp file.

36

16

Selecting from databases with Pipelines for
NetRexx

Using the built-in sqlselect stage you can select data, using SQL, from any jdbc source
available.
An sqlselect.properties file is needed to define the jdbc parameters like the driver to
use, the url of the data source and other arguments, like a password and tracing options,
if needed.
The file looks like this:

jdbcdriver=org.sqlite.JDBC
url=jdbc:sqlite:flightroute-iata.sqb

This is all that is needed for an sqlite database containing flight data. A simple select *
can then be done with the following pipeline:

1 pipe literal * from FlightRoute where flight = 'KLM765' | sqlselect | console

This yields the following output:

FLIGHT--ROUTE--UPDATETIME--
KLM765 AUA-BON-AMS 1494132448

Note that from the command line, the quotes around the pipe specification and the literal
string in the SQL statement should be opposite, while when the pipeline is issued from
the Workspace for NetRexx, the pipeline does not have to be quoted, but the sql string
needs double quotes instead of the - for SQL statements- normal single quotes.

37

38

17

The Pipes Runner

The pipes compiler is used in both precompiled and directly executed pipelines. When
you directly execute a pipeline from the commandline or from the nrws NetRexx
workspace, the process is optimized to not persist generated NetRexx, Java and Class
files to disk before execution, the whole process runs from memory. The Pipes Runner
uses the Pipes Compiler for this purpose, and as suchmisses the options for persistence5.
The pipe command alias start the Pipes Runner, which is a command processor that can
execute a pipe from the command line in an OS shell, the OS being Windows, Linux or
macOS6.
A pipe can be run with options prepended within parentheses, like this:

1 pipe '(test1 sep ! stall 2000 debug 63) literal abcde ! console'

The following options are available:

pipename Specify the name of the generated class file. This can be useful for debug-
ging purposes but is not mandatory when running a pipe. An unnamed
pipe receives a generated unique name. This option needs to go first.

sep The default stage separator is the | (pipe) character; this can be overrid-
den with the sep option; a pipe called test1 which uses an exclamation
mark as separator character, needs the options (test1 sep !).

debug The debug option specifies a bitmask for debugging the execution of a
pipe; (debug 63), for example, generates a rather complete debugging
trail).

end The default pipe end character is the ’ ?’ (question mark), which can be
overridden here. Note that the backslash, which is an obvious pipe end
character for the z/VM 3270 interface, is not a good choice for Windows
and Unix shells.

stall Theduration in number of seconds of a pipe stall (or deadlock) detection
cycle.

5But specifying them will not generate an error
6this is a non-exhaustive list of operating systems

39

40

18

The Pipes Compiler

The purpose of precompiling a pipeline specification is to produce a .class file for the
JVM that can be run independently and on different machines; only the JVM and the
NetRexxC.jar or the NetRexxF.jar are required to run a precompiled pipe. A set of pre-
compiled pipes can be shipped as an application.
When precompiling pipes, there are options to save and view the generated NetRexx,
Java and JVM Class files. A precompiled pipe has the advantage that it can be executed
over and over in an application, without the need to compile it every time; the perfor-
mance savings are accumulative in this scenario.
The following options can be used on the pipc command, in addition to the ones specified
in the previous chapter for the Pipes Runner:

-gen Generate the NetRexx source file. The pipeline needs a name.
-keep Keep the Java source which is generated from the NetRexx source.

Example:
1 pipe (testpipe -gen -keep)

This will generate the NetRexx source as well as keep the java source.

41

42

19

Built-in Stages

This section describes the set of built-in stages, i.e. the ones that are delivered with the
downloadable open source package. These stages are directly executable from the Net-
RexxC.jar file or the NetRexxF.jar file (the latter contains a Java compiler for use on
JRE-only systems); also, the source of these stages is delivered in the NetRexx source
repository. This repository can be checked out at

git clone https://git.code.sf.net/p/netrexx/code netrexx-code

The source of the stages is in directory

netrexx-code/src/org/netrexx/njpipes/stages

43

-- Pipelines for NetRexx only;
 delegates to comment

< Implemented as in CMS; delegates to diskr.

> Implemented as in CMS; delegates to diskw.

>> Implemented as in CMS; delegates to diska.

? Not implemented. Help.

3270bfra Not implemented. Old terminal support.

3270enc Not implemented. Old terminal support.

abbrev >>--ABBREV--+-----------------------------------+-------------------------><
 +--word--+----------------------+--+
 +--number--+-----------+-+
 +--ANYCASE--+
Pipes for NetRexx only

aftfst Not implemented. Open file information

ahelp Not implemented. Author's help

all Not implemented. Select all records containing a specified string
or strings determined by an expression

apldecode Not	implemented.	Old	APL	language

aplencode Not	implemented.	Old	APL	language

append >>--APPEND--string--><

array Pipes	for	NetRexx

arraya Pipes	for	NetRexx

arrayr Pipes	for	NetRexx

arrayw Pipes	for	NetRexx

asatomc Not	implemented.	Old	printer	control

asmcont Not	implemented.	Assembler	language

asmfind Not	implemented.	Assembler	language

asmnfind Not	implemented.	Assembler	language

asmxpnd Not	implemented.	Assembler	language

between >>--BETWEEN--+----------+--/string/--+--/string/--+-----------------------><
 +--ANYcase-+ +--n---------+

bfs Not	implemented.	Read	Bit	Stream	File

bfsdirectory Not	implemented.	Read	Bit	Stream	Directory

bfsquery Not	implemented.	Read	Bit	Stream	current	Directory

bfsreplace Not	implemented.	Bit	Stream	file

bfstate Not	implemented.	Read	Bit	Stream	file

bfsxecute Not	implemented.	Read	Bit	Stream	file

block Not	implemented.	See	fblock.	Reformat	records

buffer >>--BUFFER--+--------------------+--><
 +--n--+------------+-+
 +--/string/--+

buildscr Not	implemented.	Old	terminal

casei >>--CASEI--stage--><

change +--1-*------------+
>>--CHANGE--+---------+--+-----------------+------>
 +-ANYcase-+ +-inputRange------+
 | <-------+ |
 +-(--+-range-+--)-+

 >--+-/string1/string2/----+--+-------------+--------------------------><
 +--/string/--/string/--+ +--numorstar--+

chop +--80------+
>>--+--CHOP-----+--+----------+---><
 +--TRUNCate-+ +--column--+

cms Not	implemented.	OS	dependent.

