
NetRexx Tutorial - Table of Contents

http://www.netrexx.org/Tutorial/nr_toc.html[11/4/2010 2:27:30 PM]

The NetRexx Tutorial
Object Oriented Programming on the Internet
Alpha Internet pre-release
Version v0r0145; Updated 18 May 1998
Pierantonio Marchesini / ETH Zurich

 Review of this book - 7252(bytes)
 Preface - 9272(bytes)

PART ONE

 Basic concepts - 12857(bytes)
 Introduction to NetRexx - 54029(bytes)
 Language Basics - 28894(bytes)
 Operations on Numbers - 54911(bytes)
 Operations on Strings - 64198(bytes)
 Control Structures - 38112(bytes)

PART TWO

 Classes and Objects in NetRexx - 65221(bytes)
 More on NetRexx Classes - 37303(bytes)
 Operations on files - 63608(bytes)
 Threads - 18818(bytes)
 Socket and Networking - 75406(bytes)
 Interface with the system - 32918(bytes)
 Process Control and Exceptions - 18117(bytes)
 Database Operations - 5560(bytes)

PART THREE

 Applets - 5241(bytes)
 Graphical Interfaces - 883(bytes) EMPTY
 Advanced Graphics - 851(bytes) EMPTY
 Advanced Networking - 37617(bytes)
 Full OOP projects - 2040(bytes)

PART FOUR

 Additional Instructions - 63538(bytes)
 Advanced Algorithms - 14070(bytes)
 NetRexx for REXXers - 19789(bytes)
 Tools - 16214(bytes)
 The xclasses JAR library - 8830(bytes)
 Miscellaneous - 4682(bytes)
 Appendix A: Bibliography - 11470(bytes)
 Appendix I: Installation - 9480(bytes)
 Appendix Z: changes in this file - 2312(bytes)
 Index - 27279(bytes)

NOTE: This HTML version of the book is provided as-is for all those people that cannot use the .ps file, since they
do not have access to a Poscript Printer.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:31(GMT +2).

NetRexx Tutorial - Table of Contents

http://www.netrexx.org/Tutorial/nr_toc.html[11/4/2010 2:27:30 PM]

NetRexx Tutorial - Review of this book

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

The NetRexx Tutorial
 - Review of this book

DISCLAIMER:

ALL THE EXAMPLES PRESENTED IN THIS BOOK HAVE BEEN TESTED ON
SEVERAL PLATFORMS.
THIS DOCUMENT IS PROVIDED ON AN 'AS-IS' BASIS. THE AUTHOR
TAKES NO RESPONSABILITY FOR ERRONEOUS, MISSING OR MISLEADING
INFORMATION, OR FOR ANY LOSS OF DATA, BUSINESS OR HARDWARE,
DUE TO THE USE OF ANY INFORMATION OR CODE GIVEN IN THIS
BOOK.

All rights reserved. No parts of this publication may be reproduced stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior consent of the
author.

Copyright (C) 1997 by Pierantonio Marchesini
of the ETH / Zurich.

You can get a copy of the latest version of this document
from mpie@ch.ibm.com.

Copyrights:

NetRexx is Copyright (C) 1997 by IBM Corporation

Trademarks:

MVS, VM/CMS, IBM are trademarks by International
Business Machines Corporation.

 # # ## ##### # # # # # ####
 # # # # # # ## # # ## # # #
 # # # # # # # # # # # # # #
 # ## # ###### ##### # # # # # # # # ###
 ## ## # # # # # ## # # ## # #
 # # # # # # # # # # # ####

This document is available in an as-is format for all the people interested in NetRexx. This document is still in DRAFT
form. All the sections marked:

*** MISSING PART

should be regarded as on-going or future work.

Look in "Appendix Z" to see the latest changes in the document.

Feel free to send me any comment, question, etc. on this document. My email is Pierantonio.Marchesini@cern.ch.

NetRexx Tutorial - Review of this book

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

English is NOT my mother tongue, as you might have already guessed from those very first sentences. The final book
will be corrected (I promise) by a professional editor. If a particular sentence is way too obscure (since I wrote it in my
Italian-English) please let me know, and it will be corrected.

A full description of this document current status is available in the next page.

Since, as I said, this is a 'living' document, the following table resumes the status of the various chapters, as they
appear in this document. A 0 means that the chapter is still totally empty. A 10 means that the chapter is finished and
only corrections are pending.

Part One

 - Basic concepts 4
 - Introduction to NetRexx 7.5
 - Language Basics 9
 - Operations on Numbers 9
 - Operations on Strings 9.5
 - Control Structures 8

Part Two

 - Objects, Classes and Interfaces 5
 - Operations on files 6
 - Sockets and Networking 5
 - System Interface 5
 - Threads 2
 - Database Operations 0

Part Three

 - Applets 1
 - Graphical Interfaces 0
 - Advanced Graphics 0
 - Advanced WEB server 1
 - Full OOP projects 0

Part Four

 - Additional Instructions 7
 - More on Algorithms 4
 - NetRexx for REXXers 4
 - Tools 1
 - Miscellaneous 0

Review of this book

What is NetRexx? Quoting NetRexx's author, Mike Cowlishaw, "NetRexx is a programming language derived
from both REXX and Java(tm); NetRexx is a dialect of REXX, so it is as easy to learn and use as REXX, and it
retains the portability and efficiency of Java." Using NetRexx you can create programs and applets for the Java
environment more easily than programming in Java itself. Using NetRexx you rarely have to worry about the
different types and numbers that Java requires. The "dirty" job is done by the language for you.
What is REXX? REXX is an interpreted language originally developed by IBM in 1979. REXX was designed to be
platform-independent and is the procedural language shipped with the operating system both on Mainframe
Systems (MVS, VM/CMS) and on Personal Systems (OS/2, Amiga). REXX is available on almost any platform as a
product, or as a public domain implementation. Due to its simplicity and ease of use, REXX can be thought as a
'Personal' Language - practical not only for the professional programmer, but also for the occasional one. For

NetRexx Tutorial - Review of this book

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

example, you can use it to quickly test an algorithm before implementation, even when using other languages.
To whom is this book addressed? This book is addressed both to neophytes and to experienced programmers
starting to program on ANY system where the Java JDK is installed. Almost all the programming examples
found in this book are taken from 'real-life' situations. Among other useful skills, you will learn how to write: a
small routine for randomly accessing a 1.000.000 record file in a few milliseconds, a real client server application
using sockets, a 'pocket calculator' with 200 significant digits, and pull-down menus using curses.
What are the covered topics?

Introduction to the NetRexx language
Numbers,Strings and Control Structures
Class and Methods
Operations on files, sockets and threads
Applets
Graphical User Interfaces

Is this a User Guide, a Tutorial or a Reference Manual? The answer is "something of all these". In fact, the best
definition is probably an "Advanced User Guide with Reference Sections". Previous programming experience is
needed in order to fully understand this book, and thus it is NOT a user guide in the true sense of the term.
However, I felt it necessary to include reference information for those users who might not have the NetRexx
reference book readily available to them. Some chapters also needed amplification, since they describe
functions not documented elsewhere.
Where can I find the examples? All the examples used in this book are available on Internet via WWW at the
URL:

http://wwwcn.cern.ch/news/netrexx/examples

File: nr_1.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:32(GMT +2).

http://wwwcn.cern.ch/news/netrexx/examples

NetRexx Tutorial - Preface

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

The NetRexx Tutorial
 - Preface

Preface

 Introduction.

This book is addressed to both professional programmers and end users who want to learn more about the
NetRexx language.

NOTE: The following documentation refers to NetRexx version 1.00 and following.

 *** This section is:

 *** and will be available in next releases

 When to use NetRexx.

This topic is likely to be a source of endless arguments (both pro and con).

This is my genuine opinion.

PROs:

NetRexx is very easy to read. You can practically program in English (1)
there is only ONE NetRexx native data type (the string);
there is almost no need for special characters (like delimiters, identifiers, etc);
NetRexx has very powerful features, such as arbitrary numeric precision, parsing, easy string handling, etc.
NetRexx is not tailored to a particular operating system; the very same code can run on:

Windows 95/NT (TM),
UNIX (TM) (eg. AIX (TM), HP/UX (TM), IRIX (TM), SunOS (TM), Solaris (TM), etc.),
OS/2 (TM),
Macintosh (TM),

In fact NetRexx will run on any platform that supplies a Java Virtual Machine (JVM) (TM) (more on this later.
If you are (or were) a FORTRAN, PL/I or PASCAL programmer you will probably find NetRexx closer to your
'way-of-programming' than any other language available for the JVM. NetRexx eases the transition for
programmers familiar with "procedural" languages into the object oriented paradigm.

http://www.netrexx.org/Tutorial/nr_foot.html#FOOT1

NetRexx Tutorial - Preface

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

CONs:

NetRexx is not (or at least not exactly) Rexx, so Rexx (or Object Rexx) fans will be faced with a "transition
period". You cannot get your Rexx code immediately running in NetRexx (as you can do with Object Rexx)
unless it is a very simple program.
NetRexx compiles your program into Java byte-code. The code is then very much slower, in terms of
execution, than a native Object Rexx or "classic" Rexx. I've measured up to a order of magnitude slower.
This performance problem is due to the Java byte-code running in the JVM and is not an inherant problem
with NetRexx; raw Java code is just as slow!

 About the examples in this book.

>From the very first chapters, I will present and discuss some 'real' NetRexx program atoms (i.e. code fragments
(usually methods)) that you can use in your programs after having learnt the language.

I have noticed that many 'user guides' present as examples, programs you will probably never use again in your
life; in fact these programs are often totally useless, brought into existence only so that the author can show
particular features of the language involved.

I prefer to give you something 'real'; program atoms you can insert in your code, or programs you can run and use
even after having finished with this book. The obvious disadvantage in such an approach is that some constructs
may not be entirely clear, since they will only be explained several chapters further on. Please be patient, and do
not be concerned about things that, at a particular point in your progress through the book, are not completely
understood. You can always come back to them later.

 *** This section is:

 *** and will be available in next releases

 Book structure

This book is divided into four parts.

Part One
 (Writing simple programs)

 - Basic Concepts
 - Introduction to NetRexx
 - Language Basics
 - Operations on Numbers
 - Operations on Strings
 - Control Structures

Part Two
 (Object Oriented Programming)

 - Objects, Classes and Interfaces
 - Operations on files
 - Sockets and Networking

NetRexx Tutorial - Preface

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

 - System Interface
 - Threads
 - Database Operations

Part Three
 (Interfacing with the WEB)

 - Applets
 - Graphical Interfaces
 - Advanced Graphics

Part Four
 (Advanced topics)

 - Additional Instructions
 - More on Algorithms
 - NetRexx for Rexxers
 - Tools
 - Miscellaneous

 Conventions.

In order to be consistent, a 'standard' is being followed in presenting the various code samples and running
examples.

When I show a full program example, the code appears like this:

+--+
| /*
|01
| * Code example
|02
| */
|03
| say
|04
| say 'This is a code example'
|05
| say
|06
| exit 0
|07
+--+
 codeex.nrx

 Download the source for the codeex.nrx example

Line numbers may be used in comments related to the code. You will find the file id at the bottom right-hand
corner of the code, making it easier to find the referenced portion of the code if you already have the sample code
on your computer.

When referring to only a small piece of a program, the code appears like this:

--
if test then
 do
 say 'Running in test mode.'
 end
--
 if example

http://www.netrexx.org/examples/codeex.nrx

NetRexx Tutorial - Preface

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

Example sessions are presented like this:

..
rsl3pm1 (201) codeex

test

rsl3pm1 (202) ls -la codeex
-rw-r--r-- 1 marchesi system 50 Jan 24 20:03 codeex
rsl3pm1 (203)
..
 outex

What you should type is written in bold characters. The rsl3pm1 (NNN) prompts are simply those of the machine
from which sample sessions were taken, so just ignore them.

Syntax examples appear as:

 rc = socket('VERSION')

with the method invocation in bold characters, and the arguments in italics.

Data File Samples appear as:

+--+
| data file |
| sample |
+--+
 sample.DATA

with, again, the file id at the bottom right-hand corner.

 Acknowledments

Several reviewers have helped, by questions and comments, to clarify the aims and exposition of the book. Mark
Hessling was extremely helpful in reading the preliminary version of the book, which was typeset using his XEDIT-
like text editor; THE.

Many thanks also to Bernard Antoine and David Asbury of the CERN CN division for their help and suggestions.

 Summary

Let us now make a resume' of what we have seen so far in this chapter.

 *** This section is:

NetRexx Tutorial - Preface

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

 *** and will be available in next releases

File: nr_2.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:33(GMT +2).

NetRexx Tutorial - Basic concepts

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

The NetRexx Tutorial
 - Basic concepts

Basic concepts

In this chapter I'll try to give an overview of all the basic concepts which, in my opinion, are required to fully
understand the following chapters.

If you're familiar with the concepts exposed here, you can just jump immediately to the next chapter.

 The Java language

 Java is an object-oriented programming language developed by Sun Microsystems (TM). A Java program might
look like a C or C++ program, due to Java's similarities to those languages. Indeed, Java is not based on C, neither
on C++. There has been no effort to make Java compatible with those two languages.

One important point to keep in mind is that Java was designed with the idea to allow execution of code across a
network.

The main feature of Java is that the COMPILED code is platform independent. To achieve this, Java compiles to an
intermediate form; Java byte-code. This code is then interpreted "on-the-fly" by a platform-dependent, Java
interpreter.

 +------------+
 | |
 | SOURCE |
 | |
 +------------+
 hello.java
 =
 = (compilation)
 = javac hello.java
 V
 +------------+
 | |
 |JAVA BYTE |
 |CODE |
 +------------+
 hello.class

The Java Compiler creates a Java class file, which does not contain any instruction which is architecture
dependent. You will not find Pentium, rs6000, MAC, etc. instructions in a class file: you will find code which is
understood by a Java Virtual Machine: an interpreter which knows how to translate the Java byte-code into your
machine's instructions.

 +-----------------------+
 | JAVA BYTE CODE | <- architecture independent

NetRexx Tutorial - Basic concepts

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

 | (class) |
 +-----------------------+
 | |
 | JAVA VIRTUAL MACHINE | <- architecture dependent
 | |
 +-----------------------+
 |///////////////////////|
 | MACHINE (PC,MAC,WS) | <- your machine
 |///////////////////////|
 +-----------------------+

 So, the Java Virtual Machine is just a special interpreter, that "understands" a class file.

The idea is not new: it was available in UCSD Pascal, and the intermediate code was the so-called p-code.

When running code across a network, you must eliminate some of the language features which might allow any
malicious code to gain access to your computer. Notably, Java's designers had to take away the concept of a
"pointer", largely used in C and C++. Java programs cannot access arbitrary addresses in your machine memory.

 Java and the WEB

 The capability to interpret Java byte-code is available on most WWW browsers available today.

If an HTML document contains a <class> statement, the browser will fetch the class, (if you don't already have it
on your machine) and execute the code. The important thing to stress is that the code, at this point, runs on YOUR
machine, not on the server from where you downloaded the HTML document.

 WWW Browser http Daemon
 ----------- -----------
 (client) (server)

 (URL)
 --(URL request)---->
 <--(HTML doc)------

 ...
 <class >
 --(class request)-->
 <--(class)----------

 CLASS runs
 HERE

Java adds local interaction to the WEB, and offloads processing from the server to the client.

What's the gain in such an approach? Why not run the code directly in the server side? (like you do whenever you
issue a cgi-bin command)?

If your application manipulates data and displays it graphically, the Java approach is definitely more efficient, both
in terms of reduced network traffic and perceived execution speed.

For example: suppose that your company wants to display several histograms on their WWW home page. You
could have the pictures (in gif or jpg format) stored in the HTML daemon directory. Each time the document is
requested, potentially hunders of kilobytes of data is transfered across the network. Using Java, you download
the application that implements a histogram viewer, and the data to build the histogram to your machine; usually

NetRexx Tutorial - Basic concepts

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

significantly less data than the pre-built images.

 JDK

 JDK is an acronym for Java Developer Kit. It is a set of programs that allows you to compile your java code and to
execute it (using the Java Interpreter).

The JDK is distributed freely by Sun, and you can download it from Sun's site:

http://java.sun.com

See the Appendix I for more details.

The JDK is made up by the following tools:

a compiler javac
a debugger
an interpreter, or, if you prefer, a Java Virtual Machine (Java VM) java
an applet viewer appletviewer
other miscellaneous tools

The JDK also includes all the Java class files that you need to compile and run your java programs.

The JDK is NOT a visual development environment, like Microsoft's J++ or Symatec's Cafe'. Sun's JDK has been
defined as "primitive" [GREHAN, 1997] by some authors, since all the package's tools run from the command line.
Other people [HAROLD, 1997] definitely prefer JDK's "minimalist" approach vs. more fancy products, sometimes
still in beta test.

If you are an "old fashion" programmer like me, you'll probably prefer JDK's approach, which resembles the
development process I followed on VM/370 and VS/COBOL; edit, compile, and run all from the command line.

For NetRexx there is no IDE at the moment, so you are forced to use JDK's approach anyway.

 Java Classes

 Like other languages; notably FORTRAN, Java is a relatively simple language. The power of these languages is
derived, not from the language itself, but from the extensibility of the language. Without high level mathematical
packages and functions in FORTRAN, you would not be able to do much of any significance. Java, without its Class
Libraries is the same.

 Applications

 An application is, generally speaking, a stand-alone program which you launch from the command line. An
application has unrestricted access to the host system. An application can read/write files on your system using
your access privileges, it can open socket connections with any address, etc.

http://java.sun.com/

NetRexx Tutorial - Basic concepts

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

Technically, a NetRexx application is a NetRexx program that has a main() method, or no method at all (NetRexx
will add the main() for you).

 Applets

An applet is a program which is run in the context of an applet viewer or of a WEB browser. An applet has very
limited access to the system where it runs; for example, an applet cannot read files, neither can it establish socket
connections to systems other than the one from where the applet was downloaded.

Technically speaking, an applet is a NetRexx class which extends the Java class java.applet.Applet.

 Javascript

 You might have found, in several WEB pages, portions of code that are executed by the browser. This code is
written using javascript. To make it clear, javascript has nothing to do with java. The black beverage that you find
in fast-foods has nothing to do with the nectar you drink at "La Tazza d'oro" (Via degli Orfani 82, in Rome). People
(not the same people, indeed) call both of them coffees, but that's the only thing they share. So Java and
Javascript just share (a portion of) the name. "The intersection of Java and Javascript is the empty set." [VAN DER
LINDEN, 1997].

Javascript was invented by Netscape Inc., and it is a simple scripting language, imbedded in HTML files. It offers
loops and conditional tests.

As an example of Javascript, look at the following code:

+--+
| <HTML> |01
| <PRE> |02
| Here I snoop some info about you: |03
| |04
| <script language= "JavaScript"> |05
| <!-- |06
| var where = document.referrer |07
| var name = navigator.appName |08
| var vers = navigator.appVersion |09
| document.writeln ("You came here from:'"+where+"'.") |10
| document.write ("You use:'"+name+" "+vers+"'.") |11
| // --> |12
| </script> |13
| </PRE> |14
| </HTML> |15
+--+
 jsc.html

 Just in time Compilers

 JavaBeans

NetRexx Tutorial - Basic concepts

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

 JavaBeans is a public specification developed by Sun, in consultation with other vendors and with the Java
community. JavaBeans is a component model, which lets you build and use Java-based components.

The beans is just a Java class with some additional descriptive information. Why this additional information?
Because this information is used to make beans reusable software components, which can be manipulated by
building tools. This allows non-programmers, using an authoring tool, to assemble an application using the
provided components.

 Additional sources of information

 Java

The "home" of Java is:

http://java.sun.com/

 JavaBeans

The first place is definitely

http://splash.javasoft.com/beans/spec.html

contains a good tutorial, and the specifications for JavaBeans 1.0.

You should then look at:

http://www2.hursley.ibm.com/netrexx/nrbean.htm

for the NetRexx implementation.

For more general informations, look at

http://splash.javasoft.com/beans/

 Summary

File: nr_4.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:34(GMT +2).

http://java.sun.com/
http://splash.javasoft.com/beans/spec.html
http://www2.hursley.ibm.com/netrexx/nrbean.htm
http://splash.javasoft.com/beans/

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

The NetRexx Tutorial
 - Introduction to NetRexx

Introduction to NetRexx

 Introduction

In this chapter I try to give a global overview of the NetRexx language, along with a bit of history and some
information on how to install and run it, etc. Probably the most interesting part starts from the paragraph A Small
Journey Around NetRexx, where I try to develop some small programs, purely with the aim of giving you a "feeling"
for this language. You can happily jump straight to this section, and leave all the details for later.

 History of Rexx and NetRexx

Rexx was conceived, designed and developed by Mike Cowlishaw of IBM UK. The original motivation was to
replace the then (1979) inadequate IBM command language (JCL and EXEC2). The basic idea was to develop
something similar to PL/I, but easier to use. During the last 25 years Rexx developped a large community of users,
since IBM was/is shipping it as part of it's major Operating Systems (MVS, VM, OS/2). IBM estimates that there are
about 6 millions of Rexx Programmers around the world.

NetRexx was again conceived, designed and developed by Mike Cowlishaw IBM Fellow, in 1996. The motivation is
is to create a language easier and simpler than Java, but keeping Java's main advantages.

Like Rexx, NetRexx is a real general-purpose language, tuned for both scripting and application development.

 Availability of NetRexx.

The latest versions of NetRexx are available on IBM's WEB site at the following URLs:

http://www.ibm.com/Technology/NetRexx/nrdown.htm

USA Server or at

http://www2.hursley.ibm.com/netrexx/nrdown.htm

UK Server

On those sites you will find the NetRexx toolkit and the NetRexx Language Reference document, written by Mike

http://www.ibm.com/Technology/NetRexx/nrdown.htm
http://www2.hursley.ibm.com/netrexx/nrdown.htm

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

Cowlishaw.

The NetRexx documentation and software are distributed free of charge under the conditions of the IBM
Employee-Written Software program.

NetRexx is distributed in 2 formats:

zip format for Windows/95, Windows/NT and OS/2;
tar+compress format for UNIX platforms (like AIX, Solaris, HP/UX, IRIX, Linux, DecOSF, etc.)

 Installing NetRexx on your machine.

 Prerequisites

In order to install and run NetRexx, you need to have already installed:

the Java runtime and toolkit (from the 1.x Java development kit)
a text editor

 Installation

 Installing NetRexx is an easy process. In a nutshell, you need to:

download the code using your preferred WEB browser
unpack the distribution
install the some files from the distribution inside the Java bin and lib subdirectories.
change the CLASSPATH environment variable
check the installation

You should consult the URL

http://www2.hursley.ibm.com/netrexx/doc-nrinst.htm

for more information about the installation. In Appendix I you'll find some examples of installation.

 Additional sources of documentation

You can find additional informations at the URLs:

http://www2.hursley.ibm.com/netrexx/nrlinks.htm

For a collection of applets and classes written in NetRexx look at:

http://www.multitask.com.au/netrexx/fac/

http://www2.hursley.ibm.com/netrexx/doc-nrinst.htm
http://www2.hursley.ibm.com/netrexx/nrlinks.htm
http://www.multitask.com.au/netrexx/fac/

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

The NetRexx Mailing list archives are at:

http://ncc.hursley.ibm.com/majordomo/IBM-NETREXX/archives/

The IBM redbook devoted to NetRexx can be found at:

http://www.redbooks.ibm.com/SG242216/2216ht.htm

The IBM reference is SG24-2216-0.

 A Small Journey Around NetRexx

In this section I present a series of small programs, with which we will increase functionality and complexity. With
these examples, I want to give you the 'feel' of NetRexx. Of course, if you are an experienced REXX programmer,
you can quickly skip this section and go to the next chapter.

 The "Hello, world!" Program.

Here is an example of your first NetRexx program, which you can call 'hello.nrx'.

+--+
| -- Our first NetRexx Program |01
| --
|02
| say 'Hello World!' |03
| exit 0
|04
+--+
 hello.nrx

 Download the source for the hello.nrx example

The third line contains a print statement to your terminal. Note that you DO NOT need to put a semi-colon (';') at
the end of a line. You need one only if you want to put two or more statements on the same line, like it would be
for:

 say 'Hello World!'; exit 0

In the fourth line, the exit statement is not mandatory; this means you can even avoid writing it. But it is indeed
good practice always to exit from a program with the exit instruction. Even better, exit also with a return code, as
in exit 0.

To run your program you now need to type:

 java COM.ibm.netrexx.process.NetRexxC hello

http://ncc.hursley.ibm.com/majordomo/IBM-NETREXX/archives/
http://www.redbooks.ibm.com/SG242216/2216ht.htm
http://www.netrexx.org/examples/hello.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

If the compilation was successful, you can now run the program typing:

 java hello

 Adding some variables

Suppose that you now want to add some variables in your program. An example:

+--+
| -- another very simple NetRexx program |01
| --
|02
| month_name = 'December' -- string |03
| no_of_days = 31 -- number |04
| say 'The month of' month_name 'has' no_of_days 'days.' |05
| exit 0
|06
+--+
 simple1.nrx

 Download the source for the simple1.nrx example

As you see, the variable assignment operation is a very easy one, in NetRexx. You just need to type:

 variable = value

You do NOT need to declare the variable before the assignment. The only important thing to remember is that ALL
variables are treated as strings, so the value you want to associate with them MUST go between single quotes (').
You might ask yourself: "Also numbers are treated as strings?". And, yes, also numbers are strings, so it is little
wonder that the following example lines are perfectly equivalent:

 days = 31
 days = days + 1

 days = '31'
 days = days + '1'

Of course, as you have seen, you can avoid the (') marks when you deal with numeric quantities.

 Asking Questions and Displaying the Result

If you want to make your first program a little more complex, the usual way is to ask a question. Here is the final
result:

+--+
| -- simple2.nrx |01
| -- ask a question and display the answer |02
| --
|03

http://www.netrexx.org/examples/simple1.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| say 'How many days are in December?'
|04
| answ = ask
|05
| say 'Your answer is' answ'.' |06
| exit 0
|07
+--+
 simple2.nrx

 Download the source for the simple2.nrx example

The instruction that tells NetRexx to get the input from the keyboard and put it into the variable named 'answ' is:

answ = ask

 Adding Choices

Well, as it is the program is not really useful: you can answer anything, even a string of characters, and the
program blindly accepts the answer. To make the code a little more 'intelligent' we try to distinguish between a
good and a bad answer. Here is how: The code:

+--+
| -- simple3.nrx |01
| -- ask a question and check the answer |02
| --
|03
| say 'How many days are in December?'
|04
| answ = ask
|05
| if answ = 31
|06
| then say 'Correct Answer.' |07
| else say 'Wrong Answer.' |08
| exit 0
|09
+--+
 simple3.nrx

 Download the source for the simple3.nrx example

 Guessing the correct answer

Now we want our program to ask another question, in a case where the first has been answered correctly. We
allow the user to make mistakes with the second question. The program will continue until a correct answer is
given (or the user gets fed-up and hits CNTRL-C!).

+--+
| /* simple3.nrx |01
| * ask a question and check the answer |02
| */
|03

http://www.netrexx.org/examples/simple2.nrx
http://www.netrexx.org/examples/simple3.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| correct_answ = 31 |04
| loop forever
|05
| say 'How many days are in December?'
|06
| answ = ask
|07
| if answ = correct_answ |08
| then
|09
| do
|10
| say 'Correct.'
|11
| leave
|12
| end
|13
| else say 'Wrong Answer. Try again.' |14
| end
|15
| exit 0
|16
+--+
 simple4.nrx

 Download the source for the simple4.nrx example

 More than one correct answer

Suppose we now ask a question for which there is more than one correct answer. We need to get the answer from
the user, and test it against a series of good answers. It can be done with this program:

+--+
| /* simple5.nrx |01
| * verify answer from a list |02
| */
|03
| good_answ = 'APRIL JUNE SEPTEMBER NOVEMBER' |04
| loop forever
|05
| say 'Tell me a month with 30 days.'
|06
| answ = ask -- get the input
|07
| parse answ answ . -- only the 1st word
|08
| answ = answ.upper() -- uppercase it |09
| if good_answ.wordpos(answ) = 0 |10
| then
|11
| do
|12
| say 'You said "'answ'". It is wrong.' |13
| say 'Try again.'
|14
| end
|15
| else
|16
| do
|17
| say 'Correct.'
|18
| leave
|19
| end
|20
| end
|21

http://www.netrexx.org/examples/simple4.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| exit 0
|22
+--+
 simple5.nrx

 Download the source for the simple5.nrx example

There are several new things introduced. Let us look at them: line 4: Here we enter a loop from which we will
never exit, (loop forever). This might seem dangerous, but is not. The instruction leave in line 19 gives us an
escape path: the only way to exit the loop is to enter a good answer. lines 7,8,9: The instructions are meant to
"grab the answer, get only the first world, and uppercase it". This will make life much easier later.

In fact, what parse answ answ . does is:

 user types answ value
 ------------------------ ------------------------
 January JANUARY
 I don't know I
 February FEBRUARY
 please, stop it! PLEASE,

NOTE: The lines

 answ = ask -- get the input
 parse answ answ . -- only the 1st word
 answ = answ.upper() -- uppercase it

can be written as:

 parse ask.upper() answ .

which is the NetRexx equivalent for the Classical REXX:

 parse upper pull anws .

line 10: The instruction good_answ.wordpos(answ) is the key to the program's functioning. It says: Look in the list
good_answ and try to find answ. If you find it, tell me its position. Otherwise, tell me 0. Thus, if the answer is
wrong, we get 0, and we continue to loop. An alternative way to perform this task as follows:

+--+
| /* simple6.nrx |01
| * verify answer from a list |02
| */
|03
| good = 0
|04
| good[0] = 4
|05
| good[1] = 'APRIL' |06
| good[2] = 'JUNE' |07
| good[3] = 'SEPTEMBER' |08
| good[4] = 'NOVEMBER' |09
| loop forever
|10
| say 'Tell me a month with 30 days.'

http://www.netrexx.org/examples/simple5.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

|11
| answ = ask -- get the input
|12
| parse answ answ . -- only the 1st word
|13
| answ = answ.upper() -- uppercase it |14
| found = 0
|15
| loop i = 1 to good[0]
|16
| if good[i] <> answ then iterate |17
| found = 1
|18
| leave
|19
| end
|20
| if found = 0
|21
| then
|22
| do
|23
| say 'You said "'answ'". It is wrong.' |24
| say 'Try again.'
|25
| end
|26
| else
|27
| do
|28
| say 'Correct.'
|29
| leave
|30
| end
|31
| end
|32
| exit 0
|33
+--+
 simple6.nrx

 Download the source for the simple6.nrx example

In line 04 we initialise an ARRAY to a default value. The initialization practice is not needed, in a program so short
as simple6.nrx; but it is a must in more complicated programs. This line tells NetRexx: "initialise any good[] array
variable to 0."

Classical REXX users will remember the "standard" initialization of a STEM variable:

good. = 0

In lines 05-09, we define the values of good[] array. An ARRAY variable is an array of values, and usually (even if it
is not mandatory) the 0 element (good[0]) contains the information "how many elements are there in this array?".
Since there are four elements, good[0] is equal to 4. Here is another example of ARRAY:

variable value
------------- ------------------------------------
line[0] 3
line[1] Test line no 1
line[2] Another one
line[3] third line

http://www.netrexx.org/examples/simple6.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

If we then want to see if an answer is correct, we need to set a flag (found) to FALSE (0) and 'scan' the array until
we find the right answer, when we set the flag to TRUE, and exit from the loop (line 14). Then, depending on the
value of the flag, we display the appropriate answer as in the previous example. You may have noticed from the
length of the two examples that as a rule of thumb it is easier to have data structures in the form of strings than in
the form of STEMS Ñ at least when you have very simple entities such as those used in these examples.

 More than one list

Suppose you want a program that shows the number of days in a particular month. Since we are lazy, we will not
write the full month name, the three first letters are enough. In this case we need two lists: one containing the
month names (month_list), and another containing, IN THE SAME ORDER, the number of days of the given month
(days_list).

+--+
| /* simple7.nrx |01
| * use two lists
|02
| */
|03
| month_list = 'JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC'
|04
| days_list = ' 31 28 31 30 31 30 31 31 30 31 30 31'
|05
| good = 0
|06
| loop while good = 0
|07
| say 'Tell me a month (JAN, FEB, etc.)'
|08
| parse ask.upper() answ . |09
| if month_list.wordpos(answ) <> 0 |10
| then good = 1
|11
| else say 'Wrong, Try again.' |12
| end
|13
| days = days_list.word(month_list.wordpos(answ)) |14
| say 'Month "'answ'" has' days 'days.' |15
| exit 0
|16
+--+
 simple7.nrx

 Download the source for the simple7.nrx example

 Dealing with files (I)

In the previous example, the two variable month_list and days_list are long strings. In real life this kind of
information is stored in files containing the data used by the program. A file example can be the following:

+---+
|* This file contains the month list, with the number |
|* of days corresponding. |
|* |
| |
| January 31 |
| February 28 |
| March 31 |

http://www.netrexx.org/examples/simple7.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| April 30 |
| May 31 |
| June 30 |
| July 31 |
| August 31 |
| September 30 |
| October 31 |
| November 30 |
| December 31 |
+---+
 month.list

To make the example a little more interesting, we have added comment lines (all lines starting with an asterisk
("*")) and blank lines. The following program reads the file month.list and counts the number of months, printing
the total number of months and days in a year.

+--+
| -- monthfile.nrx |01
| -- test file I/O
02
03
infid = xfile('month.list')
05
rc = infid.read()
if rc <> 0 then
07
do
08
say 'Error reading' infid.name'.'
exit 1
10
end
11
12
total = 0
13
monthl = ''
14
loop i = 1 to infid.lines
parse infid.line[i] month days .
if month = '' then iterate
17
if month.left(1) = '*' then iterate
monthl = monthl month
total = total+days
20
end
21
22
say 'There are' monthl.words() 'months.'
say 'For a total of' total 'days.'
24
exit 0
25
+--+
 monthfile.nrx

 Download the source for the monthfile.nrx example

In line '06' we issue a read over the file. All the lines are moved into the STEM list and are ready to process. See
below for more information about this instruction. Note line '07': if something is not right (such as the file being
non-existent) we exit with an error message. It is always a GOOD IDEA to check return codes from operations that
might otherwise disturb the correct functioning of the program. The skipping of the comment and blank lines is

http://www.netrexx.org/examples/monthfile.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

done in lines '17' and '18'. NOTE: The reading of the file was performed using some instructions:

 infid = xfile('month.list') -- define the file
 rc = infid.read() -- issue the read

those instructions are not part of the native NetRexx, but they are part of an extension package of this book. This
extension package is called xfile and it should be installed in order to correctly run the example shown above. In a
nutshell, you need to:

grab xfile.nrx from the NetRexx Tutorial WWW site;
compile it;

Look at the "Tools" section for more information about this subject. A tool is also available to compile all the
"library" files in an easy way (look for xbuild).

 "Real" Example no. 1

I don't know about you, but for me this story of months is becoming a bit tedious. I suggest trying a REAL
program, which you might even want to write down (or copy from the repository) and use.

 Write a tailored finger command.

The standard finger UNIX command is a good and simple example of a socket client-server application: a client
application finger running on your local machine goes to query a server (which runs a fingerd daemon) who
answers giving a list of the logged on people on the server machine itself.

We will write a simple finger client and will format the fingerd's output in a more compact form.

 Finger output format

The output of the fingerd daemon is in the following format:

..
rsl3pm1 (201) finger @shift3.cern.ch
(... lines omitted...)
nahn steven nahn r31 1:00 Tue 09:01
rattaggi monica rattaggi r37 5 Tue 09:56
blyth simon blyth r38 20: Mon 13:20
blyth simon blyth q90 3d Fri 12:21
(... lines omitted...)
rsl3pm1 (203)
..
 finger command output sample

Here I just used the standard UNIX finger command, as it is available on any UNIX machine.

Note also that I just showed only few lines. Some systems might have hundreds of lines.

What we want is a more compact output format, which just shows the number of sessions each user has active,

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

and a flag that shows if the inactivity time of a terminal session is less than an hour.

Also, we want to write a program that runs not only on UNIX, but also on WNT, W95, MAC (and I could continue)
in a word, on any machine where NetRexx runs.

 The full 'xfinger' code.

In the first lines we need some initialisation, like the program version, the author, and some constants, like the
port for the finger daemon, and a Carriage Return - Line Feed sequence of characters, which are required by the
simple fingerd protocol.

+--+
| /* xfinger |01
| */ |02
| VERSION = 'v1r000' |03
| AUTHOR = 'P.A.Marchesini, ETHZ' |04
| |05
| DEFAULT_PORT = int 79; |06
| CRLF = '\x0D\x0A' |07
+--+

We now get the system we want to talk with. If the user doesn't give one, or he types -h or --help we give some
help.

+--+
| parse arg system |09
| if system = '-h' | system = '--help' | system = '' then |10
| do |11
| parse source . . myname'.' |12
| say myname 'version' VERSION '(c)' AUTHOR |13
| say 'Purpose : sample implementation of a finger client.' |14
| say |15
| say 'java xfinger SYSTEM' |16
| say |17
| exit 1; |18
| end |19
+--+

Now comes the "real" fun. We define a socket port (25) and we define it on the fingerd PORT (27). Since we need
to transfer data over the link, we have to define an INPUT (28) and OUTPUT (29) communication.

+--+
| -- issue the client socket command |21
| -- |22
| out = 0 |23
| j = 0 |24
| s = Socket null; |25
| do |26
| s = Socket(system, DEFAULT_PORT); |27
| sin = DataInputStream(s.getInputStream()); |28
| sout = PrintStream(s.getOutputStream()); |29
| line = String |30
| line = crlf -- retrieve all entries |31
| sout.println(line) -- write msg |32
| loop forever |33
| line = sin.readLine(); |34
| if (line = null) then do |35
| leave |36
| end |37

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| j = j+1 |38
| out[j] = line |39
| end |40
| catch e1=IOException |41
| say 'ERROR:' e1'.' |42
| finally |43
| do |44
| if (s \= null) then s.close() |45
| catch e2=IOException |46
| say 'ERROR:' e2'.' |47
| end |48
| end |49
| out[0] = j |50
+--+

Now comes a very important point:

If what you are looking for is just an equivalent of the UNIX(tm) finger command, then you're already done.

All you would need at this stage is to output the array out[] and, voila', you'd have your nice, working, finger client
which runs on all the platforms we saw above, without recompiling!

But we want even more, so let's build a better output, as we discussed.

+--+
| -- order the output, now |52
| -- |53
| sessions = 0 |54
| active = '.' |55
| users = '' |56
| loop i = 2 to out[0] -- skip the first line |57
| parse out[i] userid . 35 quiet 40 . |58
| if quiet = '' then |59
| do |60
| active[userid] = '*' |61
| end |62
| if users.wordpos(userid) = 0 then |63
| do |64
| users = users userid |65
| end |66
| sessions[userid] = sessions[userid] + 1 |67
| end |68
+--+

We define a list of users (initialised to the empty string (56)). We also assume that a user is inactive, and we
initialize the active array to the inactive status (54). The first line is not interesting, so we loop over the lines
starting from the second till the last one (57). We PARSE the line, getting the remote userid, and (after 35
characters) the activity flag (58).

If the flag is empty, than the user is active, so we set the active array to active ("*") for him (59-62). If it's the first
time we encounter this user, we add him to the user list (63-66).

Finally, we increment the session counter for him (67).

We've now all the information we need. Let's print it on the screen.

+--+
| -- display the result |70
| --
|71

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| oline = ''
|72
| list = users
|73
| loop while list <> ''
|74
| parse list user list
|75
|
|76
| item = user'('sessions[user]','active[user]')' |77
| oline = oline||item.left(14) |78
| if oline.length() > 80 then |79
| do
|80
| say oline
|81
| oline = ''
|82
| end
|83
| end
|84
| if oline <> '' then say oline
|85
|
|86
| exit 0
|87
+--+
 xfinger.nrx

 Download the source for the xfinger.nrx example

We get the user list(73). We loop over it, analysing user by user (74-75). We generate an output line, and showing
it on the screen when it's longer than 80 characters (77-84).

And finally that's a full output of the command we just created.

..................................
rsl3pm1(44) java xfinger shift3
fcot(1,.) clarei(1,.) blyth(11,.) root(1,.)
palit(1,.) marchesi(1,.) forconi(3,.) shvorob(6,.)
tully(1,.) tau(1,.) braccini(1,.) xujg(2,.)
button(2,.) filthaut(1,.) fisherp(2,.) clare(2,.)
oulianov(2,.) pierim(1,.) malgeril(1,.) gruenew(1,.)
fenyi(1,*) barczyk(1,.) graven(2,.) dsciar(1,.)
passelev(1,.) choutko(2,.) l3mc1(1,.) clapoint(1,.)
lodovico(1,.) paus(2,.) campanel(1,.) l3mc3(1,.)
despixv(1,.) jessicah(1,.) dmigani(3,.) lad(1,.)
................................

(NOTE: so few active people since it was taken at 2:00 AM 8-))

 Real example no. 2

We now write a simple Infix to Polish notation converter, with the purpose of writing a program capable to
understand expression of the kind:

1 + 5*4 + abs(7-6*2)

http://www.netrexx.org/examples/xfinger.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

and write, hopefully, the correct result.

A complete discussion of the problem can be found in KRUSE, 1987, p. 455.

 *** This section is:

 *** and will be available in next releases

 Translation from INFIX form to POLISH form.

+--+
| -- method......: translate |70
| -- purpose.....: convert an infix tokenized string to a Polish |71
| -- Notation
72
73
method translate(intk=Rexx) public static
75
-- initialization
--
77
valid_tokens = '+ - * / abs'
stk = '' -- empty stack (work)
79
pol = '' -- output stack
80
81
loop until intk = ''
82
parse intk t intk
83
select
84
when t = '(' then
85
do
86
stk = t stk -- push()
87
end
88
when t = ')' then
89
do
90
parse stk t stk
91
loop while t <> '('
92
pol = pol t -- output
93
parse stk t stk -- pop()
94
end
95
end
96
when valid_tokens.wordpos(t) <> 0 then
do

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

|98
| loop forever
|99
| if stk = '' then leave
|00
| tk1 = stk.word(1) |01
| if tk1 = '(' then leave
|02
| if priority(tk1) < priority(t) then leave |03
| if priority(tk1) = priority(t) & priority(t) = 6 |04
| then leave
|05
| parse stk x stk
|06
| pol = pol x
|07
| end
|08
| stk = t stk
|09
| end
|10
| otherwise
|11
| do
|12
| pol = pol t
|13
| end
|14
| end
|15
| end
|16
| loop while stk <> ''
|17
| parse stk x stk
|18
| pol = pol x
|19
| end
|20
| pol = pol.space() |21
| return pol
|22
|
|23
+--+
 xstring.nrx(Method:translate)

 Download the complete source for the xstring.nrx library

 Evaluation of Postfix expressions.

This is the evaluation part.

 *** This section is:

 *** and will be available in next releases

+--+
| -- method......: evalrpn |36
| -- purpose.....: evaluates an RPN expression |37

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

| --
|38
| method evalrpn(intk=Rexx,precision=Rexx) public static |39
|
|40
| -- initialization |41
| --
|42
| if precision = ''
|43
| then precision = 9
|44
| numeric digits precision |45
| stk = '' -- stack
|46
|
|47
| loop while intk <> ''
|48
| parse intk tk intk
|49
| select
|50
| when 'abs'.wordpos(tk) <> 0 then |51
| do
|52
| parse stk p1 stk
|53
| select
|54
| when tk = 'abs' then r = p1.abs()
|55
| otherwise NOP
|56
| end
|57
| stk = r stk
|58
| end
|59
| when '+ * - /'.wordpos(tk) <> 0 then |60
| do
|61
| parse stk p2 p1 stk
|62
| select
|63
| when tk = '+' then r = p1 + p2
|64
| when tk = '-' then r = p1 - p2
|65
| when tk = '*' then r = p1 * p2
|66
| when tk = '/' then r = p1 / p2
|67
| otherwise NOP
|68
| end
|69
| stk = r stk
|70
| end
|71
| otherwise
|72
| do
|73
| stk = tk stk
|74
| end
|75
| end
|76
| end

NetRexx Tutorial - Introduction to NetRexx

http://www.netrexx.org/Tutorial/nr_5.html[11/4/2010 2:27:36 PM]

|77
| stk = stk.space() |78
| return stk
|79
|
|80
+--+
 xstring.nrx(Method:evalrpn)

 Download the complete source for the xstring.nrx library

 Summary

Here is a resume' of what we have covered in this chapter:

Compiling and running a program (on any platform)

 java COM.ibm.netrexx.process.NetRexxC PROG
 java PROG
 - ex.: java COM.ibm.netrexx.process.NetRexxC hello
 java hello

 *** This section is:

 *** and will be available in next releases

File: nr_5.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:35(GMT +2).

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

The NetRexx Tutorial
 - Language Basics

Language Basics

 Introduction

In this chapter we overview some of the NetRexx basics for syntax and structure. To avoid making it too boring, I have
tried to make it as short as possible.

 Comments

 Any sequence of characters delimited by a '/*' and a '*/' is considered by NetRexx as a comment and will NOT be
executed. Also, any sequence of characters following a double - character will be considered as comments (up to
the end of line).

Comments can be nested.

 /* This is a valid comment */

 -- Another comment

You are totally free to write the comments as you prefer, but here are some examples:

+--+
| /***/ |01
| /* */ |02
| /* This is one type of comment */ |03
| /* */ |04
| /***/ |05
| |06
| /* |07
| * This is another type of comment |08
| */ |09
| |10
| -- Yet another set of comment |11
| -- lines |12
| -- |13
+--+

As a matter of taste I prefer the second style; it also requires less typing effort to add a new line.

Starting a program with a comment is indeed good programming practice and you should say what the
program does and the like. The following is an example of this. It is a bit lengthy, but all this can be built
automatically with a program skeleton builder (see rxtls in later chapters).

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

+--+
| /* Program : rxtlss |01
| * Subsystem : rxt |02
| * Author : P.A.Marchesini (marchesi@shift3.cern.ch). |03
| * Created : 4 Dec 1994 on marchesi@shift3.cern.ch |04
| * Info : |05
| * Copyright : none. |06
| * |07
| * Id Info |08
| * ------ -- |09
| * v1r000 First release. |10
| * v1r010 Latest release (see rxtlss.HISTORY file for details) |11
| * |12
| */ |13
+--+
 prog2

 Blank Lines

 Blank lines are ignored. Enough said.

 Assignments

 We define as assignment the operation to store (assign) a value into a variable. The assignment operation is done
with the = (equal) sign, as you can see from the following syntax diagram:

 variable = expression

Naturally, what NetRexx does is the following: the expression is evaluated, and the result is assigned to the
variable. Some examples:

+--+
| test = 1 |01
| line = 'This is line' |02
| |03
| sum = a + b + c |04
| line = 'The sum is:' sum |05
+--+
 ch0001.nrx

 Download the source for the ch0001.nrx example

There are also other types of assignments, using the parse instruction, as we will see in later chapters.

 Literal Strings

 A literal string is a sequence of any characters delimited by a single quote character ' or by a double quote ". A
NULL string is a string with no (zero) characters in it. Here are some examples:

+--+
| string = 'This is a test' |01

http://www.netrexx.org/examples/ch0001.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

| string = "I'm happy to use quotes" |02
| string = 'I"m even more happy now' |03
| string = 'Enough of the "" quotes' |04
| string = '' /* a NULL string */ |05
+--+
 quoteexample.nrx

 Download the source for the quoteexample.nrx example

NOTE:

You are free to use single (') or double (") inverted commas. The only recommendation I would like to give
is: Be consistent. Once you have adopted one or the other form, always use the same form Ñ at least on the
same program Ñ as this is more agreeable for those reading it.
As you have probably noticed, a double "" or " allows you to put a SINGLE " or ' in a string delimited by the
given quote character.

 Hexadecimal Strings

 A hexadecimal string is a sequence of valid HEX characters (0-9, a-f, A-F), with a '\x' (or '\X' if you prefer).

+--+
| num1 = '\x00\x01' |01
| crlf = '\x0D\x0A' -- Carriage Return & Line Feed |02
+--+
 prog6

 Special Characters

 There are few of them in NetRexx, and certain of them have a special meaning when outside a literal string. These
are:

 ; - the delimiter
 - - the continuation character
 : - the label identifier
 (- the start expression
) - the end expression.
 [- array element (start).
] - array element (end).

 Delimiter Character

 NetRexx does not need to be told that a statement is ended, as the End-of-Line character automatically implies
this, and there is no need to type a ";" at the end of a line. But if you need to put more than one clause on a line,
then you MUST use the ";" sign.

 statement_1 ; statement_2 ; statement_3

In the following example, note that the three loop loops are equivalent:

http://www.netrexx.org/examples/quoteexample.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

+--+
| /* delim_exa.nrx |01
| */
|02
| loop i = 1 to 10 -- no delimiter
|03
| say i --
|04
| end --
|05
|
|06
| loop i = 1 to 10; -- delimiter
|07
| say i; --
|08
| end; --
|09
|
|10
| loop i = 1 to 10; say i; end; -- on only one line
|11
| exit 0
|12
+--+
 delim_exa.nrx

 Download the source for the delim_exa.nrx example

 Continuation Character

 If your NetRexx statement is too long for one line, use the - character to signal to the interpreter that you wish to
continue with the next line.

 statement -
 continuation_of_statement -
 again_continuation_of_statement -
 termination_of_statement

Here is the usual example:

+--+
| /* cont_exa.nrx |01
| */
|02
| say 'Very long line'
|03
| say 'Very' -
|04
| 'long' -
|05
| 'line.'
|06
| exit 0
|07
+--+
 cont_exa.nrx

 Download the source for the cont_exa.nrx example

http://www.netrexx.org/examples/delim_exa.nrx
http://www.netrexx.org/examples/cont_exa.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

 Variables and Constants

A variable is an object whose value may be changed during the execution of a NetRexx program. The value of a
variable is a single character string that can contain any character. There are four groups of symbols:

constant
simple
arrays

 Constant symbols.

The symbol starts with a digit (0...9) or a period (.). Here are some valid constant symbols:

 82
 .92815
 3.1415

 Simple symbols.

The simple symbol does NOT start with a digit (0...9) or a period (.), and does NOT contain a period (.). Here are
some valid simple symbols:

 test
 pi_Greek
 is_it_ok?

NOTE1: NetRexx is case insensitive: i.e. the symbols, such as TEST, test, and Test (I could go on, but I'm sure
you understood what I mean), all refer to the SAME variable.
NOTE2: An uninitialised variable is automatically trapped by NetRexx at compilation time.

 Arrays.

The array is a simple symbol whose last character is a [. Here are some valid arrays:

 list[]
 a[]
 info_test[]

As a convention, if indexed by a number the stem contains the same number of items as in its stem.0 value. This is
NOT done by the language itself, but as you will later see, it is useful to use this convention for arrays indexed by
integers.

variable value

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

-------- ----------------
list[0] N ---+
list[1] line 1 of list |
list[2] second line of list |
(...) |
list[N] last line of stem list. <-+

 Resume'.

This table is a resume' of what we've seen so far concerning constants and variables. In the first column we see
the definition, and in the others what it does and does not have.

 DOES DOES NOT EXAMPLE
 ------------------------ ----------------------- ----------
constant start with '.' , 0-9 - 2 , 3.9
simple - start with '.' , 0-9 pippo
array contain [] - list[4]
 list[1,j]

 Operations on Arrays.

As we have seen, arrays are a special category of variables. Consider the following small program:

+--+
| -- arrayexa.nrx |01
| --
|02
| newlist = int[100] |03
| newlist[1] = 1
|04
| say newlist[1] -- will print 1
|05
| say newlist[2] -- will print 0
|06
|
|07
| list = 'NULL'
|08
| list[2] = 'test' |09
| say list[1] -- will print EMPTY
|10
| say list[2] -- will print test
|11
|
|12
| exit 0
|13
+--+
 array_exa.nrx

 Download the source for the array_exa.nrx example

NOTEs:

line 2:

 *** This section is:

http://www.netrexx.org/examples/array_exa.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

 *** and will be available in next releases

 Special Variables

 *** This section is:

 *** and will be available in next releases

 Outputting something with say

 Use the instruction say to output something on your default output character stream (i.e. your screen). The
format of the instruction is:

say expression

Unlike C language, in REXX you do NOT need the newline character ('\n') at the end of your expression; NetRexx
automatically does it for you. Examples:

 list = 'you and me';
 total = 200
 say 'The list is' list'.' -> The list is you and me.
 say 'Total is:' total/2 -> Total is: 100

 Exiting a program.

 Use the instruction exit to unconditionally leave a program, and (optionally) return a character string to the caller.
The format is:

exit expression

Example(s):

 exit 34

 if rc <> 0 then
 do
 say 'Unrecoverable error.'
 exit 23
 end

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

As a convention, a program that ends correctly (i.e. with no error) should exit with 0; a non-zero exit code means
there has been a problem.

exit 0 -> program ended OK
exit <> 0 -> problems

different error codes (or messages) might be helpful in understanding what has happened and why the program
did not complete correctly.

 Warning about Exit Status of UNIX Processes.

 The Bourne shell puts the exit status of the previous command in the question mark (?) variable (the C shell uses
the status variable instead). There is indeed a warning: this variable (status or ?) is a 255 bit (1 byte) value. So if
your NetRexx program exits with (for example)

exit 300
or:
exit(300)

you will get:

echo $? -> 44 (BOURNE shell)
echo $status -> 44 (C shell)

This 'feature' should not be underestimated. A user once contacted me to say that his program was aborting in an
'undocumented way', as the $status code he was getting was not in the man page for the program. It took me
some time to realize that the return code he was getting (253) was coming from an 'exit -3' instruction.

 Getting the arguments from the shell (or input line).

 Another important thing you will want to do is to get the arguments from the shell whenever your program is
called. In fact, what you will need to do is call a program with 'something' entered on the same line on which you
typed the command, and to use this 'something' inside the program. There are several ways with NetRexx to get
the arguments used to call that particular program. The simplest is to use a parse arg instruction, as in:

parse arg variable_name

What parse arg variable_name tells NetRexx is the following: "get the parameters the program was called with,
and put them in the variable (a string) called variable_name". Consider this simple example:

+--+
| /* parrot.nrx
|01
| * echoes back what you type on command line |02
| */

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

|03
| parse arg s1
|04
| say 'you said "'s1'".'
|05
| exit 0
|06
+--+
 parrot.nrx

 Download the source for the parrot.nrx example

This program was called parrot for the very simple reason that it 'parrots' back to you whatever you type in in the
command line.

..
rsl3pm1 (401) java parrot toto bello
you said "toto bello".
rsl3pm1 (402) java parrot this is a long line
you said "this is a long line".
rsl3pm1 (404) java parrot `ls tu*`
you said "tu.tu".
rsl3pm1 (405)
..
 arg.example

Note that what follows the parse arg, is not necessarily a variable name: it can be any parsing template, as we will
see in the chapter concerning string handling. This allows a great flexibility in parameter entering, such as in the
following example:

+--+
| /* parsearg.nrx |01
| * parses command line input with ONLY 2 fields |02
| */
|03
| parse arg infile outfile . |04
| say 'infile = "'infile'".' |05
| say 'outfile = "'outfile'".' |06
| exit 0
|07
+--+
 parsearg.nrx

 Download the source for the parsearg.nrx example

What we have told NetRexx is the following: get the input argument arg; put the first word in the variable 'infile'
infile; put the second word in the variable 'outfile' outfile; forget about all the rest ".". To give you the feel of it,
we try it out here:

..
rsl3pm1 (412) java parsearg test out.TEST
infile = "test".
outfile = "out.TEST".
rsl3pm1 (413) java parsearg test
infile = "test".
outfile = "".
rsl3pm1 (414) java parsearg test output.test some other args
infile = "test".
outfile = "output.test".

http://www.netrexx.org/examples/parrot.nrx
http://www.netrexx.org/examples/parsearg.nrx

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

rsl3pm1 (415)
..
 arg1.example

We will get back to parsing in a later chapter (when we'll deal with string operations).

 Real Examples

 Adding an item to an array (updating array[0])

If you use the convention of having stem[0] as the item count for your stem, you need to have a pointer that
contains the number of items you have. Suppose that your array is called list[]. To save the various items in such
an array, you will have to build a construct as in the following example:

i = 0
do loop
 (...)
 i = i+1
 list[i] = whatever_you_want
end
list[0] = i

Here is a better way of doing the same thing:

list = xarray()
do loop
 (...)
 list.ad_list whatever_you_want
end

We eliminate the need for the index variable i, which makes the program: a) easier to read, and b) less error prone
since we 'might' for some reason overwrite the pointer variable. This approach is particularly useful for an output
file: you build the various lines out output, and then, when you've finished the processing, you can write all the
output (contained in the array list[]) in one go. The following program illustrates this approach. To repeat: in
these examples are some new concepts you will find explained later on. You should not spend too much time right
now on their details. What I want is to give you are real 'program-atoms' that you can put in your programs even
when you have completely mastered the language. NOTEs:

line 1: we define an object of the class xarray;
line 2: we add an item;
line 3: we add another one;
line 7: we display the items we collected;

And this is what you will get running the above program:

..
rsl3pm1 (239) java xarray
Line 1
Line 2
Line 3
Line 4 (last)

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

rsl3pm1 (240)
..
 Output of program xarray

 This chapter's tricks.

 Avoid the NEWLINE character.

 At this point you might ask yourself: "But what if I do not want to have a NEWLINE?" In that case you cannot use
say, but rather a small workaround. This is how to do it:

str = 'My test'
System.out.print(str'\x0D')

 Chapter FAQ

QUESTION: Can comments be nested? Yes, comments can be nested, so you can happily write something like

/*
 (...)
 /* step 1.00
 * start procedure
 */
 (...)
 -- comment
 (...)
 */

This feature is useful if you want to comment out a whole piece of code (comments included) to easy you
compilation tests.

NOTE: In JAVA comments can NOT be nested.

QUESTION: How do I do Charin/Charout screen I/O?

You use the "\-" at the end of string, like in this code atom:

say 'This will appear \-'
say 'as one line.'

which will print:

This will appear as one line.

on your terminal.

 Summary

NetRexx Tutorial - Language Basics

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

Here is a resume' of what we have seen in this chapter.

_ comments | /* */
 | --
 | - ex.: /* this is a comment */
 | -- and this another one
 |
_ delimiter character | ;
 | - ex.: say '1' ; say '2'
 |
_ continuation character | -
 | - ex.: say 'this is a' -
 | 'long line'
 |
_ arrays | variable[]
 | - ex.: list[]
 | - ex.: out[]
 |
_ reserved variable names |
 |

 *** This section is:

 *** and will be available in next releases

File: nr_6.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:37(GMT +2).

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

The NetRexx Tutorial
 - Operations on Numbers

Operations on Numbers

 Introduction

In this chapter we will analyse the basic arithmetic operations that you can perform on numbers. In NetRexx numbers
are usually treated as strings of characters (containing digits and, eventually, a '.' sign and/or a '-' sign). This explains
the possibility of having arbitrary precision arithmetic, independent of the H/W precision of your machine.

 Arithmetic Operations

NetRexx handles the four basic arithmetic operations: Addition, Subtraction, Multiplication and Division. You have
also other three special operators to perform Power Operation, Integer Division, and Remainder Division. To
perform an arithmetic operation, you simply need to place the appropriate operator between the two terms, and
assign what will be the result to a variable. Here is an example of this operation:

 a = 4 + 5

When the Interpreter encounters such an expression, the terms on the right side are evaluated, and the variable
(here 'a') will get the final result (which is, as you might suspect, '9'). The following table shows the operations
that you can perform on numbers:

+ Add.
- Subtract.
* Multiply.
/ Divide.
% Integer divide.
 (i.e. divide and return the integer part)
// Remainder.
 (i.e. divide and return the reminder;
 this is NOT modulo, as the result may
 be negative)
** Power.

-number (as prefix) same as 0-number.
+number (as prefix) same as 0+number.

Some additional examples:

 a = 23 /* Assignment */

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 b = 1 /* Assignment */

 c = a + b /* Expression */
 d = a ** c + 89 /* Expression */

Although I believe you may be able to imagine the result of 1+1, I would like to present some small examples of
arithmetic operations. The result is shown in the right column.

1+1 -> 2
1+9 -> 10

4*7 -> 28
2**4 -> 16

(1+2)/3 -> 1
1/3 -> 0.333333333
4/3 -> 1.33333333
5/3 -> 1.66666667

1//3 -> 1
4//3 -> 1
5//3 -> 2

1%3 -> 0
4%3 -> 1
5%3 -> 1

 The three ways to divide.

 A special mention should be devoted to the 'three' divide operators that are used in NetRexx. The / operator
performs the regular division. This produces the same result as you would get using the division key on your
pocket calculator. If the result is not an integer number, you will get the integer part, a dot and as many digits as
the precision is set to (see later in this chapter for considerations about precision). The % operator performs a
division and returns ONLY the integer part of the result. Note that the result in NOT rounded (contrary to what I
believed at the beginning of my REXX programming). It is simply truncated. The // operator again performs a
division, but it returns the remainder. As you have seen in the table, this is NOT a MODULO operation, since the
result might be negative. (As you will remember from school, the MODULO is a positive integer). At the risk of
being pedantic, I propose a final four examples:

 a = 13 / 2 a = 6.5
 a = 13 % 2 a = 6
 a = 13 // 2 a = 1
 a = -13 // 2 a = -1

 Operator Precedence

 The operator precedence (or order of evaluation) controls the order in which operations are performed. NetRexx
arithmetic uses the same rules you learned in primary school. This table resumes the operator precedence:

Precedence Group Operators
---------- ----------------- ---------

High UNARY + , -

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 POWER **

 MULTIPLY & DIVIDE * , / , // , %

Low ADD & SUBTRACT + , -

As you can imagine, operators with highest precedence are evaluated first, down to the lowest ones.

 If you are in doubt.

If you happen to be in doubt about operator precedence, (I sometimes am Ñ especially when dealing with
different computer languages), you can use a simple trick: use parentheses. So do not be afraid to write:

 value = 2 + (4 * 32)

instead of the more terse:

 value = 2 + 4 * 32

Of course, you should not use a lot of redundant parentheses inside a loop that is iterated 100 000 times in your
program. The first expression in the above example is a little more CPU consuming, but in an average program it is
perfectly all right, and saves time that could be lost with bugs.

 Other operations on Numbers.

 There are many operations you can perform on numbers apart from the ones we have just seen. These operations
are performed by NetRexx built-in functions, i.e. functions that are provided by the language itself. You call on
those functions in the following way:

 result = argument.function()

as you can see from the example(s):

 value = -9.abs()
 say value -> 9

 max = -9.max(7)
 say max -> 7

This is a table of the NetRexx built-in functions that deal with numbers.

 number.abs()
 Returns the absolute value of number;

 number.d2c()
 Converts the number from Decimal to Character;

 number.d2x()

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 Converts the number from Decimal to Hexadecimal;

 number.format()
 Performs a rounding and format over number;

 number.max(number1)
 Returns the largest number from a given list;

 number.min(number1)
 Returns the smallest number from a given list;

 number.sign()
 Returns the sign of a number;

 number.trunc()
 Returns the integer part of a number;

I again provide some examples: the right-hand column contains the results of the operations.

-2.abs() -> 2
2.abs() -> 2

12.min(1) -> 1
12.min() -> 12

1.max(42) -> 42
12.max() -> 12

-17.sign() -> -1
17.sign() -> 1

n = 23.34
n.trunc(0) -> 23
n.trunc() -> 23
n.trunc(3) -> 23.340
n.trunc(8) -> 23.34000000

125.d2x() -> 7F
71.d2c() -> G

Some of these instructions require a bit of more attention, and we will look at them in the paragraphs that follow.

 The format() instruction.

 Use the format instruction to round and format a number. The syntax of the instruction is:

out = format(number,before,after)

where before and after refers to characters before and after the decimal point.

number.format(before , after)
 ------ -----
 | |
 (digits before) (digits after)
 | |
 -------- -------------
 NNNNNNNN.NNNNNNNNNNNNN
 |
 (decimal point)

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

Suppose that the value of n is "-3.1415". This is what we get for the format() instruction:

n.format(4,2) -> " -3.14"
n.format(7,5) -> " -3.14150"
n.format(2,3) -> "-3.142"
n.format() -> "-3.1415"

 The xmath.random() instruction

 As you would expect, the xmath.random() function returns a random number. "How random" strongly depends
on the implementation of Java. In NetRexx you really get random values, while on VM/CMS you get 'pseudo-
random' values. This means that, in the first case, whenever you start a program you get different values; on the
contrary, in the second case, the values (although random) are always the same if you do not specify a different
seed. The syntax of the instruction is, as we saw:

 number = xmath.random(max_value)

You luckily do not need to modulo the result if you need random values within a certain interval Ñ the 'max_value'
parameter will do it for you. A classical application of the random number generator is when you need (for
example) to output a cookie message. If you have 150 cookie messages, you do not want to have random
numbers greater than 150. All you need to specify, in order to be sure that you do not get values greater than 150,
is:

 ptr = xmath.random(150)

A random(0) will be accepted, but will generate something that is not really random (the question left to you
being "why?"). This is how the xmath.random() function is implemented.

+--+
| -- method......: random |08
| -- purpose.....: |09
| --
|10
| method random(max=Rexx) public static; |11
| max = max.abs()
|12
| n = Math.random() * max |13
| n = n.trunc()
|14
| return n
|15
|
|16
| method random() public static; |17
| n = random(1000) |18
| return n
|19
|
|20
+--+

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 xmath.nrx(Method:random)

 Download the complete source for the xmath.nrx library

 Comparative operators.

Now that you know how to perform the basic operations on two numbers, you might also want to compare them
Ñ i.e. to look at which is larger or smaller, or check if they're equal. More formally, the comparative operators are
used to compare two variables (or a variable and a constant) between them. The comparative operators return:

 1 - if the result of the comparison is true

 0 - otherwise

NetRexx has two sets of operators: the normal comparison and the strict comparison. The strict comparison is
just what its name suggests Ñ two numbers must be strictly identical in order to pass the comparison.

NORMAL comparative operators:

 = True if terms are equal;
 \= , ^= Not equal;
 > Greater than;
 < Less than;

 >< , <> Greater than or less than
 (same as NOT EQUAL)
 >= , ^< , \< Greater than or equal to,
 not less than;
 <= , ^> , \> Less than or equal to,
 not greater than;

STRICT comparative operators:

 == True if the terms are strictly equal
 (identical)
 \== , ^== True if terms are strictly not
 equal
 >> strictly greater than;
 << strictly less than
 >>= , ^<< , \<< strictly greater than or equal to,
 strictly not less than;
 <<= , ^<< , \>> strictly less than or equal to,
 strictly not greater than;

BOOLEAN operators:

 & AND;

 | Inclusive OR;

 && Exclusive OR;

 ^ , \ LOGICAL NOT

We will see how to perform comparisons in the next chapter.

 Controlling the precision.

 The precision is the number of significant digits used in floating point computations. Roughly speaking, it is the

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

number of digits you are expecting to have after a '.' sign in a floating point number. This table will (I hope) clarify
the idea:

 value precision
 ------------------- ---------
1/3 .333333333 9
1/3 .333333333333333333 18
1/3 .33333 5

The precision of your arithmetic computations is controlled in NetRexx by the instruction:

 Numeric Digits [expression]

In NetRexx, the default value for precision is 9. In this small program we look how the instructions dealing with
precision work:

say 1/3 -- 0.333333333
 -- ---------
 -- 9 digits
Numeric Digits 18

say 1/3 -- 0.333333333333333333
 -- ------------------
 -- 18 digits

You might now ask: "why not always run with high precision say, of 100 significant digits?" The answer is simple: the
higher the precision, the slower the program. So use higher precision only when you need it, otherwise keep to the
standard one. To make this point even clearer, consider the following small program, which will allow you to
measure the performance speed of your machine by changing the precision:

+--+
| -- exercise the precision |01
| parse arg prec .
|02
| say 'Running at precision "'prec'".' |03
| numeric digits prec |04
| t1 = timer()
|05
| loop i = 1 to 1000
|06
| j = 1/i
|07
| j = j
|08
| end
|09
| say t1.elapsed() |10
| exit
|11
+--+
 numperf.nrx

 Download the source for the numperf.nrx example

To run it, just type java numperf NNN where NNN is the precision you want Ñ as in the following screen dump:

http://www.netrexx.org/examples/numperf.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

...
rsl3pm1 (12) java numperf 5
It took 1.001 seconds.
rsl3pm1 (13)
..
 numperf example

The following table was built using my HP Vectra Pentium 133MHz machine.

+---+
| timing for 1000 divisions at NNN digits precision |
+---+
| NNN time |
| ----- ---------- |
| 5 1.001 sec |
| 9 2.642 sec |
| 18 6.084 sec |
| 50 37.181 sec |
+---+
 numperf table

These numbers will (as you can imagine) change for different machines. As a rule of thumb, the faster the machine
for INTEGER operations, the smaller will be the time for big values of NNN. I again stress the fact that the
FLOATING POINT capabilities of your machine are totally irrelevant for this computation: the numbers are strings,
and the floating point engine of your computer is not used by the NetRexx interpreter.

 A useful program: eval.

 We now look at a program that will allow you to play a little with numbers. It is called eval. The basic idea is to
have a small calculator that you can use to perform Arithmetic calculations from your command line.

+--+
| -- eval
01
02
parse arg expr
03
r = xstring.interpret(expr,24)
say r
05
exit
06
+--+
 eval.nrx

 Download the source for the eval.nrx example

You invoke it simply by typing:

 java eval expression

Again, in order to give you the 'feeling', here is a dump of a sample session where I use eval.

http://www.netrexx.org/examples/eval.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

..
rsl3pm1 (282) java eval 2+89
91
rsl3pm1 (283) java eval '50**3 +760 -98'
125662 = 125,662 = 1.25662E+5
..
 Example of eval

Note for UNIX users: expressions such as:

1*2

are (unfortunately) interpreted by the shell. In fact, the shell will try to find, in your current directory, all the files
that have filenames starting with 1 and ending with 2. As there normally are none, you will get a "No Match", and
the answer will be "java: No Match", definitely NOT what you would have expected. To avoid this strange
behaviour put the expression between quotes, as here:

'1*2'

or call the program without any argument. The program will then prompt you for an expression, and (now that
there is no shell intervention) you can freely put in any character.

 Other Mathematical functions with arbitrary precision.

*
* WARNING:
* The so called SLAC arbitrary precision function package
* will be implemented in xmath v2.000.
*

The other mathematical high-level functions (like sin() cos() , etc.) are available with the usage of an external
package.

In the following table we summarise all the available functions. As you notice ALL the functions have an "_"
character after the function name.

Note also that ALL those functions are arbitrary precision functions and are totally platform independent (i.e.
you'll get the same result for the 400th decimal digit of sin(2) on an HP, SGI, PC, etc.).

 e() - returns the value of natural base e
 pi() - return the value of PI

 XtoY(x , y) - x to the yth power
 ln(x) - log of x
 log10(x)
 logbase(x , y) -
 sqrt(x) - square root
 exp(x)
 fact(n) - factorial of N

 sin(x , pr , mode) - sine of x
 cos(x , pr , mode) - cosine of x
 tan(x , pr , mode) - tangent of ox
 sec(x , pr , mode) - secant of x
 csc(x , pr , mode) - cosecant of x

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 cot(x , pr , mode) - cotangent of x

 asin(x , pr , mode) - arcsine of x
 acos(x , pr , mode) - arccosine of x
 atan(x , pr , mode) - arctangent of ox

 sinh(x , pr) - hyperbolic sine of x
 cosh(x , pr) - hyperbolic cosine of x
 tanh(x , pr) - hyperbolic tangent of ox

 asinh(x , pr) - hyperbolic arcsine of x
 acosh(x , pr) - hyperbolic arccosine of x
 atanh(x , pr) - hyperbolic arctangent of ox

NOTE: As previously stated those functions are arbitrary precision, and are NOT machine H/W dependent.

 Real Examples

In order to provide some examples of the mathematical NetRexx functions, I think it better to present some 'real'
algorithms that may prove to be useful even if you do not use NetRexx. These programs, although they present
language features that it would be better to explore in the next chapter, are taken 'as-is' from the 'Collected
Algorithms from the ACM' book. The only difference you might notice is that we have taken out all the 'GOTOs',
replacing them with a more structured approach (after all, those algorithms were invented in 1962, well before
even REXX was invented). What I would like to stress is the fact that NetRexx is very good for algorithm
description. What might interest you are, de facto, only the functions. The rest of the program has been presented
simply as an example of how to call the functions themselves.

 Greatest Common Divisor (gcd).

 The following code is a small example of a call to a routine that computes the gcd of two integer numbers. The
format of the call is:

n = xmath.gcd(n1,n2)

+--+
| parse arg n1 n2 .
|01
| say xmath.gcd(n1,n2) |02
| exit 0
|03
+--+
 gcd.nrx

 Download the source for the gcd.nrx example

+--+
| -- method......: gcd |26
| -- purpose.....: find the greatest common divisor |27
| --
|28
| method gcd(a=int,b=int) public static |29

http://www.netrexx.org/examples/gcd.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

| if a = 0 then return b
|30
| if b = 0 then return a
|31
| r2 = a
|32
| r1 = b
|33
| loop forever
|34
| rr = r2/r1
|35
| g = rr.trunc()
|36
| r = r2 - r1*g
|37
| if r = 0 then return r1
|38
| r2 = r1
|39
| r1 = r
|40
| end
|41
|
|42
+--+
 xmath.nrx(Method:gcd)

 Download the complete source for the xmath.nrx library

The gcd() function is a NetRexx function that (unlike the BUILT-IN functions) such as max(), min(), etc. are USER-
WRITTEN.

 Simultaneous Linear Equations Solution

 The following piece of code shows how to call a routine (called gauss) that performs the solution of a system of
linear equations with the Gauss Method.

+--+
| -- gauss
01
02
n = 3
03
a = rexx[n+1,n+1]
y = rexx[n+1]
05
c = rexx[n+1]
06
07
a[1,1] = 13; a[1,2] = -8; a[1,3] = -3; y[1] = 20
a[2,1] = -8; a[2,2] = 10; a[2,3] = -1; y[2] = -5
a[3,1] = -3; a[3,2] = -1; a[3,3] = 11; y[3] = 0
11
rc = xmath.gauss(n,a,y,c)
say 'RC:' rc'.'
13
14
say 'Solution:'
loop i = 1 to n
16
say c[i].format(NULL,3)

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

| end
|18
| exit
|19
+--+
 gauss.nrx

 Download the source for the gauss.nrx example

Here is the code itself. Of course, you can grab it and put it inside your program(s).

+--+
| -- method......: gauss |43
| -- purpose.....: |44
| --
|45
| method gauss(n=int,a=Rexx[,],y=Rexx[],c=rexx[]) public static; |46
| b = rexx[n+1,n+1] |47
| w = rexx[n+1]
|48
| error = 0
|49
| loop i = 1 to n
|50
| loop j = 1 to n
|51
| b[i,j] = a[i,j] |52
| end
|53
| w[i] = y[i]
|54
| end
|55
| loop i = 1 to n-1
|56
| big = b[i,i].abs() |57
| l = i
|58
| i1 = i+1
|59
| loop j = i1 to n
|60
| ab = b[j,i].abs() |61
| if ab > big then
|62
| do
|63
| big = ab
|64
| l = j
|65
| end
|66
| end
|67
| if big = 0
|68
| then error = 1
|69
| else
|70
| do
|71
| if l<>i then
|72
| do
|73
| loop j=1 to n
|74
| hold = b[l,j]
|75

http://www.netrexx.org/examples/gauss.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

| b[l,j] = b[i,j] |76
| b[i,j] = hold
|77
| end
|78
| hold = w[l]
|79
| w[l] = w[i]
|80
| w[i] = hold
|81
| end
|82
| loop j = i1 to n
|83
| t = b[j,i]/b[i,i] |84
| loop k = i1 to n
|85
| b[j,k] = b[j,k] - t*b[i,k] |86
| end
|87
| w[j] = w[j] - t*w[i]
|88
| end
|89
| end
|90
| end
|91
| if b[n,n] = 0 then error = 1
|92
| else
|93
| do
|94
| c[n] = w[n]/b[n,n] |95
| i = n - 1
|96
| loop until i = 0
|97
| sum = 0
|98
| loop j = i+1 to n
|99
| sum = sum + b[i,j] * c[j]
|00
| end
|01
| c[i] = (w[i] - sum) / b[i,i]
|02
| i = i-1
|03
| end
|04
| end
|05
| return error
|06
|
|07
+--+
 xmath.nrx(Method:gauss)

 Download the complete source for the xmath.nrx library

 Operations on HEX Numbers

In this section we will look at how to perform favourite operations on HEX quantities. A HEX number is treated by
NetRexx as a string. This string is composed of numbers (0-9) and letters (A-F). Although I am sure you know what
a HEX number looks like, here are some simple assignments:

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

 hex1 = 'FEA078'
 hex2 = 'CAFE'
 hex3 = '1AB052'

As you will have noticed, I have defined these quantities as PURE strings. This makes the conversion work that we
will need to do very much easier. But now what happens if you try to sum hex1 to hex2? As NetRexx understands
ONLY decimal arithmetic, the operation is going to fail. The only way out is to build a small function that performs
the HEX operation. This function will perform all the conversion work for us, both in the hex to decimal part and in
the decimal to hex re conversion. The routine I propose is hexop() and you call it up using the following syntax:

hex = hexop(hex1 operation hex2)

NOTE: the 'operation' must be put into quotes. Why? Because we want to avoid REXX interpreting it as an
ARITHMETIC addition (remember that hex1 and hex2 are NOT hexadecimal quantities). This is the function itself
and, as you can see, it is very short:

+--+
| -- method......: hexop |69
| -- purpose.....: execute an HEX operation |70
| --
|71
| method hexop(in=Rexx) public static |72
| parse in n1 op n2
|73
| n1 = n1.x2d()
|74
| n2 = n2.x2d()
|75
| select
|76
| when op = '+' then n3 = n1 + n2
|77
| when op = '-' then n3 = n1 - n2
|78
| when op = '/' then n3 = n1 / n2
|79
| when op = '*' then n3 = n1 * n2
|80
| otherwise
|81
| do
|82
| say 'Invalid operation.' |83
| exit 1
|84
| end
|85
| end
|86
| n3 = n3.d2x()
|87
| return n3
|88
|
|89
+--+
 xmath.nrx(Method:hexop)

 Download the complete source for the xmath.nrx library

As you will note from the code (apart from the parse and the interpret instruction, which we will cover later), we

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

do a double translationÊÑ first from HEX to DECIMAL for the two terms (x2d), and then, once we have the result,
back to HEX (d2x). I do not check whether the data (and the operation) are correct or not: this is left to the calling
code (or to you, if you want to enhance it). Some examples:

say xmath.hexop('FFFF + 1A') -> '10019'
say xmath.hexop('FFFE / 2') -> '7FFF'

 Operations on Binary Numbers

 Binary numbers are composed only of '0' or '1'. Again, these numbers will be NetRexx strings. At the risk of
appearing very pedantic, here are some examples of binary quantities:

 bin1 = '10010010'
 bin2 = '100001111000'

The very same considerations for HEX quantities are to be found in relation to binary numbers. Since we cannot
directly perform arithmetic on them, we are forced to use a function expressly made for the purpose. This function
is similar to the hexop() we just saw (in fact, in accordance with my fancy, I have expressed this in its name, calling
it: binop()). The only additional complication lies in the fact that you can convert to and from binaries starting only
from HEX quantities. The syntax for the function is:

 bin = binop(bin1 operation bin2)

The code is a small variation on hexop:

+--+
| -- method......: binop |05
| -- purpose.....: execute a BIN operation |06
| --
|07
| method binop(in=Rexx) public static |08
| parse in n1 op n2
|09
| n1 = n1.b2x.x2d() |10
| n2 = n2.b2x.x2d() |11
| select
|12
| when op = '+' then n3 = n1 + n2
|13
| when op = '-' then n3 = n1 - n2
|14
| when op = '/' then n3 = n1 / n2
|15
| when op = '*' then n3 = n1 * n2
|16
| otherwise
|17
| do
|18
| say 'Invalid operation.' |19
| exit 1
|20
| end
|21
| end
|22

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

| n3 = n3.d2x.x2b() |23
| return n3
|24
|
|25
+--+
 xmath.nrx(Method:binop)

 Download the complete source for the xmath.nrx library

Again, no check is made to ascertain if the quantities are truly binary and the operation a valid one. Some
examples:

 say xmath.bin_op('1010 + 10') -> '1100'
 say xmath.bin_op('1110 / 10') -> '0111'

 Remark on HEX and BINARY operations

A conclusive remark: as you will have have noticed, in this last case (as in the one before that, for HEX quantities)
the BINARY operations are CPU-intensive in NetRexx. To perform a single addition we do six conversions and two
operations (without counting the function above). I have presented the two subroutines in order to show that 'it
can be done', and in a rather easy way. However, as a rule you should remember that it is always a good idea to
perform ALL the arithmetic operations in your programs as decimal operations, and perform conversions at the
beginning (and end) of the program itself.

 Tricks with numbers.

 Put dots in long numbers.

It is usually a very difficult thing to read big numbers, if they're written as:

100345902

and it would be nice to display them in the form

100,345,902

The following xmath function will do the job.

+--+
| -- method......: dotify |90
| -- purpose.....: put dots into a numeric string |91
| --
|92
| method dotify(n=Rexx) public static |93
| if n.datatype('N') = 0 then return n |94
| parse n a '.' b
|95
| if b <> '' then b = '.'b
|96
| c = ''
|97

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

| loop for ((a.length() - 1) % 3) |98
| c3 = a.right(3)
|99
| c = ','||c3||c
|00
| a = a.left(a.length() - 3) |01
| end
|02
| return a||c||b |03
|
|04
+--+
 xmath.nrx(Method:dotify)

 Download the complete source for the xmath.nrx library

 Convert numbers in Computer Units.

Another usual conversion is to take a number and express it in Computer Units (K (kilo), M (mega), G (giga), etc.)

n cu
---------- -----
 452 -> 452
 1025 -> 1K
 1000000 -> 976K (why ???)

The following function will do this.

+--+
| -- method......: n2cu |27
| -- purpose.....: convert n to Computer Units |28
| --
|29
| method n2cu(n=Rexx) public static |30
| numeric digits 32 -- set high precision |31
| list = 'K M G T P' -- Kilo Mega Giga Tera Peta
|32
| base = 1
|33
| max = 1024
|34
| unit = ''
|35
| loop forever
|36
| if n < max then
|37
| do
|38
| out = (n%base)||unit |39
| leave
|40
| end
|41
| parse list unit list -- get next unit, pls
|42
| base = max
|43
| max = max*1024
|44
| end
|45
| numeric digits 9 |46
| return out
|47
|
|

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

48
+--+
 xmath.nrx(Method:n2cu)

 Download the complete source for the xmath.nrx library

Call example:

say 'File size is' xmath.n2cu(size)'.'

 Convert seconds to hours.

That's my last favourite conversion routine. I use it to convert seconds to a more readable human format.

s h
------ -----------
 7272 -> 2:01:12
100000 -> 1d-03:46:40

+--+
| -- method......: s2h |49
| -- purpose.....: convert seconds to hours (or days) |50
| --
|51
| method s2h(s=Rexx) public static |52
| h = s%3600
|53
| s = s//3600 -- modulo |54
| m = s%60
|55
| s = s//60 -- modulo
|56
| if h > 24 then -- express h in DAYSd-HH
|57
| do -- if necessary
|58
| d = h%24
|59
| h = h//24
|60
| h = h.right(2,'0') |61
| h = d'd-'h
|62
| end
|63
| m = m.right(2,'0') |64
| s = s.right(2,'0') |65
| out = h':'m':'s
|66
| return out
|67
|
|68
+--+
 xmath.nrx(Method:s2h)

 Download the complete source for the xmath.nrx library

Call example:

http://www.netrexx.org/library/xmath.nrx
http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

say 'Time elapsed' xmath.s2h(sec)'.'

 Chapter FAQ

QUESTION: How do I round-up a number? As we saw, the '/' divide operator does a 'crude and simple' truncation on
the result. If you need a real round up, then you should use the format(NULL,0) instruction, like in the following
example:

rounded = n.format(NULL,0)

You can try out the following code to test yourself.

+--+
| -- Round up example
01
02
parse arg n1 n2
03
n3 = n1/n2
04
say 'Result:' n3
05
say 'Round :' n3.format(NULL,0)
exit 0
07
+--+
 roundup.nrx

 Download the source for the roundup.nrx example

 Summary

We resume what we've seen so far in this chapter.

_ basic operations | + - * /
 | - ex.: a+b
 |
_ setting precision | Numeric Digits NN
 | - ex.: Numeric Digits 20
 |
_ query precision | digits
 | - ex.: nn = digits
 |

 *** This section is:

 *** and will be available in next releases

File: nr_7.html.

http://www.netrexx.org/examples/roundup.nrx

NetRexx Tutorial - Operations on Numbers

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:38(GMT +2).

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

The NetRexx Tutorial
 - Operations on Strings

Operations on Strings

 Introduction

As we already said, in NetRexx there is only ONE native data type: the string. We already saw how to define a string;
now we will concentrate our attention on how to operate on the strings, starting with the simplest operations (such
as concatenating two strings together) and ending with one of the most powerful features of NetRexx, the string
parsing. This chapter unfortunately contains long reference sections. I hope you will not get too tired going through
them.

 The string.

I remind you that we defined a string as "a sequence of characters" of arbitrary length and content. Strings are
defined like this:

string = 'This is a string'
string_new = 'and this is another one'

You can use ' or " quotation marks to delimit a string when you define it.

 String Concatenation

The first operation you might want to perform on a string (better on two or more strings) is to concatenate them,
i.e. form a single string with a set of strings. NetRexx provides you with three ways of performing this:

(blank) Concatenate terms with one blank in between;

|| Concatenate without an intervening blank;

(abuttal) Concatenate without an intervening blank;

Concatenation without a blank might be forced by using the || operator. The same result can be obtained if a literal
string and a symbol are abutted. This is the abuttal operator. Suppose you have a variable p1 that contains the
string 'my' and a variable p2 that contains the string 'simple test'. Look at the concatenation:

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

simple
 say p1 p2 -> 'my simple test'

no blanks
 say p1||p2 -> 'mysimple test'

abuttal
 say 'my'p2 -> 'mysimple test'

The following additional examples might better clarify how concatenation works:

/* setting */ /* s values */
s1 = 'Tyranno'
s2 = '-'
s3 = 'Saurus'

s = s1 s3 s = 'Tyranno Saurus'

-- notice I put MANY spaces between s1 and s3: they
-- have no effect
s = s1 s3 s = 'Tyranno Saurus'

s = s1||s3 s = 'TyrannoSaurus'

s = s1||' '||s3 s = 'Tyranno Saurus'

-- Here spaces count!
s = s1||' '||s3 s = 'Tyranno Saurus'

s = s1 s2 s3 s = 'Tyranno - Saurus'

s = s1||s2||s3 s = 'Tyranno-Saurus'

s = s1 s2 s3 s = 'Tyranno - Saurus'

s = s1'-'s3 s = 'Tyranno-Saurus'

 Comparative operators.