collate Not	implemented.	Match	records	from	2	streams.

combine Not	implemented.	Joins	bit-oriented	streams.

command >>--COMMAND--+----------+---><
 +--string--+

--	input	stream	0	is	for	commands

--	input	stream	1	is	stdin

--	output	stream	0	is	stdout

--	output	stream	1	is	the	return	code

--	output	stream	2	is	stderr

configure Not	implemented.	Create	specifications	for	CMS	Pipelines	in	z/VM.

compare +-TRINARY-+ (1) +-PAD SPACE-+
>>--COMPARE--+---------+------------+---+-----------+---------------------><
 +-BINARY--+ (2) | +-PAD-Xorc--+
 | |
 | <-----------------+ |
 +--ANY DString------+--+ (4) (5)
 +--EQUAL DString----+ (4)
 +--LESS DString-----+ (3) (4)
 +--MORE DString-----+ (3) (4)
 +--NOTEQUAL DString-+ (4)

(1)	-1	=	Primary	is	shorter/less,	0	=	equal,	1	=	Secondary	is	shorter/less

(2)	0	=	equal,	1	=	not	equal

(3)	Primary	is	LESS/shorter	(or	MORE/longer)	than	secondary

(4)	DStrings	can	use	any	of	the	following	escapes	(or	the	lowercase)	for

the	unequal	situation:

\C	(count)	for	the	record	number,

\B	(byte)	for	column	number

\P (primary) for the primary stream record
\S (secondary) for the secondary stream record
\L (Least) for then stream number that is shortest, -1 if equal
\M (Most) for the stream number that is longest, -1 if equal

5.	 Equal or not, this DString precedes any of the others.

Pipes	for	NetRexx	only.

configure Not	implemnted.	OS	dependent

console >>--+-CONSole--+--+-----------------+-------------------------------------><
 +-TERMinal-+ +--EOF--/string/--+
 +--NOEOF----------+

copy >>--COPY--><

copy	from	input	stream	to	output	without	delaying	the	stream.
See	elastic	for	a	more	generic	way	to	do	this.

count <--------------------+
>>--COUNT--v--+--CHARACTErs--+--+---><
 +--WORDS-------+
 +--LINES-------+
 +--MINline-----+
 +--MAXline-----+

cp Not	implemented.	OS	specific.

crc Not	implemented.	Compute	a	checksum

c14to38 Not	implemented.	Old	printer.

dam Do	no	pass	any	objects	thru	secondary	streams	until	an	object	appears
on	the	primary	input	stream.	The	primary	output	stream	must	not
be	connected.

Pipes	for	NetRexx	only.

dateconvert Not	implemented.	Timestamp	conversion	and	validation.

deal +--STOP--ALLEOF-----------------------+
>>--DEAL--+-------------------------------------+-------------------------><
 +--STOP--+--ALLEOF--+-----------------+
 | +--ANYEOF--+ |
 | +--n-------+ |
 +--SECONDARY--+-----------+-----------+
 | +--RELEASE--+ |
 +--KEY—inputRange--+---------+--------+
 | +--STRIP--+ |
 +--STREAMid--inputRange--+---------+--+
 +--STRIP--+

Since	Java	dispatches	the	stage	threads.	Deal	may	not	see	a	sever
immediately,	as	the	severing	thread	can	get	multitasked.	
This	can	make	options	like	'ANYEOF'	work	in	unexpected	ways.

deblock +--FIXED--n--+-------------+-------------------------+
 | +--PAD--xorc--+ |
>>--DEBLOCK--+--+------->>
 +--+--C-----------------+--+-------------+--+--------+
 +--J-----------------+ +--TERMINATE--+ +--EOF---+
 +--CRLF--------------+
 +--LINEND xorc-------+
 +--STRING--/string/--+

??	System.getProperty('line.separator')	??

delay Not	implemented.	Wait	for	clock	time

dict Pipes	for	NetRexx	only.

dicta

dicta

dictw

disk As	in	CMS,	equivalent	to	diskr	(Pipes	for	NetRexx	Only)	or	<.

diska Appends	records	on	its	input	stream	to	the	end	of	the	supplied	file,	the
file	is	created	if	its	does	not	exist.

diskr

diskslow

diskw

drop +--FIRST--+ +--1--+
>>--DROP--+---------+--+-----+--+---------+-------------------------------><
 +--LAST---+ +--n--+ +--BYTES--+
 +--*--+

dup +--1----+
>>--DUP--+-------+--><
 +--n----+
 +--*----+
 +-- -1--+

elastic >>--ELASTIC---><

ems Not	implemented.	OS	specific.

escape Not	implemented.	Insert	escape	characters	so	special	characters	are	treated	as	data.

fanin >>--FANIN--+--------------+---><
 | <---------+ |
 +--+--stream-+-+

faninany >>--FANINANY--><

fanout +--STOP--ALLEOF------+
>>--FANOUT--+--------------------+--><
 +--STOP--+--ANYEOF-+-+
 +--n------+

fblock >>--FBLOCK--number--+--------+--><
 +--xorc--+

file As	in	CMS.	Synonym	of	disk

filea Pipes	for	NetRexx	only.	Synonym	of	diska

fileback Not	implemented.	Read	a	CMS	file	backwards.

filefast Not	implemented.	Read	or	write	a	CMS	file.

filer Pipes	for	NetRexx	only.	Synonym	of	diskr

filerand Not	implemented.	Read	specific	records	from	a	CMS	file.

fileslow Synonym	for	diskslow.

fileupdate Not	implemented.	Change	records	in	a	CMS	file.

filew Pipes	for	NetRexx	only.	Synonym	of	diskw

find >>--+--FIND--+----------+---><
 +--string--+

fmtfst Not	implemented.	OS	specific

frlabel >>--+--FRLABEL--+---------+---><
 +--string-+

frtarget >>--+--FRTARGET----+--stage--+------------+-------------------------------><
 +--FROMTARGet--+ +--operands--+

fullscreen Not	implemented.	Old	terminal.

fullscrq Not	implemented.	Old	terminal.

fullscrs Not	implemented.	Old	terminal.

gate >>--GATE--+----------+--><
 +--STRICT--+

gather Not	implemented.	Read	records	in	specified	order.