The very same comparative operations that can be done with numbers can, of course, be done with strings. The
comparative operators return:

 1 if the result of the comparison is true

 0 otherwise

NetRexx has two sets of operators: the normal comparison and the strict comparison. The strict comparison is
really what its name suggests: two strings must be strictly identical in order to pass the comparison.

NORMAL comparative operators:

 = True if terms are equal;
 \= , ^= Not equal;
 > Greater than;
 < Less than;

 >< , <> Greater than or less than
 (same as NOT EQUAL)
 >= , ^< , \< Greater than or equal to,
 not less than;
 <= , ^> , \> Less than or equal to,

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

 not greater than;

STRICT comparative operators:

 == True if the terms are strictly equal
 (identical)
 \== , ^== True if terms are strictly not
 equal
 >> strictly greater than;
 << strictly less than
 >>= , ^<< , \<< strictly greater than or equal to,
 strictly not less than;
 <<= , ^<< , \>> strictly less than or equal to,
 strictly not greater than;

BOOLEAN operators:

 & AND;

 | Inclusive OR;

 && Exclusive OR;

 ^ , \ LOGICAL NOT

You will probably never need some of these operators, although it is good to know that they exist in order to
avoid 'reinventing the wheel' when faced with a particular problem. The most important operators are definitely =
, ^= , < , >; you will be using them for 99% of your comparisons.

 A small program for checking comparisons.

We give a small example that shows the difference between the strict and the normal operators: the program we
run is as follows:

+--+
| -- strict test
01
02
str = 'test'
03
str[1] = 'test'
str[2] = ' test'
05
str[3] = 'test '
06
say 'Comparing "'str'".'
loop i = 1 to 3
08
normal = (str = str[i])
strict = (str == str[i])
say normal strict
end
12
exit 0
13
+--+
 strstrict.nrx

 Download the source for the strstrict.nrx example

and the result is:

http://www.netrexx.org/examples/strstrict.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

..
rsl3pm1 (39) java strstrict
Comparing string "test".
with "test" is normal: 1 ; strict: 1.
with " test" is normal: 1 ; strict: 0.
with "test " is normal: 1 ; strict: 0.
rsl3pm1 (40)
..
 strc1.out

 Miscellaneous functions on strings.

Although this book is not a true reference, I would like to present some of the many built-in functions available in
NetRexx. For a complete list, consult the NetRexx Reference. The purpose of including this list here is so that I can
be sure that you at least know that some instructions exist. In fact, I have to admit that once I wrote myself a
function in order to find out the last occurrence of a character in a string. A colleague later showed me that this
function already existed (it is called lastpos()).

Standard NetRexx functions

information.abbrev(info,length)
 Check if 'info' is a valid abbreviation for the
 string 'information';

string.center(length,pad)
 Centers a string;

string1.compare(string2,pad)
 Compares 2 strings Ñ 0 is returned if the strings
 are identical, and if they are not, it returns the
 position of the first character not the
 same;

string.copies(n)
 Makes 'n' copies of the given string 'string';

string.delstr(n,length)
 Deletes the sub-string of 'string' that begins at the
 n-th character, for 'length' characters;

string.delword(n,length)
 Same as above, but now the integers 'n' and 'length'
 indicate words instead of characters, i.e. space
 delimited sub-strings;

new.insert(target,n,length,pad)
 Inserts a string ('new') into another ('target');

haystack.lastpos(needle,start)
 Returns the position of the last occurrence of the
 string 'needle' into another, 'haystack'; if the
 string is NOT found, 0 is returned; see also pos();

string.left(length[,pad])
 Returns the string 'length' characters with the
 left-most characters of 'string';

string.length()
 Returns the 'string' length;

string.lower([n[,length])
 Returns a lower case copy of the string.
 Lowering will be performed from character n
 for length characters. If nothing
 is specified, lower() will lowercase the
 whole string, from the 1st character.

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

new.overlay(target,n,length,pad)
 Overlays the string 'new' onto the string 'target',
 starting at n-th character;

haystack.pos(needle,start)
 Returns the position of one string 'needle' inside
 another one (the 'haystack');

string.reverse()
 Returns the 'string' , swapped from end to start;

string.right(length,pad)
 Returns a string of length 'length' with the 'length'
 of right-most characters of a string 'string';

start.sequence(end)
 Returns a string of all one-byte character
 representations starting from characters 'start'
 up to character 'end';
 It replaces REXX's xrange() function;

string.space(n,pad)
 Formats the blank-delimited words in string 'string'
 with 'n' 'pad' characters;

string.strip(option,char)
 Removes Leading, Trailing, or Both (Leading and
 Trailing) spaces from string 'string';

string.substr(n,length,pad)
 Returns the substring of string that begins at the
 'n'-th character;

string.subword(n,length)
 Returns the sub-string of string 'string' that starts
 at the 'n'-th word (for 'length' words: DEFAULT is
 up to the end of string);

string.translate(tableo,tablei,pad)
 Translates the characters in string 'string'; the
 characters to be translated are in 'tablei', the
 corresponding characters (into which the characters
 will be translated), are in 'tableo';

string.verify(reference,option,start)
 Verifies that the string 'string' is composed ONLY of
 characters from 'reference';

string.word(n)
 Returns the 'n'-th blank delimited word in string
 'string';

string.wordindex(n)
 Returns the character position of the 'n'-th word
 in string 'string';

string.wordlength(n)
 As above; but returning its length;

string.wordpos(phrase,start)
 Searches string 'string' for the first occurrence
 of the sequence of blank-delimited words in 'phrase';

string.words()
 Returns the number of words in string 'string';

string.upper()
 Returns the string uppercase;

string.lower()
 Returns the string converted lowercase;

You might now say: Thanks a lot for this list, but what are the most important functions, i.e. the most used ones I

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

should remember? To make myself clearer, I have taken a sample of REXX programs written by a group of people
and have tried to print out some statistics on the functions you just saw. This is the result:

--
substr......: 361 19% length......: 252 13%
wordpos.....: 214 11% upper.......: 164 8%
right.......: 152 8% space.......: 147 7%
insert......: 110 5% words.......: 109 5%
strip.......: 74 3% translate...: 70 3%
abbrev......: 58 3% lastpos.....: 48 2%
copies......: 31 1% pos.........: 30 1%

overlay.....: 23 1% delword.....: 14 0%
reverse.....: 5 0% verify......: 4 0%
subword.....: 1 0% xrange......: 1 0%
lower.......: 1 0% center......: 0 0%
wordindex...: 0 0% delstr......: 0 0%
compare.....: 0 0%
--
 most used string functions

As you can see, at the top of the 'TOP-10' string functions is the substr instruction. Functions such as compare()
never appeared. For comparison, the parse instruction (see next chapter) received 567 hits, whilst the do got 690.
I've not included those instructions in the list simply because I wanted to look at only the string functions we've
seen so far.

 Some 'particular' string functions.

Some of the functions you have just seen require a bit more discussion. This will be taken care of in the section that
follows.

 translate().

 The translate function is used Ñ as the name suggestsÊÑ to translate the characters that form a string, following a
very simple rule: if a character is in a table (usually called TABLEI), it is translated into the corresponding character
present in another table (usually called TABLEO). If a given character is not in the TABLEI, then it remains
unchanged. The syntax of the function is:

trans = str.translate(tableo,tablei)

Some examples will better clarify:

'TEST'.translate('O','E') -> 'TOST'

'CAB'.translate('***','ABC') -> '***'

'(INFO)'.translate(' ','()') -> ' INFO '

A often-made mistake is to invert the logic for TABLEO and TABLEI: I do this myself, and put TABLEO where TABLEI
should be, and vice versa. To avoid this confusion, I suggest you always try to translate before, so that you can be
sure that your tables are correctly placed. What's the use of translate()? A typical case is when you want to get rid
of characters you do not wish to process. In this way your TABLEI will contain all the unwanted characters, and

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

TABLEO will just be an empty string. Another possible application is an ASCII to EBCDIC converter (or EBCDIC to
ASCII).

 Parsing.

 The parsing feature of NetRexx is, in my opinion, one of the most useful and powerful features of the language
and probably deserves a chapter to itself. By the term parsing we mean the splitting up of a selected strings into
assigned variables, under the control of a template. The syntax of the instruction is the following:

 parse variable template

The variable is the original string you want to split-up, whilst the template is the set of rules to be used to do this
split-up (together with the variables that will hold the result).

 original_string
 |
 template
 |
 +---------+--+-------+-----(...)---+ PARSING
 | | | |
 v v v v
 string1 string2 string3 stringN

You might consider the template as a 'filter', or as a 'set of rules'. NetRexx 'reads' these rules before splitting up
the original string into the targeted ones, and then uses the rules to complete the task. There are several ways to
parse a string. In brief, you can parse a string

into words;
using literal patterns;
using periods as place-holders;
using unsigned numbers as positional patterns;
using signed numbers as positional patterns;
with variable patterns;

We will now analyse all possible cases for a particular 'flavour' for the parse instruction, the parse var.

 Parsing into words.

This is probably the most simple case: the variable is split into words defined by the variable(s) that follow the one we
want to parse.

--

string = 'Very Simple String'

parse string word1 word2 word3
 |
 +---> word1 'Very'
 +---> word2 'Simple'
 +---> word3 'String'

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

str = 'This simple string, I hope, is parsed.'

parse str p1 p2 rest
 |
 +---> p1 'This'
 +---> p2 'simple'
 +---> rest 'string, I hope, is parsed.'

str = 'Short string'

parse str p1 p2 rest
 |
 +---> p1 'Short'
 +---> p2 'string'
 +---> rest " (NULL)

--
 parsing into words

As you can see, the template is simply a set of variables, which will hold the result after the split by word has been
performed. Each variable holds a word. A word is a set of characters divided by a SPACE (' ').

 Parsing with literal patterns.

 In this case NetRexx will scan the data string to find a sequence that matches the value of the literal. Literals are
expressed as quoted strings. The literals DO NOT appear in the data that is parsed.

--

str = 'Here I am.'

parse str p1 'I' p2
 |
 +---> p1 'Here'
 +---> p2 ' am.'

str = 'This simple string, I hope, is parsed.'

parse str p1 ',' p2 ',' p3
 |
 +---> p1 'This simple string'
 +---> p2 ' I hope'
 +---> p3 ' is parsed.'

parse str p1 'simple' p2 ',' p3 'is' p4'.'
 |
 +---> p1 'This'
 +---> p2 'string'
 +---> p3 ' I hope,'
 +---> p3 ' parsed'

--
 parsing with literal patterns

I stress the fact that the characters (or strings) that you use to build your literal patterns DO NOT appear in the
final parsed result.

 Parsing using periods as place holder.

The symbol '.' (single dot) acts as a place holder in a template. It can be regarded as a "dummy variable", since its
behaviour is exactly the same as a variable, except that the data is not stored anywhere. Use it when you 'really don't
care' about some portions of a string.

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

--

str = 'This simple string, I hope, is parsed.'

parse str . p1 . . p2 .
 |
 +---> p1 'simple'
 +---> p2 'hope,'

--
 parsing using periods as place holder

As you can see, the terms This , string, , I , and is is parsed. have simply disappeared. It is a common construct to
put the '.' at the end of a parsing instruction, simply to avoid the extra arguments that would pollute the last valid
argument in the parsing itself. You should keep an eye on the '.' as the /dev/null for parsing. It can eat a word (if in
the middle of a pattern) or even all the remaining part of a string, if the '.' is the last term.

 parsing using unsigned numbers.

If you put unsigned numbers in a pattern, NetRexx will treat them as references to a particular character column in the
input.

--

str = 'This simple string, I hope, is parsed.'

parse str p1 10 p2 20 p3
 |
 +---> p1 'This simp'
 +---> p2 'le string,'
 +---> p3 ' I hope, is parsed.'

str = TEST

parse str 1 p1 1 p2 1 p3
 |
 +---> p1 'TEST'
 +---> p2 'TEST'
 +---> p3 'TEST'

--
 parsing using unsigned numbers

As you can see, the variable p1 holds the characters from the original str string from the first to the ninth column.
The variable p2 holds the characters from the 10th column to the 19th. The variable p3 holds the rest of the input.
Note that the space is treated as is any other character. In the second example we see an interesting feature: we
can restart from a given position when this is defined by an unsigned integer.

 Parsing using signed numbers.

Signed numbers can be used in a template to indicate a displacement relative to the character position at which the
last match occurred.

--

str = 'ABCDEFGHILM'

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

parse str 3 p1 +4 p2
 |
 +---> p1 'DEFG'
 +---> p2 'HILM'

parse str 3 p1 +4 p2 6 p3
 |
 +---> p1 'DEFG'
 +---> p2 'HILM'
 +---> p3 'GHILM'

--
 parsing using signed numbers

Let us look at the first example: the first '3' tells the interpreter 'Position yourself at the 3rd character of "str".' (this
is "D"). Then 'p1 +4' instructs it to 'Put in "p1" the characters that follow, until you have reached the 4th character
from where you were' (this will build "DEFG"). Then we see "p2" which tells it to: 'Put all the rest in 'p2'. So that 'p2'
comes to be "HILM".

 Parsing with variable patterns.

(Don't worry, this is the last case!) Using '(' ')' to delimit a variable in a template will instruct NetRexx to use the value
of that variable as a pattern.

--

delim = ','
str = 'This simple string, I hope, is parsed.'

parse str p1 (delim) p2 (delim) p3
 |
 +---> p1 'This simple string'
 +---> p2 ' I hope'
 +---> p3 ' is parsed.'

--
 parsing with variable patterns

This is probably the most complex case, since the pattern is variable.

 Parsing with ALL methods intermixed.

Of course you will ask yourself: "I've seen all those methods for parsing a string, but can I intermix them?". The
answer is Ñ as you can imagine, since I asked this question rhetorically Ñ "Yes!". Your template can intermix all the
methods we've seen so far, and it can became extremely complicated. You can write:

parse test 1 flag +1 info tape . '-' rest 80 comment

 Strings & Parsing in the real life.

 Implement a stack or a queue using a string.

A stack is an example of abstract data type (see KRUSE, 1987, pg. 150).

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

Usually the implementation of a stack is done using arrays, which require particular attention for conditions like
empty-stack full-stack, etc.

If we make the assumption that you're dealing with numeric quantities (or with space delimited alphanumeric
quantities), the implementation of a stack (or a queue) is extremely easy and elegant using a simple string.

This is how you do it:

(...)
stack = " -- empty stack
(...)
stack = n stack -- push() n into the stack
(...)
parse stack m stack -- pop() m from the stack
(...)
entries = stack.words() -- count stack items
(...)

To be even more clear, let's follow the example:

op stack
-- -----
stack = " "
stack = 1 stack 1
stack = 2 stack 2 1
stack = 3 stack 3 2 1
parse stack m stack 2 1 m = 1
stack = 4 stack 4 2 1
parse stack n stack 2 1 n = 1

 Parsing a list of words.

You will often find yourself with a string that contains a list of items (words). If you need to process all the items
from this list, here is a simple trick for doing it. The basic idea is the following:

do while list <> "
 parse list item list
 (...)
 processing over 'item'
 (...)
end

the variable list is parsed with itself, and what we obtain is only its first word, keeping what remains. In fact, we
are just 'eating-up' list word by word, in each iteration. This small piece of code illustrates the trick:

+--+
| -- pex1.nrx
01
02
list = 'MARTIN DAVID BOB PETER JEFF'
03
i = 0
04
loop while list <> ''
05

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

| parse list item list
|06
| i = i+1
|07
| say i.right(2,'0') item.left(10) list |08
| end
|09
| exit 0
|10
+--+
 pex1.nrx

 Download the source for the pex1.nrx example

NOTEs:

line 2: we define the list. Note that the procedure that follows will eat-up all the list variable, so that you
need to save it if you plan on using it later;
line 5: this is the real parsing phase;

Here is what you get when you run it.

...

01 MARTIN DAVID BOB PETER JEFF
02 DAVID BOB PETER JEFF
03 BOB PETER JEFF
04 PETER JEFF
05 JEFF
...
 parseex1.out

 Sorting.

 In the NetRexx language there are no built-in sort functions.

 sorting a string

The following program atom str_sort.regproto does a sort over a string. Even if this is not a built-in function, you
call it as if it were:

sorted = xtring.sort(string , 'R')

where string is our unsorted string, and 'R' is an optional parameter to signify a reverse sorting. The code is:

+--+
| -- method......: sort |64
| -- purpose.....: Sort a string |65
| -- A = Ascending: A B C D ...
|66
| -- R = Reverse: ... D C B A
67
68

http://www.netrexx.org/examples/pex1.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

| method sort(stri=Rexx,mode=Rexx) public static |69
| if mode <> 'R' then mode = ''
|70
| ws = stri.Words() |71
| incr = ws%2
|72
| loop while incr > 0
|73
| loop i = incr+1 for ws
|74
| j = i-incr
|75
| loop while j > 0
|76
| k = j+incr
|77
| wj = stri.Word(j) |78
| wk = stri.Word(k) |79
| if mode = 'R'
|80
| then do ; If wj >= wk Then Leave ; end;
|81
| else do ; If wj < wk Then Leave ; end;
|82
| stri = stri.Subword(1,j-1) wk - |83
| stri.Subword(j+1,k-j-1) wj - |84
| stri.Subword(k+1) |85
| j = j-incr
|86
| End
|87
| End
|88
| incr = incr%2
|89
| End
|90
| stri = stri.space() |91
| Return stri
|92
|
|93
+--+
 xstring.nrx(Method:sort)

 Download the complete source for the xstring.nrx library

A sample program that calls such a routine is:

+--+
| -- composers.nrx |01
| --
|02
| composers = 'Bach Vivaldi Verdi Mozart Beethoven Monteverdi' |03
|
|04
| say 'Unsorted:' composers'.' |05
| say 'Sorted..:' xstring.sort(composers,'A')'.' |06
| say 'Sorted.R:' xstring.sort(composers,'R')'.' |07
| exit 0
|08
+--+
 composers.nrx

 Download the source for the composers.nrx example

and here is a sample output:

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/examples/composers.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

..
rsl3pm1 (110) java composers
Unsorted: Bach Vivaldi Verdi Mozart Beethoven Monteverdi.
Sorted..: Bach Beethoven Monteverdi Mozart Verdi Vivaldi.
Sorted.R: Vivaldi Verdi Mozart Monteverdi Beethoven Bach.
rsl3pm1 (111)
..
 eso1.out

 Other string manipulation examples

 A simple "censure"

The following code is a simple implementation of a "censor" over a string. Suppose that you totally want to get rid
of a string inside another string, or replace it with 'XXX' characters (like real censors do). The small method
described above might help you.

+--+
| -- method......: censure |44
| -- purpose.....: get totally rid of a string sequence |45
| -- inside a string |46
| --
|47
| method censure(s1=Rexx,s2=Rexx,ch=Rexx) public static |48
| -- initialization |49
| os = ''
|50
| repl = ''
|51
| if ch <> '' then
|52
| do
|53
| n = s2.length() |54
| repl = ch.copies(n) |55
| end
|56
|
|57
| -- do the job: this is really easy with parse ()
|58
| loop while s1 <> ''
|59
| parse s1 p1(s2)s1
|60
| if s1 <> ''
|61
| then os = os||p1||repl |62
| else os = os||p1
|63
| end
|64
|
|65
| -- all done
|66
| return os
|67
|
|68
| method censure(s1=Rexx,s2=Rexx) public static |69
| return censure(s1,s2,") |70
|
|71
+--+
 xstring.nrx(Method:censure)

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

 Download the complete source for the xstring.nrx library

You should look at the way it is implemented: the string is parsed, till it is exausted, using:

 parse string (search) string

where search is a value determined at runtime.

 An animated status line.

Some programs take a long time to run, so that the person sitting in front of the terminal might ask "What ARE
they doing?". So it is often nice to show the user 'where' the program is in the processing. For example, if a
program has to process 300 files, and each file takes one or more seconds to process, you might want to use the
routine that follows, in order to keep the person sitting at the terminal informed as to how many files the program
has done, and how many there are yet to go. The following routine shows:

 1. a 'rotating' symbol : (- \ | / -)
 2. a number of 'done' item : nnnn/NNNN
 3. a graphic scale of 'done' items : [****.....]
 4. a numeric percent : nnn%
 5. an additional information message : string

The routine that is really of interest to you is called info_display. In this example, between the various displays we
really do nothing (just a sleep instruction). This 'sleep' should be replaced by your computation intensive/time
expensive part of the code.

+--+
| -- method......: display |62
| -- purpose.....: |63
| --
|64
| method display(i1=Rexx,i2=Rexx,rest=Rexx) public |65
| pt = dinfop//4 +1
|66
| f1 = '-\\|/'.substr(pt,1) |67
| dinfop = dinfop+1 |68
| n1 = i1/i2*20
|69
| n2 = i1/i2*100
|70
| n1 = n1.format(3,0) |71
| n2 = n2.format(3,0) |72
| cu = '.'.copies(20) |73
| cu = cu.overlay('*',1,n1,'*') |74
| s1 = i1.right(4,'0') |75
| str = f1 s1||'/'||i2.right(4,'0') '['cu'] -' rest |76
| System.out.print(str'\x0D') |77
|
|78
+--+
 xstring.nrx(Method:display)

 Download the complete source for the xstring.nrx library

Of course, you cannot see the motion in the figure, but you can use your imagination. You should simply try it on a

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

real terminal, and you will get, on the very same line, something that 'moves' and shows (more or less) this:

...
rsl3pm1 (80) display

\ 0001/0010 [**..................] 10% |
(...) | ALWAYS
| 0005/0010 [**********..........] 50% | ON
/ 0006/0010 [************........] 60% | THE
(...) | SAME
- 0010/0010 [********************] 100% | LINE

rsl3pm1 (81)
...
 display example

 A hashing function.

 I will not discuss in detail the concepts of hashing. I leave this to more specialised literature [KRUSE, LEUNG ,
TONDO ; 1991]. I will simply note that hashing is used to perform fast searches in databases, and hashing functions
are used to index a hashing table. The basic idea of a hashing table is to allow a set of keys to be mapped into the
same location as that of an array by means of an index function. For the moment we are not interested in
implementing a full hashing table algorithm, so we will will concentrate on the hashing function itself. We need an
algorithm that takes a key (a string) and builds a number. The algorithm must be quick to compute and should
have an even distribution of the keys that occur across the range of indices. The following function hash can be
used for hashing keys of alphanumeric characters into an integer of the range:

 0 ... hash_size

You call the function issuing:

 nn = hash(key)

+--+
| -- method......: hash |02
| -- purpose.....: |03
| --
|04
| method hash(str=Rexx) public static |05
| hash_size = 1023
|06
| t = 0 -- zero total
|07
| l = str.length() -- str length |08
| loop while str <> '' -- loop over all CHARS
|09
| parse str ch +1 str -- get one
|10
| t = t+ch.c2d() -- add to total
|11
| end --
|12
| out = (t*l)//hash_size -- fold it to SIZE |13
| return out
|14
|

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

|15
+--+
 xstring.nrx(Method:hash)

 Download the complete source for the xstring.nrx library

The algorithm shown is rather fast, and produces a relatively even distribution. The basic idea is in the loop that
adds-up the decimal value of each character. I then multiply this value with the original length of the string, and
modulo for the hash table size.

 Converting from/to BASE64 (MIME).

 The small programs that we analyse in this section are merely two small examples of how you can implement a
BASE-64 converter. You can find more info on the Sun Implementation for a BASE64 Decoder/Undecoder
methods at the URL:

http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Decoder.html
http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Encoder.html

Keep in mind that the MIME protocol (see RFC 1341 and 1342) is a mechanism by which you can send binary files by
mail. The basic idea is the following: you take a set of bytes, you split by chunks of 6 bits each, you build 4 new
bytes and you map this new quantity in base 64 (2**6 = 64). Suppose you want to translate the string "Thi" to
base 64. Here is the procedure:

 1. Original string:
 'Thi'

 2. Translated in HEX:
 '54 68 69'

 3. translated in BINARY:
 '01010100 01101000 01101001'

 4. ditto (group by 6):
 '010101 000110 100001 101001'

 5. Add '00' in front of each 6 bits:
 '00010101 00000110 00100001 00101001'

 6. New quantities (in HEX):
 '15 06 21 29'

 7. Convert to Base 64:
 'VGhp'

The two following programs will convert one (a2m) from a generic string to a BASE-64 string, and the opposite for
the other (m2a). Look at the listing for a2m. From line 16 to line 21 I put into comments the steps which I described
above for the conversion (note how each step is an instruction). The whole algorithm is based on the parse and
the translate function.

+--+
| -- method......: a2m |16
| -- purpose.....: Convert a string from ASCII to MIME |17
| --
|18
| method a2m(str=Rexx) public static |19
| b64 = '\x00'.sequence('\X3F') |20

http://www.netrexx.org/library/xstring.nrx
http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Decoder.html
http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Encoder.html

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

| e64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" || - |21
| "abcdefghijklmnopqrstuvwxyz" || - |22
| "0123456789+/" |23
|
|24
| out = ''
|25
| loop while str <> ''
|26
| parse str bl +3 str /* 1 */
|27
| bit = c2x(bl).x2b() /* 2 , 3 */ |28
| parse bit p1 +6 p2 +6 p3 +6 p4 /* 4 */
|29
| bitn = '00'p1'00'p2'00'p3'00'p4 /* 5 */ |30
| bln = x2c(bitn.b2x) /* 6 */ |31
| base = bln.translate(e64,b64) /* 7 */ |32
| if base.length()<>4 then |33
| do
|34
| app = '='.copies(4-base.length()) |35
| base = base||app
|36
| end
|37
| out = out||base
|38
| end
|39
| return out
|40
|
|41
+--+
 xstring.nrx(Method:a2m)

 Download the complete source for the xstring.nrx library

The opposite of a2m is m2a:

+--+
| -- method......: m2a |42
| -- purpose.....: Convert a string from MIME to ASCII |43
| --
|44
| method m2a(str=Rexx) public static |45
| b64 = '\x00'.sequence('\x3F') |46
| e64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" || - |47
| "abcdefghijklmnopqrstuvwxyz" || - |48
| "0123456789+/" |49
|
|50
| out = ''
|51
| loop while str <> ''
|52
| parse str bl +4 str
|53
| base = bl.translate(b64,e64) |54
| basex = c2x(base)
|55
| bit = basex.x2b() |56
| parse bit 3 p1 9 11 p2 17 19 p3 25 27 p4 33
|57
| bitn = p1||p2||p3||p4 |58
| new = x2c(bitn.b2x()) |59
| out = out||new
|60
| end
|61
| return out
|62

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

|
|63
+--+
 xstring.nrx(Method:m2a)

 Download the complete source for the xstring.nrx library

Those programs could be used as building blocks for a real MIME packer/unpacker routine. Note that you will need
quite a bit of work to make them really useful: what is missing is a proper handling of line splitting in the output
file (in a2m).

 Tricks with strings

TRICK: Avoid multiple substr() calls with just one parse. If you find yourself using more than one substr() function in
a raw, you should probably consider rewriting your code using a more appropriate parse function. Suppose you
have to split a time stamp in its components.

 YYMMDDhhmmss (timestamp)
 | | | | | |
 | | | | | +--------- second
 | | | | +----------- minute
 | | | +------------- hour
 | | +--------------- day
 | +----------------- month
 +------------------- year

The first and most obvious approach is the following:

year = substr(timestamp,1,2)
month = substr(timestamp,3,2)
(...)

And so on. The alternative using parse is:

parse var timestamp year +2 month +2 day +2 ,
 hour +2 minute +2 second +2

The gain (both in terms of execution speed and coding) is clear: you use one instruction instead of six. Your code is
also easier to modify (and to adapt to different formats of time-stamps). TRICK: Use the parse with '.' to avoid the
need for issuing a space() afterwards. The title of this trick is a cryptology trick in itself. "How's that?" Simple.
Suppose you need to parse lines of this format:

 node=rsl3pm1
 os=AIX

Depending on what the left term of the '=' sign is (we will call it the key), you will need to perform certain actions.
What you can do is something along these lines:

 parse var line key '=' attributes
 if key == 'node' then (...)
 if key == 'os' then (...)

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

This works well until there are no extra spaces between the key and the '=' sign. But this is precisely what will
happen if someone modifies the file containing these lines, as we have seen. You must be 100% sure that someone
will write:

 node = rsl3pm1
 os = AIX

Now the value of key will be: "node " and "os ", and this is not exactly what we expect. The first solution that will
came to mind is the following (at least it was the first that came to my mind before learning this trick):

 parse var line key '=' attributes
 key = space(key)
 if key == 'node' then (...)
 if key == 'os' then (...)

The trick (finally we come to it), is to use a '.' in the parse, as here:

 parse var line key . '=' attributes
 if key == 'node' then (...)
 if key == 'os' then (...)

This will avoid any space() instruction, acting as a 'space-eater'. TRICK: Avoid unexpected results from a missing
wordpos(). This particular trick I learned from Eric Thomas, the author of LISTSERV(tm) (probably the most popular
Mailing List Server Software). I offer a concrete example: suppose you want to write a program that translates a
given TCP/IP port number in its "human" meaning , i.e. a program that tells you that port 21 is FTP, port 23 is
TELNET, etc. You will write two lists , one containing the port numbers, the other the 'human meaning'. These lists
will then be:

portl = '21 23 37'
servicel = 'ftp telnet time'

Note that those two lists are "ordered": 21 is the port number for FTP, 23 for TELNET, and so on , i.e. the nth
element of the list portl corresponds to the nth element of the list servicel. The existence of this one-to-one
correspondence is the basis of our discussion. Suppose that the port number for which we want to know the
'human meaning' is contained in the variable port. The obvious way to find out its meaning is, first, to identify the
position in the string portl of the variable port, and second, use this number to extract (using the function word()
the corresponding value in the list servicel). Each of these words translates into a sentence:

service = servicel.word(portl.wordpos(port))

This code is correct, but 'buggy'; what happens if you enter a port number that is not in portl? The result of
wordpos() will be 0, and a word with a second argument zero will cause a buggy "ftp" answer. We could check
that port is in portl before doing the wordpos(), but there is a simpler solution:

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

service = ('unknown' servicel).word(portl.wordpos(port) + 1)

The trick is simple: we add a term in front of servicel (the 'unknown' term) and we add 'plus 1' to wordpos(). In
this way we can be sure that we have covered the case when port is not in portl. The code is now correct, and can
handle unexpected errors. I provide the full final code as a resume':

+--+
| -- portn.nrx
01
02
parse arg port .
03
portl = '21 23 37'
04
servicel = 'ftp telnet time'
service = ('unknown '
say service
07
exit 0
08
+--+
 portn.nrx

 Download the source for the portn.nrx example

Of course there are many more services (look to /etc/services if you want to see them. Note also that this is NOT
the way to find out the service name from the port number; rather, see the chapter on sockets in order to discover
how to obtain it from the system itself.

 Chapter FAQ

QUESTION: How do I know the program's name at running time? This is a real FAQ. Suppose that you have written
(or created, to make your work more important) a program called toto. How does toto know its name? You could
put the information inside a variable in toto but that is UGLY, and whenever you rename the program, you will
need to remember to change that variable. The solution is the parse source instruction Ñ do

parse SOURCE . . myname .

SMALL ADDENDUM for UNIX users. If you place the program toto in a directory in your PATH (for example,
/usr/local/bin) and you execute it, you will notice an interesting effect: myname is no longer toto, but
/usr/local/bin/toto. This might be interesting, since you're now capable of ascertaining the directory from which
your program was called, but the question then becomes how to eliminate the (probably unwanted)
/usr/local/bin? You do it by coding:

myname = myname.substr(myname.lastpos('/') + 1)

QUESTION: Can I put the character '00'X in a string? Yes. The only thing you need to remember is to make the byte a
HEX constant, as here:

http://www.netrexx.org/examples/portn.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

string = 'this is a' '\x00' 'test'
string = '\x00\x00\x00'

As a rule of thumb, you can put any character you like in a string; the only thing you should remember is that you
might have problems if you try a say of this string. QUESTION: How do I display strings containing control
characters? You can use the c2x() instruction, in order to see the string in HEX. A more elegant way is to translate
all the non-printable characters to a '.' (or to any other character you prefer). This small program shows you how
to do it:

+--+
| -- nodisp
01
02
str = 'This is a \x03\x09\xFE test.'
tablei = '\x00'.sequence('\x1F')
tableo = '.'.copies(tablei.length())
say str.translate(tableo,tablei)
exit 0
07
+--+
 nodisp.nrx

 Download the source for the nodisp.nrx example

Note how I build the tablei: I use sequence() over all the unprintable characters (from '00'x to '1F'x, and from '80'x
till 'FF'x). tableo is simply a sequence of '.' (for the same length of tablei). That is all I need. Note, however, that
this will only work for ASCII systems: EBCDIC systems will require a different tablei.

 Summary

We resume some of the concepts we have encountered in this chapter.

_ concatenate a string | || or abuttal
 (with no spaces) | - ex.: s1||s2
 | - ex.: n1'%'
 |
_ concatenate a string | blank
 (with spaces) | - ex.: s1 s2
 |

 *** This section is:

 *** and will be available in next releases

File: nr_8.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

http://www.netrexx.org/examples/nodisp.nrx

NetRexx Tutorial - Operations on Strings

http://www.netrexx.org/Tutorial/nr_8.html[11/4/2010 2:27:42 PM]

Last update was done on 18 May 1998 21:47:40(GMT +2).

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

The NetRexx Tutorial
 - Control Structures

Control Structures

 Introduction.

No algorithmic language would be complete without instructions that allow the execution of statements depending
on certain conditions for performing iterations and selections. NetRexx has many such instructions for allowing
program flow control. Probably the most important is the do...end construct.

 Statement Block.

 A statement block is a sequence of statements enclosed by a do (...) end. A statement block looks like this:

do
 statement_1
 statement_2
 (...)
 statement_N
end

NetRexx executes these statements in sequence Ñ from the first to the last. Syntactically, a block of statements is
accepted in place of any single statement.

 if/then/else.

 The if/then/else construct is used to conditionally execute an instruction or a group of instructions. The
if/then/else construct can also be used to select between two alternatives.

if expression
 then instruction
 else instruction

The expression is evaluated, and MUST result in '0' or '1'. Thus, as you can imagine:

if expression
 then instruction if expression results to 1
 else instruction if expression results to 0

 NOP

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

 It is usually difficult to do 'nothing'. However, the nop instruction was created for just such a purpose: it is a
dummy instruction.

NOP

It is useful as target for a then or else clause:

--
 if a = 3
 then NOP
 else say 'a is NOT 3.'
--
 example of NOP

 loop for (with a repetitor)

 The loop instruction is used (as we have already seen), to group a set of instructions, and to execute (optionally)
more than once. In its easier case, the loop for looks suspiciously like the C-language for statement. Let us
consider a first case:

loop for expression
 statement_1
 statement_2
 (...)
 statement_N
end

In this case, expression - an expression that evaluates a number - tells NetRexx 'how many times to execute the
loop'. Here is an example:

--
/* this statement will be executed 3 times */
loop for 3
 say 'Hello'
end
--
 do N example

Will print on your screen:

 Hello
 Hello
 Hello

--
list = 'MARTIN JOE PAULA'
/* this statement will be executed 3 times */
loop for list.words()
 parse list name list
 say 'Hi!' name
end
--
 second do N example

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

Will print on your screen:

 Hi MARTIN
 Hi JOE
 Hi PAULA

Of course, you can use a variable (which we will regard as an index) to run the iteration. This is a 'controlled
repetitive loop'. A more complex case is the following:

loop name = expr1 to expr2
 statement_1
 statement_2
 (...)
 statement_N
end

Examples:

--
loop i = 1 to 5
 say i
end
--
 loop example

Will print on your screen:

 1
 2
 3
 4
 5

--
cols = 2
rows = 3
loop i = 1 to cols
 loop j = 1 to rows
 say j
 end
end
--
 loop with 2 indices

Will print on your screen:

 1
 2
 3
 1
 2
 3

In the above examples, we always incremented by a positive quantity (+1). What about when your increment is
NOT +1? The solution is again a do, but now with a by statement. Our do loop will then look like:

loop varname = expr1 to expr2 by expr3

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

 statement_1
 statement_2
 (...)
 statement_N
end

And here are some examples:

--
loop i = 2 to -1 by -1
 say i
end
--
 by example

Will print on your screen:

 2
 1
 0
 -1

--
x1 = 2.1
x2 = 2.5
increment = .1
loop x = x1 to x2 by increment
 say x
end
--
 by example

Will print on your screen:

 2.1
 2.2
 2.3
 2.4
 2.5

You can even add a repetition counter, which sets a limit to the number of iterations if the loop is not terminated
by other conditions. Our loop loop will then look like the following:

loop varname = expr1 to expr2 by expr3 for expr4
 statement_1
 statement_2
 (...)
 statement_N
end

Example:

--
y_start = .9
y_end = 2.7
loop y = y_start to y_end by .9 for 2
 say y
end
--
 for example

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

Will print on your screen:

 .9
 1.8

 loop/while/until.

 The while and until constructs commonly found in other programming languages are also available in NetRexx, as
a condition to the ubiquitous loop statement. Here is how to build a simple while loop:

loop while expression
 statement_1
 statement_2
 (...)
 statement_N
end

And here is how to build a simple until loop:

loop until expression
 statement_1
 statement_2
 (...)
 statement_N
end

Consider the example:

--
i = 1
loop while i < 7
 say i '\-'
 i = i+1
end
--
 while example

---> The previous code will print: 1 2 3 4 5 6

--
i = 1
loop until i > 6
 say i '\-'
 i = i+1
end
--
 until

---> Will print: 1 2 3 4 5 6

 do resume.

A nice NetRexx feature is that you can combine the loop in its repetitive form with the loop in its conditional form

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

(i.e. the while/until construct we just considered). This can lead to constructs that look like:

--
loop i = 1 to 10 while i < 6
 say i '\-'
end
--
 combined example

---> This code will print: 1 2 3 4 5. There is a nice 'side effect' to this feature, and that is the possibility of building a
while/until loop without incrementing (or decrementing) the control variable yourself. Consider the case we just
looked at:

--
i = 1.0
loop while i < 3
 say i '\-'
 i = i+.5
end
--
 do while example

---> This code will produce: 1.0 1.5 2.0 2.5 We need to define the start value i = 1.0, and define the step increment i =
i+.5. All this can be avoided with the following construct:

--
loop i = 1.0 by .5 while i < 3
 say i '\-'
end
--
 do by while example

---> Will print: 1.0 1.5 2.0 2.5 This code is much more compact. A resume' of what we have seen so far on the do
instruction:

--

loop repetitor conditional
 --------- -----------
 | |
 | +----------< _ WHILE expr_w
 | _ UNTIL expr_u
 |
 +------------< _ var = expr_i TO expr_t BY expt_b FOR expr_f
 _ expr_r
 _ FOREVER

 instruction_1
 instruction_2
 (...)
 instruction_N
end

--

 select.

 The select instruction is used to execute one of several alternative instructions. The format is:

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

select
 when expression_1 then instruction_1
 when expression_2 then instruction_2
 when expression_3 then instruction_3
 (...)
 otherwise instruction_N
end

What NetRexx does is evaluate the expressions after the when. If the result is '1', then what follows the
corresponding then is executed (this can be anything Ñ a single instruction, a set of instructions inside a do ... end
clause, etc.). Upon return, the control will pass directly to the end instruction. If none of the when expressions
result in a '1', then the otherwise instruction is executed. NOTE: the otherwise clause is NOT mandatory, but if
none of the when expressions results in a '1', and the otherwise is not present, you will get a 'SYNTAX error'. It is
thus wise to ALWAYS add an otherwise clause at the end of a select, usually with a NOP instruction.

--
(...)
/* this will print a flag corresponding to the */
/* inactivity time of a terminal: */

/* the table is the following */
/* hour 0...1...2...3...4...5...6...7...8 */
/* flag ****;;;;::::::::................. */

/* where 'hour' is since how many hours the */
/* terminal is inactive, and flag is the */
/* flag we want to display */

/* inactive: time (in hours) a terminal */
/* has been inactive */
select
 when inactive < 1 then flag = '*'
 when inactive < 2 then flag = ';'
 when inactive < 4 then flag = ':'
 otherwise flag = '.'
end
(...)
--
 select example

 iterate.

 Use the iterate instruction to alter the flow of control within a repetitive do loop (i.e. any do construct which is
NOT a plain do). The syntax is:

do (expression)
 statement_1
 (...)
 statement_N
 (condition) iterate [name]
 statement_N+1
 (...)
 statement_M
end

If program flow reaches the iterate instruction, the control is passed back to the do instruction, so that the
statements statement_N+1,...statement_M are NOT executed. Here is an example:

--
loop i = 1 to 5

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

 say '* \-'
 if i = 3 then iterate
 say i '\-'
end
--
 iterate example

---> This will print: * 1 * 2 * * 4 * 5 The iterate instruction also supports a 'name' following it, and name (if present)
must be the variable name of a current active loop. Consider this following code atom:

--
num = 7
loop i = 1 to num
 line = "
 loop j = 1 to num
 if i = j then
 do
 say line
 iterate i
 end
 line = line j
 end
end
--
 iterate example II

This code will print:

 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6

 leave.

 Use the leave instruction to exit immediately from a do loop. The syntax is:

loop (expression)
 statement_1
 (...)
 statement_N
 (condition) leave [name]
 statement_N+1
 (...)
 statement_M
end

The flow of control is passed to the instruction that FOLLOWS the corresponding end in the loop loop. Here is an
example:

--
loop i = 1 to 5
 say '* \-'
 if i = 3 then leave
 say i '\-'
end
--

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

---> The above code will produce the output: * 1 * 2 * You should note that leave is similar, in a certain sense, to
the iterate instruction: like it, leave 'breaks' the normal flow of control in the do loop. Pictorially:

loop <------+
 (...) |
 (...) (back to beginning)
 (...) |
 iterate -------+
 leave -------+
 (...) |
 (...) (jump past the end)
 (...) |
end |
 <------+

 Real Examples.

As usual, we now present some 'real-life' examples.

 Simulating the 'foreach' instruction.

 As you may have noticed, the foreach instruction does not exist in NetRexx. And if you are a shell programmer,
you may well also be without it. However, here is a trick for simulating it with a minimum of effort:

--
loop while list ^= " | -> foreach item (list)
 parse list item list |
 (...) |
end | end
--
 foreach example

The only thing you need to remember is that the list variable, at the end of the do loop, will be NULL; remember to
save it if you plan to use it later.

 Reading a 'stanza' file.

Configuration files are usually divided in the UNIX terminology into 'stanzas'. A 'stanza' is a uniquely identified
portion of the file that contains the parameters for a specified entity. VM programmers may identify a 'stanza' as a
single entry in a NAMES file: an identifier marks the start of a stanza, and a set of parameters follows, until a new
stanza (or an End_of_File) is reached. Let us look at a 'stanza' example:

+--+
| # comment line |
| node: rsl3pm1 # first stanza |
| machine: rs6000 # defines node |
| vendor: IBM # rsl3pm1 |
| location: b32r035 # |
| |
| node: sgl3pm1 # second one |
| machine: Indigo2 # defines node |
| vendor: SGI # sgl3pm1 |

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

| location: b11r023 # |
| |
| node: hpl3sn05 |
| machine: 730/50 |
| vendor: H/P |
| location: b71r233 |
+--+
 Source file: test.stanza

You should note that:

the character # is used as a comment. If a line starts with a #, it is ignored, and if a line contains a #, all what
follows it is also ignored;
blank lines are ignored.