getfiles >>--GETfiles--><

getovers Input	stream	0	should	contain	rexx	objects.	The	getovers	stage	will
output	will	output	the	index	and	contents	of	the	stem	on	stream	0.
If	output	stream	1	is	connected,	the	root	is	placed	there.	Any
severed	streams	will	cause	then	stage	to	exit.	Passing	a	non	rexx
object	will	cause	the	stage	to	exit	with	return	code	13

Pipes	for	NetRexx	only

getstems Input	stream	0	should	contain	rexx	objects	containing	stems.	The
getstems	stage	will	output	the	contents	of	the	stem	on	stream	0.
If	output	stream	1	is	connected,	the	root	is	placed	there.	Any
severed	streams	will	cause	then	stage	to	exit.	Passing	a	non	rexx
stem	object	will	cause	the	stage	to	exit	with	return	code	13

Pipes	for	NetRexx	only.

hash Pipes	for	NetRexx	only.	Synonym	of	dict

hasha Pipes	for	NetRexx	only.	Synonym	of	dicta

hashr Pipes	for	NetRexx	only.	Synonym	of	dictr

hashw Pipes	for	NetRexx	only.

help Not	implemented.	Help	for	CMS	Pipelines.

hole >>--HOLE--><

hostbyaddr Not	implemented.	Resolve	IP	address	to	domain	and	host	name.

hostbyname Not	implemented.	Resolve	domain	name	to	IP	address.

hostid Not	implemented.	Writes	default	IP	address.

hostname Not	implemented.	Writes	host	name	of	the	TCP/IP	system.

iebcopy Not	implemented.	OS	dependent.

immcmd Not	implemented.	OS	dependent.

insert +--BEFORE--+
>>--INSERT--/string/--+----------+--><
 +--AFTER---+
insert a string into a record. Will be much more efficient than specs
especially if the input is a Byte[]

Pipes	for	NetRexx	only.

inside >>--INSIDE--/string1/--+--/string2/--+------------------------------------><
 +--n----------+

instore Not	implemented.	Read	records	into	storage.

ip2socka Not	implemented.	Convert	IP	address	to	special	hex.

ispf Not	implemented.	OS	dependent.

join +--1-------------+
>>--JOIN--+----------------+--+-----------+--+--------------+-------------><
 +--n-------------+ +--/string/-+ +-maxlength(1)--+
 +--*-------------+
 +--KEYLENgth--n--+

(1)	The	maxlength	operand	cannot	be	entered	without	specifying	other operands.

joincont +--TRAILING------+
>>--JOINCONT--+-----------+--+-------+--+----------------+--+---------+---><
 +--ANYCase--+ +--NOT--+ +--RANGE--range--+ +--ANYof--+
 +--LEADING-------+

juxtapose >>--JUXTAPOSe---><

ldrtbls Not	implemented.	Assembler:	precompiled.

listpds Not	implemented.	OS	dependent.

literal +--{-object-name-}--+
>>--+-LITERAL---+-----------+-------+-------------------------------------><
 +--string---+
 +--PREFACE--+

locate >>--LOCATE--+-----------+--+---------------+--+---------+--+------------+-->
 +--ANYcase--+ +--inputRanges--+ +--ANYof--+ +--/string/--+

lookup in	stream	0	are	detail	records

in	stream	1	are	master	records

in	stream	2	adds	to	masters

in	stream	3	delete	from	masters

out	stream	0	are	matched	records

out	stream	1	are	unmatched	detail	records

out	stream	2	are	unmatched	or	counted	master	records

out	stream	3	deleted	masters

out	stream	4	duplicate	masters

out	stream	5	unmatched	master	deletes

lookup	does	not	consider	an	unconnected	output	stream	an	error.	It	does
propagate	EOFs	from	output	streams.

To	increase	performance	reorder	the	'when	type='	in	method	out	so	the
type	you	use	is	first	in	the	list	and	recompile	the	stage.

>>--LOOKUP--+---------+--+-----------+--+-----------+--+----------+----->
 +--COUNT--+ +--ANYCASE--+ +--AUTOADD--+ +--BEFORE--+

 >--+-----------+--+------------+--+-------------+--+--------------+-->
 +--KEYONLY--+ +--SETCOUNT--+ +--INCREMENT--+ +--TRACKCOUNT--+

 >--+---------------------------+---------->
 +--inputRange--+------------+
 +--inputRange--+

 >--+-----------------------------+-------------------------------------><
 +--DETAIL MASTER--------------+
 +--DETAIL ALLMASTER PAIRWISE--+
 +--DETAIL ALLMASTER-----------+
 +--DETAIL---------------------+
 +--MASTER DETAIL--------------+
 +--MASTER---------------------+
 +--ALLMASTER DETAIL PAIRWISE--+
 +--ALLMASTER DETAIL-----------+
 +--ALLMASTER------------------+

maclib Not	implemented.	OS	dependent.

mctoasa Not	implemented.	Old	printer.

mdiskblk Not	implemented.	OS	dependent.

members Not	implemented.	OS	dependent.

merge Not	implemented.	Merge	up	to	10	input	streams.

nfind >>----NFIND--+----------+---><
 +--string--+

ninside Not	implemented.	Alias	for	notinside.

nlocate >>--NLOCATE--+-----------+--+---------------+--+---------+--+------------+><
 +--ANYcase--+ +--inputRanges--+ +--ANYof--+ +--/string/--+

noEofBack Pipes	for	NetRexx	only.	Do	not	proprogate	eof	back	thru	this	stage.

nop Pipes	for	NetRexx	only.

not >>--NOT--stage--+------------+--><
 +--operands--+

notinside >>--NOTINSIDE--+--+-----------+--/string/--+--n---------+-----------------><
 +--ANYcase--+ +--/string/--+

notlocate Not	implemented.	Alias	for	nlocate.

nucext Not	implemented.	OS	dependent.

optcdj Not	implemented.	Old	printer.

outside >>--OUTSIDE--+---------+--/string/--+--n--------+-------------------------><
 +-ANYcase-+ +--/string/-+

outstore Not	implemented.	Writes	records	from	storage.

over Pipes	for	NetRexx	only.	Extract	all	the	indexes	of	a	rexx	variable	stem.	Like	loop	

overlay +--BLANK--+
>>--OVERlay--+---------+--><
 +--SPACE--+
 +--xorc---+

overstr Not	implemented.	Old	printer.

pack Not	implemented.	Compacts	data

pad +--Right--+ +--BLANK----+
>>--PAD--+---------+--n--+-----------+------------------------------------><
 +--Left---+ +--SPACE----+
 +--char-----+
 +--hexchar--+

pause Not	implemented.

pdsdirect Not	implemented.	OS	dependent.

pick >>--PICK--+-----------+--+----------+--+-------------+--+--==---+--->
 +--ANYcase--+ +-PAD xorc-+ +-inputRanges-+ +--^==--+
 +--<<---+
 +--<<=--+
 +-->>---+
 +-->>=--+

 >--+---------------+---><
 +--inputRanges--+
 +--/string/-----+

The	performance	of	Pick	can	be	enhanced	by	reordering	the	compares	in
the	comp	method	to	put	your	compare	first.

pipcmd Not	implemented.

pipestop Not	implemented.

predselect Not	implemented.	Input	to	selected	output.

preface Not	implemented.	Invokes	a	subroutine/stage	then	copies	records.

prefix Blocks	its	primary	input	and	executes	stage	supplied	as	an	argument.	The
output	from	this	stage	are	put	to	the	primary	output	stream.	When
its	compete	the	primary	input	is	shorted.

Pipes	for	NetRexx	only.

printmc Not	implemented.	Old	printer.

punch Not	implemented.	Old	equipment.

qsam Not	implemented.	Old	equipment.

query Implemented.	Write	info	about	Pipelines.

qsort

reader Not	implemented.	Old	equipment.

Reverse >>--REVERSE---><

rexx Not	implemented.	Run	user	written	compiled	stage.

rexxvars Not	implemented.	Get	info	about	defined	REXX	variables.

runpipe Not	implemented.

scm Not	implemented.	Clean	up	comments	in	REXX	and	C.

serialize {class}	if	class	is	specified	deserialize	input	to	objects	of	this	type	otherwise	serialize	input	objects.

Pipes	for	NetRexx	only.

For	some	reason	readObject	does	not	like	more	than	one	object	network	in	its	stream.	
examples/sertest.njp

snake Not	implemented.	Reformat	one	or	more	records	into	matrices.

socka2ip Not	implemented.	Convert	special	16-byte	hex	to	IP	address.

sort sort	objects:	sort	{({<Class>}	{<size>}	{A|D}	{IRange}

Where	<Class>	is	a	sortClass.	The	default	is:	Rexx	and	<size>	is	the	maximum	number	of	objects,	10000	is	the
default.

Pipes	for	NetRexx	quirks.

sortClass This	is	an	interface	class	to	allow	a	generic	sort	routine	to	handle	objects	of	different	type.	
implemented	by	sortRexx,	which	will	sort	rexx	objects.

Pipes	for	NetRexx	only.

sortRexx An	implementation	for	sortClass	for	rexx	objects.	Part	of	the	logic
to	generate	sortClass	stages	is	in	sort's	stageExit.

Pipes	for	NetRexx	only.

specs Massage	the	data.		Selections	via	start.length	start-end,	start-*	and	-from_end;-from_end.	
	These	selections	can	also	be	prefixed	with	'word'.	
The	conversion	functions	upper,	lower,	b2x,	d2x,	x2b	and	x2d	are	implemented	as	are
	format	options	left,	right	and	center.		The	stop,	select,	read,	readstop,	pad	and	write	functions	
work	too.	
The	number,	TODclock	and	many	other	conversion	functions	are	not	implemented.

>>-SPECs--+----------------------+------------------------------>
 +--STOP--+--ANYEOF--+--+
 +-n--------+

 +------------------------------------+
 V |
>----+--| Group |-----------------------+---+-----------------------------><
 +--READ--------------------------------+
 +--READSTOP----------------------------+
 +--WRITE-------------------------------+
 +--SELECT--+--streamnum--+-------------+
 | +--streamid---+ |
 +--PAD--+--char-----+------------------+
 | +--hexchar--+ |
 | +--BLANK----+ |
 | +--SPACE----+ |
 +--+--WORDSEParator---+--+--char-----+-+
 +--WS--------------+ +--hexchar--+
 +--FIELDSEparator--+ +--BLANK----+
 +--FS--------------+ +--SPACE----+

Group:

|--| Input |--| Conversion |--| Output |--| Alignment |---------|

Input:

|--+--Words---------wnumberrange----------------+---------------|
 +--Fields---------fnumberrange---------------+
 +--cnumberrange------------------------------+
 +--/string/----------------------------------+
 +--Xhexstring--------------------------------+
 +--Hhexstring--------------------------------+
 +--Bbinstring--------------------------------+
 | - +--FROM--1-------+ +--BY--1------+ |
 +--RECNO-+----------------+-+-------------+--+
 | - +--FROM--fromnum-+ +--BY--bynum--+ |
 +--TODclock----------------------------------+

Specs

(cont)

Conversion:

|--+---------+--+-------------------------+--------------------------|
 +--STRIP--+ +--C2B--------------------+
 +--C2D--------------------+
 +--C2F--------------------+
 +--C2I--------------------+
 +--C2P--+--------------+--+
 | +------(scale)-+ |
 +--C2V--------------------+
 +--C2X--------------------+
 +--B2C--------------------+
 +--D2C--------------------+
 +--F2C--------------------+
 +--I2C--------------------+
 +--P2C--+--------------+--+
 | +------(scale)-+ |
 +--V2C--------------------+
 +--X2C--------------------+
 +--f2t--------------------+

Output:

|--+-Next-+----------+---------+-------------------------------------|
 | | (1) | |
 | +-------.n-+ |
 +-+-NEXTWord-+-+----------+-+
 | +-NWord----+ | (1) | |
 | +-------.n-+ |
 +-columnrange---------------+
 (1) No blanks allowed

Alignment:

|--+----------+---|
 +--Left----+
 +--Center--+
 +--Right---+

spill Not	implemented.	Word	wrap.

split >>--SPLIT--+-----------+--+-------------------+--------------------->
 +--ANYCase--+ +--MINimum--number--+

 +--AT-----------------------+ +--BLANK------------------+
>--+---------------------------+--+-----+--+---------------------------+--><
 +--+----------+--+--BEFORE--+ +-NOT-+ +--| target |--+----------+-+
 +--snumber-+ +--AFTER---+ +--number--+

target:

 |--+--xrange------------------+--|
 +--+--STRing--+--/string/--+
 +--ANYof---+

sql Not	implemented.	OS	dependent.	See	sqlselect	for	Pipes	for	NetRexx	extension.

sqlcodes Not	implemented.	OS	dependent.

sqlselect Pipes	for	NetRexx	only.	Extension	to	SQL	uses	jdbc	to	select	from	any	jdbc	enabled	

stack Not	implemented.	OS	dependent.