The following program is composed of a small call to a routine that does the job of:

reading the configuration file that contains all the stanzas;
finding out the one we are looking for;
setting the output variable to the required values for the selected stanza.

As you can see, the function is a good example of utilisation of the do, leave, iterate instructions.

+--+
| -- readst.nrx
01
02
parse arg nodeid .
03
04
--
05
--
06
07
-- read the file
08
--
09
infid = xFile('test.stanza')
rc = infid.rd_file()
if rc <> 0 then
12
do
13
say 'problem reading "'infid.name'".'
exit 1
15
end
16
17
output = ''
18
found = 0
19
loop i = 1 to infid.line[0]
if infid.line[i] = '' then iterate
parse infid.line[i] key rest '#' .
if key = '#' then iterate
23
if key = 'node:' then

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

|24
| do
|25
| if found then leave
|26
| if rest = nodeid then
|27
| do
|28
| found = 1
|29
| iterate
|30
| end
|31
| end
|32
| if found = 0 then iterate
|33
| parse infid.line[i] line '#' . |34
| output = output line |35
| end
|36
| out = output.space() |37
| if out = ''
|38
| then say 'Not found.'
|39
| else say output.space() |40
|
|41
| exit 0
|42
+--+
 readst.nrx

 Download the source for the readst.nrx example

NOTEs:

line 16: we read the configuration file containing ALL the stanzas;
line 21: we ignore empty lines;
line 23: we ignore comment lines as well;
line 24: check if this keyword identifies a new stanza;
line 26: if we have already found the stanza we wanted, there is no need to continue further;
line 27: if this is the stanza we wanted, remember that we found it, and iterate;
line 33: up to now we have not found the stanza, so iterate;

Run this program and here is the result you will get:

..
rsl3pm1 (182) java readst sgl3pm1
machine: Indigo2 vendor: SGI location: b11r023
rsl3pm1 (183) java readst rsl3pm1
machine: rs6000 vendor: IBM location: b32r035
rsl3pm1 (184)
..
 readst.output

 Expanding a list.

 The following problem might appear totally 'academic'. It did to me until I encountered the following problem. A

http://www.netrexx.org/examples/readst.nrx

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

directory contained a set of files (more than 20 000), each identified by a number (as filename). To make the
problem clearer, my directory contained these files:

 10000 10001 10002 10003
 10004 10005 10006 10007
 (...)
 33002 33003 33004 33005

The user needed to perform operations on a subset of the files Ñ for example:

 10000 10981 10982 10983 21900 21901
or: 30291 30292
or: 67234 67235 67236 67237 77889 88974 88975

The user had to start from N and continue until item M, or from item J for K files. There was no easy solution with
UNIX standard wild-cards. And the only solution was to write the items one by one. The small program (and
routine) that follows is a possible solution to the problem Ñ it expands a pattern according to a very simple syntax:

 first-last
 first.how_many

The expansion is then of the type:

 10020-10022 -> 10020 10021 10022
 30452.4 -> 30452 30453 30454 30455

The program will accept any combination of items containing '.' or '-', or simple single items. The program is really
very simple:

+--+
| parse arg teststr |01
| say expandlist(teststr) |02
| exit 0 |03
+--+
 explist.nrx

 Download the source for the explist.nrx example

And of course requires this small function: (I present it separately so that you can quickly put it inside a bigger
program if you like it).

+--+
| -- method......: listexpand |72
| -- purpose.....: |73
| --
|74
| method listexpand(il=Rexx) public static |75
| ol = ''
|76
| loop while il <> ''

http://www.netrexx.org/examples/explist.nrx

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

|77
| parse il it il
|78
| if it.pos('.') <> 0 then |79
| do
|80
| parse it f'.'n
|81
| loop i = f to f+n-1
|82
| if ol.pos(i) <> 0 then iterate i |83
| ol = ol i
|84
| end
|85
| iterate
|86
| end
|87
| if it.pos('-') <> 0 then
|88
| do
|89
| parse it f'-'l
|90
| loop i = f to l
|91
| if ol.pos(i) <> 0 then iterate i |92
| ol = ol i
|93
| end
|94
| iterate
|95
| end
|96
| if ol.pos(it) <> 0 then iterate |97
| ol = ol it
|98
| end
|99
| Return ol
|00
|
|01
+--+
 xstring.nrx(Method:listexpand)

 Download the complete source for the xstring.nrx library

Here is what you can use it for:

..
rsl3pm1 (9) explist 2000 3045.3 7002-7003
2000 3045 3046 3047 7002 7003

rsl3pm1 (11) echo `explist 20000 30890-30900`
20000 30890 30891 30892 30893 30894
30895 30896 30897 30898 30899 30900

rsl3pm1 (12) ls -la `explist 20000 30890-30900`
(...)

rsl3pm1 (13) cat `explist 20000.7 30890-30900` > toto
(...)
..
 explist.out

 Operation on arrays.

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

It is sometimes usefull to convert information from an array, to a string, and viceversa.

+--+
| -- method......: a2s |31
| -- purpose.....: converts a Rexx array to a string |32
| --
|33
| method a2s(a=Rexx) public static |34
| a = a
|35
| out = ''
|36
| loop i = 1 to a[0]
|37
| out = out a[i]
|38
| end
|39
| return out
|40
|
|41
+--+
 xstring.nrx(Method:a2s)

 Download the complete source for the xstring.nrx library

+--+
| -- method......: s2a |18
| -- purpose.....: converts a string to an array |19
| --
|20
| method s2a(str=Rexx,a=Rexx) public static |21
| a = a
|22
| i = 0
|23
| loop while str <> ''
|24
| parse str nn str
|25
| i = i+1
|26
| a[i] = nn
|27
| end
|28
| a[0] = i
|29
|
|30
+--+
 xstring.nrx(Method:s2a)

 Download the complete source for the xstring.nrx library

The following example will show the utilization of such functions.

+--+
| -- simple test of a2s and s2a
01

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

|02
|
|03
| -- convert a string to an array |04
| --
|05
| b = rexx(") |06
| xstring.s2a('52 45 66 3 4',b) |07
| loop i = 1 to b[0]
|08
| say i ':' b[i]
|09
| end
|10
|
|11
| -- convert an array to a string |12
| --
|13
| c = rexx(") |14
| c[0] = 3
|15
| c[1] = 'This is a test'
|16
| c[2] = 'another el.'
|17
| c[3] = 'LAST ONE.'
|18
|
|19
| s = xstring.a2s(c) |20
| say s
|21
|
|22
| exit 0
|23
+--+
 tarray.nrx

 Download the source for the tarray.nrx example

 Chapter FAQ

 *** This section is:

 *** and will be available in next releases

 Chapter Summary

A resume' of some of the concepts we've encountered in this chapter:

_ block of instructions | do (...) end
 | - ex.: do
 | instructions
 | instructions
 | end

http://www.netrexx.org/examples/tarray.nrx

NetRexx Tutorial - Control Structures

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

 |
_ 'for' loop | loop for n=n1 to n2 (...) end
 | - ex.: loop i = 1 to 6
 | instructions
 | instructions
 | end
 |
_ 'while' loop | loop while expr (...) end
 | - ex.: loop while i < 6
 | instructions
 | instructions
 | end
 |

 *** This section is:

 *** and will be available in next releases

File: nr_9.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:43(GMT +2).

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

The NetRexx Tutorial
 - Classes and Objects in NetRexx

Classes and Objects in NetRexx

 As we already said, NetRexx, like its cousin Java, is an object-oriented (OOP) language . The term object-oriented has
become so widely used that we need to give it a more concrete meaning.

This section assumes no knowledge of object-oriented concepts.

At the end of this section, I hope that you'll get the feeling of how OOP can be "fun".

 Some basic ideas.

The Object Oriented Programming basic ideas are simple ones. Unfortunately, OOP has developed some special
terminology, and many introductory works become totally incomprehensible to people encountering the subject
food the first time.

OOP has four key concepts. You can remember them from the acronym "A PIE": think about the big pie that
software vendors are sharing in selling us their OOP products. The components are:

A - Abstraction
P - Polymorphism
I - Inheritance
E - Encapsulation

In the following part of the chapter, we will consider, as an example, the OOP representation of a 3 dimensional
vector.

A 3d vector, we will see, can be defined in a computer using three numbers (this is the ABSTRACTION). A whole
series of operations can be performed on a 3d vector (like inverting it, summing with other vectors, etc), making
sure that we never corrupt the values of it (this is the ENCAPSULATION part). Using the concepts we used to
define the 3d vector, we can build a 4d vector, keeping some of the functions we used to encapsulate the 3d
vector (and this is the INHERITANCE part). Indeed, some functions (like the sum) must be overridden by the new
4d vector functions (to take account of the 4th dimension), and that' all for the POLYMORPHISM.

Resuming it in few lines definitely looks hard, but (you'll see) there is nothing more.

 A vector class

 In this section we develop a simple example class, that we will call vector3d, that , as you can easily guess, will

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

represent a geometric object in a three-dimensional space.

A vector, quoting Feynman, is three numbers. In order to represent step in space, say from the origin to some
particular point P whose location is (x, y, z), we really need three numbers, but we are going to invent a single
mathematical symbol, r. (...) It is not a single number, it represents three numbers: x, y and z. (FEYNMAN, 1963).

 In those words Feynman has, de facto, extracted out the essential characteristics that we need to consider in
order to represent a vector on a computer. This process is called abstraction.

Translating the above words in the NetRexx language, we get:

class vector3d public
 properties public
 xc -- x component
 yc -- y component
 zc -- z component

The important thing to note is that we did not define a real vector r. We just defined how we define a vector, i.e.
with 3 quantities xc, yc, and zc.

The lines above contain two new keywords: class and properties.

The class keyword must be followed by the name of the class that we are defining. NOTE: this name MUST be the
filename of the file we are writing: i.e. vector3d.nrx.

After the properties keyword we define the so called data-members, which are, de-facto, variable names.

 Methods

There is a number of things that we can do with vectors: we can compute their magnitude (or module), we can
inverse them. We can also execute operations with two vectors, like adding two vectors, computing their scalar
product, check if they are equal, etc.

For each of those operations we then define a method which is, if you like, a sort of function that belongs to a class
and that we perform over an object (belonging to this class).

 -- method x()
 -- will return the x component of the 3d vector
 method x() public
 -- the code will go here

 -- method inverse()
 -- will inverse a 3d vector
 method inverse() public
 -- the actual code will go here

 -- method mag()
 -- will return the magnitude of a vector
 method mag() public
 -- the actual code will go here
 -- etc. etc.

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

Why we use the term method, and not just function or procedure ? The reason is just historical [VAN DER LINDEN,
1997] and goes back to Smalltalk-72. For you, just remember that a method is just a function that belongs to a
class.

With the definition of the methods, we then have completed the class definition.

Resuming, if we want to capture the class of 3d vectors, (at least partially) in NetRexx code, we will write:

class vector3d public
 properties public
 xc -- x component
 yc -- y component
 zc -- z component

 method inverse() public
 xc = -xc
 yc = -yc
 zc = -zc

 method mag() public
 mag = Math.sqrt(xc*xc + xy*xy + xz*xz)
 return mag

When you define a class, you need to specify:

 +--+
 | |
 | CLASS |
 | |
 | +----------------------------+ |
	PROPERTIES	
	(storage definitions)	
+----------------------------+		
	METHODS	
	(operations on the	
	PROPERTIES)	
+----------------------------+		
 +--+

 Some "real" vectors

 The Objects are instances of a Class. So far we have defined how and what we can do to define and use a vector,
but we need a "real" one, to try out the class definitions, and use it. We need an instance of the class.

By defining the vector3d class in NetRexx, we have now created a new data type. To have a REAL vector3d you
then write:

 v = vector3d()

Here you just told NetRexx: "please, treat the variable v as a vector3d: as I told you in the class definition, this
variable will have 3 components associated to it, and I will be capable to perform operations like inverse , mag()
etc. to it".

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

As you probably realize, all this procedure made you create "something" that is NOT a string. Infact, as I said,
NetRexx has ONLY one NATIVE data type (the string) but you can create your own data types, and vector3d is just
one example.

NOTE for Java Programmers: Note that this definition is a bit different of what you would do in Java. If you had to
write the very same code in Java you would do:

 vector3d v;
 v = new vector3d();

In NetRexx, the dynamical definition of the object is done automatically for you (saving one line of typing).

 Initialising the Vector values

Now that we have a real vector3d object v, we can use its data fields and initialise it to some values.

We do it like this:

 -- v is a vector3d object
 v = vector3d()
 -- initialise the vector 2 , 3 , 1
 v.xc = 2
 v.yc = 3
 v.zc = 1

 Memory Model

 Consider the following definitions, were we define two vectors v1 and v2:

 v1 = vector3d(1 , 3 , 0)
 v2 = vector3d(0 , 1 , 1)

It is important to consider how NetRexx defines those objects (and the class methods) in your computer's
memory.

 Objects: Code:
 +------+ +-------------------+
 |xc=1 | | vector3d() |
v1:|yc=3 |========>===========>| x() |
 |xc=0 | = | y() |
 | | = | z() |
 +------+ = | mag() |
 = | phi() |
 +------+ = | |
 |xc=0 | = | |
v2:|yc=1 |========>= +-------------------+
 |xc=1 |
 | |
 +------+

We can see that an object is an instance of a class (which is a new, user defined, type).

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

Each object (the vectors v1 and v2 in our example) has its own data.

On the contrary, only ONE copy of the code for a class is shared by all the objects (that we now know we can call
instances of the class).

 Using vector3d Methods.

So far, we just defined the vector v, but we have done nothing with it.

To access vector3d methods, we use the very same syntax we used to access the data of the object.

 v = vector3d()
 -- Initialise values
 (...)
 m = v.mag() -- compute vector' mag
 p = v.phi() -- compute vector's PHI

In classical non-OO languages (FORTRAN, REXX, Pascal, etc.) the above call would have been written like:

 m = mag(v)
 p = phi(v)

while, in NetRexx, we wrote:

 m = v.mag()
 p = v.phi()

The difference is not just cosmetics: we are stressing the fact that the "center" of our attention is the v object, not
the action that we are performing (the computation of the MAG or of PHI).

We see that properties and methods are considered at the same logical level (even if, as memory is concerned,
treated in different ways).

So:

 v.xc = 2 -- means:
 -- assign 2 to the xc component of v

 m = v.mag() -- means:
 -- apply method "mag()" to v, and store
 -- the result in "m"

 Initialising a vector: the constructor.

If we look closer to the instruction we used to create a vector:

 v = vector3d()

we notice the usage of the parentheses () after the vector3d. This looks really like a method call. Infact, we are

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

calling a special method, called constructor, which is used to perform all the initialisations that are needed to
prepare the new object.

The constructor is a "special" method, that's why it MUST have the same name of the class. So, since our class is
called vector3d, to define the vector3d constructor method we'll write:

class vector3d
 ======== <-----------------+
 |
 |
-- constructor |
 method vector3d(...) public |
 ======== <-----------------+
 |
 |
 |
 +--------------------- ------------+
 |I MUST use the same name for |
 |the CLASS and for the CONSTRUCTOR |
 +----------------------------------+

Our first constructor will then look like:

-- method......: vector3d
-- purpose.....: constructor
--
 method vector3d(x=Rexx,y=Rexx,z=Rexx) public
 this.xc = x
 this.yc = y
 this.zc = z

In order to use the constructor for our vector initialization, we'll then write:

 v = vector3d(2,3,1)

which is exactly the same as writing, when we had not defined the constructor:

 v = vector3d() -- ditto like
 v.xc = 2 --
 v.yc = 3 -- v = vector3d(2,3,1)
 v.zc = 1 --

 Defining more than one constructor.

You'll find that having just one constructor method is usually not enough. Even in our simple class, it would be nice
if it was possible to write something like:

 zero = vector3d() -- define a vector 0 0 0

 v = vector3d(3,2,1)
 z = vector3d(v) -- define a vector like v,
 -- i.e. 3 2 1

 unary = vector3d(1) -- define a vector 1 1 1

You can do this in NetRexx writing "additional" methods, with the same name, but with different arguments. In

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

our example, we'll write:

 -- overloaded constructors
 --
 method vector3d() public
 this(0,0,0)

 method vector3d(x=Rexx) public
 this(x,x,x)

 method vector3d(v1=vector3d) public
 this(v1.x,v1.y,v1.z)

What we just achieved is an operation of "method overloading", i.e. define a method with the same name, but
different arguments.

 Undefined constructor

So far we have defined 4 constructor methods, which are (just to summarise):

 method vector3d(x=Rexx,y=Rexx,z=Rexx) public

 method vector3d() public

 method vector3d(x=Rexx) public

 method vector3d(v1=vector3d) public

This tells NetRexx that there are 4 ways to define a new vector. What happens if you try to write:

 a = vector3d(1,2)

Simple: NetRexx does not know how to treat this case, so you'll get a very nasty message saying:

 4 +++ a = vector3d(1,2)
 +++ ^^^^^^^^
 +++ Error: cannot find constructor 'vector3d.vector3d(byte,byte)'

which means: "I do not know how to deal with this special case of vector3d followed by 2 arguments."

 The main() method

 The main() method is a special one. It is the method that will automatically be called if you invoke a class directly
from the command line.

Recall the parrot program:

+--+
| /* parrot.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

|01
| * echoes back what you type on command line |02
| */
|03
| parse arg s1
|04
| say 'you said "'s1'".'
|05
| exit 0
|06
+--+
 parrot.nrx

 Download the source for the parrot.nrx example

If you want to write the very same code using a class, you'll do:

+--+
| -- This class implements a class version of parrot.nrx |01
| --
|02
| class parrotc public |03
|
|04
| method main(arguments=String[]) public static |05
| parse Rexx(arguments) s1 |06
| say 'you said "'s1'".'
|07
| exit 0
|08
+--+
 parrotc.nrx

 Download the source for the parrotc.nrx example

The two programs are perfectly equivalent (although the first one is definitely less typing). Infact, what NetRexx
does is to translate the 1st one into "something" that looks like the 2nd one.

The main() method is very useful if you want to test a class. You will just put the class test cases, and run it typing
java PROGNAME.

 Putting all those pieces together

This is probably the most important section we've seen so far, since we finally apply in reality what we've been
doing till now.

We have a file, called vector3d.nrx, that contains all the properties and methods used by the vector3d class. We
compile it, and obtain a vector3d.class class file.

We can now edit a file that exercises the 3d vectors. The easiest one can be something like:

+--+
| -- tvec3ds.nrx |01

http://www.netrexx.org/examples/parrot.nrx
http://www.netrexx.org/examples/parrotc.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

|
|02
| a = vector3d(1,1,1) -- define a vector |03
| say 'Vector "a" components:' a.components()'.' |04
|
|05
| a.inverse() -- inverse it |06
| say 'Vector "a.inverse()" is' a.components()'.' |07
| exit 0
|08
|
|09
+--+
 tvec3ds.nrx

 Download the source for the tvec3ds.nrx example

As you can see, we do very little: just define a vector3d a, display his components, invert it, and check that all was
OK.

We compile tvec3ds.nrx. NetRexx will grab the vector3d class definition at compile time, so it will know how a
vector3d looks like. We end up with with a tvec3ds.class, which we can run as usual.

Resuming:

-- compile
[1]> java COM.ibm.netrexx.process.NetRexxC vector3d.nrx
[2]> java COM.ibm.netrexx.process.NetRexxC tvec3ds.nrx
-- run
[3]> java tvec3ds

To visually resume what we did, here's a picture:

 +---------+ +---------+
SOURCE		SOURCE
 +---------+ +---------+
 vector3d.nrx tvec3ds.nrx
 = =
 = =
 (java IBM... vector3d) (java IBM... tvec3ds)
 = [1] = [2]
 = =
 +---------+ +---------+
JAVA CODE	=============	JAVA CODE
 +---------+ +---------+
 vector3d.class tvec3ds.class
 =
 =
 =
 (java tvec3ds)
 =
 [3]

The following program illustrates all what we've implemented in the vector3d class.

http://www.netrexx.org/examples/tvec3ds.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

+--+
| -- tvec3d.nrx
|01
| -- exercise the 3dim vector class |02
| --
|03
| a = vector3d(1) |04
| b = vector3d(3,4,3) |05
| c = vector3d()
|06
| d = vector3d(b) |07
| e = vector3d()
|08
| f = vector3d()
|09
|
|10
| say 'Vector "a" components:' a.components()'.' |11
| say 'Vector "b" components:' b.components()'.' |12
| say 'Vector "c" components:' c.components()'.' |13
| say 'Vector "d" components:' d.components()'.' |14
| say 'Say "a.mag()" is: 'a.mag()'.' |15
|
|16
| e.zero()
|17
| e.add(a)
|18
| e.add(b)
|19
| say 'Vector "a+b" is' e.components()'.' |20
| e.inverse() |21
| say 'Vector "e.inverse()" is' e.components()'.' |22
|
|23
| e = vector3d.add(a,b) |24
| say 'Vector "a+b" is' e.components()'.' |25
|
|26
| f = vector3d.greater(a,b) |27
| say 'Vector "greater(a,b)" is' f.components()'.' |28
|
|29
| -- let's play with an array of vectors
30
31
k = 200
32
v = vector3d[k]
v[1] = vector3d(1,1,1)
v[2] = vector3d(2,2,1)
v[3] = vector3d(0,2,0)
e.zero()
37
loop i = 1 to 3
38
say 'vector "v['i']" is' v[i].components()'.'
e.add(v[i])
end
41
say 'Vector "INTEGRAL" is' e.components()'.'
43
exit 0
44
+--+
 tvec3d.nrx

 Download the source for the tvec3d.nrx example

 *** This section is:

http://www.netrexx.org/examples/tvec3d.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

 *** and will be available in next releases

 Static Properties and Methods

 Subclasses and Inheritance

The vector3d class we defined is very good for classical physics. But, for relativistic studies, we need also to add
another dimension: t.

This means that we need a new class, which we'll call vectorLo (as an abbreviation for vectorLorentz: a vector in
the 4 dimension space).

 Extending a Class

NetRexx allows you to use the code we already wrote for the 3 dimension vector class, defining vectorLo as an
extension (or subclass) of vector3d

We do this as:

class vectorLo public extends vector3d
 properties public
 (...)

 method (...)

The extends keyword tells NetRexx that the newly created vectorLo class is a subclass of vector3d. As such it
INHERITS the variables and methods declared as public in that class.

That's where the real point is: we do not have to define again the method x(), in order to get the x component of a
Lorentz vector, we just use the method we inherited from the 3 dimensional vector3d class.

Some methods, of course, need to be overloaded, like in the case of:

-- method......: components
-- purpose.....: prints the components
--
 method components() public returns string
 return '('this.xc','this.yc','this.zc','this.tc')'

to take into account the new dimension.

The Lorenz's vector implementation will be:

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

+--+
| -- This class implements a Vector in a 4 dimentional space |01
| --
|02
| class vectorLo public extends vector3d |03
| properties public |04
| tc
|05
|
|06
| -- method......: vectorLo |07
| -- purpose.....: constructor |08
| --
|09
| method vectorLo(x=Rexx,y=Rexx,z=Rexx,t=Rexx) public |10
| super(x,y,z) |11
| this.tc = t
|12
|
|13
| method vectorLo() public |14
| this(0,0,0,0) |15
|
|16
| method vectorLo(x=Rexx) public |17
| this(x,x,x,x) |18
|
|19
| method vectorLo(v1=vectorLo) public |20
| this(v1.xc,v1.yc,v1.zc,v1.tc) |21
|
|22
| -- method......: components |23
| -- purpose.....: prints the components |24
| --
|25
| method components() public returns string |26
| return '('this.xc','this.yc','this.zc','tc')' |27
|
|28
| -- method......: main |29
| -- purpose.....: runs the test case |30
| --
|31
| method main(args=String[]) public static |32
| args=args
|33
| a = vectorLo(1,1,1,1) |34
| b = a
|35
|
|36
| say 'Vector "a" components:' a.components()'.' |37
| say 'Vector "b" components:' b.components()'.' |38
| say b.mag()
|39
|
|40
| exit 0
|41
+--+
 vectorLo.nrx

 Download the source for the vectorLo.nrx example

 Class Hierarchy

Just to clear out the terminology we speak about superclasses and sublasses, saying:

 +---------------+

http://www.netrexx.org/examples/vectorLo.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

 | vector3d |
 +---------------+
 +-(...is a superclass of...)<--+
 | |
 | |
 | |
 +->(...is a subclass of...)----+
 +---------------+
 | vectorLo |
 +---------------+

or, if you prefer:

 +--------+
 |KEYWORD |
 +--------+
 |
 V
 class vectorLo public extends vector3d
 | |
 | |
 V V
 +---------+ +-----------+
 |SUBCLASS | |SUPERCLASS |
 |INHERITS | | |
 +---------+ +-----------+

 Check if an object belongs to a subclass

It is sometimes useful to check if we have a particular subclass, within a superclass, and perform this check at
runtime.

Java programmers might use the instanceof operator; in NetRexx you just do:

 object <= class_name

using the <= operator.

So, for example, we might have:

 class vector3d public
 (...)
 class vectorLo public extends vector3d
 (...)
 class vectorHEP public extends vectorLo
 (...)

 v1 = vectorLo()
 if v1 <= vectorLo

Another way to test for a class match, as suggested by Mike Cowlishaw in a recent thread is:

 if OBJECT.getclass.getname == 'CLASS' then

I resume the above discussion in the following code:

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

+--+
| -- tvecLo1.nrx |01
| --
|02
| a = vectorLo(1,2,1,1) -- a Lorentz vector |03
| b = vector3d(1,1,1) -- a 3d vector |04
|
|05
| -- check if a and b are Lorentz vectors |06
| --
|07
| if a <= vectorLo
|08
| then say 'a is a Lor vec'
|09
| if b <= vectorLo
|10
| then say 'b is a Lor vec'
|11
|
|12
| -- get in another way
13
14
say 'a is a:' a.getclass.getname
say 'b is a:' b.getclass.getname
17
exit 0
18
+--+
 tvecLo1.nrx

 Download the source for the tvecLo1.nrx example

 First case study: A better approach to vectors.

I presented the example of the 3 dimensional and 4 dimensional vector classes mainly for "educational" purposes.
We saw infact a "minor" problem which is the need to write again some methods for the 4 dimensional vector
class, because we need to take into account the fact that we have an extra dimension (remember the mag()
method). So, if we have to deal with 5 dimensional vectors, we'll need to rewrite AGAIN those methods.

There MUST be a better approach; the idea is to write a class which has NO notion of the space dimension, and use
that to build the 3d, 4d, 5d, etc. vectors.

This class will be called xvector.nrx.

 The xvector class: a generic vector.

The xvector class will implement a N-dimensional vector. We are then forced to use arrays to hold the numerical
values.

The mag() method will look like:

+--+

http://www.netrexx.org/examples/tvecLo1.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

| -- method......: mag |97
| -- purpose.....: vector's elements mag |98
| --
|99
| method mag() public |00
| sum = 0
|01
| loop i = 1 to this.dimension |02
| sum = sum + this.element[i]*this.element[i] |03
| end
|04
| sum = Math.sqrt(sum) |05
| return sum
|06
|
|07
+--+
 xvector.nrx(Method:mag)

 Download the complete source for the xvector.nrx library

+--+
| -- method......: add |24
| -- purpose.....: adds a vector to another |25
| --
|26
| method add(v1=xvector,v2=xvector) public static returns xvector |27
| v3 = xvector('0') |28
| v3.dimension = v1.dimension |29
| loop i = 1 to v1.dimension |30
| v3.element[i] = v1.element[i] + v2.element[i] |31
| end
|32
| return v3
|33
|
|34
+--+
 xvector.nrx(Method:add)

 Download the complete source for the xvector.nrx library

 A revisited 3d vector.

Look now how simple is to build our 3 dimension vector class: we just extend the xvector class and override the
constructor, to allow writing:

 v = xvector3d(1,2,3)

I'll call the new 3d vector class xvector3d, to avoid confusion with the vector3d one we studied in the previous
sections.

+--+
| -- This class implements a Vector in a 3 dimensional space |01
| -- extending the xvector class |02
| --
|03
| class xvector3d public extends xvector |04

http://www.netrexx.org/library/xvector.nrx
http://www.netrexx.org/library/xvector.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

|
|05
| -- method......: vectorLo |06
| -- purpose.....: constructor |07
| --
|08
| method xvector3d(x=Rexx,y=Rexx,z=Rexx) public |09
| super(x','y','z) |10
|
|11
| method xvector3d() public |12
| this('0','0','0') |13
|
|14
| method xvector3d(x=Rexx) public |15
| this(x,x,x) |16
|
|17
| method xvector3d(v1=xvector3d) public |18
| this(v1.element[1],v1.element[2],v1.element[3]) |19
|
|20
| -- method......: main |21
| -- purpose.....: runs the test case |22
| --
|23
| method main(args=String[]) public static |24
| args=args
|25
| a = xvector3d(1,1,1) |26
| b = a
|27
|
|28
| say 'Vector "a" components:' a.display()'.' |29
| say a.mag()
|30
| say 'Vector "b" components:' b.display()'.' |31
|
|32
| exit 0
|33
+--+
 xvector3d.nrx

 Download the source for the xvector3d.nrx example

 Second case study: the command line class cmdline.

 After having dealt with vectors, which might not be interesting for you, if you're not a physicist or an engineer,
let's start with some real objects that you are dealing with everyday.

 The command line

The command line is one of those objects. With command line I mean all what you enter after a program's name
on the command line (shell or DOS prompt).

prompt> java my_command arguments -options

 |
 +--------------+
 | COMMAND LINE |
 +--------------+

A command line is usually divided in

http://www.netrexx.org/examples/xvector3d.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

arguments
options (introduced with a "-" sign)

Just take a UNIX book and you'll find hundreds, if not thousands of examples. I give you a really small sample:

command options arguments
---------------- ------- ---------

ls -la test tost -l -a test tost
df -k /usr -k /usr
cat test NONE test
tar -cvf o.tar * -c -v *
 -f tar

The operations that we do, when analysing a command line in a in a program are (in random order):

check that the user enters the right number of arguments;
initialise options to a default value;
check that the options are valid;
check that an option requiring an argument has a valid one;

 Additional requirements

Since we want to be clever, we add also some requirements:

We want that the arguments and options can be intermixed: this means that:

myprog -t -o test.file input_arg
myprog -to test.file input_arg
myprog input_arg -o test.file -t

MUST be perfectly equivalent from the user's point of view. (note that this is not always true in UNIX!).

Also, we want to be capable to query, at any time in the program, the value of an option, in order to write
something like:

il = cmdline()
(...)
if il.option('TRACE')
 then say 'Tracing is active'
(...)

 Option pre-setting.

In the actual implementation, we need indeed an additional information, which is "how to pass the options and
their default value when we create the cmdline?".

A way is to use a string that holds, separated by a delimiter, the value of :

- the symbol of the option (like r, t, o, etc.);
- a parameter indicating if it's a flag or a variable;
- the NAME of the option

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

- the default value

We will call this string the rules definition, since we use those rules to define the options.

Example:

't/FLA/TRACE/0'

we define an option (-t) which is a flag, known in our program as 'TRACE' and defaulted to 0

'o/VAR/OUTFID/test.output'

we define an option (-o) which defines a variable, known in our program as 'OUTFID' and defaulted to test.output

't/FLA/TRACE/0 o/VAR/OUTFID/test.output'

our rules definition is now to have two options, the same as above

 Cmdline class overview

The cmdline constructor will accept two arguments: the first one being a rexx string containing the line entered
by the user; the second one being again a rexx string, containing the rules in the format we defined. This allows us
to already prepare all the options and all the arguments.

+----------------------+
|USER'S INPUT |
|like: file1 -t -o test|
+----------------------+
 |
cl = cmdline(inputline , rules)
 | |
 | +------------------------------+
	PROGRAMMER'S RULES
	like: 't/FLA/TRACE/0' -
	'o/VAR/OFID/test.out'
+------------------------------+	
+------------------------------------+	
This object is now aware of the	
options as entered by the user	
allowing something like:	
if \cl.option('TRACE') then ...	
 +------------------------------------+

The class will look like:

class cmdline
 properties private
 options
 argument
 (...)
 method cmdline(rexx,rexx) public
 method option(rexx) public
 method verify(rexx) public
 method optiondump() public
 (...)

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

 Cmdline class implementation.

I show now how some of the class methods are implemented.

By far the most complex is the cmdline constructor. We need infact to analyse the command line, as entered by
the user (instr) and parse the options as defined by the programmer (rules).

The first step is to check the rules, set the valid options and set the default option values.

+--+
| -- method......: cmdline |95
| -- purpose.....: constructor |96
| --
|97
| method cmdline(instr=Rexx,rules=Rexx) public |98
|
|99
| -- initial setup
00
01
olist = '' -- option_list
oinfo = '' -- option info
03
outstr = '' -- that's the string that holds all BUT the
-- options; we'll return this
06
-- set the defaults
07
--
08
loop for rules.words()
parse rules rule rules
10
parse rule opt'/'info
11
olist = olist opt
12
oinfo[opt] = info
13
parse info kin'/'nam'/'def
select
15
when kin = 'FLA' then
16
do
17
value[nam] = def
18
end
19
when kin = 'VAR' then
20
do
21
def = def.translate(' ','$')
value[nam] = def
23
end
24
otherwise
25
do
26

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

| say '(parse_UXO) Internal error.' |27
| say '(parse_UXO) kin was "'kin'".' |28
| say '(parse_UXO) Aborted.' |29
| exit 901
|30
| end
|31
| end
|32
| end
|33
|
|34
| -- get the options as entered |35
| --
|36
| loop while instr <> ''
|37
| parse instr var instr
|38
| if var.left(1,1) <> '-' then |39
| do
|40
| outstr = outstr var |41
| Iterate
|42
| end
|43
| svar = var
|44
| var = var.substr(2,1) |45
| if olist.wordpos(var) = 0 then |46
| do
|47
| say 'Invalid option "'var'" selected.' |48
| say 'Valid options are "'olist.space()'".' |49
| say 'Program aborted.' |50
| exit 902
|51
| end
|52
| info = oinfo[var]
|53
| parse info kin'/'nam'/'def |54
| select
|55
| when kin = 'FLA' then
|56
| do
|57
| if def = '0'
|58
| then def = '1'
|59
| else def = '0'
|60
| value[nam] = def
|61
| end
|62
| when kin = 'VAR' then
|63
| do
|64
| def = def.translate(' ','$') |65
| cho = ''
|66
| loop for def.words() |67
| parse instr tt instr
|68
| if tt = '' then
|69
| do
|70
| say 'Invalid argument for option "'var'".' |71
| say 'Should be a' def.words() 'words string.' |72
| say 'Like default "'def'".' |73

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

| say 'Program Aborted.' |74
| exit 903
|75
| end
|76
| cho = cho tt
|77
| end
|78
| value[nam] = cho.space() |79
| end
|80
| otherwise NOP
|81
| end
|82
| -- here I deal with the case when one enters
|83
| -- -tf instead of -t -f
84
85
if svar.length() <> 2 then
do
87
ll = svar.length() - 2
oo = svar.substr(3,ll)
instr = '-'oo instr
90
end
91
end
92
argumentlist = outstr.space()
94
+--+
 xstring.nrx(Method:cmdline)

 Download the complete source for the xstring.nrx library

+--+
| -- method......: option |95
| -- purpose.....: |96
| --
|97
| method option(in=Rexx) public |98
| out = value[in]
|99
| return out
|00
|
|01
+--+
 xstring.nrx(Method:option)

 Download the complete source for the xstring.nrx library

 Additional examples

This two additional examples should clarify what we did.

+--+
| -- test for the cmdline class
01

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

|02
| -- we allow 2 options:
|03
| -- -t (TRACE) flag default to 0 |04
| -- -o (OUTFID) variable defaulted to test.out |05
| --
|06
| parse arg argsl
|07
|
|08
| cl = cmdline(argsl,'t/FLA/TRACE/0' - |09
| 'o/VAR/OUTFID/test.out') |10
| say 'The arguments are:' cl.arguments()'.' |11
| if cl.option('TRACE') |12
| then say 'Tracing is ON'
|13
| else say 'Tracing is OFF'
|14
| say 'The output file is:' cl.option('OUTFID') |15
|
|16
| exit 0
|17
+--+
 tcl1.nrx

 Download the source for the tcl1.nrx example

+--+
| -- another test
01
02
class tcl2
03
properties public
05
method tcl2() public
07
method main(ar=String[]) public static
argsl = xstring.a2s(ar)
10
-- test for the cmdline class
11
--
12
-- we allow 2 options:
13
-- -r (REPLACE) flag default to 0
-- -T (TESTLEVEL) variable defaulted to 0
--
16
cl = cmdline(argsl,'r/FLA/REPLACE/0' -
'T/VAR/TESTLEVEL/0')
say 'The arguments are:' cl.arguments()'.'
if cl.option('REPLACE')
then say 'Replace is ON'
21
else say 'Replace is OFF'
22
say 'The testlevel is:' cl.option('TESTLEVEL')
24
exit 0

http://www.netrexx.org/examples/tcl1.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

|25
+--+
 tcl2.nrx

 Download the source for the tcl2.nrx example

 This chapter's tricks.

 Getting the arguments from main()

As we have seen, the arguments in the main() method are passed as an array of string[].

This is clearly different from the approach we saw in Chapter 2 about the argument passing from the command
line, where arg was returning a simple NetRexx string.

To get the arguments in the "right" way (i.e. the way you have been used to) you need to code an extra line:

 method main(args=String[]) public static
 arg = Rexx(args) -- ADD THIS LINE
 parse arg p1 p2 . -- THIS as usual
 --

The line:

 arg = Rexx(args)

instruct NetRexx to "translate" the array of string args into a single NetRexx variable string.

 args[0] -+---(Rexx())--> arg
 args[1] -+
 (...)
 args[n] -+

 *** This section is:

 *** and will be available in next releases

 Chapter Summary

 *** This section is:

 *** and will be available in next releases

http://www.netrexx.org/examples/tcl2.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

File: nr_11.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:45(GMT +2).

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

The NetRexx Tutorial
 - More on NetRexx Classes

More on NetRexx Classes

 Introduction

In this chapter we'll look at some "details" we intentionally left uncovered in the previous discussion.

 Basic Concepts

 Patterns and Pattern Design

Pattern Design is used to sketch a solution to some particular Object Oriented problem. It has probably already
happened to you (as it did to me) to think: "I've already solved this problem (or a similar one) in the past." Then
you rush to your code and try to find the solution again. If I'm allowed to make such comparison, then, "Design
Patterns" stand to "Object Oriented Programming" as "Algorithms" stand to "Procedural Programming". Even
further, Gamma, Helm, Johnson and Vlissides text stands to "Design Patterns" as Knuth's stands to "Algorithms".

The key issue is to make your software reusable. Using Design Patterns, you not only make it such, but you also
reuse other's people efforts to find the right solution.

 Usage of Abstract Classes

 A Simple (?) problem

Let us consider a class hierarchy for a simple problem: we consider the "universe" of 2D rectangular objects, where
we'll find Rectangles and Squares. A Venn diagram representing our "universe" might be useful:

 +---+ U
 | | N
 | RECTANGLE | I
 | | V
 | +--------------+ | E
 | | | | R
 | | SQUARE | | S
 | | | | E
 | +--------------+ |
 +---+

 Venn diagram of the
 "universe" class RECTANGLE
 with a subclass (SQUARE)

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

 Making an Object Model

 Recalling what we saw in the previous section, we can try to implement the above diagram using NetRexx. The
first thing I'd think of is to make a Rectangle class, and have Square defined as a subclass of Rectangle.

Let's make an Object Model for this diagram:

 +--------------+
 | |
 | RECTANGLE |
 | |<-----(RE1)
 +--------------+
 |
 *
 * *

 |
 +--------------+
 | |
 | SQUARE |
 | |<-----(SQ1)
 +--------------+

Note that, in our diagram:

classes are represented by squared boxes;
the triangular symbol connects two classes, and represents the "is-a" relationship. It points ALWAYS to the
superclass.
The "<---()" represents an object, and it points to the class it belongs to.

So, from our picture we can say phrases like: the class "SQUARE" "is-a-subclass-of" the class "RECTANGLE", or the
object "SQ1" is an instance of the class "SQUARE".

 Implementing it in NetRexx

The actual implementation is trivial: so just look at the code.

+--+
| -- abex1.nrx
|01
| -- Implements Rectangles and Squares |02
| --
|03
| class abex1 public
|04
| properties public |05
|
|06
| method main(args=String[]) public static |07
| args = args
|08
|
|09
| RE1 = _Rectangle(1,2) |10
| say RE1.area()
|11

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

|
|12
| SQ1 = _Square(2)
|13
| say SQ1.area()
|14
|
|15
| exit 0
|16
|
|17
| class _Rectangle
|18
| properties public |19
| length
|20
| width
|21
| method _Rectangle(l=Rexx,w=Rexx) public |22
| length = l
|23
| width = w
|24
| method area public |25
| return this.length*this.width |26
| method set_width(w=Rexx) public |27
| this.width = w
|28
| method set_length(l=Rexx) public |29
| this.length = l |30
| method perimeter public |31
| return 2*(this.length+this.width) |32
|
|33
| class _Square extends _Rectangle |34
| method _Square(s=Rexx) public |35
| super(s,s)
|36
| method area public |37
| return this.length*this.length |38
| method perimeter public |39
| return 4*this.length |40
+--+
 abex1.nrx

 Download the source for the abex1.nrx example

 Critics to the above implementation

There is a series of problems with the above implementation; I analyse them in order of increasing importance.

To compute the perimeter of a Square, we need to do 4*width. It should be more logical to do 4*side.
We use 2 variables to store a SQUARE's side, since width and length are always equal. This means a waste of
storage.
There is no protection for somebody writing:

 SQ1 = _Square(3)
 SQ1.setlength(4)

which is, in my opinion, REALLY a bad thing: we allow people to make squares with different sides.

 Using Abstract Class

http://www.netrexx.org/examples/abex1.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

To correctly represent the Venn Diagram, we MUST use three classes. The universe class will be an "abstract"
class, that we can call 2DSHAPE.

Let's revise our Object Model:

 +--------------+
 | |
 | 2DSHAPE |
 | |
 +--------------+
 |
 *
 * *
 +--------*****-----------------+
 | |
 | |
+--------------+ +--------------+
| | | |
| SQUARE | | RECTANGLE |
| |<--(SQ1) | |<--(RE1)
+--------------+ +--------------+

 Implementation

 In order to create an abstract class (i.e. a class that contains at least an abstract method), we use the keyword
abstract (note that in C++ the keyword virtual is used).