Starmonitor Not	implemented.	OS	dependent.

starmsg Not	implemented.	OS	dependent.

starsys Not	implemented.	OS	dependent.

state Not	implemented.	Determine	if	file(s)	exist.

statew Not	implemented.	Determine	if	file(s)	exist.

stem >>--STEM--stem--><

stema Pipes	for	NetRexx	only.	Append	to	an	existing	stem,	exits	if	the	argument	is	not	a	

stemr Pipes	for	NetRexx	only.

stemw Pipes	for	NetRexx	only.

storage Not	implemented.

strasmfind Not	implemented.	Assembler.

strasmnfind Not	implemented.	Assembler.

strfind >>--+--STRFIND--+-----------+--/string/-----------------------------------><
 +--ANYcase--+

strfrlable >>--+--STRFRLABEL--+-----------+--/string/--------------------------------><
 +--ANYcase--+

strip Not	implemented.	Remove	leading	/	trailing	characters.

strliteral >>--STRLITERAL--+----------+--+------------+------------------------------><
 +--APPEND--+ +--/string/--+

strnfind >>--STRNFIND--+-----------+--/string/-------------------------------------><
 +--ANYcase--+

strtolabel >>--STRTOLABel--+-----------+--/string/-----------------------------------><
 +--ANYcase--+

strwhilelableNot	implemented.	Select	consecutive	records.

subcom Not	implemented.	OS	dependent.

synchronize Not	implemented.	Synchronizes	a	multistream	pipeline.

take +--FIRST--+	+--1--+
>>--TAKE--+---------+----+-----+--><
+--LAST---+	+--n--+
+--*--+

tape Not	implemented.	Old	equipment.

timer

tcpclient Simple	tcpclient	implementation.	The	options	implemented	are	similar	to	the	CMS	definition.

linger	-	wait	a	bit	before	terminating	the	last	read	(units	SECONDS)

timeout	-	wait	this	long	before	timing	reads	out	(units	MS)

deblock	-	If	deblock	is	omitted	a	copy	stage	is	used.

group	-	similar	to	CMS.	A	delimited	string	containing	a	stage	is

expected.	You	can	use	a	run	of	stages,	but	its	is	dangerous

since	you	to	know	the	stage	sep	character	being	used...

greeting	-	expect	a	greeting	message	and	discard	it

nodelay	-	use	the	nodelay	option

keepalive	-	enable	keep	alive	socket	option

oneresponse	-	synchronize	cmds/replys

tcpdata Simple	tcpdata	implementation.

linger	-	wait	a	bit	before	terminating	the	last	read	(units	SECONDS)

timeout	-	wait	this	long	before	timing	reads	out	(units	MS)

deblock	-	If	deblock	is	omitted	a	copy	stage	is	used.

group	-	similar	to	cms.	A	delimited	string	containing	a	stage	is

expected.	You	can	use	a	run	of	stages,	but	its	is	dangerous

since	you	need	to	know	the	stage	sep	character	being	used...

nodelay	-	use	the	nodelay	option

oneresponse	-	synchronize	requests/replies

tcplisten Simple	tcplisten	implementation.	You	can	only	supply	the	port	and	a
timeout	value,	which	is	ignored	unless	tcplisten's	output	stream	has
been	severed,	in	which	case	tcplisten	terminates.

If	input	stream	0	is	connected,	tcplisten	does	a	peekto	before
calling	the	accept	method.	The	object	is	consumed	after	the
output	of	the	socket	object	returns.

timestamp +--8--+
>>--TIMEstamp--+-----+--><
 +--n--+

timer Pipes	for	NetRexx	only.	Time	pipes

tokenise >>--+--TOKENISE--+--/string/--+------------+------------------------------><
 +--TOKENIZE--+ +--/string/--+

tolabel >>--TOLABel--+----------+---><
 +--string--+

totarget >>--TOTARGet----stage--+------------+-------------------------------------><
 +--operands--+

udp Not	implemented.	Read	/	Write	TCP	records.

unique +--NOPAD------+
>>--UNIQue--+---------+--+-------------+--+----------+------->
 +--COUNT--+ +--PAD--xorc--+ +--ANYcase--+

 +--LAST------+
 >--+-------------------+--+------------+-------------------------------><
 +--| uniqueRanges |-+ +--SINGLEs---+
 +--FIRST-----+
 +--MULTiple--+
 +--PAIRwise--+

uniqueRanges:
 |--+--inputRange------------------------------+--|
 | <------------------------------+ |
 +--(----inputRange--+-------------+--+--)--+
 +--NOPAD------+
 +--PAD--xorc--+

unpack Not	implemented.	Uncompress	data.

untab Not	implemented.	Expand	tab	characters	to	blanks	for	specific	columns.

update Not	implemented.	Modify	a	file	according	to	UPDATE	control	statements.	OS	dependent.

uro Not	implemented.	Write	to	old	equipment.

var >>--VAR--variable---><
Pipes for NetRexx: this can only read vars

varload Not	implemented.	Set	REXX	variables.

vchar Not	implemented.	Recode	data	to	different	number	of	bits	per	character.

vectora Pipes	for	NetRexx	only.

vectorr Pipes	for	NetRexx	only.

vectorw Pipes	for	NetRexx	only.

vmc Not	implemented.	OS	dependent.

whilelabel Not	implemented.	Select	consecutive	records.

xab Not	implemented.	Old	equipment.

xedit Not	implemented.	OS	dependent.

xlate <----------------------+

>>--+--XLATE------+--+------------------------+---+-------------------+-+-->
 +--TRANSlate--+ +--inputRange------------+ +-| default-table |-+
 | <------------------+ |
 +----(--inputRange--)-+--+

 <----------------------+
 >---+------------------+--+--><
 +--xrange--xrange--+

default-table:

 |--+--UPper--------------------------+-------|
 +--LOWer--------------------------+
 +--INput--------------------------+
 { +--OUTput-------------------------+ }
 { +--+--TO----+--+------------+--n--+ }
 { -+--FROM--+ +--CODEPAGE--+ }
 { }
 { Not yet in Pipes for NetRexx }

xmsg Not	implemented.	OS	dependent.

xpndhi Not	implemented.	Old	equipment.

xrange Not	implemented.	Create	one	record	of	specified	range	of	characters.

zone >>--ZONE--+--+-->
 +--+--WORDSEParator---+---+--char-----+--+
 +--WS--------------+ +--hexchar--+
 +--FIELDSEparator--+ +--BLANK----+
 +--FS--------------+ +--SPACE----+

 >-+--Words----wnumberrange---+------>
 +--Fields----fnumberrange--+
 +--cnumberrange------------+

 >--+---------+---+-----------+--stage--+------------+------------------><
 +--CASEI--+ +--REVERSE--+ +--operands--+

Last	modified:	Thu	Sep	5	21:30:14	AST	2019

20

Appendix A

.50 - Released May 30, 1999
- Fixed a stall occurring when interrupted threads, with the interrupt
caught by ThreadPool, were reused.

- Fixed a thread safety problem in ELASTIC
- Improved the timeout options in TCPDATA and TCPCLIENT, they also
byte[] instead of strings. This was done since converting to and
from strings sometimes scrambles binary data (more research on
encodings...)

- Changed DELBLOCK it now handles byte[] to help keep tcpdata and
tcpclient efficient. The EOF option was broken, its fixed now.

- Changed DISKR, DISKW and DISKA to handle byte[] when using streams.
- Added INSERT which handles byte[]. This should be used instead of
SPECS to add LF or CR .

- Changes SERIALIZE to use byte[].
0.49 - Released May 21, 1999

- compiled with 1.2.1 and NetRexx 1.148
- Added preliminary support added to .njp compiler for files containing
java source! See the (some what messy) java samples in vectort1.njp,
overtest.njp and addtest4.njp

- Added code to generate a dummy .nrx file containing the public class
in a .java file. This allows NetRexx to compile class that depend on
the java source.

- Modified sort to accept arguements in the same order as CMS
- Fixed rc logic in drop stage
- Fixed shortcut code for {n} where n is numeric.

0.48 - Released May 16, 1999
- Fixed a (nasty) bug involving reusing pipe objects.
- Added the reuse() method to the stage class. To use it override
it in your stage. It was added so there was a foolproof way to
reset a stage when its pipe object is reused. (doSetup is intended
for use with dynamic arguements in call or added pipes)

- Added the cont option and defaulted it to comma.
- fixed return code logic in some stages and in selectInput/Output
- Added the Emsg methods
- Added arguement debug option (128)
- There are no more final methods
- Much improved error reporting from stages via new Emsg method

0.47 - Released Jan 3, 1999

57

- recompiled with 1.1.7A and netrexx 1.148
- UNIQUE repaired?
- Added stages to acess java objects easily
VECTOR, VECTORR, VECTORW, VECTORA for java.util.vector
ARRAY, ARRAYR, ARRAYW, ARRAYA for Object[]
HASH, HASHR, HASHW, HASHA for java.util.Hashtable
DICT, DICTR, DICTW, DICTA for java.util.Dictionary
The hash stages mostly map directly to DICT stages. The exception
is HASHW which uses the clear() method of Hashtable.

- Modified LITERAL to be able to put any object into a pipe
- Modified pipe package to store arguements in a hashtable instead of
a rexx stem - arguements can now be of any class. Use the arg(null)
method to get an object arguement.

0.46a - Released Oct 14, 1998
- recompiled with 1.1.7
- TCPLISTEN now supports an input stream to be used to pace accepts

0.46 - Released Sept 20, 1998
- COMMAND, CHANGE, FILE, LOCATE, DROP, LOOKUP, TCPCLIENT, TCPLISTEN

SQLSELECT, CONSOLE, TCPDATA, NOEOFBACK improved.
- Jeff improved the testing process with the addition of the COMPARE

stage, he also upgraded many of the tests.
- Added the buildtests pipe, it builds a test script to be run with:

test > output < console.data
- Unexpected exceptions should no longer hang pipes

0.45 - Released Sept 9, 1998
* Recompile all your stages. To fix a commit problem I had to

change the _stage interface class...
- tcpclient restart problems with oneresp active fixed.
- commit now returns the current return code of the pipe.
- fixed minor errors in tcpclient and diska.

0.44 - Released Sept 8, 1998
* a recompile of pipes using STEM is required
- smart DISK, FILE and STEM stages now exist.
- Made to and from synonoms for in and out in REXX and STRING stages.
- Added stream option to DISKR and DISKW to read raw streams.
- Added DISKSLOW and SERIALIZE stages.
- Now DISK, DISKR, DISKW, DISKA and DISKSLOW have FILE synonyms.
- Deadlock detection improvements.
- TCPDATA & TCPCLIENT optimized once again.
- selectAnyInput could deadlock - fixed.
- interrupting a pipe now kills it - use this with care (ie. kill -9)
- Pseudo methods njpRC() and njpObject() are reconized by the pipes

compiler and return the pipe’s RC or object respectivily.
0.43 - Released August 30, 1998

- Fixed deadlock dection to see commit deadlocks.
- Added rest of code to handle improved StageError logic.
- Added stage templates (template*.nrx) in the njpipes directory.

58

- Added a debug flag (64) to trace all StageError rasied by the
stage class.

0.42 - Not released
* A recompile of pipes using TCPCLIENT, TCPDATA is required.
* A recompile of pipes using REXX, STRING, ZONE, CASEI is recommended.
- Updated the comments in _stage to reflect the possible StageError

and return codes that can be issued.
- Added the DEBLOCK stage and reworked TCPDATA, TCPCLIENT & GATE.
- Improved eofReport processing and added a new option ’either’ that

will trigger a StageError when any stream, input or output, severs.
- Fixed variable subsitution so multiple variables passed to a stage

will work.
- Added the ability to pass thru arguements to callpipe and addpipe.
- Fixed a problem with some StageExits requiring stage_reset methods.
- Added a function to utils to help assign smarter name to classes

generated by StageExits.
- Added counter method to stage. use to count external waits so

deadlock/stall detection is not fooled.
0.41 - Released August 23, 1998

* removed OBJ2REXX, OBJ2STRING stages, use REXX and STRING stage
modifiers.