That's how you'd implement in NetRexx:

+--+
| -- abex2.nrx
|01
| -- abstract class example |02
| --
|03
| class abex2 public
|04
|
|05
| method main(args=String[]) public static |06
| args = args
|07
| R1 = _Rectangle(2,3) |08
| say R1.area()
|09
| S1 = _Square(3)
|10
| say S1.area()
|11
| say 'You defined' _2Dshape.nobjects 'shapes.' |12
| exit 0
|13
|
|14
| class _2Dshape abstract |15
| properties public static |16
| nobjects = 0
|17
| method _2dShape() public |18
| nobjects = nobjects+1 |19
| method area public returns Rexx abstract |20
| method perimeter public returns Rexx abstract |21
|
|22

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

| class _Rectangle extends _2Dshape |23
| properties private |24
| length
|25
| width
|26
| method _Rectangle(l=Rexx,w=Rexx) public |27
| super()
|28
| length = l
|29
| width = w
|30
| method area public |31
| return length*width |32
| method perimeter public |33
| return 2*length*width |34
|
|35
| class _Square extends _2Dshape |36
| properties private |37
| side
|38
| method _Square(s=Rexx) public |39
| super()
|40
| side = s
|41
| method area public |42
| return side*side |43
| method perimeter public |44
| return 4*side |45
|
|46
+--+
 abex2.nrx

 Download the source for the abex2.nrx example

 Interfaces

 *** This section is:

 *** and will be available in next releases

 Dynamical Interfaces

 Sample code

The interface part will look as follows:

+--+
| -- runnable.nrx |01
| --
|02
| class runnable interface |03
| method run() public |04
+--+

http://www.netrexx.org/examples/abex2.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

 runnable.nrx

 Download the source for the runnable.nrx example

+--+
| -- dyna2.nrx
01
02
class dyna2 public
03
04
method main(args=String[]) public static
arg = Rexx(args)
06
do
07
r = runnable;
08
un = Class.forName(arg);
r = runnable un.newInstance()
r.run()
11
catch e= Exception
12
say e
13
end
14
exit 0
15
16
class test1 implements runnable
method run public
say 'Hello from class TEST1'
20
class test2 implements runnable
method run public
say 'Hello from class TEST2'
24
+--+
 dyna2.nrx

 Download the source for the dyna2.nrx example

+--+
| -- dyna3.nrx
01
02
class dyna3 public
03
04
method main(args=String[]) public static
arg = Rexx(args)
06
loop forever
07
say 'Enter Class name (A,B,C) or quit'
parse ask.upper() name
if name = 'QUIT' then leave
10

http://www.netrexx.org/examples/runnable.nrx
http://www.netrexx.org/examples/dyna2.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

| do
|11
| r = runnable;
|12
| un = Class.forName(name); |13
| r = runnable un.newInstance() |14
| r.run()
|15
| catch e= Exception
|16
| say e
|17
| end
|18
| say 'There are' A.n 'instances for A.' |19
| say 'There are' B.n 'instances for B.' |20
| say 'There are' C.n 'instances for C.' |21
| end
|22
| say 'End.'
|23
| exit 0
|24
|
|25
| -- class A
26
27
class A implements runnable
properties static
n = 0
30
method A public
n = n+1
32
method run public
say 'Hello from class A'
34
35
-- class B
36
--
37
class B implements runnable
properties static
n = 0
40
method B public
n = n+1
42
method run public
say 'Hello from class B'
44
45
-- class C
46
--
47
class C implements runnable
properties static
n = 0
50
method C public
n = n+1
52
method run public
say 'Hello from class C'
54
+--+
 dyna3.nrx

 Download the source for the dyna3.nrx example

http://www.netrexx.org/examples/dyna3.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

This is what we get running dyna3:

..
Enter Class name (A,B,C) or quit
A
Hello from class A
There are 1 instances for A.
There are 0 instances for B.
There are 0 instances for C.
Enter Class name (A,B,C) or quit
A
Hello from class A
There are 2 instances for A.
There are 0 instances for B.
There are 0 instances for C.
Enter Class name (A,B,C) or quit
A
Hello from class A
There are 3 instances for A.
There are 0 instances for B.
There are 0 instances for C.
Enter Class name (A,B,C) or quit
B
Hello from class B
There are 3 instances for A.
There are 1 instances for B.
There are 0 instances for C.
Enter Class name (A,B,C) or quit
C
Hello from class C
There are 3 instances for A.
There are 1 instances for B.
There are 1 instances for C.
Enter Class name (A,B,C) or quit
B
Hello from class B
There are 3 instances for A.
There are 2 instances for B.
There are 1 instances for C.
Enter Class name (A,B,C) or quit
quit
End.
..

 *** This section is:

 *** and will be available in next releases

 Patterns

 The Singleton

The idea of Singleton is simple: we want to make sure that a class has ONLY one instance, and we want to provide
a global point of access to it.

The structure is (GAMMA, 96, p. 127)

+----------------------------+

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

| Singleton |
+----------------------------+ +----------------------\
| static Instance() *-------------> | return uniqueInstance|
| (...) | +----------------------+
| SingletonOperation() |
| GetSingletonData() |
| |
| |
| |
+----------------------------+
| static UniqueInstance |
| (...) |
| singletonData |
| |
| |
+----------------------------+

 NetRexx Implementation of the Singleton

The NetRexx implementation of the Singleton Pattern might look like:

+--+
| -- Singleton.nrx |01
| -- NetRexx Implementation of Singleton |02
| -- see GAMMA, 1996, p.127
03
04
class Singleton public
06
properties private static
_instance = Singleton NULL
09
method Singleton() private
11
method Instance() returns Singleton public static
if _instance = NULL then
13
do
14
_instance = Singleton()
return _instance
end
17
return _instance
+--+
 Singleton.nrx

 Download the source for the Singleton.nrx example

Let's look at it closely. The first "uncommon" feature we find is:

 method Singleton() private

i.e. the constructor is declared as private. Clients will not be capable to access it with a normal:

 s = Singleton()

http://www.netrexx.org/examples/Singleton.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

Instead, they're forced to use the Instance() member function, declared as static.

This means that the clients will need to write:

 s = Singleton.Instance()

in order to get the unique Singleton's instance.

 *** This section is:

 *** and will be available in next releases

 An history class.

 Description of the problem

 It is sometimes interesting to record the actions that an user enters when dealing with an interactive program.
This is, for example, the case of the history command in an UNIX shell.

 First approach.

When I dealt for the first time with an implementation of an history command, my solution was to define a history
buffer (with his length):

 properties public static
 cmdbuf = Rexx(")
 cmdbufl = 20

and 2 methods to save/dump the history:

+--+
| -- method......: historyd |44
| -- purpose.....: display the history |45
| --
|46
| method historyd(cur=Rexx) public static |47
| if cur < cmdbufl
|48
| then st = 1
|49
| else st = cur-cmdbufl
|50
| loop i = st to cur-1
|51
| say i.right(5) cmdbuf[i] |52
| end
|53
|
|54

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

+--+
 xshell1.nrx(Method:historyd)

 Download the complete source for the xshell1.nrx library

+--+
| -- method......: history |55
| -- purpose.....: history |56
| --
|57
| method history(a=Rexx,n=Rexx) public static |58
| if a <> '' then
|59
| do
|60
| cmdbufl = a
|61
| end
|62
| else
|63
| do
|64
| historyd(n) |65
| end
|66
|
|67
+--+
 xshell1.nrx(Method:history)

 Download the complete source for the xshell1.nrx library

In the main loop, I was calling saving the entered command in the buffer

 cmdbuf[cmdno] = todo
 cmdno = cmdno+1

 The history class

The commands are saved in the history buffer inside a circular buffer

+--+
| -- method......: save |66
| -- purpose.....: |67
| --
|68
| method save(entry=Rexx) public |69
| k = lastrec // maxrec |70
| if record[k] <> NULL then
|71
| do
|72
| if entry = record[k]
|73
| then return
|74
| end
|75
| lastrec = lastrec+1 |76
| k = lastrec // maxrec |77
| record[k] = entry

http://www.netrexx.org/library/xshell1.nrx
http://www.netrexx.org/library/xshell1.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

|78
|
|79
+--+
 history.nrx(Method:save)

 Download the complete source for the history.nrx library

+--+
| -- method......: dump |45
| -- purpose.....: |46
| --
|47
| method dump(n=Rexx) public |48
| first = lastrec - n + 1
|49
| loop i=first to lastrec |50
| k = i// maxrec
|51
| if record[k] = NULL then iterate |52
| if record[k] = '' then iterate |53
| say i.right(5) record[k] |54
| end
|55
|
|56
+--+
 history.nrx(Method:dump)

 Download the complete source for the history.nrx library

+--+
| -- method......: retrieve |57
| -- purpose.....: |58
| --
|59
| method retrieve(n=Rexx) public returns Rexx |60
| if n < lastrec - maxrec then return " |61
| if n > lastrec then return " |62
| k = n// maxrec
|63
| return record[k] |64
|
|65
+--+
 history.nrx(Method:retrieve)

 Download the complete source for the history.nrx library

 his = history(100)

 loop
 -- get user input
 his.save(USER_INPUT)

 end

 Additional sources of information

You can find additional information about patterns at:

http://www.netrexx.org/library/history.nrx
http://www.netrexx.org/library/history.nrx
http://www.netrexx.org/library/history.nrx

NetRexx Tutorial - More on NetRexx Classes

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://st-www.cs.uiuc.edu/users/patterns/

with some tutorial information at:

http://www.enteract.com/~bradapp/docs/patterns-intro.html
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/

 Chapter Summary

 *** This section is:

 *** and will be available in next releases

File: nr_12.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:47(GMT +2).

http://st-www.cs.uiuc.edu/users/patterns/
http://www.enteract.com/~bradapp/docs/patterns-intro.html
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

The NetRexx Tutorial
 - Operations on files

Operations on files

 Introduction

File I/O has always been a 'problem' in REXX. In fact, REXX was born as a platform-independent language. There were
no (at least not in the first specifications of the language) direct ways to access informations stored into a file. This led
to (quoting some examples) EXECIO in VM/CMS, CMS/PIPES in later VM/CMS, STREAMS in OS/2, etc.

In NetRexx we use the file access routines that Java provides. In this chapter we will discuss how to access file
information using NetRexx. You will learn how to:

read/write a file in one single operation;
use 'pseudo' RECFM F files on UNIX;
use indexed file and get a random record out of 1 000 000 within a millisecond.

We will perform this task using an OOP approach.

Thanks to Massimiliano (Max) Marsiglietti, a NetRexx porting of the functions STREAM, CHARIN, CHAROUT etc. has
been done. Those routines will be discussed in the latest section of this chapter.

 Basic Concepts

 The Stream I/O model

In NetRexx (like in Java) all the I/O mechanism is built on Streams. The idea of Streams is similar (but not related)
to the STREAMS in the Unix Kernel.

The Stream class gives you a mechanism "to get from" or "to put in" data into "somewhere". This "somewhere"
can be a file, a screen or keyboard, the network, an audio device, etc. Your program will not have to care about the
"details" in the implementation. It will just read() or write() to the Input or Output Stream.

 ()
 read() <---(bytes)---(Input Stream)
 (_____________)

 ()

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 write() ----(bytes)-->(Output Stream)
 (_____________)

 Read/Write in Blocks

 Before going into the details concerning the file I/O operations, let me clarify a point which is, in my opinion,
extremely important.

I have always found the approach in which one tries to "confine" the operations on files inside subroutines more
elegant, and easier to port and maintain. This is in contrast with the usual practice of intermixing file operations
with the normal program flow. Let me make this clearer. The 'standard' approach is the following:

 -- "standard" approach to file
 -- Read/Write
 open INPUT_FILE
 open OUTPUT_FILE

 do while THERE_ARE_RECORDS
 read INPUT_FILE
 process RECORD
 write OUTPUT_FILE
 end

 close INPUT_FILE
 close OUTPUT_FILE

what I prefer is the following:

 -- "alternative" and "preferred" *** BETTER ***
 -- approach to FILE I/O

 -- opening/reading/closing
 -- of the input file is done inside the rd_file
 -- method
 read_file INPUT_FILE

 do for RECORDS
 process RECORD
 end

 -- opening/writing/closing
 -- of the output file is done inside the wr_file
 -- method
 write_file OUTPUT_FILE

All the 'dirty' jobs (checking file existence, opening, closing, transferring data to and from an array, etc.) are
reduced by this approach to ONLY two methods (the read_file and the write_file). There are cases where (as we
shall see) there is no choice other than to take the first approach, but these are rare. I have personally used the
second in 95% of programs and, again, it is easier to read, easier to port, simpler to maintain. You might ask
yourself why I stress the benefits of code porting. An example is the code on VM/CMS written some years ago. In
the early versions of Rexx there were NO instructions for file I/O, so someone was obliged to use the "infamous"
EXECIO instruction. If all the instructions are 'confined' in two subroutines (now we call'm methods) , the changes
are minimal when the code is ported. Otherwise you will need to change it in hundreds of places (if the program is
big). And the more changes you make, the more bugs that can slip in. Summary: use simple methods for file I/O
operations as much as you can; some of those methods you can see later in this chapter.

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 Checking file existence

 The first thing you might want to do on a file is to check that it really exists. You can use the xfile built-in function
'state':

rc = xfile.state(file_id)

Alternatively, you could use the HEP/VM function fexist (file exist):

rc = xfile.fexist(file_id)

The output variable (rc in this example) has the following meaning for both functions:

 rc = 0 : file does NOT exist
 rc = 1 : file exists

Here a small example of the function:

+--+
| -- (...)
|01
| if \xfile.state('xstring.nrx') |02
| then say 'File does not exist.'
|03
|
|04
| if \xfile.fexist('/usr/local/bin/tcsh') |05
| then say 'TCSH not present.'
|06
|
|07
| exit 0
|08
+--+
 fexa1.nrx

 Download the source for the fexa1.nrx example

The implementation of those functions is trivial:

+--+
| -- method......: state |39
| -- purpose.....: check file existence |40
| --
|41
| method state(fid=Rexx) public static |42
| in = File(fid)
|43
| fl = in.exists() |44
| return fl
|45
|
|46

http://www.netrexx.org/examples/fexa1.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

+--+
 xfile.nrx(Method:state)

 Download the complete source for the xfile.nrx library

 Basic File operations in Java.

 This entire section should be regarded as "reference" only. You will find, in fact, the basic I/O operations that you
perform on a file. In my humble opinion it is nice to know these functions exist, but it is much better to use higher
level subroutines that do all the work for you. Therefore, you should skip this section if you are not really interested in
the detail.

 Java classes for File access

java.io.File
java.io.FileDescriptor
java.io.RandomAccessFile
java.io.InputStream
java.io.OutputStream
java.io.PrintStream

 *** This section is:

 *** and will be available in next releases

 Writing an extension to the Java File class

In the previous chapter we showed the advantages of the OOP. We now even more clarify those advantages
building our own extensions to the java.lang.Object class File.

This new class (that we'll call xfile) will allow us to:

use an intermediate array to buffer READ or WRITE operations
perform appends to existing files
simulate fixed length files (RECFM F)
allow the building of an index for fast random access record retrieval

 Reading and Writing a whole file.

It is sometimes desirable to read or write an ENTIRE file (i.e. from the first to the last line) with a single operation.
This approach has the obvious advantage of giving 'somebody else' all the bother of opening, read/write and
closing a file. That 'somebody' is merely the code that performs the function. The only drawback to such an

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

operation is that, especially if the file is big, it uses a lot of system resources. Therefore, as a rule of thumb, use the
ENTIRE file approach only for files < 1MB in size when you already know you are using ALL the records.

 Implementation of read() and write() in xfile.

 *** This section is:

 *** and will be available in next releases

+--+
| -- method......: read |95
| -- purpose.....: read a full file into an array |96
| --
|97
| method read() public |98
| rc = 0
|99
| do
|00
| in = DataInputStream(FileInputStream(File(name))) |01
| catch er=ioException |02
| rc = 3
|03
| return rc
|04
| end
|05
|
|06
| i = 0
|07
| loop while in.available <> 0 |08
| i = i+1
|09
| line[i] = in.readLine |10
| catch er=ioException |11
| say 'Problem reading file "'name'".' |12
| say 'Message is "'er'".' |13
| rc = 1
|14
| return rc
|15
| end
|16
| line[0] = i
|17
| lines = line[0]
|18
| return rc
|19
|
|20
+--+
 xfile.nrx(Method:read)

 Download the complete source for the xfile.nrx library

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

+--+
| -- method......: write |80
| -- purpose.....: ARRAY -> disk file operation |81
| --
|82
| method write() public |83
| rc = 0
|84
| do
|85
| out = PrintStream(FileOutputStream(File(name))) |86
| catch er=ioException |87
| say 'Problem opening file "'name'".' |88
| say 'Message is "'er'".' |89
| rc = 3
|90
| return rc
|91
| end
|92
|
|93
| loop i = 1 to line[0]
|94
| linew = line[i]
|95
| if recfm = 'F' then -- is recfm = F ?
|96
| do -- Yup, insert the right amount |97
| linew = linew.left(lrecl) -- of spaces (or truncate |98
| end -- if necessary)
|99
| out.println(linew) |00
| end
|01
|
|02
| -- we're done. but do not forget to close
|03
| -- and flush the printstream |04
| --
|05
| out.close() |06
| if out.checkError() then |07
| do
|08
| say 'ERROR in writing "'name'".' |09
| rc = 1
|10
| end
|11
| return rc
|12
|
|13
+--+
 xfile.nrx(Method:write)

 Download the complete source for the xfile.nrx library

 How to use the new methods.

You use the methods in the following way:

 infid = xfile('test.input')

 rc = infid.read()
 -- ----- ------
 | | |
 | | +------------< read operation
 | +-----------------< file object
 +------------------------< ==0 : OK

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 <>0 : problem

 (...)

 oufid = xfile('test.output')

 rc = oufid.write()
 -- ----- ------
 | | |
 | | +------------< read operation
 | +-----------------< file object
 +------------------------< ==0 : OK
 <>0 : problem

 Example of reading of an entire file.

 If you need to read an entire file and put its contents into the ARRAY variable, you use the .read() method. Let's
follow a complete example. Suppose your input file is test.data, and it looks like:

+--+
| data info 1 |
| data info 2 |
| (...) |
| data info N |
+--+
file: test.data

You read the ENTIRE file by calling

+--+
| (...) |
| infid = xfile('test.file') |
| (...) |
| rc = infid.read() |
| if rc <> 0 then /* action on READ fail */ |
| (...) |
+--+
 Example: read a file

AFTER the call, if rc was == 0, you get the values

 infid.line[0] : N
 infid.line[1] : 'data info 1'
 infid.line[2] : 'data info 2'
 (...)
 infid.line[N] : 'data info N'

You can now process the lines with a loop, such as

+--+
| (...) |
| loop i = 1 to infid.line[0] |
| parse infid.line[i] (...) |
| (...) |
| end |
| (...) |
+--+
 Example: post read processing

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 Writing a whole file

Now consider the opposite situation, where we accumulate information into an ARRAY and we want to write a file
with it (for example test.output).

+--+
| (...) |
| oufid = xfile('test.output') |
| (...) |
| loop i = 1 to 30 |
| (...) |
| oufid.addline('Output line' i) |
| end |
| (...) |
| rc = oufid.write() |
| if rc <> 0 then /* action on WRITE fail */ |
| (...) |
+--+
 Example: read a file

 Read/Write access to a file (line by line)

 Reading a file line by line

 It is sometimes more desirable to read a file line by line and perform certain tasks within the reading loop. A
typical case is when the input file is REALLY big ; for example, a 200MB tape or database. Another instance is when
you really do not need to read all the records of the file, but only certain selected ones ; for example, all the
accounting cards for a certain user. The logic is the following:

open(file)
do while NOT(EOF)
 record = readline(file)
 --
 -- processing
 --
end
close(file)

The following code is an example of this approach. You will notice that it is far more expensive in terms of
instructions and complexity than the read() example.

 *** This section is:

 *** and will be available in next releases

 Writing a file line-by-line

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

It is also interesting to consider writing a file line-by-line. This is again a case where the file being produced is big,
or where you do not want to store it inside an ARRAY variable. The logic is

open(file)
do for all records
 --
 -- processing
 --
 writeline(file,record)
end
close(file)

Here is a complete example:

 *** This section is:

 *** and will be available in next releases

 Read/Write access to a fixed-format record file

Unlike the VM/CMS and MVS systems, UNIX and Windows systems have no concept of RECORDS in files, so there
is not much point in referring to LRECL and RECFM. However, using the xfile class you can access for read and for
write a 'pseudo' fixed length file such as you are used on VM or on MVS. The advantage of these files is that you
can access them on a record basis and use the record number as the index.

Suppose, for example, you have a TAPE database containing 300 000 records. To access the 283 954th one, where
the records are all of the same length, you simply need to position yourself at the 283.954*RECL byte, and operate
over a RECL quantity. And that is what the following functions will do. A 'pseudo' RECFM F LRECL 16 file will
appear like this on your system:

......... --
record 01 t h i s i s a t e s t
 (hex) 74 68 69 73 20 69 73 20 61 20 74 65 73 74 20 20 0A
record 02 a n o t h e r l i n e
 (hex) 61 6E 6F 74 68 65 72 20 6C 69 6E 65 20 20 20 20 0A
record 03 l a s t o n e
 (hex) 6C 61 73 74 20 6F 6E 65 20 20 20 20 20 20 20 20 0A
......... --

This file does have three records of 16 (actually 17 with the '0A'x character) characters, so it occupies 51 bytes of
disk space. Note that the '0A'x character is not mandatory. You could rewrite the routines presented herein in
order to avoid it. I prefer having it so that I can look at the produced files with an editor or a browser. The format
of the function to access a RECFM F file is the following:

 fid = xfile('test.FIXED')
 fid.options('recfm=F,lrecl=80')

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 -- write record 120
 fid.recwrite(120,'Test')

 -- read record 133
 parse fid.recread(133) rc line

The methods are the following:

+--+
| -- method......: recio |53
| -- purpose.....: RANDOM access file record read |54
| --
|55
| method recio(oper=Rexx,recno=Rexx,out=Rexx) public |56
| rc = 0
|57
|
|58
| -- checks & initialization |59
| --
|60
| oper = oper.upper() |61
| if recfm <> 'F' then
|62
| do
|63
| rc = 10
|64
| return rc 'ERROR: not a RECFM=F file.' |65
| end
|66
| raff = File(name)
|67
| size = int raff.length() |68
| skip = (recno-1)*(lrecl+1) |69
| skip = int skip
|70
| if size <= skip then
|71
| do
|72
| rc = 11
|73
| return rc 'ERROR: past file end.' |74
| end
|75
|
|76
| -- access as a Random File |77
| -- and skip till the beginning of record |78
| do
|79
| raf = RandomAccessFile(name,"rw") |80
| catch er=ioException |81
| say 'Problem opening file "'name'".' |82
| say 'Message is "'er'".' |83
| rc = 3
|84
| return rc
|85
| end
|86
| do
|87
| raf.skipBytes(skip) |88
| catch er=ioException |89
| rc = 4
|90
| return rc
|91
| end
|92

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

|
|93
| if oper = 'READ' then
|94
| do
|95
| do
|96
| line = raf.readLine() |97
| catch er=ioException |98
| say 'Problem reading file "'name'".' |99
| say 'Message is "'er'".' |00
| rc = 3
|01
| return rc
|02
| end
|03
| return rc line
|04
| end
|05
|
|06
| -- is it a WRITE operation?
07
08
if oper = 'WRITE' then
09
do
10
do
11
linew = out.left(lrecl)
buf = linew'\x0A'
raf.writebytes(buf)
catch er=ioException
say 'Problem reading file "'name'".'
say 'Message is "'er'".'
rc = 3
18
return rc
19
end
20
return 0
21
end
22
return 11
23
24
+--+
 xfile.nrx(Method:recio)

 Download the complete source for the xfile.nrx library

+--+
| -- method......: recwrite |32
| -- purpose.....: RANDOM access file record write |33
| --
|34
| method recwrite(recno=Rexx,rec=Rexx) public |35
| out = recio('WRITE',recno,rec) |36
| return out
|37
|
|38
+--+
 xfile.nrx(Method:recwrite)

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

 Download the complete source for the xfile.nrx library

The following program makes use of the above methods, showing all the possibilities:

+--+
| -- test the xfile fixed record feature |01
| --
|02
| parse arg what
|03
| what = what
|04
|
|05
| fname = 'test.FIXED' |06
| fid = xfile(fname) |07
| fid.options('recfm=F,lrecl=16') |08
|
|09
| say 'Accessing file "'fid.name'".' |10
| fid.addline('this is a test') |11
| fid.addline('another line') |12
| fid.addline('last one') |13
|
|14
| rc = fid.write() |15
| say 'RC:' rc' writing "'fid.name'".' |16
|
|17
| /* access a record |18
| */
|19
| say fid.recread(2) |20
| say fid.recwrite(2,'New line 2') |21
| say fid.recread(2) |22
|
|23
| exit
|24
+--+
 tfix.nrx

 Download the source for the tfix.nrx example

Some explication: In line '08' we write a file, RECFM F LRECL 16 ,using the contents of the stem list.. The file will
look like this:

......... --
record 01 t h i s i s a t e s t
 (hex) 74 68 69 73 20 69 73 20 61 20 74 65 73 74 20 20 0A
record 02 a n o t h e r l i n e
 (hex) 61 6E 6F 74 68 65 72 20 6C 69 6E 65 20 20 20 20 0A
record 03 l a s t o n e
 (hex) 6C 61 73 74 20 6F 6E 65 20 20 20 20 20 20 20 20 0A
......... --

In line '11', we 'zap' the contents of the record 2, so our file will look like this:

......... --
record 01 t h i s i s a t e s t
 (hex) 74 68 69 73 20 69 73 20 61 20 74 65 73 74 20 20 0A
record 02 N e w l i n e 2
 (hex) 4E 65 77 20 6C 69 6E 65 20 32 20 20 20 20 20 20 0A

http://www.netrexx.org/library/xfile.nrx
http://www.netrexx.org/examples/tfix.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

record 03 l a s t o n e
 (hex) 6C 61 73 74 20 6F 6E 65 20 20 20 20 20 20 20 20 0A
......... --

In line '14' we read the record we just zapped in an indexed way Ñ i.e. we access JUST the 2nd record of the file. If
you run it, this is what you get:

..
rsl3pm1 (521) java tfix
0 another line
0
0 New line 2
rsl3pm1 (522)
..
 rwf.out

You can look at the file with your preferred editor, and check that it's really like I said.

 Indexed files

 What we discussed about RECFM F files is also true for RECFM V files. On VM/CMS and MVS systems, you can say:
"get the record NNN of this file", and you get it in a really fast way. In UNIX, this is not possible. If you want the
NNNth record of a file, and the file is NOT fixed length, you MUST read all the file till line NNNth (in the assumption
that a record corresponds to a line). In this chapter we will analyse a method for overcoming this limitation, so you
can at least partially have the benefits of a RECFM V file on VM/CMS. We will write a routine that (without you
doing anything) will build an index file, and use it when you access the file itself. The idea is the following:
Whenever you build a variable record length file (ex. test), an index table for it is built automatically, containing for
each record the displacement (in bytes) from the beginning of the file itself. As the table is RECFM F, it is easy to
find the NNNth record, and, from its contents, to identify the REAL contents of record NNN. Pictorially:

 +-------+ +-------------+
 1 | | |RRRRRRRR |
 2 | | |RRRRRRRRRRR |
 3 |ptr r3 |------>|RRRRRRRRRR |
 4 | | |R |
 5 | | |RRRRRRRRRRR |
 | (...) | | (...) |
 N | | |RRRRRRR |
 +-------+ +-------------+
 test.IDX test
 (RECFM F) (RECFM V)

 When should you use Indexed files?

The kind of applications that are well suited for indexed files are those where you read many times, RANDOMLY, a
big file that you produce or refresh infrequently. An example is the 'phone book' of a company with hundreds of
thousand of records, hashed in some particular form. Another example is a tape database, where the Volume ID of
the tape is de-facto the key to accessing the file.

 pro and cons for Indexed files.

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

Clearly, if the file is big, the indexed method makes a search for a random record as much as order of magnitudes
faster. The drawback is that EVERY time you change the file, you need to refresh the index and make sure that no
access to the file is made while the index is being built. In addition, the index itself uses space Ñ a 1 million record
file requires an index file as large as 8MB. Of course if your records are big, this will be just a small percentage of
the total disk space, but if the records are small, you risk the index file becoming bigger than the file itself.

 The 'rw_filev' routine.

The 'rw_filev' routine is the 'kernel' of our discussion. It has three subfunctions: one for writing a file and, at the
same time the file's index, a second for building an index for an existing file, and a third for reading a random
record.

 *** This section is:

 *** and will be available in next releases

 Handling of binary files.

 It is sometimes useful to handle binary files.

 The xfile routines

The two xfile routines readbuf and writebuf help you dealing with byte quantities.

 readbuf()
 (FILE) -----------> fid.buffer
 byte[size]
 <-----------
 writebuf()

+--+
| -- method......: readbuf |21
| -- purpose.....: read an entire file into a buffer |22
| --
|23
| method readbuf() public |24
| rc = 0
|25
| do
|26
| fd = File(name)
|27
| size = int fd.length() |28
| off = int 0
|29
| fis = FileInputStream(fd) |30
| in = DataInputStream(fis) |31
| buf = byte[size]
|32

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

| oprc = in.read(buf,off,size) |33
| catch er=ioException |34
| rc = 3
|35
| say '(readbuf) ERROR:' er'.' |36
| return rc
|37
| end
|38
| if oprc = size
|39
| then rc = 0
|40
| else rc = 1
|41
| buffer = buf
|42
| return rc
|43
|
|44
+--+
 xfile.nrx(Method:readbuf)

 Download the complete source for the xfile.nrx library

The key instruction is:

 oprc = in.read(buf,off,size)

where we read from the input stream size bytes, and we place them in a byte array called buffer.

+--+
| -- method......: writebuf |45
| -- purpose.....: write an entire buffer onto a file |46
| --
|47
| method writebuf() public |48
| rc = 0
|49
| do
|50
| fd = File(name)
|51
| size = int buffer.length |52
| off = int 0
|53
| fos = FileOutputStream(fd) |54
| out = DataoutputStream(fos) |55
| out.write(buffer,off,size) |56
| out.flush() |57
| oprc = out.size()
|58
| out.close() |59
| catch er=ioException |60
| rc = 3
|61
| say '(writebuf) ERROR:' er'.' |62
| return rc
|63
| end
|64
| if oprc = size
|65
| then rc = 0
|66
| else rc = 1
|67

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

| return rc
|68
|
|69
+--+
 xfile.nrx(Method:writebuf)

 Download the complete source for the xfile.nrx library

 Examples

Let's look to some real examples.

+--+
| -- test WRITE buffer
01
02
03
-- init a buffer, please
--
05
buf = byte[126]
06
loop i = 1 to buf.length-1
07
buf[i] = i
08
end
09
10
-- declare the output file
--
12
fn = 'twf.out'
13
of = xfile(fn)
14
15
-- point to the buffer space
16
--
17
of.buffer = buf
18
19
-- OK, do the write
20
--
21
rc = of.writebuf()
say 'Write of "'fn'" got RC:' rc'.'
24
exit
25
+--+
 twb.nrx

 Download the source for the twb.nrx example

This is how your output file will look like, looking it using hedit (see next section).

http://www.netrexx.org/library/xfile.nrx
http://www.netrexx.org/examples/twb.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

..
rsl3pm1 (1) > java hedit twf.out
Welcome to hedit.
d0000000 - 0001 0203 0405 0607 0809 0A0B 0C0D 0E0F "................"
d0000016 - 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F "................"
d0000032 - 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F ".!"#$%&'()*+,-./"
d0000048 - 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F "0123456789:;<=>?"
d0000064 - 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F ".ABCDEFGHIJKLMNO"
d0000080 - 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F "PQRSTUVWXYZ[\]^_"
d0000096 - 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F "`abcdefghijklmno"
d0000112 - 7071 7273 7475 7677 7879 7A7B 7C7D 0000 "pqrstuvwxyz.|..."
<<< EOF >>>
cmd -> quit
All done.
rsl3pm1 (2) >
..

 Case study: hedit, a file dump/edit in HEX

Let's look at a program that allows us to dump and edit binary (and even text files) in HEX digits. The program,
called hedit is available on the WEB source page for the tutorial.

The program does:

 - read the full file in storage
 - display the first "page" worth of dump
 - wait for commands

 Some relevant code

The reading of the input file is issued with a simple call to the readbuf method.

fid = xfile(fn)
rc = fid.readbuf()

We now can use the array:

fid.buffer

to get the byte information of the file contents. Again, remember that:

fid.buffer.length -- buffer's length

fid.buffer[0] -- BUFFER
(...) --
fid.buffer[fid.buffer.length-1] --

The method linedis is used to prepare the line that needs to be displayed.

+--+
| -- method......: linedis |78
| -- purpose.....: prepare a line |79
| --

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

|80
| method linedis(bs=rexx,buf=byte[]) public static |81
| obh = ''
|82
| obc = ''
|83
|
|84
| -- this logic is not perfect, might require rewriting |85
| -- get 2 bytes a time, in HEX and in CHAR
86
87
loop j = 0 to 14 by 2
88
p1 = bs*16+j
89
p2 = bs*16+j+1
90
if p1 > buf.length - 1 -- past end of buffer
then c1 = '00' --
92
else c1 = rexx buf[p1]
93
if p2 > buf.length - 1
94
then c2 = '00'
95
else c2 = rexx buf[p2]
96
obh = obh
if c1 > 32 & c1 < 127 -- only char we can see
98
then c1 = c1.d2c() -- please
else c1 = '.'
00
if c2 > 32 & c2 < 127 -- ditto
01
then c2 = c2.d2c() --
02
else c2 = '.'
03
obc = obc
end
05
06
-- that's the full line
07
--
08
ptr = bs*16
09
if dtyp = 'D'
10
then ptr = 'd'ptr.right(7,'0')
else ptr = 'd'ptr.right(7,'0')
l = ptr '-' obh '"'obc'"'
13
return l
14
15
+--+
 hedit.nrx(Method:linedis)

 Download the complete source for the hedit.nrx library

The change routine is used to perform a change over a subsequent set of bytes. You perform a change typing:

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

change START byte_string

like:

change 5 CAFE000067

+--+
| -- method......: change |58
| -- purpose.....: change a set of bytes |59
| --
|60
| method change(bs=rexx,up=rexx,buf=byte[]) public static |61
| -- some checks
62
63
if bs < 0
64
do
65
say 'Invalid start byte.'
return
67
end
68
list = up
69
i = bs
70
loop while list <> ''
71
parse list nb +2 list
72
say nb
73
buf[i] = nb.x2d(2)
i = i+1
75
end
76
77
+--+
 hedit.nrx(Method:change)

 Download the complete source for the hedit.nrx library

The actual saving is performed by the method save, and the real kernel code is:

ofid = xfile(ofn) -- define OUTPUT file
ofid.buffer = buf -- point to buffer
rc = ofid.writebuf() -- WRITE it!

+--+
| -- method......: save |30
| -- purpose.....: saves a buffer |31
| --
|32
| method save(sargs=rexx,buf=byte[]) public static |33
| parse sargs ofn .
|34

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

|
|35
| -- check if we have a filename and if it is not
|36
| -- already there
37
38
if ofn = '' then
39
do
40
say 'Missing filename.'
return
42
end
43
if xfile.fexist(ofn) then
do
45
say 'File "'ofn'" already exists. OK to overwrite?\-'
parse ask.upper() answ
if answ <> 'Y' then return
48
end
49
50
-- OK, go head
51
--
52
ofid = xfile(ofn)
53
ofid.buffer = buf
rc = ofid.writebuf()
if rc = 0
56
then say 'Buffer written OK to "'ofn'".'
else say 'Problems writing "'ofn'".'
59
+--+
 hedit.nrx(Method:save)

 Download the complete source for the hedit.nrx library

 Sample session

...
rsl3pm01 (1) > java hedit rwf.out
Welcome to hedit.
d0000000 - 0001 0203 0405 0607 0809 0A0B 0C0D 0E0F "................"
d0000016 - 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F "................"
d0000032 - 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F ".!"#$%&'()*+,-./"
d0000048 - 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F "0123456789:;<=>?"
d0000064 - 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F ".ABCDEFGHIJKLMNO"
d0000080 - 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F "PQRSTUVWXYZ[\]^_"
d0000096 - 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F "`abcdefghijklmno"
d0000112 - 7071 7273 7475 7677 7879 7A7B 7C7D 0000 "pqrstuvwxyz.|..."
<<< EOF >>>

cmd ->help
Available commands are:
DOWN - move down one page.
UP - move up one page.
QUIT - exit program.
VERSION - show program version.
GO nnnn - go to location NNNN (DECimal).
TOP - go to top.
SAVE fn - save buffer as "fn".
CHANGE start hexstr - change bytes from "start" with "hexstr".

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

cmd ->CHANGE 0 CAFEBABECAFEBABE
d0000000 - CAFE BABE CAFE BABE 0809 0A0B 0C0D 0E0F "................"
d0000016 - 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F "................"
d0000032 - 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F ".!"#$%&'()*+,-./"
d0000048 - 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F "0123456789:;<=>?"
d0000064 - 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F ".ABCDEFGHIJKLMNO"
d0000080 - 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F "PQRSTUVWXYZ[\]^_"
d0000096 - 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F "`abcdefghijklmno"
d0000112 - 7071 7273 7475 7677 7879 7A7B 7C7D 0000 "pqrstuvwxyz.|..."
<<< EOF >>>
cmd -> quit

..

 The rxfile package.

 Availability

The rxfile package is available directly from the author, at the following URL:

http://www.geocities.com/SiliconValley/Park/4218/RXFILE.HTML
for rxfile
and
http://www.geocities.com/SiliconValley/Park/4218/
Marsiglietti's home page

 *** This section is:

 *** and will be available in next releases

 Summary

A resume' of what we have seen in this chapter:

 *** This section is:

 *** and will be available in next releases

File: nr_13.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:48(GMT +2).

http://www.geocities.com/SiliconValley/Park/4218/RXFILE.HTML
http://www.geocities.com/SiliconValley/Park/4218/

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

The NetRexx Tutorial
 - Threads

Threads

 Introduction

All modern operating systems are multi-tasking. This means than more than one program can concurrently run on
the system at the same time. At least, this is how the user(s) perceive it: the operating system is responsible to
allocate CPU cycles to the various processes, giving the impression that every process has, by itself, an entire CPU
available.

In a multi-threaded system, you can divide each process into several components. These components are called
threads or light weight processes.

In this chapter we will analyse how we can have multiple threads running within our programs.

 Definition of a Thread.

 A thread is a component of a process. A thread is synonim of light weight process. Each thread executes a
sequential set of instructions. The result of several threads running in parallel is a concurrent process.

| concurrent | ---------+-------> thread 1
| process | | > Instruction 1.1
 | > Instruction 1.2
 | (...)
 | > Instruction 1.n
 |
 +-------> thread 2
 | > Instruction 2.1
 | > Instruction 2.2
 | (...)
 | > Instruction 2.n
 (...)
 |
 +-------> thread N
 > Instruction N.1
 > Instruction N.2
 (...)
 > Instruction N.n

 When you need to use Threads.

As we saw, threads allow to run multiple instances of the same process on your machine. But, you may ask, what's
the real interest in doing this, if my machine has just one CPU? Aren't those processes going to compete for this

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

unique resource?

 I/O limited processes.

While it is true that CPU tied processes will benefit from a multiprocessor H/W environment, it is also true that, on
many OS (notably UNIX and Windows/NT) the I/O subsystem is usually decoupled from the main CPU, so you can
imagine to split your program in 2 parts: one which deals with the I/O, and one that deals with the CPU intensive
work. A natural example is when you load a WEB containing pictures using Netscape. The text is immediately
retrieved and the pictures are loaded while you can read, scroll, and do any other operation on the page itself
(even if still incomplete). In principle, any picture retrieval can be a separate thread.

 Daemons

 A daemon is a process that runs on your system and acts as a server. As we will analyse in the next chapter, a
daemon waits on a socket port for work to do. When it receives a request from a client, he dispatches the request.
If the daemon is single-threaded he will not be capable to accept and serve other requests, till he has not finished
the one is serving. Using threads, you'll be capable to concurrently serve many requests.

 SERVER SERVER THREAD
 (...)
 loop forever
 wait request
 dispatch request
 +-------> start thread
 execute request
 answer client
 end thread
 (...)
 end

 monitoring

Another application of threads is monitoring of certain process. Some applications might hung (for a network
problem, for example). You might want to put an external timeout to such occurrences.

 Threads for UNIX users.

 If you are a C (or C++) programmer working on UNIX platforms, and you want to create a process running in
parallel with your main process, you would write something like:

+--+
| /* example in Regina UNIX REXX
|01
| */
|02
| (...)
|03
|
|04
| /* issue the fork
|05
| */
|06

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

| i = fork()
|07
|
|08
| if i > 0 then
|09
| do
|10
| /* This is the parent process
|11
| */
|12
| say '(parent) Waiting.'
|13
| rc = waitpid(i)
|14
| say '(parent) Wait rc:' rc'.'
|15
| end
|16
| else
|17
| do
|18
| /* This is the children
|19
| */
|20
| 'sleep 1'
|21
| say '(child) Starting. Going to sleep.'
|22
| 'sleep 2'
|23
| say '(child) Ending now.'
|24
| end
|25
| exit 0
|26
+--+
 forkex1.rex

In NetRexx, like in Java, the approach is totally different. The above example will be written like:

+--+
| -- package: thrt1
|01
| -- version: 1.000 beta
|02
| -- date: 02 APR 1998
|03
| -- author: P.A.Marchesini |04
| -- copyright: (c) P.A.MArchesini, 1998 |05
| -- latest vers.: http://wwwcn.cern.ch/news/netrexx |06
| --
07
08
class thrt0
09
properties public
11
-- method......: main
-- purpose.....: timeout test
--
14
method main(args=String[]) public static
arg = rexx(args)
16
arg = arg
17

http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

|
|18
| say 'MAIN starts now.'
|19
| child = thrt0handler() |20
| child.start() |21
| child.join() |22
| say 'MAIN ends'
|23
| exit 0
|24
|
|25
| -- method......: thrt0handler |26
| -- purpose.....: |27
| --
|28
| class thrt0handler extends Thread |29
| properties private |30
|
|31
| method thrt0handler() |32
|
|33
| method run() public |34
| say 'CHILD starts.' |35
| do
|36
| sleep(2000) |37
| catch e = interruptedException |38
| say 'Got: "'e'".'
|39
| end
|40
| say 'CHILD ends.' |41
+--+
 thrt0.nrx

 Download the source for the thrt0.nrx example

 Thread API

 A first practical example.

It is always a good practice to put a timeout on certain commands that you might issue inside your program. Infact,
especially in a networked environment, a lot of things might "go wrong", and the program itself might hung
forever.

The following example will show how to implement a timeout on a command that you issue from the command
line.

+--+
| -- package: thrt1
|01
| -- version: 1.000 beta
|02
| -- date: 02 APR 1998
|03
| -- author: P.A.Marchesini |04
| -- copyright: (c) P.A.MArchesini, 1998 |05

http://www.netrexx.org/examples/thrt0.nrx

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

| -- latest vers.: http://wwwcn.cern.ch/news/netrexx |06
| --
07
08
class thrt1
09
properties public
11
-- method......: main
-- purpose.....: timeout test
--
14
method main(args=String[]) public static
arg = rexx(args)
16
parse arg timeout command
if timeout = "
do
19
say 'Missing arguments.'
say 'usage : java thrt1 TIMEOUT_IN_SEC COMMAND'
say 'example: java thrt1 5 sleep 6'
22
exit 1
23
end
24
timeout = timeout*1000
26
say 'MAIN starts now.'
27
child = thrt1handler(command)
child.start()
child.join(timeout)
if child.isAlive()
then
32
do
33
say 'Children still alive. Killing it now.'
child.stop()
if child.isAlive()
then say 'ERROR: stop() did not work.'
else say 'OK: child killed.'
38
end
39
else say 'Children finished before timeout.'
41
say 'MAIN ends'
42
exit 0
43
44
-- method......: thrt1handler
-- purpose.....:
--
47
class thrt1handler extends Thread
properties private
command
50
51
method thrt1handler(cmd=rexx)
command = cmd
53
54
method run() public
say 'CHILD starts "'command'".'

http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Threads

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

| out = xexec(command) |57
| out = out
|58
| say 'CHILD ends "'command'".' |59
+--+
 thrt1.nrx

 Download the source for the thrt1.nrx example

You can try out the code typing:

no timeout shown here
$ java thrt1 5 sleep 4
timeout shown here
$ java thrt1 5 sleep 6

 *** This section is:

 *** and will be available in next releases

File: nr_14.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:50(GMT +2).

http://www.netrexx.org/examples/thrt1.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

The NetRexx Tutorial
 - Socket and Networking

Socket and Networking

 Introduction

 *** This section is:

 *** and will be available in next releases

 Basic Concepts

 The socket

 Common Operations

 Getting your HOST name.