* pipes using TCPDATA, TCPCLIENT & LOOKUP should be recompiled
- exhanced REXX stage modifier via an object2rexx improvement in

pipes/utils.nrx
- optimized ThreadPool startup times. No setName and only use

setPriority when its required.
- made it possible to optimized stage startup time when arguements

are static. See TCPDATA, TCPCLIENT & LOOKUP
- faq.txt enhanced

0.40 - Released August 14, 1998
* All pipes MUST be recompiled. Old pipe class files will stall.
- OBJ2REXX is depreciated and will be removed, use the REXX stage.
- added REXX and STRING stages to convert objects entering and leaving

a stage to rexx or string. Inorder to avoid nasty class conflicts,
REXX and STRING are implemented in _rexx and _string. The compler
adds the ’_’ when necessary (any stage can use this feature).

- fixed an intermitant stall in callpipe (was completing too fast :-)
- fixed a stall occuring between shortStreams and COMMAND
- optimized pipe startup time in pipe.class and via the compiler.
- optimized rc, commit, deadlock, threadpool code

0.39 - Released August 9, 1998
- WAIT_COMMIT and WAIT_ANY are now used in the call/addpipe logic
- callpipe was not notifiing its pipe when ending leading to an

very intermitant hang.
0.38 - Released August 3, 1998

* All your stages must be recompiled. Recompile your pipes to
exploit the pipe & thread pool performance improvements.

59

- fixed and optimized commit logic.
- implement a pool for pipes to decrease overhead.
- implement a pool for threads to decrease overhead.
- compiler fix to proprogate return codes from stageExits (thanks Jeff).
- signal StageError(’... in all stageExits modified to
signal StageError(13,’Error - ’pInfo’ - ...

- UNIQUE stage added by Jeff. It exploits stageExit.
- COMMAND stage was not starting its threads correctly.
- SORTs in different pipes could corrupt each other. Thanks René‚

0.37 - Released July 25, 1998
* A recompile of pipes using SORT is required
- added NOEOFBACK, TOTARGET and FRTARGET.
- removed a protected method from dump(), added arg() to the dump
- upgraded SORT, sortRexx to exploit IRange and stageExit, optimized
use, and factored the sort algorithm out of sort/sortRexx.

- multiple sort stages no longer try to share static variables...
- the compiler just uses the stage name (not args) when naming stages

0.36 - Released July 19, 1998
* A recompile of ALL pipes with stages using IRANGE is required.
(CHANGE, DEAL, JOINCONT, LOCATE, LOOKUP, PICK, XLATE & ZONE)

* pipes using NFIND, NLOCATE, STRNFIND or SORT also need to be
recompiled

- Added BuildIRangeExit and other methods to an updated IRange
class. Using ’zone range stage ...’ will be faster than
’stage range ...’ when the range consists of n.c or n-c (s).

- NFIND, NLOCATE, STRNFIND implemented via stageExit and NOT
- Fixed bugs in, JUXTAPOSE, FIND, STRFIND, SORT, COMMAND, CHANGE
- The compiler was not calling stageExit in the correct order when
several calls were needed to build the stage. (zone w1 nfind..)

0.35 - Released July 16, 1998
- Jeff Hennick pointed out a bugglet that effected LOOKUP, ZONE and

PICK that could occur with complex ranges, I found another bug in
strliteral

- Jeff Hennick updated this doc with information on IRange and DString
0.35 - Released July 15, 1998

* A recompile of ALL pipes using ZONE, TCPCLIENT, TCPDATA, PREFIX
and APPEND is required.

- prefix and append can now be labeled, tcpclient and tcpdata
now use a stage, instead of a pipe, to group data.

- added compiler support for negitive stream numbers. This is
intended to be used by stageExit. See append, prefix, tcpdata
and tcpclient.

- Redefined rexxArg() and stageArg() to simplify the compiler.
- selection stages are no longer defined as final.
- SelectInput(0) and selectOutput(0) are always called by the

stage implementation so they can be overridden...
- Reimplemented ZONE using stageExit, added CASEI using the same

60

technique. In theory NOT could be done the same way but, to
avoid some recursion problems NOT is staying in the compiler.

- StageExit modified to allow it to pass back another stage to
call. see ZONE, CASEI and NOT.

0.34 - Released July 11, 1998
- minor reportEOF(any) logic fix
- improved command stage, threads used to process stdout and stderr.
added zone, pad, lookup, pick, upgraded juxtapose, fixed bugs in
specs & buffer.

- added pad option to setIRange method
0.33 - Released July 5, 1998

- added rexxArg() and stageArg() methods to utils.nrx for use by the
$ compiler to query stages about what they expect their arguments to

contain. This allowed the compiler to be simplified.
$ - locate now handles null arguments correctly. literals now include

leading blanks. Thanks for pointing out the problem René.
- René Jansen contributed the timestamp stage.
- logic modified to stop output() from getting an EOF when the output
object has been peeked. The peek status is also displayed by the
dump() method and hense by deadlocks.

- minor specs bug fixes (next.n and nextw.n output specs now work)
- modified the compiler to invoke stageExit(rexx,rexx) method. This
allows stages to generate code and/or change the pipe topology. See
specs, append, prefix, change and xnop, in the stages directory.

- modified StageError in preparation for usage changes.
- removed the Range class - Jeff’s code is better and anything that
could be done with Range can be done using stageExit.

- Jeff fixed bugs in change and join and added:
fblock joincont notinside outside
inside

0.32 - Released June 20, 1998
Jeff updated these stages adding a few new ones too:
abbrev between split locate
nlocate strnfind strfind nfind
find chop

- minor docuementation updates
- the Range class is depreciated and will be removed. Use the
replacements Jeff created (see pipes\utils.nrx and stages\).

0.31 - Released June 17, 1998
- modified count, drop, take and deal to handle non rexx objects
when possible

0.31 - Released June 16, 1998
- improved eofReport(ANY) logic to trigger when waiting on output
and a different output stream severs.

- factored the source for utils.class out of stages so there is
a class to add (probably static) shared methods for all stages

- fixed a deadlock that occured between shortStreams and exit

61

(severInput)
- Jeff Hennick updated many stages to work at CMS or near CMS levels.
append deal join strfrlabel xlate
buffer drop literal strliteral
change fanin locate strtolabel
console fanout split take
count frlabel strfind tokenize
All of Jeff’s changes are GNUed. See CopyLeft.txt in the njpipes
directory.