One of the first things you will want to do, is to determine your machine name, i.e. doing in NetRexx what you
normally get on your shell typing hostname.

You need to use the class InetAddress, in order to gather your current HOST name, with a call like:

host = InetAddress.getlocalHost()

The following xsock function will accomplish the job, striping out the (probably) unwanted address in numeric
format.

+--+
| -- method......: hostname |86
| -- purpose.....: get the hostname |87
| --
|88
| method hostname() public static |89
| do

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|90
| host = InetAddress.getlocalHost() |91
| catch err = UnknownHostException |92
| say err
|93
| end
|94
| parse host name'/'
|95
| return name
|96
|
|97
+--+
 xsock.nrx(Method:hostname)

 Download the complete source for the xsock.nrx library

 Client/Server applications

 a small client-server application

A client is a process (or a program) that sends a message to a server process (or program); it requests the server
to perform a task (also called service).

Client programs usually manage the user-interface portion of the application, validate data entered by the user,
dispatch requests to server program, and sometimes execute some logic. The client-based process is the front-
end of the application that the user sees and interacts with. The client process contains solution-specific logic and
provides the interface between the user and the rest of the application system.

A server process executes the client request performing the task the client requested. Server programs generally:
receive requests from client

receive requests from client programs,
execute database retrieval and updates,
manage data integrity,
dispatch responses to client requests

Sometimes server programs execute common or complex business logic. The server-based process "may" run on
another machine on the network. This server could be the host operating system or network file server; the server
is then provided both file system services and application services. Resuming, the server process acts as a software
engine that manages shared resources such as databases, printers, communication links, or high powered-
processors. The server process performs the back-end tasks that are common to similar applications.

In this section we examine a very small client-server application.

Our goal is to explain the basics of the client-server model, with the instructions that allows us to connect the
client and the server. For this reason all the details about catching errors are ignored.

Our server is a socket application waiting on a port (we randomly choose the number 6001). The server receives a
line of information, constituted by 2 numbers (n1 and n2). The server computes the sum (n3) and returns it to the
client.

http://www.netrexx.org/library/xsock.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

client server
side side
--------- ----------

CLIENT ---- n1 n2 -------> SERVER
 (...)
 n3 = n1+n2
 (...)
CLIENT <----- n3 --------- SERVER

+--+
| -- sserv
|01
| -- a VERY primitive socket server |02
| --
|03
| port = int 6001
|04
| listen = ServerSocket null |05
| client = Socket null |06
|
|07
| do
|08
| say 'Listening on port "'port'".' |09
| listen = ServerSocket(port) |10
|
|11
| -- wait for a client
|12
| -- get the numbers, add them, return to him |13
| --
|14
| loop forever
|15
| say 'Waiting connection' |16
| client = listen.accept(); |17
|
|18
| -- we got something
19
20
say 'Got request from' client.getInetAddress().getHostName() -
in = DataInputStream(client.getInputStream());
out = PrintStream(client.getOutputStream());
line = in.readLine();
if line = 'exit' then leave
26
parse line n1 n2
27
say 'Got "'line'".'
28
sum = n1+n2
29
out.println(sum);
end
31
catch e=IOException
say 'Error:' e'.'
33
end
34
exit 0
35
+--+
 sserv.nrx

 Download the source for the sserv.nrx example

http://www.netrexx.org/examples/sserv.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

+--+
| -- the SIMPLE client |01
| --
|02
| parse arg line
|03
| if line = '' then exit 1
|04
| port = int 6001
|05
| host = 'pcl307' -- should be your host name |06
| s = Socket null;
|07
| do
|08
| s = Socket(host,port); -- hard wire it |09
| sin = DataInputStream(s.getInputStream()); |10
| sout = PrintStream(s.getOutputStream()); |11
|
|12
| sout.println(line) -- send command |13
| line = sin.readLine(); -- get answer |14
| say line
|15
| s.close()
|16
| catch e=IOException |17
| say 'Error:'e'.' |18
| end
|19
| exit 0
|20
+--+
 sclie.nrx

 Download the source for the sclie.nrx example

 A revised finger program

 The following code is an implementation of the "classical" finger program as you find on UNIX boxes or on WIN/95
WIN/NT.

+--+
| -- finger
01
02
03
import java.net
import java.io
06
VERSION = 'v1r001'
AUTHOR = '(c) P.A.Marchesini, ETHZ'
DEFAULT_PORT = int 79;
CRLF = '\x0D\x0A'
10
11
parse arg uargs
12
if uargs = '-h'

http://www.netrexx.org/examples/sclie.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|13
| do
|14
| parse source . . myname'.' |15
| say myname 'version' VERSION AUTHOR |16
| say 'Purpose : sample implementation of a finger client.' |17
| say
|18
| say 'java finger user@system' |19
| say
|20
| exit 1;
|21
| end
|22
|
|23
| user = ''
|24
| if uargs.pos('@') <> 0 |25
| then parse uargs user'@'node |26
| else node = uargs
|27
|
|28
| -- issue the client socket command |29
| --
|30
| s = Socket null;
|31
| do
|32
| s = Socket(node, DEFAULT_PORT); |33
| sin = BufferedReader(InputStreamReader(s.getInputStream())) |34
| sout = PrintWriter(s.getOutputStream(),1) |35
| line = String
|36
| line = user||crlf
|37
| sout.println(line) |38
| loop forever
|39
| line = sin.readLine(); |40
| if (line = null) then do
|41
| leave
|42
| end
|43
| say line
|44
| end
|45
| catch e1 = IOException |46
| say '# Error from Socket function.' |47
| say '# Message is "'e1'".' |48
| say '# Abending.'
|49
| finally
|50
| do
|51
| if (s \= null) then s.close()
|52
| catch e1 = IOException |53
| say '# Error from close.'
|54
| say '# Message is "'e1'".' |55
| say '# Abending.'
|56
| end
|57
| end
|58
| exit
|59
+--+

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

 finger1.nrx

 Download the source for the finger1.nrx example

In the following session we'll develop an even shorter version of finger, using the "xsock" libraries.

 The "xsock" library.

As I did in the previous (and following) chapters, instead of presenting "dumb" examples, I'll build a small library of
socket methods. This library is called xsock.nrx and is available for download on the "usual" WEB directory for
libraries.

It should give you enough programming examples to build (eventually) your own socket application. You can of
course immediately use it, as shown in the Using the xsock library section.

 The "open" method

+--+
| -- method......: open |57
| -- purpose.....: open a socket |58
| --
|59
| method open(host=Rexx,prot=Rexx) public |60
|
|61
| -- check if the user entered a protocol or a simple |62
| -- port number
63
64
rc = 0
65
if prot.datatype('D') = 0 then
do
67
-- he just entered a port with a name,
68
-- try to find the port, unless abort
69
dport = getservbyname(prot)
if dport = -1 then
71
do
72
say 'Invalid protocol "'prot'".'
exit 990
74
end
75
port = dport
76
setprotdef(prot)
end
78
else
79
do
80
-- he just entered a numeric port
-- we need to do nothing
82
port = prot
83

http://www.netrexx.org/examples/finger1.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

| end
|84
|
|85
| -- do the REAL job
86
87
do
88
s = Socket(host, port);
sin = BufferedReader(InputStreamReader(s.getInputStream()));
sout = PrintWriter(s.getOutputStream(),1);
catch err = IOException
say err
93
end
94
95
+--+
 xsock.nrx(Method:open)

 Download the complete source for the xsock.nrx library

 The "getservbyname" method

+--+
| -- method......: getservbyname |96
| -- purpose.....: |97
| --
|98
| method getservbyname(serv=Rexx) public static |99
| table = 'DAYTIME 13 FTP 21 TELNET 23' - |00
| 'FINGER 79 NNTP 119 IMAP 143' -
|01
| 'HTTP 80'
|02
| serv = serv.upper() |03
| res = -1
|04
| loop while table <> ''
|05
| parse table sn sp table
|06
| if sn = serv then return sp
|07
| end
|08
| return res
|09
|
|10
+--+
 xsock.nrx(Method:getservbyname)

 Download the complete source for the xsock.nrx library

 Using the xsock library

 Finding info about a protocol

One of the best places to start is:

http://www.netrexx.org/library/xsock.nrx
http://www.netrexx.org/library/xsock.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.freesoft.org/Connected/RFC/index.html

 Writing a daytime client.

+--+
| /* simple daytime |01
| */
|02
| parse arg node .
|03
| if node = '' then node = 'shift1.cern.ch' |04
|
|05
| so = xsock(node,'DAYTIME') |06
| so.receive() |07
| so.close()
|08
|
|09
| exit
|10
+--+
 daytime.nrx

 Download the source for the daytime.nrx example

 Writing a finger client.

+--+
| /* simple finger client |01
| */
|02
| parse arg what .
|03
| parse what user'@'node |04
| if node = '' then
|05
| do
|06
| say 'finger user@node' |07
| exit 1
|08
| end
|09
|
|10
| so = xsock(node,'FINGER') |11
| so.send(user) |12
| so.receive() |13
| so.close()
|14
|
|15
| exit
|16
+--+
 finger.nrx

 Download the source for the finger.nrx example

http://www.freesoft.org/Connected/RFC/index.html
http://www.netrexx.org/examples/daytime.nrx
http://www.netrexx.org/examples/finger.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

 Writing an FTP client using "sun.net.ftp".

 The FTP support is contained in the package sun.net.ftp. The package allows easily to implement an FTP client (to
GET and PUT files).

 The API documentation can be found at:

http://www.java.no/javaBIN/docs/api/sun.net.ftp.FtpClient.html

The actual implementation of the FTP client wants to mimic the "standard" UNIX ftp command (which you can find
also on Windows/NT). We will call our class xftp and it will be an extention of FtpClient (or sun.net.ftp.FtpClient if
you prefer)

To get the functions in the package sun.net.ftp, we need to type:

import sun.net.ftp.FtpClient
import sun.net.ftp.FtpInputStream
import sun.net.TelnetInputStream

The basic functions are:

+--+
| -- method......: xget |72
| -- purpose.....: fetch the remote file |73
| --
|74
| method xget(fids=Rexx) public |75
| rcclear()
|76
| parse fids fidr fidl
|77
| if fidl = '' then fidl = fidr
|78
|
|79
| -- small check: if the local file is there, prompt the user |80
| --
|81
| if xfile.fexist(fidl) & replace = 'NO' then |82
| do
|83
| say 'Local file "'fidl'" already exists. OK to overwrite? (Y||84
| if ask.upper <> 'Y' then
|85
| do
|86
| say 'ABORTED by user.' |87
| return
|88
| end
|89
| end
|90
|
|91
| say 'Remote file........:' fidr'.' |92
| say 'Local file.........:' fidl'.' |93
| say 'Transfer type is...:' modeab'.' |94
|

http://www.java.no/javaBIN/docs/api/sun.net.ftp.FtpClient.html

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|95
| buff = byte[16000] |96
| t = timer()
|97
| totsize = 0
|98
| do
|99
| os = FileOutputStream(fidl) |00
| tis = host.get(fidr) |01
| str = '(READING) Tranferred:' totsize 'bytes.' |02
| loop forever
|03
| System.out.print(str'\x0D') |04
| n = tis.read(buff) |05
| if n = -1 then leave -- there are no more bytes in tis
|06
| totsize = totsize + n |07
| str = '(WRITING) Tranferred:' totsize 'bytes.' |08
| System.out.print(str'\x0D') |09
| os.write(buff,0,n) |10
| str = '(READING) Tranferred:' totsize 'bytes.' |11
| end
|12
| System.out.print(' \x0D') |13
| say
|14
| os.close()
|15
| sec = t.elapsed() |16
| say 'Transferred "'totsize'" bytes in' sec 'seconds.' |17
| catch err = exception
|18
| say 'ERROR:' err
|19
| rcset(12)
|20
| end
|21
|
|22
+--+
 xftp.nrx(Method:xget)

 Download the complete source for the xftp.nrx library

+--+
| -- method......: xput |23
| -- purpose.....: put the remote file |24
| --
|25
| method xput(fids=Rexx) public |26
| rcclear()
|27
| parse fids fidl fidr
|28
| if fidr = '' then fidr = fidl
|29
|
|30
| -- small check: if the local file is not there
31
32
if xfile.fexist(fidl) = 0 then
do
34
say 'Local file "'fidl'" does not exist.'
return
36
end
37

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|
|38
| say 'Local file.........:' fidl'.' |39
| say 'Remote file........:' fidr'.' |40
| say 'Transfer type is...:' modeab'.' |41
|
|42
| buff = byte[16000] |43
| t = timer()
|44
| totsize = 0
|45
| do
|46
| is = FileInputStream(fidl) |47
| tos = host.put(fidr) |48
| str = '(READING) Tranferred:' totsize 'bytes.' |49
| loop forever
|50
| System.out.print(str'\x0D') |51
| n = is.read(buff) |52
| if n = -1 then leave -- there are no more bytes in is
|53
| totsize = totsize + n |54
| str = '(WRITING) Tranferred:' totsize 'bytes.' |55
| System.out.print(str'\x0D') |56
| tos.write(buff,0,n) |57
| str = '(READING) Tranferred:' totsize 'bytes.' |58
| end
|59
| System.out.print(' \x0D') |60
| say
|61
| tos.close() |62
| is.close()
|63
| sec = t.elapsed() |64
| say 'Transferred "'totsize'" bytes in' sec 'seconds.' |65
| catch err = exception
|66
| say 'ERROR:' err
|67
| rcset(13)
|68
| end
|69
|
|70
+--+
 xftp.nrx(Method:xput)

 Download the complete source for the xftp.nrx library

+--+
| -- method......: xls |11
| -- purpose.....: list the remote directory (on screen) |12
| --
|13
| method xls(t=rexx) public |14
| t = t
|15
| rcclear()
|16
| do
|17
| tis = host.list() |18
| line = ''
|19
| loop forever
|20
| n = rexx tis.read
|21

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

| if n = -1 then leave -- there are no more bytes in tis
|22
| if n = 10 then
|23
| do
|24
| say line
|25
| line = ''
|26
| iterate
|27
| end
|28
| line = line||n.d2c() |29
| end
|30
| tis.close() |31
| catch err = exception
|32
| say 'ERROR:' err
|33
| rcset(3)
|34
| end
|35
|
|36
+--+
 xftp.nrx(Method:xls)

 Download the complete source for the xftp.nrx library

Another function (which is NOT in the standard FTP clients) is the xmore

+--+
| -- method......: xmore |37
| -- purpose.....: type the file on terminal |38
| --
|39
| method xmore(fid=Rexx) public |40
| rcclear()
|41
| nlin = 1
|42
| do
|43
| tis = host.get(fid) |44
| line = ''
|45
| loop forever
|46
| n = rexx tis.read
|47
| if n = -1 then leave -- there are no more bytes in tis
|48
| if n = 10 then
|49
| do
|50
| say line
|51
| line = ''
|52
| nlin = nlin+1
|53
| if nlin > pagesize then
|54
| do
|55
| nlin = 1

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|56
| say '+++ (ENTER to continue; Q to quit) \-' |57
| if ask = 'Q' then
|58
| do
|59
| leave
|60
| end
|61
| end
|62
| iterate
|63
| end
|64
| line = line||n.d2c() |65
| end
|66
| catch err = exception
|67
| say 'ERROR:' err
|68
| rcset(5)
|69
| end
|70
|
|71
+--+
 xftp.nrx(Method:xmore)

 Download the complete source for the xftp.nrx library

 A small program using the xftp class

As an example of usage of the xftp class, look at the following program:

+--+
| -- xftp1.nrx
|01
| -- this program just lists the files from a anonymous server |02
| -- and fetches a big one.
03
04
h = xftp('asisftp.cern.ch')
h.exec('user anonymous toto@test.cern.ch')
h.exec('ls')
h.exec('replace Y')
h.exec('get README.cernlib')
h.exec('get toto')
say h.rc
11
say h.globrc
12
exit
13
+--+
 xftp1.nrx

 Download the source for the xftp1.nrx example

 Writing a trivial NNTP client.

http://www.netrexx.org/library/xftp.nrx
http://www.netrexx.org/examples/xftp1.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

The NNTP protocol is described by RFC 977 The NNTP specifies a protocol for the distribution, inquiry, retrieval,
and posting of news articles using a reliable stream-based transmission of news among the ARPA-Internet
community. NNTP is designed so that news articles are stored in a central database allowing a subscriber to select
only those items he wishes to read. Indexing, cross-referencing, and expiration of aged messages are also
provided.

We will implement a TRIVIAL NNTP client, using the xsock.nrx library. Our program nnt does allow the reading of a
news article and the list of the available ones.

+--+
| -- trivial NNTP client |01
| --
|02
| parse arg group article .
|03
|
|04
| -- trivial checks |05
| --
|06
| if group = '' then
|07
| do
|08
| say 'Please enter a group. (like "comp.lang.rexx").' |09
| exit 1
|10
| end
|11
|
|12
| -- connect and get the greating message |13
| --
|14
| node = 'news.cern.ch' -- change this with your local news server |15
| so = xsock(node,'NNTP') |16
| so.readline() |17
|
|18
| -- select the right group
|19
| -- and check it's existence
20
21
so.send('group' group)
nn = so.readline()
parse nn rc . first last .
24
if rc <> 211 then
25
do
26
say 'Sorry but group "'group'" is not active.'
exit 3
28
end
29
30
-- OK, now we can
31
-- - get all the headers
32
-- - get the article body
33
if article = ''

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

|34
| then cmd = 'xhdr subject' first'-'last |35
| else cmd = 'article' article |36
| so.send(cmd) |37
| nn = so.readline() |38
| parse nn rc .
|39
| if rc > 240 then
|40
| do
|41
| say 'Sorry, but article "'group':'article'" is not available.' |42
| exit 4
|43
| end
|44
|
|45
| so.receive(",") |46
|
|47
| -- that's all
48
49
so.close()
50
51
exit 0
52
+--+
 nnt.nrx

 Download the source for the nnt.nrx example

..
rsl3pm1 (68) java nnt comp.lang.rexx
19083 rexx under DOS?
19084 Re: Program Priority in REXX or C - How Set?
19085 Suggestions on how to keep a "table" OUTSIDE of Rexx?
19086 Re: Suggestions on how to keep a "table" OUTSIDE of Rexx?
(...)

rsl3pm1 (69) java nnt comp.lang.rexx 20132
From: Dave
Newsgroups: comp.os.os2.setup.misc,comp.lang.rexx
Subject: Lost rxFTP
(...)
I re-installed OS/2 this weekend and now rxFTP doesn't work.When I try
(...)

..

 Executing NNTP commands interactively

Some small modifications to the above program will allow you to execute commands in an interactive way, in a line
mode like shell.

Once you started the command with java nntp1, just type help and the server will answer with the available
commands.

+--+

http://www.netrexx.org/examples/nnt.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

| -- simple INTERACTIVE |01
| -- news client
02
03
node = 'news.cern.ch' -- change it to your local news server
05
-- connect to the NEWS server
--
07
so = xsock(node,'NNTP')
parse so.readline() . welcome 'ready'
say welcome
10
11
-- wait for commands
12
--
13
onelineansw = 'next group'
i = 1
15
loop forever
16
say 'NNTP@'node' ['i'] > \-'
i = i+1
18
cmd = ask
19
if cmd = 'quit'
so.send(cmd)
line = so.readline()
say line
23
parse cmd cmd rest
24
if onelineansw.wordpos(cmd) <> 0 then iterate
parse line cc rest
26
if cc > 300 then
27
do
28
iterate
29
end
30
so.receive(",")
end
32
33
-- we're done
34
--
35
so.close()
36
say 'Bye.'
37
exit
38
+--+
 nnt1.nrx

 Download the source for the nnt1.nrx example

 Writing a trivial IMAP client.

http://www.netrexx.org/examples/nnt1.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

RFC 1064 describes the IMAP protocol. IMAP stands for Interactive Mail Access Protocol. The idea is that your mail
messages are stored into a server. Your client connects to the server, so you can read your mail using a PC, a UNIX
workstation, a MAC or whatever without storing the messages locally.

The protocol is a bit more complicate than the above ones: all messages must be prefixed by a TAG that identify
the command. The TAG is in the format "ANNN".

client server
------ ------

A001 command1 -------------->
 Answer
 (...)
 <-------------- A001 status1

A002 command2 -------------->
 Answer
 (...)
 <-------------- A002 status2

The small program that follows implements (again) a trivial IMAP client. You need to change the mail.cern.ch
address with the address of the IMAP server of your Organization.

+--+
| -- simple INTERACTIVE |01
| -- news client
02
03
node = 'mail.cern.ch' -- change it to your local news server
05
-- connect to the NEWS server
--
07
so = xsock(node,'IMAP')
say so.readline()
10
-- wait for commands
11
--
12
i = 1
13
loop forever
14
say 'IMAP@'node' ['i'] > \-'
i = i+1
16
cmd = ask
17
if cmd = 'help' then
18
do
19
say 'LOGIN userid passwd'
say 'SELECT mailbox (ex. SELECT INBOX)'
say 'LOGOUT'
22
say 'FETCH sequence data (ex. FETCH 1 RFC822)'
say 'see RFC1064'
24
iterate

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

25
| end
|26
| tag = 'A'||i.right(3,'0') |27
| so.send(tag cmd) |28
| loop forever
|29
| line = so.readline() |30
| say line
|31
| parse line atag .
|32
| if tag = atag then leave
|33
| end
|34
| if cmd = 'logout' then leave
|35
| end
|36
|
|37
| -- we're done
38
39
so.close()
40
say 'Bye.'
41
exit
42
+--+
 imapt.nrx

 Download the source for the imapt.nrx example

 URLs and WEB pages

 The basic concepts

 The URL

The URL identifies uniquely a document on the Network.

URL is an acronym. It stands for Uniform Resource Locator; it is the address (or if you prefer, the reference) of an
Internet resource, usually an HTML document.

You probably saw thousands of URLs when "surfing" the Network, in the form of:

 http://java.sun.com/javastation/jstn.html

In this URL, like in all other URLs, we can identify 4 basic components, which are:

 http://java.sun.com:80/javastation/jstn.html
 ---- ------------ -- ---------------------
 | | | |
 | | | +------------> filename
 | | | (pathname of the file
 | | | on the server machine)

http://www.netrexx.org/examples/imapt.nrx
http://java.sun.com/javastation/jstn.html
http://java.sun.com/javastation/jstn.html

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

 | | |
 | | +---------------> port number
 | | (default is 80, so you
 | | can happily ommit :80
 | | here shown for educational
 | | purposes)
 | |
 | +-----------------> host name
 | (the name of the machine
 | where the document is located)
 |
 +----------------------> protocol identifier
 (can be HTTP,
 FTP
 News
 Gopher
 File - for local files)

 The HTTP daemon

The most common type of WEB documents are handled by HTTP daemons. Those daemons are waiting (usually)
on port 80, and accept an handfull of commands.

The most common command is GET followed by a path name. The daemon will answer sending back to the client
the selected document.

 +----------+
 | |
 | HTTP |
 | daemon |---------+
 | | PORT 80 | <-------- GET Welcome.html
 +----------+---------+

 (sends -------->
 Welcome.html)

 Retriving WEB documents, the basic code.

As we saw, the HTTP protocol used by the HTTP daemons is something very similar to the protocols we already
examined for the various socket daemons we encountered so far.

We can write a small program to retrieve a WEB page, using pure sockets:

+--+
| -- REALLY primitive HTTP client |01
| -- use basic sockets
02
03
class w3dmp public
04
properties constant
DEFAULT_PORT = int 80;
07
method usage public static
say "Usage: java w3dmp URL"
09
say "Example: java w3dmp http://wwwcn.cern.ch/Welcome.html"

http://wwwcn.cern.ch/Welcome.html

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

10
| exit 1
|11
|
|12
| method main(args=String[]) public static |13
| -- Get the arguments
|14
| argsl = Rexx(args)
|15
| if argsl = '' then
|16
| do
|17
| usage()
|18
| end
|19
|
|20
| -- get the URL components
|21
| -- very easy with PARSE
|22
| parse argsl protocol'://'node'/'document |23
| parse node node':'port |24
|
|25
| -- basic checks
|26
| if protocol <> 'http' then |27
| do
|28
| say 'Only HTTP protocol, please.' |29
| exit 1
|30
| end
|31
| if node = '' then
|32
| do
|33
| say 'Missing server name.' |34
| exit 2
|35
| end
|36
| if port = '' then port = DEFAULT_PORT |37
|
|38
| -- do the real job
|39
| s = Socket null;
|40
| do
|41
| s = Socket(node,port); |42
| sin = DataInputStream(s.getInputStream()); |43
| sout = PrintStream(s.getOutputStream()); |44
|
|45
| cmd = 'GET' '/'||document |46
| sout.println(cmd) |47
| line = String
|48
| loop forever
|49
| -- Read a line from the server.
|50
| line = sin.readLine(); |51
| -- Check if connection is closed (i.e. for EOF) |52
| if (line = null) then leave
|53
| -- And write the line to the console.
|54
| Say line
|55

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

| end
|56
| catch e1=IOException |57
| System.err.println(e1) |58
| finally
|59
| do
|60
| if (s \= null) then s.close()
|61
| catch e2=IOException |62
| e2=e2
|63
| end
|64
| end
|65
|
|66
| exit 0
|67
+--+
 w3dmp.nrx

 Download the source for the w3dmp.nrx example

The parsing of the URL components is done (of course) with two parse instructions, in order to correctly extract
the (optional) port number, in case it is different from 80.

The code can be made even shorter, using the already discussed xsock library functions.

+--+
| -- REALLY primitive HTTP client |01
| -- use basic sockets (and xsock library) |02
|
|03
| -- Get the arguments
|04
| if arg = '' then
|05
| do
|06
| say "Usage: java w3dmp URL"
|07
| say "Example: java w3dmp http://wwwcn.cern.ch/Welcome.html" |08
| exit 1
|09
| end
|10
|
|11
| -- get the URL components
|12
| -- very easy with PARSE
|13
| parse arg protocol'://'node'/'document |14
| parse node node':'port |15
|
|16
| -- basic checks
|17
| if protocol <> 'http' then |18
| do
|19
| say 'Only HTTP protocol, please.' |20
| exit 2
|21
| end
|22

http://www.netrexx.org/examples/w3dmp.nrx
http://wwwcn.cern.ch/Welcome.html

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

| if node = '' then
|23
| do
|24
| say 'Missing server name.' |25
| exit 3
|26
| end
|27
| if port = '' then port = 'HTTP'
|28
|
|29
| -- do the real job
|30
| so = xsock(node,'HTTP') |31
| so.send('GET /'document) |32
| so.receive() |33
| so.close()
|34
|
|35
| exit 0
|36
+--+
 w3dmp1.nrx

 Download the source for the w3dmp1.nrx example

 *** This section is:

 *** and will be available in next releases

 Summary

Let's resume what we saw in this chapter.

File: nr_15.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:51(GMT +2).

http://www.netrexx.org/examples/w3dmp1.nrx

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

The NetRexx Tutorial
 - Interface with the system

Interface with the system

 Introduction.

One of the most important points for coding effective NetRexx programs, is the ability to dialogue with the operating
system. Thus we want to be capable of executing OS commands, getting the output in a variable or in a array, starting
other processes, and so on.

 Calling System Commands.

Sooner or later you will find yourself in the need to call a System Command from your NetRexx code, and have the
output (if any) stored somewhere.

You should also note that you have ALWAYS an output from a System Command or Program. This is the Return
Code rc from the Command itself.

Pictorially:

 +---------+ +--------------------+
 | O.S. |<----------| NetRexx |
 | (OS/2 | | Program |
 | UNIX |---------->|....................|---------> display
 | W95 | result | . | immediately
WNT)	> save in a
		. VARIABLE
	> save in an
		ARRAY
 +---------+ +--------------------+

As we have just stated, we will distinguish three cases:

Call a command.
Call a command and get the result in a variable.
Call a command and get the result into an array.

We want also to make some decisions depending on the result of the command we just executed. If the command
fails, i.e. exits with a $RETURN, not zero we want to be able to choose to continue, inform the user, or abort.

 Related JAVA classes

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

 java.lang.Process
 java.lang.Runtime

 Calling a command immediately

This is probably the easiest instance: you want to execute an OS command (or a program). This means you will
write:

(...)
cmd = 'zip files.zip file1 file2'
r = Runtime.GetRuntime()
p = r.exec(cmd)
(...)

It is ALWAYS a good practice to check the return code rc: a command or a program can fail for many reasons, and
your program must be prepared for such eventualities. Note that if you do not check the rc, the program will
happily continue with the following instructions. So we modify the above code as:

(...)
cmd = 'zip files.zip file1 file2'
r = Runtime.GetRuntime()
p = r.exec(cmd)
rc = p.exitValue()
if rc <> 0 then
 do
 say 'Command "'cmd'" failed with rc:' rc'.'
 exit rc
 end
(...)

This will allow us to check if the zip command in the above example didn't crash for a disk full problem, or for a
missing input file.

Note that in the 2 above examples the output of the command is NOT displayed

 A final WARNING

WARNING: I feel necessary to warn you about a potential problems if you abuse of calls to System Commands.

You should NEVER use a call to System Commands if your call can be implemented in Java itself. So you should not
(if you're a UNIX user) do:

--
-- NEVER DO THIS !!!
--
ls = xexec('ls -l toto','VAR','ABORT')
parse ls.out size .

This code is, infact, no portable (DOS and Windows) do not know about "ls".

NOTE: if you want to implement "ls" you do something like:

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

+--+
| l = String[]
|01
| f = File(".")
|02
| l = f.list()
|03
| loop i = 0 to l.length-1
|04
| say l[i]
|05
| end
|06
+--+
 lls.nrx

 Download the source for the lls.nrx example

 Simple examples

 Execute a System command

+--+
| -- syex1.nrx
|01
| -- SYstem EXec
02
03
class syex1 public
04
05
method main(args=String[]) public static
07
arg = Rexx(args)
08
parse arg cmd
09
10
-- do the REAL job
11
--
12
do
13
rtim = Runtime.GetRuntime()
proc = rtim.exec(cmd)
dis = DataInputStream(proc.getInputStream())
17
loop forever
18
line = dis.readline()
if line = NULL then leave
20
say line
21
end
22
rc = proc.waitFor()

http://www.netrexx.org/examples/lls.nrx

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

| say 'Return code:' rc'.' |24
| catch err = IOEXception |25
| say 'ERROR:' err
|26
| end
|27
| exit 0
|28
+--+
 syex1.nrx

 Download the source for the syex1.nrx example

 Execute an "interactive" System command

Some programs, like the following one, might require some "interactive" input.

+--+
| n = 0
|01
| loop forever
|02
| n = n+1
|03
| say 'Please enter something (quit to QUIT)' |04
| parse ask line
|05
| if line = 'quit' then leave
|06
| say n '>>>' line
|07
| end
|08
+--+
 interact.nrx

 Download the source for the interact.nrx example

It would be nice if it was possible to make (when needed) the input "automatic". This small example shows how.

+--+
| -- syex2.nrx
|01
| -- SYstem EXec
02
03
class syex2 public
04
05
method main(args=String[]) public static
07
-- this is the interactive command
cmd = 'java interact'
09
10
-- do the REAL job
11
--
12
do
13
rtim = Runtime.GetRuntime()

http://www.netrexx.org/examples/syex1.nrx
http://www.netrexx.org/examples/interact.nrx

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

| proc = rtim.exec(cmd) |15
| dos = PrintStream(proc.getOutputStream()) |16
| dis = DataInputStream(proc.getInputStream()) |17
| dos.println('help') |18
| dos.println('quit') |19
| dos.close() |20
|
|21
| loop forever
|22
| line = dis.readline() |23
| if line = NULL then leave
|24
| say line
|25
| end
|26
| rc = proc.waitFor() |27
| say 'Return code:' rc'.' |28
| catch err = IOEXception |29
| say 'ERROR:' err
|30
| end
|31
| exit 0
|32
+--+
 syex2.nrx

 Download the source for the syex2.nrx example

The "key" instruction is:

dos = PrintStream(proc.getOutputStream())

where we get an OUTPUT stream to the process proc. We now can simulate the keyboard input, which we do via:

dos.println('help')
dos.println('quit')

so all is like if you were typing help and quit from your keyboard.

 The xexec method

+--+
| -- method......: xexec
 |33
| -- purpose.....: constructor
 |34
| --
 |35
| method xexec(cmd=String,dest=Rexx,oner=Rexx) public
 |36
| dest = dest.upper() -- uppercase params
 |37
| oner = oner.upper()
 |38
| valid_dest = 'ARRAY SCREEN VAR NULL'
 |39
| valid_oner = 'WARNING ABORT IGNORE'
 |40

http://www.netrexx.org/examples/syex2.nrx

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

|
 |41
| -- setting the defaults
 |42
| --
 |43
| if dest = '' then dest = default_dest
 |44
| if oner = '' then oner = default_oner
 |45
|
 |46
| -- check if the parms are OK
 |47
| --
 |48
| if valid_dest.wordpos(dest) = 0 then
 |49
| do
 |50
| say 'Error: "'dest'" is not a valid destination.'
 |51
| exit 1
 |52
| end
 |53
| if valid_oner.wordpos(oner) = 0 then
 |54
| do
 |55
| say 'Error: "'oner'" is not a valid ONERROR action.'
 |56
| exit 1
 |57
| end
 |58
|
 |59
| -- do the real job
 |60
| --
 |61
| do
 |62
| r = Runtime.GetRuntime()
 |63
| p = r.exec(cmd)
 |64
| cr = DataInputStream(BufferedInputStream(p.getInputStream()))
 |65
|
 |66
| -- Output handling
 |67
| --
 |68
| lines = 0
 |69
| out = ''
 |70
| j = 0
 |71
| loop forever
 |72
| s = cr.Readline()
 |73
| if s = NULL then leave
 |74
| if dest.wordpos('SCREEN')
 |75
| then say s
 |76
| if dest.wordpos('VAR')
 |77
| then out = out s
 |78
| if dest.wordpos('ARRAY')

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

 |79
| then
 |80
| do
 |81
| j = j+1
 |82
| line[j] = s
 |83
| end
 |84
| end
 |85
| lines = j
 |86
| line[0] = lines
 |87
|
 |88
| -- Return code handling
 |89
| --
 |90
| rc = p.exitValue()
 |91
| if rc <> 0 then
 |92
| do
 |93
| select
 |94
| when oner = 'WARNING' then
 |95
| do
 |96
| say 'WARNING: rc=' rc 'from "'cmd'".'
 |97
| end
 |98
| when oner = 'ABORT' then
 |99
| do
 |00
| say 'WARNING: rc=' rc 'from "'cmd'".'
 |01
| say 'ABORTING.'
 |02
| exit 5
 |03
| end
 |04
| otherwise NOP
 |05
| end
 |06
| end
 |07
| catch error = IOException
 |08
| say error
 |09
| end
 |10
|
 |11
| method xexec(cmd=Rexx,dest=Rexx) public
 |12
| this(cmd,dest,default_oner)
 |13
|
 |14
| method xexec(cmd=Rexx) public
 |15
| this(cmd,default_dest,default_oner)
 |16
|
 |17

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

+--+
 xsys.nrx(Method:xexec)

 Download the complete source for the xsys.nrx library

 Some application: a simple "shell"

With the knowledge we developped in this chapter, we can now imagine to write a simple shell

+--+
| -- package: xshell |01
| -- version: 1.000 beta
|02
| -- date: 23 FEB 1997
|03
| -- author: P.A.Marchesini |04
| -- copyright: (c) P.A.MArchesini, 1997 |05
| -- latest vers.: http://wwwcn.cern.ch/news/netrexx |06
| --
|07
| -- This program is free software; you can redistribute it and/or mod|08
| -- it under the terms of the GNU General Public License as published|09
| -- the Free Software Foundation; either version 2 of the License,|10
| -- (at your option) any later version. |11
| --
|12
| -- This program is distributed in the hope that it will be useful, |13
| -- but WITHOUT ANY WARRANTY; without even the implied warranty of |14
| -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |15
| -- GNU General Public License for more details. |16
| --
|17
| -- You should have received a copy of the GNU General Public License|18
| -- along with this program; if not, write to the Free Software|19
| -- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |20
| --
|21
|
|22
| -- class xshell
|23
| -- This class implements a "shell" environment, something like |24
| -- 'zsh' or 'bash' (with very less functions!) |25
| --
|26
| class xshell
|27
|
|28
| properties public static |29
| properties private static |30
| version = 'v0r000 beta' |31
| copyright = '(c) 1997 Pierantonio Marchesini, ETH Zurich' |32
| contact = 'Pierantonio.Marchesini@cern.ch' |33
|
|34
| -- method......: shell |35
| -- purpose.....: constructor |36
| --
|37
| method xshell() public |38
| version = version -- make NetRexx happy |39
| copyright = copyright -- ditto |40
| contact = contact -- ditto |41
|
|42
| -- method......: main |43
| -- purpose.....: just run typing "java shell" |44

http://www.netrexx.org/library/xsys.nrx
http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

| --
|45
| method main(args=String[]) public static |46
| args = args
|47
|
|48
| -- Initialization |49
| --
|50
| cmdno = 1
|51
| rc = 0
|52
| validlcmds = 'history' |53
| validecmds = 'ls pwd java' -
|54
| 'ftp cp help dir'
|55
| host = xsock.hostname() -- get my host,pls |56
| extracmd = ''
|57
| his = history(100) |58
|
|59
| loop forever
|60
| say host '['his.counter()':'rc'] 'extracmd'\-' |61
| todo = ask
|62
| if extracmd <> ''
|63
| then todo = extracmd||todo |64
|
|65
| -- check special cases
66
67
if todo = '' then iterate
68
if todo = 'exit'
if todo.left(1) = '!' then
do
71
parse todo '!'rest
72
select
73
when rest = '!' then ptr=cmdno-1
74
otherwise ptr = rest
75
end
76
if ptr < 1 then ptr = 1
77
extracmd = his.retrieve(ptr)
iterate
79
end
80
81
extracmd = ''
82
cmdno = cmdno+1
83
his.save(todo)
parse todo cmd arg
85
arg = arg
86
87
-- process local commands
--

NetRexx Tutorial - Interface with the system

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

|89
| if validlcmds.wordpos(cmd) <> 0 then |90
| do
|91
| select
|92
| when cmd = 'history' then his.dump(10) |93
| otherwise say 'Sorry. "'cmd'" is not yet implemented.' |94
| end
|95
| iterate
|96
| end
|97
|
|98
| -- check for .class
99
00
if xfile.fexist(cmd'.class') then
do
02
todo = 'java' todo
03
cmd = 'java'
04
end
05
06
-- process external commands
--
08
if validecmds.wordpos(cmd) = 0 then
do
10
say 'Invalid command "'cmd'".'
iterate
12
end
13
c = xexec(todo,'SCREEN','IGNORE')
rc = c.rc
15
end
16
exit 0
17
+--+
 xshell.nrx

 Download the source for the xshell.nrx example

 *** This section is:

 *** and will be available in next releases

File: nr_16.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:53(GMT +2).

http://www.netrexx.org/examples/xshell.nrx

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

The NetRexx Tutorial
 - Process Control and Exceptions

Process Control and Exceptions

 Introduction

In this chapter we will analyse how to better control the program flow of a NetRexx application.

 Basic Concepts

 Exception

The exception is a mechanism that allows you to (eventually) change the flow of control whenever some
important or unexpected event (usually an error) occurs in your program. You then can try to cope with the
problem (usually alerting the user that the problem has occurred), and avoid major disasters (usually exiting the
program).

 Exception Handling

Although NetRexx allows you to ignore (even explicitly) an exception, it is always a good idea to handle it,
especially in the debugging phase of a program.

 Exceptions in real life.

 One way to happily generate exceptions, is to avoid any checking of input data. Not performing any validation on
input data is REALLY a bad programming. In this case we'll avoid the checking on purpose, just to see what can
happen.

Look at the following code:

+--+
| -- expp1.nrx
|01
| -- WARNING: this is bad programming: no checks on input |02
| -- data are performed
03
04
parse arg n

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

|05
| inv = 1/n
|06
| say 'Inverse is:' inv
|07
| exit 0
|08
+--+
 expp1.nrx

 Download the source for the expp1.nrx example

This is definitely a bad code since:

we do not check for an empty input
we do not check for non-numeric input
we do not check for zero input

So let's the fun begin and try to run some examples:

..
-- this is OK
sp069.marchesi ~/src/java/Java/bin [0:18] java expp1 1
Inverse is: 1

-- this is divide by 0
sp069.marchesi ~/src/java/Java/bin [0:19] java expp1 0
netrexx.lang.DivideException: Divide by 0
 at netrexx.lang.Rexx.dodivide(Rexx.nrx:1648)
 at netrexx.lang.Rexx.OpDiv(Rexx.nrx:1557)
 at expp1.main(expp1.nrx:6)

-- non numeric input
sp069.marchesi ~/src/java/Java/bin [0:20] java expp1 popo
java.lang.NumberFormatException: popo
 at netrexx.lang.Rexx.dodivide(Rexx.nrx:1647)
 at netrexx.lang.Rexx.OpDiv(Rexx.nrx:1557)
 at expp1.main(expp1.nrx:6)

-- no input at all
sp069.marchesi ~/src/java/Java/bin [0:21] java expp1
java.lang.NumberFormatException:
 at netrexx.lang.Rexx.dodivide(Rexx.nrx:1647)
 at netrexx.lang.Rexx.OpDiv(Rexx.nrx:1557)
 at expp1.main(expp1.nrx:6)
..

Those messages are really scaring, aren't they?

 Handling exceptions: catch

Suppose that we have a block of code that, like in the example above, might generate an exception.

So:

 (...)
 -- this code might generate an exception
 --
 ...
 BLOCK_OF_CODE
 ...
 (...)

http://www.netrexx.org/examples/expp1.nrx

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

In NetRexx, if you want to handle exceptions, you'll write the above code as:

 (...)
 do
 -- this code might generate an exception
 --
 ...
 BLOCK_OF_CODE
 ...
 catch variable_name = EXCEPTION_NAME
 CODE_TO_RUN_IN_CASE_OF_EXCEPTION
 end
 (...)

In a nutshell, you put your code into a do ... end clause, and add a catch instruction. Program flow will be passed to
CODE_TO_RUN_IN_CASE_OF_EXCEPTION in case of any EXCEPTION_NAME encountered

The special instruction is catch. Catch is (usually) followed by a statement of the format:

 catch error = EXCEPTION_NAME
 say 'EXCEPTION_NAME: got error:' error'.'

 Always run a piece of code: finally.

 Sometimes it is important to catch the exception, but also to be guaranteed that some "critical" code is run,
whatever happens to the program, i.e. if the exception is cached or not. Think about a file lock, for example, that
you MUST clean, in case of a program crash.

You use the finally statement, which you are guaranteed is ALWAYS run.

 (...)
 do
 -- this code might generate an exception
 --
 ...
 BLOCK_OF_CODE
 ...

 catch variable_name = EXCEPTION_NAME
 CODE_TO_RUN_IN_CASE_OF_EXCEPTION

 finally
 CODE_TO_RUN_ALWAYS_AND_ANYWAY

 end
 (...)

 Resume

To resume what we saw so far:

 ...
 do
 ... -- This code MIGHT
 BLOCK_OF_CODE -- generate an exception
 ... --
 catch [err =] EXCEPTION1

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

 ... --
 CODE FOR EXCEPTION1 --
 ... --
 catch [err =] EXCEPTION2
 ... -- You can catch as many
 CODE FOR EXCEPTION2 -- exceptions you want
 ... --
 finally
 ... -- code ALWAYS run
 CODE FOR EXCEPTION1 --
 ... --
 end

 A revisited 'bad-programmer' inverse computation program

Let's apply what we saw so far to the example we initially made:

+--+
| -- expp2.nrx
|01
| -- WARNING: this is bad programming: no checks on input |02
| -- data are performed
03
04
parse arg n
05
ok = 0
06
do
07
inv = 1/n
08
say 'Inverse is:' inv
09
ok = 1
10
catch DivideException
say 'Division exception'
catch ex=NumberFormatException
say 'Number "'n'" bad for division.'
say 'message is "'ex'".'
end
16
if ok
17
then say 'Division is OK.'
18
else say 'Problems found.'
exit 0
20
+--+
 expp2.nrx

 Download the source for the expp2.nrx example

...
sp069.marchesi ~/src/java/Java/bin [0:29] java expp2 1
Inverse is: 1
Division is OK.
sp069.marchesi ~/src/java/Java/bin [0:29] java expp2 0
Division exception
Problems found.
sp069.marchesi ~/src/java/Java/bin [1:30] java expp2 toto
Number "toto" bad for division.
message is "java.lang.NumberFormatException: toto".
Problems found.

http://www.netrexx.org/examples/expp2.nrx

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

sp069.marchesi ~/src/java/Java/bin [1:31]
...

 Output the stack trace information

 The stack trace contains the information about your program at the time the exception occurred. In particular, it
shows you the line number where the problem did occur. This might help you to solve a LOT of problems.

If you catch the exception, and you want to see the stack trace, you just add the following line:

 do
 (...)
 catch er = EXCEPTION
 say 'ERROR: EXCEPTION'
 er = printStackTrace()
 end

NOTE: printStackTrace() outputs to System.err, If you want the output to System.out, just type:

 er = printStackTrace(System.out)

 Changing the format of the Stack Trace

Maybe you do not like the output format of the stack trace. This function will show you how to change it:

+--+
| -- method......: dump |38
| -- purpose.....: |39
| --
|40
| method dump(e=Exception) public static |41
| -- trace buffer
|42
| trace = Rexx(") |43
|
|44
| -- get the error message
45
46
err = e.tostring()
48
-- printStackTrace outputs to a PrintStream
-- we connect a PipedInput to grab the output
--
51
pout = PipedOutputStream()
pin = PipedInputStream()
pin.connect(pout)
out = PrintStream(pout)
in = DataInputStream(pin)
57
-- get the stack
58
--
59

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

| e.printStackTrace(out) |60
|
|61
| j = 0
|62
| loop while in.available() <> 0 |63
| str = in.readLine() |64
| parse str 'at' rest
|65
| if rest = '' then iterate
|66
| j = j+1
|67
| trace[j] = rest
|68
| end
|69
| trace[0] = j
|70
| parse trace[j] ':'line')' |71
| say '(dump) Error found line..:' line'.' |72
| say '(dump) Message is........:' err'.' |73
| say '(dump) Full dump follows.:' |74
| say
|75
| loop i = trace[0] to 1 by -1
|76
| parse trace[i] p1'('prog':'line')' |77
| if line = '' then iterate
|78
| p1 = '('p1.space()')' |79
| say '(dump)' prog.left(12) p1.left(30) 'line:' line.right(5) |80
| end
|81
| say
|82
|
|83
+--+
 xsystem.nrx(Method:dump)

 Download the complete source for the xsystem.nrx library

If we now modify our simple buggy program, like this:

+--+
| -- expp2.nrx
|01
| -- WARNING: this is bad programming: no checks on input |02
| -- data are performed
03
04
parse arg n
05
ok = 0
06
do
07
inv = 1/n
08
say 'Inverse is:' inv
09
ok = 1
10
catch er1 = DivideException
xsystem.dump(er1)
catch er2 = NumberFormatException
xsystem.dump(er2)
end
15

http://www.netrexx.org/library/xsystem.nrx

NetRexx Tutorial - Process Control and Exceptions

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

| if ok
|16
| then say 'Division is OK.'
|17
| else say 'Problems found.' |18
| exit 0
|19
+--+
 expp3.nrx

 Download the source for the expp3.nrx example

we get the following result:

...
sp069.marchesi ~/src/java/Java/bin [0:69] java expp3 0
(dump) Error found line..: 8.
(dump) Message is........: netrexx.lang.DivideException: Divide by 0.
(dump) Full dump follows.:

(dump) expp3.nrx (expp3.main) line: 8
(dump) Rexx.nrx (netrexx.lang.Rexx.OpDiv) line: 1557
(dump) Rexx.nrx (netrexx.lang.Rexx.dodivide) line: 1648

Problems found.
...

 Summary.

 *** This section is:

 *** and will be available in next releases

File: nr_17.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:54(GMT +2).

http://www.netrexx.org/examples/expp3.nrx

NetRexx Tutorial - Database Operations

http://www.netrexx.org/Tutorial/nr_18.html[11/4/2010 2:27:59 PM]

The NetRexx Tutorial
 - Database Operations

Database Operations

 Introduction

An interface to some primitive database functions is available as a NetRexx extension.

 *** This section is:

 *** and will be available in next releases

 Use NetRexx with JDBC

 The following code atom shows how to use NetRexx with JDBC

+--+
| -- original sample from Gerhard Hofstaetter (hofg@edvg.co.at) |01
| -- and posted on ibm-netrexx |02
| -- use NetRexx with JDBC
03
04
import java.net.URL
import java.sql.
import ibm.sql.
08
class jdbct1
09
10
method jdbct1
class.forName('ibm.sql.DB2Driver')
13
method main(args = string[]) static
jdbct1()
15
16
-- set database as URL
17
url = 'jdbc:db2:edvr0s3'

NetRexx Tutorial - Database Operations

http://www.netrexx.org/Tutorial/nr_18.html[11/4/2010 2:27:59 PM]

|19
| -- connect to database |20
| connect = DriverManager.getConnection(url) |21
|
|22
|
|23
| -- retrieve data from the database |24
| say 'Retrieve some data from the database...' |25
| sqlstmt = connect.createStatement() |26
| resultset = -
|27
| sqlstmt.executeQuery('select tabschema, tabname' - |28
| 'from syscat.tables') |29
|
|30
| -- display the result set |31
| -- resultset.next() returns false when there are no more rows |32
| say 'Received results:' |33
| loop while resultset.next() |34
| owner = resultset.getString(1) |35
| table = resultset.getString(2) |36
| say 'Owner =' owner 'Table =' table |37
| end
|38
|
|39
| resultset.close() |40
| sqlstmt.close() |41
| connect.close() |42
+--+
 jdbct1.nrx

 Download the source for the jdbct1.nrx example

 *** This section is:

 *** and will be available in next releases

File: nr_18.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:56(GMT +2).

http://www.netrexx.org/examples/jdbct1.nrx

NetRexx Tutorial - Applets

http://www.netrexx.org/Tutorial/nr_20.html[11/4/2010 2:28:00 PM]

The NetRexx Tutorial
 - Applets

Applets

 *** This section is:

 *** and will be available in next releases

 Creating and running your first Applet.

I want to show you how to create and run a very simple Applet. As in the "Hello World!" example, the issue is not
really the code (that giving the colours I use I think you'll just run only one time), but the whole procedure.

The steps can be resumed:

step 1: Create a class that extends the Java Applet. You'll need to define at least two methods: an init
method and a paint method. This class will be the usual .nrx file that you know how to compile.
step 2: Create an html file with the right applet definitions.
step 3: run appletviewer over the above HTML file.

 The Applet.

+--+
| -- Your very first applet
01
02
class aphello extends Applet
properties private
fo = Font
05
XMAX = 500
06
YMAX = 500
07
08
method init
09
resize(XMAX,YMAX)
fo = Font("Helvetica",fo.BOLD,36)

NetRexx Tutorial - Applets

http://www.netrexx.org/Tutorial/nr_20.html[11/4/2010 2:28:00 PM]

|12
| method paint(g=graphics) |13
| g.setFont(fo) -- set font |14
| g.setColor(Color.Pink) -- all pink, pls |15
| g.fillrect(0,0,XMAX,YMAX) -- |16
| g.setColor(Color.Yellow) -- write yellow |17
| g.drawString('Hello there!',10,200) -- message |18
+--+
 aphello.nrx

 Download the source for the aphello.nrx example

 The HTML.

+--+
| <html> |01
| test |02
| <applet code="aphello.class" height=100 width=100 length=100> |03
| </applet> |04
| </html> |05
+--+
 aphello.html

 The full procedure as typed in.

..
 --
 -- build the Applet
 --
rsl3pm1 (68) edit aphello.nrx

 --
 -- compile it
 -
rsl3pm1 (69) java COM.ibm.netrexx.process.NetRexxC aphello

 --
 -- edit the HTML
 --
rsl3pm1 (70) edit aphello.html

 --
 -- try it out
 --
rsl3pm1 (71) appletviewer aphello.html
..

File: nr_20.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:57(GMT +2).

http://www.netrexx.org/examples/aphello.nrx

NetRexx Tutorial - Graphical Interfaces

http://www.netrexx.org/Tutorial/nr_21.html[11/4/2010 2:28:01 PM]

The NetRexx Tutorial
 - Graphical Interfaces

Graphical Interfaces

 *** This section is:

 *** and will be available in next releases

File: nr_21.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:57(GMT +2).

NetRexx Tutorial - Advanced Graphics

http://www.netrexx.org/Tutorial/nr_22.html[11/4/2010 2:28:01 PM]

The NetRexx Tutorial
 - Advanced Graphics

Advanced Graphics

 *** This section is:

 *** and will be available in next releases

File: nr_22.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:58(GMT +2).

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

The NetRexx Tutorial
 - Advanced Networking

Advanced Networking

In this chapter we will analyse some of the most recent goodies available in JDK 1.1, and consequently in NetRexx.

In this chapter we will analyse:

The Remote Method Invocation (RMI)
The Java/NetRexx Servlets

 Basic Concepts

 Remote Method Invocation

The RMI (Remote Method Invocation) is a technique by which an object on SYSTEM A can call a method in an
object on SYSTEM B, located somewhere else in the network.

All the sending of parameters, and retrieving of the result will happen in a transparent way, so that the user (and,
before him, the application developper) has the feeling that the method was called locally (like any other method
we saw so far).

So far we saw how the methods are pieces of code run locally by an object:

 MACHINE A

 object OBJ

 method METHOD
 (...)

 code for METHOD <--- runs
 locally

 (...)

Using RMI we move code for METHOD to be remote.

 MACHINE A MACHINE B
 --------- ---------

 object OBJ

 method METHOD method METHOD

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

 (...)
 ========>
 code for METHOD <--- runs
 remote
 <=======
 (...)

This "extention" of the method across the Network is done using sockets; but all the programming details are
hidden to the programmer, who just have to realize that, being the call remote, the chances that "something-
goes-wrong" are bigger, so he MUST be more carefull for error handling.

 The Client/Server Model

The following picture might help understanding the Client/Server in the RMI implementation.

+-----------------------+ +------------------------+
| CLIENT rmicl.nrx | | SERVER rmise.nrx |
| | | |
| a = obj.method() +-------+ +-----+ |
	rem obj					
	method	===>		+---------------+		
		S			actual OBJ	
		O		===>	method	
S		C		<===	return	
T		K		+---------------+		
return U	return	<===		S		
B		E		T		
+-------+ T +-----+U						
	S	B				
+-----------------------+ +------------------------+

As you see, the REAL object exists on the SERVER; from the SERVER's point of view, the object IS the SERVER.

 First example: a time RMI.

This is probably the simplest code you can try, in order to implement an application using the Remote Method
Invocation.

We'll write a program to grab the time information from another machine (even if, for practical purposes, the
example will run Client and Server on the same machine).

 Define the remote interface

+--+
| class Time public implements java.rmi.Remote interface |01
|
|02
| method sayTime() returns String signals java.rmi.RemoteException |03
+--+
 Time.nrx

 Download the source for the Time.nrx example

http://www.netrexx.org/examples/Time.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

 Write the Implementation Class

+--+
| import java.rmi. |01
| import java.rmi.server.UnicastRemoteObject |02
|
|03
| class TimeImpl public extends UnicastRemoteObject implements Time |04
|
|05
| properties private |06
| myname
|07
|
|08
| method TimeImpl(s=String) signals RemoteException |09
| super();
|10
| myname = s;
|11
|
|12
| method sayTime() returns String |13
| return 'Hello from' myname 'at' xsys.time('N') |14
|
|15
| method main(a=String[]) public static |16
|
|17
| -- Create and install a security manager |18
| System.setSecurityManager(RMISecurityManager()); |19
|
|20
| do
|21
| obj = TimeImpl("TimeServer"); |22
| Naming.rebind("//pcl307/TimeServer", obj); |23
| say "TimeServer bound in registry"; |24
| catch e=Exception |25
| say "TimeImpl err: " + e.getMessage(); |26
| end
|27
|
|28
+--+
 TimeImpl.nrx

 Download the source for the TimeImpl.nrx example

 Write an application that uses the Remote Service

+--+
| import java.rmi. -- MUST be here! |01
|
|02
| class TimeCl public |03
|
|04
| method main(arg=String[]) public static |05
| arg = arg -- keep NR silent
|06
|
|07
| do
|08

http://www.netrexx.org/examples/TimeImpl.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

| obj = Time Naming.lookup("//pcl307/TimeServer") |09
| message = obj.sayTime(); |10
| catch e=Exception |11
| say "TimeCl exception:" e.getMessage() |12
| end
|13
| say message
|14
| exit
|15
+--+
 TimeCl.nrx

 Download the source for the TimeCl.nrx example

 Putting all those pieces together

Provided you have the three above .nrx files stored in the same directory, in order to run the example, you have to
issue the following commands, in your shell

...
 -- 1. edit the sources and change "pcl307" to your
 -- node name

> edit TimeCl.nrx
> edit TimeImpl.nrx

 -- 2. Compile the 3 programs
 --

> java COM.ibm.netrexx.process.NetRexxC Time.nrx
> java COM.ibm.netrexx.process.NetRexxC TimeCl.nrx
> java COM.ibm.netrexx.process.NetRexxC TimeImpl.nrx

 -- 3. Generate the stubs
 --

> rmic TimeImpl

 -- 4. Start the registry
 -- (WNT;W95) start rmiregistry
 -- (ditto) javaw rmiregistry
 -- (UNIX) rmiregistry &

> start rmiregistry

 -- 5. Start the Server part
 --

> java TimeImpl

 -- 6. On another window, you can run the
 -- client

> java TimeCl
...

 First real example: a remote controlled VOLTAGE controller

What we saw so far might appear a little "too much" for such a simple application. In fact, it is.

In the following example we use what we have learnt to build an application where objects last LONGER than the
lifetime of the client application.

http://www.netrexx.org/examples/TimeCl.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

 The code for Interface, Server and Client

+--+
| class volt public implements java.rmi.Remote interface |01
|
|02
| method get(ch=int) returns int signals java.rmi.RemoteException |03
| method set(ch=int,value=int) signals java.rmi.RemoteException |04
+--+
 volt.nrx

 Download the source for the volt.nrx example

+--+
| -- voltimpl.nrx |01
| -- voltage controller implementation |02
| --
|03
|
|04
| import java.rmi. |05
| import java.rmi.server.UnicastRemoteObject |06
|
|07
| class voltimpl public extends UnicastRemoteObject implements volt |08
|
|09
| properties private |10
| myname
|11
| channel = int[100] |12
|
|13
| method voltimpl(s=String) signals RemoteException |14
| super();
|15
| myname = s;
|16
|
|17
| -- set a channel
|18
| method set(ch=int,value=int) |19
| say myname 'channel:' ch 'set to:' value |20
| channel[ch] = value |21
|
|22
| -- fetch a value
|23
| method get(ch=int) returns int |24
| return channel[ch] |25
|
|26
| -- main method
|27
| method main(a=String[]) public static |28
|
|29
| -- Create and install a security manager |30
| System.setSecurityManager(RMISecurityManager()); |31
|
|32
| do
|33
| obj = voltimpl("voltageserver"); |34
| Naming.rebind("//pcl307/voltageserver", obj); |35
| say "voltageserver bound in registry"; |36

http://www.netrexx.org/examples/volt.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

| catch e=Exception |37
| say "voltimpl err: " + e.getMessage(); |38
| end
|39
|
|40
+--+
 voltimpl.nrx

 Download the source for the voltimpl.nrx example

+--+
| -- voltcl.nrx
|01
| -- client example |02
| --
|03
| import java.rmi. -- MUST be here! |04
|
|05
| class voltcl public |06
|
|07
| method main(args=String[]) public static |08
| arg = rexx(args)
|09
| parse arg act ch val -- get args
|10
| act = act.upper() -- upperacase the action |11
|
|12
| do
|13
| -- get the remote object |14
| obj = volt Naming.lookup("//pcl307/voltageserver") |15
|
|16
| -- do the job
|17
| if act = 'SET' then -- set a channel
|18
| do
|19
| obj.set(ch,val) |20
| n = obj.get(ch) |21
| end
|22
| if act = 'GET' then -- get a channel
|23
| do
|24
| n = obj.get(ch) |25
| end
|26
| catch e=Exception |27
| say "voltcl exception:" e.getMessage() |28
| end
|29
| say 'Channel' ch 'value:' n'.' |30
| exit 0
|31
+--+
 voltcl.nrx

 Download the source for the voltcl.nrx example

 Build it

We saw already how to build an RMI application, so I just show again the commands.

http://www.netrexx.org/examples/voltimpl.nrx
http://www.netrexx.org/examples/voltcl.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

...
> edit voltcl.nrx
> edit voltimpl.nrx
> java COM.ibm.netrexx.process.NetRexxC volt.nrx
> java COM.ibm.netrexx.process.NetRexxC voltCl.nrx
> java COM.ibm.netrexx.process.NetRexxC voltimpl.nrx
> rmic voltimpl
> start rmiregistry
> java voltimpl
> java voltcl set 2 33
> java voltcl get 2
 33 <=== This is MAGIC!
...

 Remote File Access

Let's now analyse a real case study. We want to implement some (tough primitive) file access method. Our client
application will then be capable to access a Server's file just like if the file was local.

 The files

For this project we again need 4 files, which are:

 rfile.nrx - the Interface
 rfileimpl.nrx - the Implementation
 rfileserv.nrx - the Server's part
 rfileclie.nrx - the Client's part

 Interface

+--+
| -- rfile.nrx
|01
| -- Remote File Access |02
| -- Interface part
03
04
05
class rfile public implements java.rmi.Remote interface
method setfilename(s=String) signals java.rmi.RemoteException
method exists() returns int signals java.rmi.RemoteException
method list() returns String[] signals java.rmi.RemoteException
method cat() returns String[] signals java.rmi.RemoteException
+--+
 rfile.nrx

 Download the source for the rfile.nrx example

 Implementation

http://www.netrexx.org/examples/rfile.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

+--+
| -- rfileimpl.nrx |01
| -- Remote File Access |02
| -- Implementation part |03
| --
|04
|
|05
| import java.rmi. |06
| import java.rmi.server.UnicastRemoteObject |07
|
|08
| class rfileimpl public extends UnicastRemoteObject implements rfile |09
|
10
11
properties private
myname
13
fid = File
14
fname
15
16
-- constructor
method rfileimpl(s=String) signals RemoteException
super();
19
myname = s;
20
21
-- set the filename
22
method setfilename(fn=String)
say myname 'selects' fn
fname = fn
25
fid = File(fn)
26
27
-- check if file exists
28
method exists() returns int
return fid.exists()
31
-- list a directory
32
method list() returns String[]
return fid.list()
35
-- cat a file
36
method cat() returns String[]
d = xfile(fname) -- use xfile
rc = d.read() --
39
say '(cat) File "'fname'" read rc:' rc'.'
41
-- I need this till I cannot return REXX
nl = d.lines
43
s = String[nl]
44
loop i = 1 to d.line[0]
45
s[i-1] = d.line[i]
46
end
47
return s

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

|48
+--+
 rfileimpl.nrx

 Download the source for the rfileimpl.nrx example

 Server

+--+
| -- rfileserv.nrx |01
| -- Remote File Access |02
| -- Server code
03
04
05
import java.rmi.
import java.rmi.server.UnicastRemoteObject
08
class rfileserv public
10
-- main method
11
method main(a=String[]) public static
13
myname = "remfileaccess"
mynode = "pcl307"
16
-- Create and install a security manager
System.setSecurityManager(RMISecurityManager());
19
do
20
obj = rfileimpl(myname);
Naming.rebind('//'mynode'/'myname, obj);
say 'Bind of' myname 'OK.'
23
say 'Node is' mynode '.'
24
say 'SERVER now ready for connections.'
say 'HIT CNTRL-C to ABORT'
26
catch e=Exception
say 'rfileserv error:' + e.getMessage();
end
29
30
+--+
 rfileserv.nrx

 Download the source for the rfileserv.nrx example

 Client

+--+
| -- rfileclie.nrx |01
| -- Remote file Access |02

http://www.netrexx.org/examples/rfileimpl.nrx
http://www.netrexx.org/examples/rfileserv.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

| -- Client part
03
04
import java.rmi. -- MUST be here!
06
class rfileclie public
08
properties public static
fn
10
11
method help() public static
say 'implemented commands are:'
say 'java rfileclie ls <FILE>'
say ' state <FILE>'
15
say ' cat <FILE>'
16
exit 6
17
18
method ls(fid=rfile) public static
if fid.exists() = 0 then
do
21
say 'Sorry: remote file "'fn'" does not exist.'
exit 1
23
end
24
dd = String[]
25
dd = fid.list()
26
loop i = 0 to dd.length - 1
27
say dd[i]
28
end
29
30
method cat(fid=rfile) public static
if fid.exists() = 0 then
do
33
say 'Sorry: remote file "'fn'" does not exist.'
exit 1
35
end
36
dd = String[]
37
dd = fid.cat()
38
loop i = 0 to dd.length - 1
39
say dd[i]
40
end
41
42
43
method main(args=String[]) public static
arg = rexx(args)
45
parse arg cmd fn

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

|46
|
|47
| if cmd = 'help' then
|48
| do
|49
| help()
|50
| end
|51
| do
|52
| -- get the remote object |53
| fid = rfile Naming.lookup("//pcl307/remfileaccess") |54
|
|55
| -- do the job
|56
| if fn = '' then fn = '.'
|57
| fid.setfilename(fn) |58
| select
|59
| when cmd = 'ls' then ls(fid)
|60
| when cmd = 'cat' then cat(fid)
|61
| otherwise say 'Unimplemented command.' |62
| end
|63
| catch e=Exception |64
| say "rfileclie exception:" e.getMessage() |65
| end
|66
| exit 0
|67
+--+
 rfileclie.nrx

 Download the source for the rfileclie.nrx example

 Additional sources of documentation.

RMI is a rather new topic (at least it is in June 1997). You might find some additional information at:

http://chatsubo.javasoft.com/current/doc/tutorial/getstart.doc.html
http://www.widget.com/ggainey/java/rmi_talk/rmi_talk.html

 Problems and limitations

 Stubs not updated.

If you forget to update the stubs, since you forgot to run "rmic IMPLEMENTATION_FILE", you get a message like:

java.lang.IllegalAccessError: unimplemented interface method
 at ...
 (... follows tracedump ...)
 ...

You should then run rmic IMPLEMENTATION_FILE to have the correct interface.

http://www.netrexx.org/examples/rfileclie.nrx
http://chatsubo.javasoft.com/current/doc/tutorial/getstart.doc.html
http://www.widget.com/ggainey/java/rmi_talk/rmi_talk.html

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

 rmiregistry problem

You might get an error like:

java.lang.NumberFormatException: SERVER error
 at (TRACE)

You usually clear it stopping and restarting the rmiregistry program.

 Method returning REXX variable

There are currently problems if the method returns a REXX type. The message you get is something like:

client exception:
 Error unmarshaling return
 nested exception is:
 java.io.NotSerializableException: netrexx.lang.Rexx

 *** This section is:

 *** and will be available in next releases

File: nr_23.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:59(GMT +2).

NetRexx Tutorial - Full OOP projects

http://www.netrexx.org/Tutorial/nr_24.html[11/4/2010 2:28:04 PM]

The NetRexx Tutorial
 - Full OOP projects

Full OOP projects

 Introduction

In this chapter I'd like to show some "real" projects developped using OOP techniques and then implemented using
NetRexx.

Those projects are far to be completed; this explains the quotes I used in the previous sentence using the word "real".
But they are definitely larger than the examples showed so far.

Where possible, I'll give some comparison code to show the implementation using other OO languages, notably C++.

The projects developped are:

A Finite Element Method Analysis Program
A Mail Client Application

 A Finite Element Method Analysis program

 A Mailer Application

 Mail Headers

You find all the information you need about the MAIL headers in the RFC 822 (STANDARD FOR THE FORMAT OF
ARPA INTERNET TEXT MESSAGES), available at:

ftp://ds.internic.net/rfc/rfc822.txt

 *** This section is:

 *** and will be available in next releases

File: nr_24.html.

NetRexx Tutorial - Full OOP projects

http://www.netrexx.org/Tutorial/nr_24.html[11/4/2010 2:28:04 PM]

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:00(GMT +2).

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

The NetRexx Tutorial
 - Additional Instructions

Additional Instructions

 Introduction.

We collect here all those instructions that have we have not so far had the pleasure to comment on or show, because
they did not fall into any of the categories we looked at. This does not imply that they are any less important.

 Arrays

 The xarray function package

+--+
| -- method......: dump |27
| -- purpose.....: dump array's contents |28
| --
|29
| method dump(a=rexx[],name) public static |30
| len = a.length
|31
| fil = name'(dim='len')' |32
| fil = fil.left(10) |33
| oval = 'DUMMY'
|34
| skip = 0
|35
| dosay = 0
|36
| loop i = 0 to len-1
|37
| if a[i] = NULL
|38
| then val = 'NULL'
|39
| else val = a[i]
|40
| dosay = 0
|41
| if val = oval
|42
| then skip = skip+1
|43
| else dosay = 1
|44
| if i = len-1 then dosay = 1
|45
| if dosay then
|46
| do
|47

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

| if skip > 0 then
|48
| do
|49
| if (i = len - 1) then skip = skip - 1
|50
| if skip > 0 then say fil '(...' skip 'lines not display|51
| if i <> len-1 then say fil '['i-1']' oval
|52
| skip = 0
|53
| end
|54
| say fil '['i']' val
|55
| end
|56
| oval = val
|57
| fil = ' '.copies(10) |58
| end
|59
| say
|60
|
|61
+--+
 xarray.nrx(Method:dump)

 Download the complete source for the xarray.nrx library

+--+
| -- method......: copy |51
| -- purpose.....: copy array's contents |52
| --
|53
| method copy(a=rexx[],b=rexx[]) public static |54
| System.arraycopy(a,0,b,0,a.length) |55
|
|56
+--+
 xarray.nrx(Method:copy)

 Download the complete source for the xarray.nrx library

 Code example no.1

Let's use the routines we've built in the xarray library.

+--+
| -- arrex1.nrx
|01
| -- Simple example of array handling |02
| --
|03
|
|04
| a = rexx[10] -- define array dimentions |05
| b = rexx[12] --
|06
|
|07
| xarray.init(a,") -- initialize array a |08
| a[0] = 'line1' -- with some values |09
| a[1] = 'line2'

http://www.netrexx.org/library/xarray.nrx
http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|10
|
|11
| xarray.dump(a,'a') -- look at a and b |12
| xarray.dump(b,'b') |13
|
|14
| xarray.copy(a,b) -- copy a to b |15
|
|16
| b[0] = 'XXXXXXXXXXXX' |17
| xarray.dump(a,'a') -- look at a and b |18
| xarray.dump(b,'b') |19
|
|20
| exit 0
|21
+--+
 arrex1.nrx

 Download the source for the arrex1.nrx example

 Non NetRexx Arrays

In this small example we consider how to deal with non NetRexx (Rexx) arrays.

+--+
| -- tstring.nrx |01
| -- small example of String[] handling |02
| --
|03
|
|04
| class tstring1 public |05
|
|06
| method t1() returns String[] public static |07
| s = String[2]
|08
| s[0] = 'Francesca' |09
| s[1] = 'Elisabetta' |10
| say s.length
|11
| return s
|12
|
|13
| method main(args=String[]) public static |14
| arg = rexx(args)
|15
| parse arg .
|16
|
|17
| in = String[100] |18
| in = t1()
|19
| loop i = 0 to in.length - 1
|20
| say in[i]
|21
| end
|22
|
|23
| line = rexx(in)
|24
| say line

http://www.netrexx.org/examples/arrex1.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|25
| exit 0
|26
+--+
 tstring1.nrx

 Download the source for the tstring1.nrx example

 Byte Arrays conversion methods

Byte array handling is a bit tedious. This is the motivation of the methods described in xarray.

In a byte array, infact, the quantities are, from the NetRexx point of view, stored as signed integer, so it will be:

 a[0] = '01' 1
 a[1] = '81' -127
 a[2] = 'FE' -2
 a[3] = '41' 65

In order to convert it to HEX, for example, you'll need to follow the procedure:

 ch = rexx a[2] -> -2
 ch = ch.d2x(2) -> FE

The methods we've developed are:

 xarray.ba2x(array,start,length)
 xarray.ba2c(array,start,length)
 xarray.ba2d(array,start,length)
 xarray.bagrepx(array,HEX,start)

Using the a[] array, we can look at some simple examples, like:

 will give:

xarray.ba2x(a,1,2) -> 81FE

xarray.ba2c(a,3,1) -> A

xarray.bagrepx(a,'81FE',0) -> 2

REMARK: those methods are SLOW! I should probably find a faster way to implement them. Suggestions are
welcome!

 Some sample routines

+--+
| -- method......: ba2x |57
| -- purpose.....: ByteArray to HEX |58
| --
|59
| method ba2x(a=byte[],start=rexx,length=rexx) public static |60

http://www.netrexx.org/examples/tstring1.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

| ostr = ''
|61
| loop i = start to start + length - 1
|62
| ch = rexx a[i]
|63
| xch = ch.d2x(2)
|64
| ostr = ostr||xch
|65
| end
|66
| return ostr
|67
|
|68
+--+
 xarray.nrx(Method:ba2x)

 Download the complete source for the xarray.nrx library

The following method will search an ARRAY for an HEX quantity, which you write in the form (for example):

 'A0FF'

the methods returns the value of the FIRST occurrence (from the start) of the HEX string.

+--+
| -- method......: bagrepx |89
| -- purpose.....: grep an HEX qty in a ByteArray |90
| --
|91
| method bagrepx(a=byte[],search=rexx,start=rexx) public static |92
| l = search.length() |93
| b = byte[l/2]
|94
|
|95
| -- convert the HEX string |96
| -- to decimal
97
98
list = search
99
i = 0
00
loop while list <> ''
01
parse list nb +2 list
02
b[i] = nb.x2d(2)
03
i = i+1
04
end
05
06
lend = a.length - 1
07
match = 0
08
loop i = start to lend
09
if a[i] == b[0] then
10
do

http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|11
| match = 1
|12
| loop j = 1 to b.length - 1
|13
| if b[j] <> a[i+j] then
|14
| do
|15
| match = 0
|16
| leave
|17
| end
|18
| end
|19
| if match then leave
|20
| end
|21
| end
|22
| if match
|23
| then return i
|24
| else return -1
|25
|
|26
+--+
 xarray.nrx(Method:bagrepx)

 Download the complete source for the xarray.nrx library

 Example: a JPEG info grabber

To apply the methods described above, let's write a small program that finds the size, in pixels, of a JPEG picture
file.

Without going into details, we say that a JPEG (Joint Photographic Experts Group) file is a binary file. The header
looks like:

 Marker: FF D8
 : FF E0 00 10
 ID: 4A 46 49 46 (== JFIF)

JFIF stands for JPEG File Interchange Format. The marker we look at is 'FFC0' that contains the image size.

+--+
| -- grab info on JPEG file
01
02
parse arg fn .
03
if fn = '' then
04
do
05
say 'usage: java jpginfo FILEID'
exit 1

http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|07
| end
|08
|
|09
| -- read input file;
|10
| -- if ERROR, abort
11
12
fid = xfile(fn)
13
rc = fid.readbuf()
if rc <> 0 then
15
do
16
say 'Error reading file "'fn'".'
exit 2
18
end
19
buf = fid.buffer
20
21
-- check for signature
22
--
23
si = xarray.ba2c(buf,6,4)
if si <> 'JFIF' then
25
do
26
say 'Unable to find signature.'
exit 3
28
end
29
30
-- find the marker
31
--
32
p = xarray.bagrepx(buf,'FFC0',0)
if p = -1 then
34
do
35
say 'Could not locate "FFC0" mark.'
exit 4
37
end
38
39
-- all OK,
40
-- get the info
41
--
42
w = xarray.ba2d(buf,p+7,2)
h = xarray.ba2d(buf,p+9,2)
say h'*'w
45
46
exit 0
47
+--+
 jpginfo.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

 Download the source for the jpginfo.nrx example

 Additional Readings.

For the graphics formats, look at:

http://wsspinfo.cern.ch/faq/graphics/fileformats-faq/part3

The Independent JPEG Group archive on ftp.uu.net contains an on-line
copy of the JFIF specification and additional JPEG information. Look at:

ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz
ftp://ftp.uu.net/graphics/jpeg/jpeg.documents.gz

 The xsys.time() function.

 We use the xsys.time() function to get the local time in the format "hh:mm:ss" (hours, minutes, seconds). The
xsys.time() function can be called with arguments that change the output format a little. The complete list of
arguments is:

 N - hh:mm:ss - Normal (the default);
 C - hh:mmxx - Civil
 L - hh:mm:ss.uuuuu - Long

 H - hh - Hours
 M - mmmm - Minutes
 (minutes since midnight)
 S - ssss - Seconds
 (seconds since midnight)

The best way to see all those options is to write a small program that shows all of them. The small timeexa1
program does it.

+--+
| -- simple test of the xsys.time() |01
| -- function
|02
|
|03
| list = 'N C H M S Z'
|04
| loop while list <> ''
|05
| parse list kind list
|06
| say xsys.time(kind) |07
| end
|08
| exit 0
|09
+--+
 timeexa1.nrx

 Download the source for the timeexa1.nrx example

Here is what you get if you run it. The output will of course depends on the time at which you run it.

http://www.netrexx.org/examples/jpginfo.nrx
http://wsspinfo.cern.ch/faq/graphics/fileformats-faq/part3
http://www.netrexx.org/examples/timeexa1.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

..
rsl3pm1 (68) eti1
Option "N" returns: 17:46:30
Option "H" returns: 17
Option "M" returns: 1066
Option "S" returns: 63990
Option "L" returns: 17:46:30.121
Option "C" returns: 5:46pm
Option "Z" returns: GMT
rsl3pm1 (69)
..

 Time your programs with a timer class.

 The problem

You usually need to measure time intervals in your programs. In this way you can measure how long an operation
takes to perform.

You can use the Java System class System.currenttimemillis()time method, and measure the time differences
yourself.

 now = System.currenttimemillis

This method returns the current time in milliseconds GMT since the EPOCH (00:00:00 UTC, January 1, 1970).

The numbers returned are BIG

 The idea.

We define then a timer class. The two basic instructions are:

(...)
-- define a timer
timer1 = timer()
(...)

(...)
-- get the elapsed time
elapsed = timer1.elapsed()
 (to get the elapsed time since the LAST reset)
(...)

(...)
-- reset the timer
zero = timer1.reset()
 (to reset the timer)
(...)

 The timer class implementation

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

+--+
| -- method......: elapsed
 |46
| -- purpose.....: returns the elapsed time in SSSS.MMM
 |47
| --
 |48
| method elapsed() public returns Rexx
 |49
| current = System.currenttimemillis
 |50
| numeric digits 16
 |51
| delta = current - start
 |52
| delta = delta/1000
 |53
| numeric digits 9
 |54
| delta = delta.format(NULL,3)
 |55
| return delta
 |56
|
 |57
+--+
 xsys.nrx(Method:elapsed)

 Download the complete source for the xsys.nrx library

+--+
| -- method......: reset
 |29
| -- purpose.....: reset the timer; returns '0.000' seconds
 |30
| --
 |31
| method reset() public returns Rexx
 |32
| start = System.currenttimemillis
 |33
| return '0.000'
 |34
|
 |35
+--+
 xsys.nrx(Method:reset)

 Download the complete source for the xsys.nrx library

 The date() function.

*
* WARNING:
* REXX's date function
* will be implemented in xsys v2.000.
*

Use the date() instruction to get the current local date in the format 'dd Mmm yyyy'. As we saw for time() also
date() has many options. These are:

http://www.netrexx.org/library/xsys.nrx
http://www.netrexx.org/library/xsys.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

 N - dd Mmm yyyy - Normal;

 E - dd/mm/yy - European;
 U - mm/dd/yy - USA;
 O - yy/mm/dd - Ordered;

 C - ddddd - days (so far)
 in this century;
 D - ddd - say (so far)
 in this year;

 S - yyyymmdd - Standard;

As for time(), we do the same exercise also for date(). I simply write the results, since the program is easily
modified from eti1.

..
rsl3pm1 (75) eda1
Option "N" returns: () 5 Feb 1995

Option "E" returns: () 05/02/95
Option "U" returns: () 02/05/95
Option "O" returns: () 95/02/05

Option "S" returns: () 19950205
Option "C" returns: () 34734
Option "D" returns: () 36

Option "M" returns: () February
Option "W" returns: () Sunday

rsl3pm1 (76)
..
 eda1.out

 The xdate() function

The NetRexx xsys function xdate (for eXtended DATE) is the function for performing all imaginable operations
related to date. The original code was developed for VM/CMS by Bernard Antoine of CERN/CN in IBM/370
assembler code. The version I describe here is a porting of that code done by its original author in pure NetRexx.

This code is totally platform independent, and is available on the WWW NetRexx Tutorial page (in the xsys library).
xdate can be used in two ways:

 - to display a certain date
 in a given output format
 (ex: xsys.xdate('TODAY','U'))

 - to perform a conversion of a date
 from one format to another
 (ex: xsys.xdate('E','01/12/95','J'))

The valid input formats are:

 D,ddd - number of days since the beginning of the year
 format;

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

 J,[yy]yyddd - julian format;

 S,[yy]yymmdd - sorted format;

 O,[[yy]yy/]mm/dd - ordered format;

 E,dd/mm[/[yy]yy] - European format;

 U,mm/dd[/[yy]yy] - USA format;

 B,nnnn - number of days since the January 1st, 0001
 format;

 C,nnnn - number of days since the beginning of the
 century format;

 K,[yy]yyww - format according to ISO 2015 & 2711;

 I,nnnn - incremental format;

 I,+nnnn

 I,-nnnn

Output_format may be any single character accepted by the REXX DATE function:

 O to obtain the date in ordered form, i.e. yy/mm/dd

 U to obtain the date in USA form, i.e. mm/dd/yy

 E to obtain the date in European form, i.e. dd/mm/yy

 S to obtain the date in 'sorted' form, i.e. yyyymmdd

 J to obtain the date in julian form, i.e. yyddd

 B to obtain the number of days since the January 1st, 0001

 C to obtain the number of days since the beginning of
 the century

 D to obtain the number of days since the beginning of the year

 M to obtain the month name

 W to obtain the weekday name

In addition, XDATE also accepts:

 I to obtain the date in increment form Ñ i.e. relative to today

 K to return the id of the current week, in the form yyyyww
 (according to ISO 2015 & 2711)

 L a logical value to tell if the year is a leap one or not

 N to obtain the month num (instead of name as in M) in the range 1Ð12

 X to obtain the weekday num (instead of name as in W) in the range 1Ð7

 small xdate example

Here is a small example of the xdate function (look at the comments to see what the program really does):

+--+

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

| -- xdt0
|01
| -- Exercise a bit the XDATE functions |02
| --
|03
|
|04
| -- Get today's date
05
06
say xmisc.xdate('TODAY')
08
-- Get next monday's
09
--
10
say xmisc.xdate('NEXT','MONDAY')
12
-- convert 31 DEC 1994 in from European to Julian Format
--
14
say xmisc.xdate('E','31/12/94','J')
16
-- find out which weekday I was born
17
--
18
say xmisc.xdate('E','28/09/67','W')
20
-- find out which date will be in 1000 days
21
--
22
say xmisc.xdate('I',1000,'E')
24
-- find out how many days I have
25
--
26
say xmisc.xdate('TODAY','C') - xmisc.xdate('E','28/09/67','C')
28
-- find out when I'll have 20000 days
29
--
30
nn = xmisc.xdate('TODAY','C') - xmisc.xdate('E','28/09/67','C')
nn = 20000 - nn
32
say xmisc.xdate('I', nn , 'S')
34
say 'Today is:' xmisc.date('E')
say ' ' xmisc.date('W')
37
exit
38
+--+
 xdt0.nrx

 Download the source for the xdt0.nrx example

NOTEs: And here is the output:

http://www.netrexx.org/examples/xdt0.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

..
rsl3pm1 (39) java xdt0
5 Feb 1995
94365
Thursday
01/11/97
9992
20220701
rsl3pm1 (40)
..
 xdt0.out

If you are wondering about all the possible output formats, here is a program for showing them:

+--+
| -- xdt1.nrx
|01
| -- exercise all XDATE formats |02
| --
|03
|
|04
| kind = 'O U S J B C D M W I K L N X'
|05
| loop while kind <> ''
|06
| parse kind item kind
|07
| date = xmisc.xdate('TODAY',item) |08
| say 'Format "'item'" is: 'date'.' |09
| end
|10
| exit 0
|11
+--+
 xdt1.nrx

 Download the source for the xdt1.nrx example

And this is what you will get if you run the program:

..
rsl3pm1 (43) java xdt1
Format "O" is: 95/02/05.
Format "U" is: 02/05/95.
Format "S" is: 19950205.
Format "J" is: 95036.
Format "B" is: 728328.
Format "C" is: 34734.
Format "D" is: 36.
Format "M" is: February.
Format "W" is: Sunday.
Format "I" is: 0.
Format "K" is: 199505.
Format "L" is: 0.
Format "N" is: 2.
Format "X" is: 7.
rsl3pm1 (44)
..
 xdt1.out

 The xsys.sleep() function.

It is often usefull to sleep() N seconds. The easyest way is to call the Thread.sleep() function:

http://www.netrexx.org/examples/xdt1.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

-- just pause MILLISEC
Thread.sleep(MILLISEC)

where MILLISEC is the time you want to sleep (expressed in milliseconds).

 Complex Data Structures

As we saw in the previous chapters, there is ONLY one native data type in NetRexx, and that is the string. NetRexx
considers even the numbers as strings. Indeed, you can build yourself data types, the most useful one being the
following:

 list (string) (stem)
 =
 'ITEM1' , ---> value[ITEM1]
 'ITEM2' , ---> value[ITEM2]
 'ITEM3' , ---> value[ITEM3]
 (...)
 'ITEMN' ---> value[ITEMN]

We have a string that holds a list of items, which are in their turn pointers for an array (or for many arrays) holding
the data for that particular array.

 A case study: printer accounting

We want to see how this data structure works in practice. An accounting program may be the best way. Supposing
we are producing some accounting records whenever an user prints something on a printer, an accounting record
is generated. The format of these records would be the following:

 date userid nodeid printerid no_of_pages

where:

 date.......: the date in the format YYMMDDhhmmss;
 userid.....: the user identifier;
 nodeid.....: the node he used to print from;
 printerid..: the name of the printer;
 no_of_pages: how many pages he printed.