0.30 - Released May 24, 1998
- fixed logic in core classes to post all pending severs and not

clear them too early either, this corrects a problem seen on
Multiprocessor machines.

0.29 - www page update (docuemention) May 20
- deadlock section updated
- installation verification example corrected!

0.29 - Released May 17, 1998
- added obj2rexx stage, tolabel stage courtesy of Chuck Moore.
- enhanced change to support a single range
- Added setJITCache(Hashtable) method to pipes. This can be used

to build a global object cache in programs calling pipes. The name
of the Hasttable is passed to pipe/callpipe/addpipe via a cache
parameter.

- Added support for reportEof options. This support is not too
well tested - some good testcases are needed.

0.28 - Released May 9, 1998
- Enhanced parsing in specs (word2.1 would work, word 2.1 would not)
- Fixed COPY for a NT jit bug, fixed locate so NOT LOCATE would

work, updated LITERAL not to use more than one exit(rc)
- Fixed a compiler problem that would hit multistreamed pipes using

append or prefix.
- Any options not consumed by njp are passed on to nrc

and java. Mainly for use from the command line, use with care
in .njp files...

- Fixed shortStreams() so it works correctly when shorting streams
in a stage with multiple streams.

- Tested all 8 addpipe forms and fixed runtime to work with all
test cases

- modified filternjp to accept *in and *out without additional labels
- reenabled stop() in exit code...
- added gate, dam, tokenize, juxtapose and courtesy of Chuck Moore,

frlabel stages
0.27 - Released May 3, 1998

- Automated the generation of in/outStream calls. For this to work
the labels need to be of the form *in0: or *out0: where the ’0’ is
replaced by the input or output stream to connect to.

- Fixed compiler/filter problems with stema

62

- Tighted range checking code in specs, fixed problem with delimited
ranges. Specs was compiling the NetRexx EXIT command...

- Fixed a problem where output was not see that objects were
consumed when using sipping pipes...

- Fixed a problem where severing an output stream did not cause the
stages stacked on the node’s outlist to see the sever

- Fixed a problem where the stage issuing a callpipe was not seeing
the called pipe end

- Added debug option to pipes compiler
- Repaired commit and added commit levels to dump() method
- Fixed problems with callpipe servering several outputs, unstacking
the saved stream was selecting it...

- Modified tcpclient and tcpdata to use a secondary thread to
recieve the tcpip inputs.

- Now keep a referenced object for each pipe/stage so the JIT does
not throw away its work and call/addpipes in loops work faster.

- in/outStreamState now return -1 when autocommit is enabled and
the stream is unused.

0.26 - Released April 26, 1998
- Added selection methods to compiler (see getRange in section 4 and

the locate stage an example#
- Added the specs stage. The compiler builds a stage to process the
specs, reducing overhead.

- Added tcp/ip stages
- Fixed problems with severs using addpipe

0.25 - Optimized some stages using jinsight from www.alphaworks.ibm.com.
This more than doubled the speed of some stages.

- fixed bugs in fanin, diskw
- Added netrexx filters to extract pipes, extended the functions
of .njp files (multiple pipes in a file and .njp files can now
contain netrexx code with pipe/callpipe/addpipe)

- fixed a timing bug in deadlock detection.
- xlate and sqlselect stages contributed by René Jansen added

0.24 - Release Feb 98
- modified the compiler so the syntax of pipes from the command line
is the same as pipes from .njp files

- added the sort stage, the sortClass interface and the sortRexx
example implementation

- added the timer stage
0.23 - fixed minor compiler errors (20 Dec 97)

- not stage modifier added.
- errors in this page corrected, NT install information added.
- modified diskr/diskw to use Buffered Streams.

0.22 - second public release
0.21 - enabled auto commit, stages start at a commit level of -2 and

commit to a level of -1 at the first readto, peekto or output.
nocommit disables the auto commit. This feature has not been

63

completely tested (yet).
- fixed compiler not to call netrexx if one of its pipes deadlocks

0.20 - Upgraded to May version of the NetRexx compiler (Thanks Mike!)
this changed the compiler interface. NetRexx from May 10 or
later is now required.

- nocommit added to _stages, though its a nop for now
- modified the compiler class to use the May 10th NetRexx compiler

0.19 - initial public release (4 May 97)

64

List of Figures

1 Run in the NetRexx Workspace 6

2 Run from the OS command line 6

3 Precompile a Pipeline from the OS command line 7

4 example 1 9

5 example 2 10

6 example 3 11

7 example 4 12

8 example 5 12

9 BAGVENDT under VM/CMS 14

10 bagvendt.nrx under NetRexx 14

11 Deadlock detection 27

12 TCP/IP Client/Server compile 36

13 TCP/IP server 36

14 TCP/IP requestor 36

65

66

List of Tables

67

68

Listings

1Example Listing . iii

69

70

Index

Rexx, 13, 31, 33
arg, 31, 32
binary, 35
catch, 7, 13, 32, 33, 35
class, 7, 13, 31, 32, 35
do, 7, 13, 32
end, 7, 13, 31–33, 35
exit, 7, 13, 32, 35
extends, 7, 13, 31, 32, 35
final, 7, 31, 32
forever, 7, 13, 32, 33, 35
import, 7, 13, 32, 35
loop, 7, 13, 31–33, 35
method, 7, 13, 31, 32, 35
options, 35
over, 31
public, 31, 32, 35
rexx, 7, 10, 11, 35
say, iii, 31
signal, 13
static, 31
to, 31, 35
where, 37

71

9 789081 909037

ISBN 978-90-819090-3-7

72

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	The Pipeline Concept
	What is a Pipeline?
	Stage
	Device Driver

	Running pipelines
	Configuration
	From the NetRexx Workspace (nrws) with direct execution
	From the command line with direct execution
	Precompiled Pipelines
	Compiled from an .njp file

	Example Session
	Write your own Filters
	More advanced Pipelines
	Device Drivers
	Record Selection
	Filters
	Other Stages
	Multi-Stream Pipelines
	Pipeline Stalls
	Differences with CMS Pipelines
	How to use a pipe in a NetRexx program
	TCP/IP Networking using Pipes for NetRexx
	Selecting from databases with Pipelines for NetRexx
	The Pipes Runner
	The Pipes Compiler
	Built-in Stages
	Appendix A
	List of Figures
	List of Tables
	Index