Here is a small (usually this kind of files is MUCH bigger) example of such a file:

+--+
| 110195110233 mount slil308.cern.ch prt21 200 |
| 110195120000 marchesi rsl3pm1.cern.ch prt56 82 |
| 120195120340 marchesi rsl3pm1.cern.ch prt56 20 |
| 120195123030 mount hpl3sn1.cern.ch prt11 1 |
| 120195123400 clare shift31.cern.ch prt11 25 |
+--+
 printer.CARDS

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

The structure of our accounting program will be:

 READ the accounting file
 REDUCE the data
 POST processing (if any)
 DISPLAY results

 First Version

In our first version for this program, we simply want to see how many pages a user has printed. The following
program (called pracc) will do it. In the first portion of the code, we check for the input argument and read a file.
We will not go into the details: what we do is simply get the lines of the accounting cards into the array infid.line[].

+--+
| /* prologue
|01
| */
|02
| parse arg fid .
|03
| if fid = '-h' then
|04
| do
|05
| say 'usage pacc <fid>' |06
| exit 3
|07
| end
|08
| if fid = '' then fid = 'printer.CARDS' |09
| if \xfile.fexist(fid) then |10
| do
|11
| say 'file "'fid'" does not exist.' |12
| exit 4
|13
| end
|14
| infid = xfile(fid)
|15
| rc = infid.read() |16
| if rc <> 0 then
|17
| do
|18
| say 'RC:' rc 'from READ.'
|19
| exit 3
|20
| end
|21
|
|22
+--+
 pracc.nrx

 Download the source for the pracc.nrx example

We are now ready to analyse our data ,i.e. the lines contained in the stem CARDS. As you can see, we loop over the
accounting cards Ñ from the first over to the last one. We parse the information contained in a card line 28. We
check if the user contained in the card is known. If not, we add the user to the 'known users' list (user_list), and
just for double security, we initialise the number of pages printed to 0 (line 32). We then add the pages for this
accounting card to the total for the user.

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

+--+
| /* Data Collection
|23
| */
|24
| user_list = ''
|25
| pages_printed_by = 0 |26
| loop i = 1 to infid.lines |27
| parse infid.line[i] date user node printer pages |28
| if user_list.wordpos(user) = 0 then |29
| do
|30
| user_list = user_list user |31
| end
|32
| pages_printed_by[user] = pages_printed_by[user] + pages |33
| end
|34
|
|35
+--+
 pracc.nrx

 Download the source for the pracc.nrx example

If we take the data we showed in the example printer.CARDS, this is what we get at the end of the code:

 user_list = 'mount marchesi clare'

 pages_printed_by.mount = 201
 pages_printed_by.marchesi = 102
 pages_printed_by.clare = 25

Now that the raw data is reduced in this format, we can do whatever we want over it: order by name of the user
the user_list, order by number of printed pages, etc. We can even do nothing, such as here:

+--+
| /* post process |37
| */ |38
+--+

Now we can display the 'reduced' data. This is just a loop over the users, and each time we will display the user and
the pages printed.

+--+
| /* display
|36
| */
|37
| list = user_list
|38
| loop for list.words() |39
| parse list item list
|40
| say item.left(12,'.')':' pages_printed_by[item].right(7) |41
| end
|42
|
|43
| /* end
|44
| */

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|45
| exit 0
|46
+--+
 pracc.nrx

 Download the source for the pracc.nrx example

That is all. Here is what you get from the program itself:

..
rsl3pm1 (23) java pracc2
mount.......: 201
marchesi....: 102
clare.......: 25
rsl3pm1 (24)
..
 pacc.out

 A second version

Suppose that now your manager asks you to have the report not only for users, but ALSO for printers. The
modifications are quite trivial you simply need to create a new list for the printers, and clone the logic you used so
far:

+--+
| /* prologue
|01
| */
|02
| (LIKE ABOVE)
|03
|
|22
| /* Data Collection
|23
| */
|24
| user_list = ''
|25
| printer_list = '' |26
| pages_printed_by = 0 |27
| loop i = 1 to infid.lines |28
| parse infid.line[i] date user node printer pages |29
| if user_list.wordpos(user) = 0 then |30
| do
|31
| user_list = user_list user |32
| end
|33
| if printer_list.wordpos(printer) = 0 then |34
| do
|35
| printer_list = printer_list printer |36
| end
|37
| pages_printed_by[user] = pages_printed_by[user] + pages |38
| pages_printed_by[printer] = pages_printed_by[printer] + pages |39
| end
|40
|
|41
| /* display
|42
| */
|43
| list = user_list

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

|44
| loop for list.words() |45
| parse list item list
|46
| say item.left(12,'.')':' pages_printed_by[item].right(7) |47
| end
|48
|
|49
| list = printer_list |50
| loop for list.words() |51
| parse list item list
|52
| say item.left(12,'.')':' pages_printed_by[item].right(7) |53
| end
|54
+--+
 pracc2.nrx

 Download the source for the pracc2.nrx example

And this is what you will get on your screen:

..
rsl3pm1 (58) pacc2
Users:
clare.......: 25
marchesi....: 102
mount.......: 201
Printers:
prt11.......: 26
prt21.......: 200
prt56.......: 102
rsl3pm1 (59)
..
 pacc2.out

 Linked Lists

 Another kind of data structure are linked lists. With NetRexx you can easily simulate a linked list data structure. I
remind you of what a linked list is:

POINTER ---> data.1 +--> data.2
 |
 info.1 | info.2
 |
 next.1 --+ next.2 --> NULL

 Case study: a ps tree.

 A good case study for the linked lists is a program for building a ps command tree. The UNIX ps command is used
to show the current status of processes running on your machine. Each process has an id (the processid) and a
parent process (also called ppid). The output of the ps command does not immediately show how a process is
"linked" in terms of parent process to the previous ones. Here is a typical example:

..
rsl3pm1 (226) ps -f
 USER PID PPID C STIME TTY TIME CMD
marchesi 8161 13399 6 20:35:42 pts/4 0:00 rexx ps1

http://www.netrexx.org/examples/pracc2.nrx

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

marchesi 10723 13026 3 20:35:42 pts/4 0:00 bsh bsh bsh
marchesi 13026 8161 1 20:35:42 pts/4 0:00 rexx ps1
marchesi 13399 9555 1 Jan 25 pts/4 0:06 -usr/local/bin/tcsh
marchesi 14564 10723 8 20:35:42 pts/4 0:00 ps -f
rsl3pm1 (227)
..
 ps1.out

For our discussion, the important columns are the second and the third: the process that started all is the PID
13399; it generated PID 8161; which generated 13026; which executed 10723; which finally executed 14564 (and
fortunately for us, nothing else other than printing what you see here). This is an "easy" case: if we had done a 'ps -
ef', you would have got even more than 100 processes in no particular order. Our pstree wants to make order in
this 'mess', and see how each process is linked by the parental relationship. The following code does the job. We
skip all the 'unrelevant' portion of the program, since it does not add anything to our discussion. The first thing we
do is execute the ps command with the proper options, depending on whether we want to see all the processes
of the system ps -ef or just the ones belonging to us ps -f.

+--+
| if all |42
| then rc = xexec('ps -ef' , 'ARRAY' , 'ABORT') |43
| else rc = xexec('ps -f' , 'ARRAY' , 'ABORT') |44
+--+

We reorder copy the array out[] into the array ps[]. We skip the very first line of the ps command output.

+--+
| j = 0 |45
| loop i = 2 to out[0] |46
| j = j+1 |47
| ps[j] = out[i] |48
| end |49
| ps[0] = out[0] -1 |50
+--+

We now create two lists: the pidl is a string containing all the process_ids, while the ppidl is a string containing all
the processes that are parents. The full information about the process is stored in the array info[PID] and the
parent for each process is in ppid[PID]

+--+
| pidl = '' |52
| ppidl = '' |53
| do i = 1 to ps[0] |54
| parse ps[i] . pid ppid . |55
| pidl = pidl pid |56
| ppidl = ppidl ppid |57
| info[pid] = ps[i] -- full process info |58
| ppid[pid] = ppid -- parent |59
| end |60
+--+

We loop over the process list. We look for the processes that are not parents of other processes. Those processes
are saved in lastl: they are the last in a chain of processes.

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

+--+
| list = pidl |62
| lastl = '' |63
| loop list.words() |64
| parse list item list |65
| if ppidl.wordpos(item) = 0 then |66
| do |67
| lastl = lastl item |68
| end |69
| end |70
+--+

Now the most tricky part. We start from all the processes in lastl and go backwards. This is where we use the
pseudo linked list. For each process in lastl we build the chain with the processes in order of generation.

+--+
| list = lastl |72
| loop list.words() |73
| parse list item list |74
| titem = ppid[item] |75
| chain[item] = titem item |76
| loop forever |77
| titem = ppid[titem] |78
| if pidl.wordpos(titem) = 0 then leave |79
| chain[item] = titem chain[item] |80
| end |81
| end |82
+--+

Et voila': we have now only to print this chain.

+--+
| list = lastl |84
| loop list.words() |85
| parse list item list |86
| llist = chain[item] |87
| say ' ' |88
| loop llist.words() |89
| parse llist item2 llist |90
| parse info[item2] owner p1 p2 . rest |91
| say p1.left(6) p2.left(6) '['owner']'left(,10) rest.left(50) |92
| end |93
| end |94
+--+

A short output example:

..
rsl3pm1 (231) pstree -a

(...)

1 0 [root] Jan 19 - 9:28 /etc/init
2584 1 [marchesi] Jan 19 hft/0 0:01 -tcsh
5668 2584 [marchesi] Jan 19 hft/0 0:00 xinit
6698 5668 [marchesi] Jan 19 hft/0 0:19 mwm
7220 6698 [marchesi] Jan 19 - 0:16 aixterm
8765 7220 [marchesi] Jan 19 pts/0 0:01 -tcsh
12329 8765 [marchesi] Jan 24 pts/0 0:00 rlogin sgil301 -l f
13610 12329 [marchesi] Jan 24 pts/0 0:00 rlogin sgil301 -l f

1 0 [root] Jan 19 - 9:28 /etc/init
9555 1 [marchesi] Jan 25 hft/0 1:16 aixterm
13399 9555 [marchesi] Jan 25 pts/4 0:06 -usr/local/bin/tcsh
8174 13399 [marchesi] 20:59:12 pts/4 0:00 rexx pstree -a

NetRexx Tutorial - Additional Instructions

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

13039 8174 [marchesi] 20:59:13 pts/4 0:00 rexx pstree -a
10736 13039 [marchesi] 20:59:13 pts/4 0:00 bsh bsh bsh
14577 10736 [marchesi] 20:59:13 pts/4 0:00 ps -ef

1 0 [root] Jan 19 - 9:28 /etc/init
7746 1 [marchesi] Jan 19 hft/0 6:15 aixterm
9030 7746 [marchesi] Jan 19 pts/2 0:03 -usr/local/bin/tcsh
15292 9030 [marchesi] 20:14:31 pts/2 0:48 x rxuser.texinfo
rsl3pm1 (231)
..
 pstree.out

 Additional information on Data Structures

 You can find additional information about data structures in Java at those URLs:

http://www.geocities.com/SiliconValley/Way/7650/javadata.html

http://www.objectspace.com/jgl/

 *** This section is:

 *** and will be available in next releases

 Summary

A resume' of the main concepts encountered in this chapter.

 *** This section is:

 *** and will be available in next releases

File: nr_26.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:01(GMT +2).

http://www.geocities.com/SiliconValley/Way/7650/javadata.html
http://www.objectspace.com/jgl/

NetRexx Tutorial - Advanced Algorithms

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

The NetRexx Tutorial
 - Advanced Algorithms

Advanced Algorithms

 Introduction

 Recursive Algorithms

 A question that usually crops up in discussion groups about languages (notably comp.lang.rexx) is : 'Can I
implement a recursive algorithm using REXX?'. The answer is: 'Yes'. You can easily make your NetRexx (or REXX)
code re-entrant, and in this way implement any recursive algorithm. You perform this with a method clause.

 The towers of Hanoi.

Text books usually provide as an example of recursive algorithm, the computation of a factorial (n!). This is
probably not a good choice, as one can easily avoid recursion for this algorithm. I prefer to give the example of the
'Towers of Hanoi' [KRUSE, 1984, 273]. The game is well known: one must move disks from one 'tower' (1) to a
third (3), without placing a larger disk on top of a smaller.

 (1) (2) (3)
 | | |
 # | |
 ### | |
 ##### | |
 ####### | |
 ######### | |
 ########### | |

 Towers of Hanoi

Using recursion, the solution is extremely simple. Taking the algorithm from the cited source, we can write this
small REXX program.

+--+
| class hanoi
|01
| method move(n=rexx,a=rexx,b=rexx,c=rexx) public static |02
| if n>0 then
|03
| do
|04
| move(n-1,a,c,b) |

NetRexx Tutorial - Advanced Algorithms

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

05
| say 'Move disk from' a 'to' b '.'
|06
| move(n-1,c,b,a) |07
| end
|08
|
|09
| method main(args=String[]) public static |10
| n = args[0]
|11
| move(n,1,2,3) |12
| exit 0
|13
|
|14
+--+
 hanoi.nrx

 Download the source for the hanoi.nrx example

Believe it or not, this is the solution you get from the program. Note that it is also the best possible solution.

...
rsl3pm1 (122) java hanoi1 4

 Move a disk from 1 to 2 .
 Move a disk from 1 to 3 .
 Move a disk from 2 to 3 .
 Move a disk from 1 to 2 .
 Move a disk from 3 to 1 .
 Move a disk from 3 to 2 .
 Move a disk from 1 to 2 .
 Move a disk from 1 to 3 .
 Move a disk from 2 to 3 .
 Move a disk from 2 to 1 .
 Move a disk from 3 to 1 .
 Move a disk from 2 to 3 .
 Move a disk from 1 to 2 .
 Move a disk from 1 to 3 .
 Move a disk from 2 to 3 .

rsl3pm1 (122)
...
 result of the hanoi1 program

In the section about the curses() interface we will see how to get a better output for the solution of the game.

 Recursive sort algorithms

+--+
| -- method......: partition |18
| -- purpose.....: |19
| --
|20
| method partition(l=rexx[],low=rexx,high=rexx) public static returns|21
| swap(l,low,(low+high)%2) -- swap pivot in 1st location |22
| pivot = l[low]
|23
| lastsmall = low
|24
| loop i = low+1 to high
|25
| if l[i] < pivot then
|26

http://www.netrexx.org/examples/hanoi.nrx

NetRexx Tutorial - Advanced Algorithms

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

| do
|27
| lastsmall = lastsmall + 1 |28
| swap(l,lastsmall,i) -- move large to right, small to|29
| end
|30
| end
|31
| swap(l,low,lastsmall) -- put pivot into its proper pos|32
| pivotlocation = lastsmall |33
| return pivotlocation |34
|
|35
+--+
 qsn.nrx(Method:partition)

 Download the complete source for the qsn.nrx library

 Removing recursion

+--+
| -- method......: sort_qsnr |68
| -- purpose.....: sort the list using QuickSort Nonrecursive |69
| --
|70
| method sort_qsnr(l=rexx[]) public static |71
|
|72
| maxstack = 20 -- up to 1,000,000 items |73
| lowstack = rexx[maxstack] -- arrays used for the st|74
| highstack = rexx[maxstack] |75
|
|76
| low = 0 -- list bounds
|77
| high = l.length - 1
|78
|
|79
| nstack = 0
|80
|
|81
| loop until nstack = 0
|82
| if nstack > 0 then
|83
| do
|84
| low = lowstack[nstack] -- pop the stack |85
| high = highstack[nstack] |86
| nstack = nstack - 1 |87
| end
|88
|
|89
| loop while low < high
|90
| pivotloc = partition(l,low,high) |91
|
|92
| -- push larger list into stack, and do the smaller |93
| --
|94
| if (pivotloc - low) < (high - pivotloc) then |95
| do
|96
| -- stack right sublist and do left
97

http://www.netrexx.org/library/qsn.nrx

NetRexx Tutorial - Advanced Algorithms

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

|98
| if nstack > maxstack then overflow() |99
| nstack = nstack + 1 |00
| lowstack[nstack] = pivotloc + 1 |01
| highstack[nstack] = high |02
| high = pivotloc - 1
|03
| end
|04
| else
|05
| do
|06
| -- stack left sublist and do right
07
08
if nstack > maxstack then overflow()
nstack = nstack + 1
lowstack[nstack] = low
highstack[nstack] = pivotloc - 1
low = pivotloc + 1
13
end
14
end
15
end
16
17
+--+
 qsn.nrx(Method:sort_qsnr)

 Download the complete source for the qsn.nrx library

+--+
| -- method......: main |44
| -- purpose.....: just test the main functions simply running |45
| -- "java qsn"
46
47
method main(args=String[]) public static
args = args
49
50
l = rexx[100]
51
build_list(l)
display_list(l)
sort_qsnr(l)
display_list(l)
56
exit 0
57
+--+
 qsn.nrx(Method:main)

 Download the complete source for the qsn.nrx library

 *** This section is:

 *** and will be available in next releases

http://www.netrexx.org/library/qsn.nrx
http://www.netrexx.org/library/qsn.nrx

NetRexx Tutorial - Advanced Algorithms

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

 Summary

Here is the usual resume' of some of the concepts we have encountered in this chapter:

 *** This section is:

 *** and will be available in next releases

File: nr_27.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:02(GMT +2).

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

The NetRexx Tutorial
 - NetRexx for REXXers

NetRexx for REXXers

 Introduction

In this chapter we analyse the main differences between the Classical REXX and the NetRexx languages.

NetRexx is NOT REXX, and this you will see from all the following sections.

 *** This section is:

 *** and will be available in next releases

 NetRexx is compiled, and not interpreted.

 One of the biggest differences that REXX (or ooREXX) users will find in NetRexx is the fact that now you need to
compile your program.

The usual approach:

LOOP till it works
 edit program
 run program
END

has now an extra step:

LOOP till it works
 edit program
 compile program
 run program
END

Not only, but since the object is a Java class, you also must call the program using java.

 Differences.

This sections covers all the instructions that are changed, between REXX and NetRexx.

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

 Continuation Character.

 The continuation character is different in NetRexx. The reason is that the "old" REXX one (the ",") could be
difficult to read if (as usually happens) you where calling a function or a procedure.

REXX result = myfunction(arg1 , ,
 arg2)

NetRexx result = myfunction(arg1 , -
 arg2)

 Entering Arguments.

 In REXX we use the instruction parse pull, or the simple pull to get arguments from the keyboard.

REXX say 'Enter Name'
 parse pull upper name .

NetRexx say 'Enter Name'
 parse ask.upper() name .

 STEMs and ARRAYS.

 The STEMs are present in NetRexx, but they're called with a different name. They're are called ARRAYs and the
compound variable separator is not the "." but the "[]" characters. Like STEMS, ARRAY should be initialised to a
value.

REXX list. = "
 list.0 = 2
 list.1 = 'Test'
 list.2 = 'Toast'

NetRexx list = "
 list[0] = 2
 list[1] = 'Test'
 list[2] = 'Toast'

Dealing with multidimensional arrays use the "," character to separate the dimensions; in REXX you still were using
the "." .

REXX list.1.2 = 4
 list.i.j = 6

NetRexx list[1,2] = 4
 list[i,j] = 2

 function calls

 Any internal NetRexx function is called in an Object Oriented fashion.

REXX n = abs(n)

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx n = n.abs()

REXX sn = right(s,2,'0')

NetRexx sn = s.right(2,'0')

ALL the functions are effected. NOTE: This is clearly a major change. I had a bit of hard time to get used to it, but
after an initial rejection, I find it more "natural".

Look at this example:

REXX bin = x2b(c2x(s))

NetRexx bin = s.c2x.x2b()

From the second writing it comes very much more evident that what I'm trying to do is a:

 c2x.x2b
 =====
 c2b

conversion.

 xrange()

 There is NO xrange instruction in NetRexx.

REXX str = xrange('00'X,'1F'X)

NetRexx str = '\x00'.sequence('\x1F')

xrange() is implemented in xstring.

 HEX characters.

 You use a different method to enter HEX quantities in NetRexx.

REXX crlf = '0D0A'X

NetRexx crlf = '\x0D\x0A'

 Missing instructions.

 find() and index()

 The find() and index() functions have always been available in the VM/CMS implementation of REXX. Indeed,
they've never been in the "official" REXX.

REXX: find(list,item)

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

 |
 V
NetRexx: list.wordpos(item)

REXX: index(string,item)
 |
 V
NetRexx: list.pos(item)

Of course you can write your own find() and index() that just do pos() and wordpos().

 Additions

 upper() and lower()

 The upper() and lower() functions are native in NetRexx. They were not available in native REXX.

/* */ REXX

str = str.lower() NetRexx
str = str.upper()

 Associative Arrays

 Indexed Strings are used to set up "Associative Arrays" in which the sunscript is not necessarily numeric.

In "classic" REXX you would code:

+--+
| authorizelist = 'BOB JENNY PENNY'
|01
| authorize.jenny = 'list cat'
|02
| authorize.bob = 'list cat write'
|03
| authorize.penny = 'list'
|04
| list = authorizelist
|05
| do while list <> ''
|06
| parse var list id list
|07
| say id 'can do "'authorize.id'".'
|08
| end
|09
| exit
|10
+--+
 asar.rex

+--+
| authorize = ''

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

|01
| authorize['jenny'] = 'list cat' |02
| authorize['bob'] = 'list cat write' |03
| authorize['penny'] = 'list' |04
| loop id over authorize
|05
| say id 'can do "'authorize[id]'".' |06
| end
|07
| exit
|08
+--+
 asar.nrx

 Download the source for the asar.nrx example

 Program structure

This is probably the biggest difference between REXX and NetRexx. Subroutines and procedures like you knew
them in REXX disappear, and the concept of method replaces them.

The following are some small examples.

 Argument passing

+--+
| /* compute the mean value of two numbers
|01
| */
|02
| parse arg n1 n2 .
|03
| say 'The mean value of' n1 'and' n2 'is:' mean(n1,n2)'.'
|04
| exit
|05
|
|06
| mean: procedure;
|07
| parse arg i1 , i2
|08
| m = (i1+i2)/2
|09
| return m
|10
+--+
 tnr1.rex

+--+
| -- tnr1.nrx
|01
| -- Show the usage of a function
|02
| class tnr1
|03
|
|04

http://www.netrexx.org/examples/asar.nrx

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

| method mean(i1=Rexx,i2=Rexx) public static |05
| out = (i1+i2)/2
|06
| return out
|07
|
|08
| method main(args=String[]) public static |09
| arg = Rexx(args)
|10
| parse arg n1 n2 .
|11
| say 'mean of' n1 'and' n2 'is:' mean(n1,n2)'.' |12
| exit 0
|13
+--+
 tnr1.nrx

 Download the source for the tnr1.nrx example

 Exposing variables

+--+
| /* tnr2.rex
|01
| */
|02
| avar1 = 'MAIN'
|03
| avar2 = 'MAIN'
|04
| call sub1
|05
| say avar1
|06
| say avar2
|07
| exit
|08
|
|09
| sub1: procedure expose avar1
|10
| avar1 = 'SUB1'
|11
| avar2 = 'SUB1'
|12
| say avar1
|13
| say avar2
|14
| return
|15
+--+
 tnr2.rex

+--+
| class tnr2
|01
| properties public static |02
| avar1
|03
|
|04
| method sub1() public static |05

http://www.netrexx.org/examples/tnr1.nrx

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

| avar1 = 'SUB1' -- will be changed |06
| avar2 = 'SUB1' -- will NOT be changed |07
| say avar1
|08
| say avar2
|09
|
|10
| method main(args=String[]) public static |11
| args = args
|12
| avar1 = 'MAIN'
|13
| avar2 = 'MAIN'
|14
| sub1()
|15
| say avar1
|16
| say avar2
|17
| exit 0
|18
+--+
 tnr2.nrx

 Download the source for the tnr2.nrx example

 *** This section is:

 *** and will be available in next releases

 This really got me!

In this section I collect all "nasty" problems that I found in NetRexx, and which probably were due to my REXX
background. I hope that this collection will avoid you loosing the time I did lost to find out why a particular
algorithm was not working.

 Variable and array/stem with the same name.

In REXX you can have variables that share the same name of a STEM. You can happily write:

 line = line.i

and line (a variable), will get the value of the stem variable line.i.

+--+
| line.1 = 'Test line'
|01
| line.2 = 'another one'
|02
| line.3 = 'last one'
|03
| do i = 1 to 3
|04

http://www.netrexx.org/examples/tnr2.nrx

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

| line = line.i
|05
| say line
|06
| end
|07
| exit
|08
+--+
 tgm1.rex

In NetRexx such approach will not work. In the following program, infact, the statement:

 line = line[i]

will just initialise the whole array line[] to line[1]. SO ALL THE ARRAY INFORMATION WILL BE OVERWRITTEN.

+--+
| line = Rexx(") |01
| line[1] = 'test line'
|02
| line[2] = 'another one' |03
| line[3] = 'last one'
|04
| loop i = 1 to 3
|05
| line = line[i]
|06
| say line
|07
| end
|08
+--+
 tgm1.nrx

 Download the source for the tgm1.nrx example

In REXX, you would have achieved the same result writing:

 line. = line.1

 Chapter FAQ.

Would it be possible to make a REXX to NetRexx translator?

Yes, as you could see a lot of the differences in the syntax could be made in an automatic way. It is simple to
translate an instruction like:

 s1 = left(s,3)

to:

 s1 = s.left(3)

http://www.netrexx.org/examples/tgm1.nrx

NetRexx Tutorial - NetRexx for REXXers

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

I plan to write some code that will do a 'first step' translation. So far I know nobody who did it.

 Summary

 *** This section is:

 *** and will be available in next releases

File: nr_28.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:03(GMT +2).

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

The NetRexx Tutorial
 - Tools

Tools

 Introduction

 General Tools

 Get your environment

 Whenever you have a problem, or you suspect a bug in NetRexx, you should always report it to the NetRexx
mailing list.

To give people a better idea of your environment, you might also provide the information that this small program
provides, so to help the readers to guess where the problem is.

The real important instruction is:

p2 = Rexx System.getProperty(item)

So, for example:

myos = Rexx System.getProperty('os.name')
 -- will display your OS

myid = Rexx System.getProperty('user.name')
 -- will display your USERID

+--+
| /* Program : nrenv
|01
| * Subsystem : nrtools |02
| * Author : Pierantonio Marchesini. |03
| * Created : 7 Feb 1997.
|04
| * Info : Get the NetRexx environment |05
| * Copyright : (c) P.A.Marchesini / ETHZ 1997. |06
| *
|07
| * Id Info
|08
| * ------ ---
|09
| * v1r000 First release. |10

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

| * v1r000 Latest release |11
| *
|12
| */
|13
| pro_ver = 'v1r000'; |14
|
|15
| parse source env mc myname'.' . |16
| say 'Welcome to "'myname'". Version ' pro_ver'.' |17
| say
|18
| say 'NetRexx........:' version |19
| say 'Environment....:' env |20
|
21
22
-- set the properties
23
--
24
25
prop = 'java.version java.vendor' -
'java.vendor.url java.class.version' -
'java.class.path os.name os.version file.separator' -
'path.separator user.name user.home user.dir' -
'awt.toolkit'
31
-- find out which string is longer, in order
-- to have a cleaner output
--
34
list = prop
35
max_len = 0
36
loop while list <> ''
37
parse list item list
38
if item.length() > max_len
then max_len = item.length()
end
41
42
-- loop over properties.
-- display the property and the value
--
45
say
46
loop while prop<>"
parse prop item prop
48
p1 = '<'item'>'
49
p1 = p1.right(max_len+2)
p2 = Rexx System.getProperty(item)
52
if item.pos('separator') <> 0 -- if it's a separator,
then -- we print also the HEX value
54
do
55
p2 = "'"p2.c2x()"'X :" p2'.'
end
57
58
if item = 'java.class.path' then -- if it's a path, then split
do -- the different directories

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

| pathl = p2
|61
| loop while pathl <> ''
|62
| parse pathl path';'pathl |63
| say p1 '=' path
|64
| p1 = ''.right(20) |65
| end
|66
| iterate
|67
| end
|68
|
|69
| say p1 '=' p2
|70
| end
|71
| say
|72
| exit 0
|73
+--+
 nrenv.nrx

 Download the source for the nrenv.nrx example

Depending on your Operating system, you can redirect the output of the program to a file, like:

java nrenv > nrenv.out

This is what I get if I run the command on my system.

...
Welcome to "nrenv". Version v1r000.

NetRexx........: NetRexx 1.00 24 May 1997
Environment....: Java

 <java.version> = 1.1.1
 <java.vendor> = Sun Microsystems Inc.
 <java.vendor.url> = http://www.sun.com/
<java.class.version> = 45.3
 <java.class.path> = .
 = C:\java\lib\NetRexxC.zip
 = C:\java\NetRexx\examples
 = C:\java\lib
 = c:\java\bin\..\classes
 = c:\java\bin\..\lib\classes.zip
 <os.name> = Windows NT
 <os.version> = 4.0
 <file.separator> = '5C'X : \.
 <path.separator> = '3B'X : ;.
 <user.name> = Administrator
 <user.home> = C:\
 <user.dir> = c:\Java\NetRexx\examples
 <awt.toolkit> = sun.awt.windows.WToolkit
...

 Building the Tutorial's libraries

 In order to get the libraries provided with the tutorial correctly installed, you have to follow the procedure
described in this section.

http://www.netrexx.org/examples/nrenv.nrx
http://www.sun.com/

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

 Getting the code.

The code is freely available at:

http://wwwinfo.cern.ch/news/netrexx/library/alllib.tar.gz

or, at the URL:

http://wwwinfo.cern.ch/news/netrexx/library/

as individial files. Download all the files inside a single directory, using your preferred

 Installing the libraries.

You have to compile "by hand" two programs: xsys.nrx and xbuild.nrx, in EXACTLY this order. Then you just use
the newly created xbuild.class to build all the other libraries.

So you'll type:

>java COM.ibm.netrexx.process.NetRexxC xsys.nrx
>java COM.ibm.netrexx.process.NetRexxC xbuild.nrx
>java xbuild

If you do not get any nasty error messages, you're done, and you can use the libraries.

 Some notes on xbuild

The most important part of the xbuild.nrx program is the following:

+--+
| -- method......: main |60
| -- purpose.....: just run typing "java xbuild" |61
| --
|62
| method main(args=String[]) public static |63
| arg = Rexx(args)
|64
|
|65
| -- Need help?
66
67
if arg = '-h'
68
do
69
help()
70
exit 1
71
end
72

http://wwwinfo.cern.ch/news/netrexx/library/alllib.tar.gz
http://wwwinfo.cern.ch/news/netrexx/library/

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

|73
| version()
|74
| -- OK, let's do it
75
76
todo = 'xmath.nrx xstring.nrx xsys.nrx xsock.nrx' -
'xshell.nrx xurl.nrx'
79
say 'Checking libraries.'
list = todo
81
loop while list <> ''
82
parse list item list
83
if state(item) = 0 then
do
85
say 'File "'item'" does not exist. Aborting.'
exit 2
87
end
88
say 'Library "'item'" present.'
end
90
say
91
92
say 'Building now the libraries.'
list = todo
94
loop while list <> ''
95
parse list item list
96
say 'Building now "'item'".'
cmd = 'java COM.ibm.netrexx.process.NetRexxC' item
c = xexec(cmd,'SCREEN','IGNORE')
rc = c.rc
00
if rc = 0
01
then say 'Compilation was OK.'
else say 'WARNING: rc:' rc 'from "'cmd'".'
end
04
exit 0
05
+--+
 xbuild.nrx(Method:main)

 Download the complete source for the xbuild.nrx library

 *** This section is:

 *** and will be available in next releases

File: nr_29.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

http://www.netrexx.org/library/xbuild.nrx

NetRexx Tutorial - Tools

http://www.netrexx.org/Tutorial/nr_29.html[11/4/2010 2:28:10 PM]

Last update was done on 18 May 1998 21:48:04(GMT +2).

NetRexx Tutorial - The xclasses JAR library

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

The NetRexx Tutorial
 - The xclasses JAR library

The xclasses JAR library

 Introduction

 XCLASSES PACKAGE DOCUMENTATION
 (c) P.A.Marchesini, 1998

*** xarray

 SUMMARY

 Handles array operations, and, mainly byte array
 conversions. It's a collection of static methods.
 NOTE: ARRAY needs to be defined as:
 an_array = rexx[NNN]
 another_array = rexx[NNN]
 bytearray = byte[MMM]

 METHODS

 xarray.init(ARRAY,VALUE)
 initializes a Rexx array ARRAY with value VALUE.
 Example
 xarray.init(an_array,'test test')

 xarray.copy(ARRAY1,ARRAY2)
 copyes a Rexx array ARRAY1 into array ARRAY2.
 Example
 xarray.copy(an_array,another_array)

 xarray.dump(ARRAY,ARRAYNAME)
 dumps the entries of ARRAY on the screen; duplicate
 lines are skipped.
 Example
 xarray.dump(an_array,'an_array')

 xarray.ba2x(BYTEARRAY,START,LENGTH)
 convert byte array BYTEARRAY from byte to HEX string
 starting at byte START for LENGTH bytes.

 xarray.ba2c(BYTEARRAY,START,LENGTH)
 as above, but converting to CHAR.

 xarray.ba2d(BYTEARRAY,START,LENGTH)
 as above, but converting to DECIMAL.

 loc = xarray.bagrepx(BYTEARRAY,SEARCH,START)
 will search in byte array BYTEARRAY the HEX string
 SEARCH, starting from START.
 Example:
 ptr = xarray.bagrepx(buf,'0D0F',0)

 xarray.bahexdump(BYTEARRAY,START,END)
 will dump HEX the contents of bytearray BYTEARRAY
 Example:
 fid = xfile('xarray.class')
 rc = fid.readbuf()
 xarray.bahexdump(fid.buffer,0,100)

NetRexx Tutorial - The xclasses JAR library

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

*** xcmdline

 SUMMARY

 use this class to parse the command line options (which, in the
 UNIX convention, are entered with a '-' sign).

 METHODS

 cl = xcmdline(LINE,CONTROL)
 where LINE : line entered by the user
 CONTROL : defines the control sequence to parse the options
 the format is
 FLAG/[FLA|VAR]/VARIABLE_NAME/DEFAULT_VALUE

 EXAMPLE

 cl = xcmdline(rexx(args),'t/FLA/TRACE/0' -
 'r/FLA/REPLACE/0' -
 'o/VAR/OUTFID/test.out')

 If the user types:
 mytest test -ro pippo.txt
 -> say cl.arguments() = test
 say cl.option('TRACE') = 1
 say cl.option('REPLACE') = 0
 say cl.option('OUTFID') = pippo.txt

 NOTES

 - next release will have a syntax like PERL getopt() available too

*** xdir

 SUMMARY
 Handles all operations on a directory, listing, comparing
 etc.

 METHODS
 xdir(DIRECTORY)
 xdir()
 constructors. Default directory is the
 current directory (".")

 str_ls(DIRECTORY) -
 issue a "ls" command. Output returned in a REXX
 string.

 PROPERTIES
 rc - return code of last valid operation
 options

 EXAMPLES

 say xdir.str_ls("/java")

 NOTES

*** xexec

 SUMMARY

 Use this class to run a system command.

 METHODS

 cmd = xexec(COMMAND,OUTPUT,ONERROR)

 where:
 COMMAND : is a valid command on the system you are
 running on (e.g. "ls","cp","copy", etc.)
 OUTPUT : can be any combination of:
 SCREEN : the output will go on STDOUT
 VAR : the output will go on a variable

NetRexx Tutorial - The xclasses JAR library

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

 ARRAY : the output will go on an array
 or
 NULL : forget about output
 ONERROR : is one of:
 IGNORE : a return code <> 0 is ignored
 WARNING : print a warning message if rc <> 0
 ABORT : abandon ship if rc <> 0

 PROPERTIES

 lines : lines of output
 line : array of output lines; line[0]=no.of out lines
 out : string of output (when VAR is active)
 rc : return code

 EXAMPLES

 test = xexec('cp test toast','NULL','ABORT')

 test = xexec('pwd','VAR','ABORT')
 say 'The path is "'test.out'".'

 test = xexec('ls -l','ARRAY','WARNING')
 loop i = 1 to test.line[0]
 say '>>>' test.line[i]
 end

 NOTES

 - The examples are valid on a UNIX platform
 - The examples are provided just as EXAMPLES
 there are infact better ways to do 'ls','pwd'
 in NetRexx itself

*** xfile

 SUMMARY

 METHODS

 PROPERTIES

 EXAMPLES

 NOTES

*** xftp

 SUMMARY

 METHODS

 PROPERTIES

 EXAMPLES

 NOTES

*** xmath

 SUMMARY

 Mainly provide conversion tools

 METHODS

 str = xmath.n2cu(NNN)
 converts numeric quantity NNN to computer units
 Example:
 say xmath.n2cu(2048) -> 2K

 str = xmath.s2h(SEC)
 converts SEC to HH:MM:SS
 Example:
 say xmath.s2h(3661) -> 1:01:01

NetRexx Tutorial - The xclasses JAR library

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

 str = xmath.dotify(NNN)
 puts the "," in a big number, for easy reading
 Example:
 say xmath.dotify(100203) -> 100,203

 str = xmath.hexop(HEXOP)
 will execute a simple hex operation
 Example:
 say xmath.hexop('1A + 10') -> 2A

 str = xmath.binop(HEXOP)
 executes a simple bin operation.
 Example:
 say xmath.binop('10 + 11') -> 101

 n = xmath.random(MAX)
 returns an random integer with maximum value
 not greater than MAX.
 Example:
 say xmath.random(25) -> 12 (MAYBE)

 n = xmath.gcd(m,n)
 returns the Greatest Common Divisor of M and N.

 rc = xmath.gauss(N,A[,],Y[],C[])
 upon return code RC=0 it will find using the
 Gauss Method the solution C[] for the array A[,]
 and vector Y[]

*** xsys

 SUMMARY

 This is just a collection of methods for "system" related
 information.

 METHODS

 str = xsys.userid()
 will return your current userid.
 Example:
 say 'I am running on user "'xsys.userid()'".'

 str = xsys.nodeid()
 will return the name of the node you are running
 on.
 Example:
 say 'I am running on system "'xsys.nodeid()'".'

 str = xsys.time()
 str = xsys.time(FMT)
 will return the current time.
 FMT is the same as on Classical REXX
 Example:
 say 'Now is:' xsys.time()'.'

 str = xsys.date()
 str = xsys.date(FMT)
 will return the current date.
 FMT is the same as on Classical REXX
 Example:
 say 'Today is' xsys.date()'.'

 str = xsys.xdate(IFMT,DATE,OFMT)
 will perform date conversion.
 Example:
 say xsys.xdate('E','12/01/97'.'J')

 xsys.die(RC,MESSAGE)
 program will abort with RC return code, displaying
 MESSAGE on STDOUT;
 Example:
 xsys.die(320,'Program aborted.')

 xsys.sleep(SEC)
 program will sleep for SEC seconds

NetRexx Tutorial - The xclasses JAR library

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

*** xtimer

 SUMMARY
 Use xtimer class to build timers inside your programs.

 METHODS

 xtimer() - constructor
 The starting time is set to 0.000 sec

 reset() - the timer is reset to 0.000 sec

 elapsed() - Returns the elapsed time since the
 last reset() (or object creation)
 Format is SSSSS.MMM
 (seconds.milliseconds)

 PROPERTIES

 EXAMPLES

 atimer = xtimer()
 -- some job here
 --
 say 'Took.....:' atimer.elapsed'(sec).'
 atimer.reset()
 -- some other job here
 --
 say 'Took.....:' atimer.elapsed'(sec).'

 NOTES

File: nr_30.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:05(GMT +2).

NetRexx Tutorial - Miscellaneous

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

The NetRexx Tutorial
 - Miscellaneous

Miscellaneous

 Introduction

In this chapter I collect all the information that could not fit in the previous chapters.

You might find usefull references to additional documents as well.

 Packages and JAR files

 Packages

 In Java terminology the word "package" means a collection of individual .class files contained in a directory . A
package is then a directory and a library, and you use it to group more than one class together.

You then perform the grouping of the source NetRexx files in a directory. And now comes the most important
point: the directory name MUST match the package name.

 Real example

In this subsection I'll show how I built the first time my xclasses.jar file.

 # 1.00 create a directory called "xclasses"
 # and go into it
 $ mkdir xclasses
 $ cd xclasses

 # 2.00 edit the classes that make the package
 # ADD a "package xclasses" line at beginning
 # then compile it with nrc
 $ edit *.nrx
 $ nrc *.nrx

 # 3.00 build the JAR file
 # FROM THE DIRECTORY ABOVE!
 $ cd ..
 $ jar -cvf /java/lib/xclasses.jar xclasses/*.class

 # 4.00 change the CLASSPATH and add
 # C:\java\lib\xclasses.jar
 $ export CLASSPATH=$CLASSPATH";C:\java\lib\xclasses.jar"

 # 5.00 test it
 #
 $ cd /spool/test
 $ cat t1.nrx

NetRexx Tutorial - Miscellaneous

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

 import xclasses.
 rc = xexec('ls -l')
 $ nrc t1
 $ java t1

 Pipes for NetRexx and Java

Ed Tomlinson has ported the VM/CMS Pipes functionality on NetRexx (and Java). You can find all the information
at the URL:

http://www.cam.org/~tomlins/njpipes.html

 Additional Informations available on the WEB.

 Comments about NetRexx

An article about NetRexx has appeared on the Windows Magazine (Windows Magazine, July 1997, page 156). You
can find a copy on:

http://www.winmag.com/library/1997/0701/winla114.htm

 REXX FAQ.

 For the REXX FAQ, you should consult the page:

http://www.mindspring.com/~dave_martin/RexxFAQ.html

or (in its non-frame version)

http://www.mindspring.com/~dave_martin/FAQNoFrames.html

 Regular expressions.

 Although I'm not a REGEX fan (since all you can do in a Regular Expression you can do with native NetRexx
functions), there are a lot of colleagues who are really REGEX lovers.

So, for pattern matching issues, look at:

http://www.win.net/~stevesoft/pat
http://www.java.no/javaBIN/docs/api/sun.misc.Regexp.html
http://www.java.no/javaBIN/docs/api/sun.misc.RegexpPool.html

A good set of packages is also available at the Original Reusable Objects, ORO Site:

http://www.cam.org/~tomlins/njpipes.html
http://www.winmag.com/library/1997/0701/winla114.htm
http://www.mindspring.com/~dave_martin/RexxFAQ.html
http://www.mindspring.com/~dave_martin/FAQNoFrames.html
http://www.win.net/~stevesoft/pat
http://www.java.no/javaBIN/docs/api/sun.misc.Regexp.html
http://www.java.no/javaBIN/docs/api/sun.misc.RegexpPool.html

NetRexx Tutorial - Miscellaneous

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

http://www.oroinc.com/downloads/index.html

You will find a Java regular expression package (OROMatcher), a Easy to use Perl5 regular expressions in Java
package (PerlTools) and a AWK regular expressions for Java (AwkTools).

 Summary

File: nr_31.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:06(GMT +2).

http://www.oroinc.com/downloads/index.html

NetRexx Tutorial - Appendix A: Bibliography

http://www.netrexx.org/Tutorial/nr_32.html[11/4/2010 2:28:13 PM]

The NetRexx Tutorial
 - Appendix A: Bibliography

Appendix A: Bibliography

 Non-IBM Books and Manuals on REXX

This is a list of titles you can find about classical Rexx.

1. [OHARA GOMBERG, 1985] Modern Programming Using REXX -- Robert P. O'Hara and David R. Gomberg In
English: ISBN 0-13-597311-2 Prentice-Hall, 1985 ISBN 0-13-579329-5 (Second edition), 1988 (From REXXPress,
7 Gateview Court, SF CA 94116-1941, USA)

2. [COWLISHAW, 1985]The REXX Language -- M. F. Cowlishaw In English: ISBN 0-13-780735-X Prentice-Hall,
1985 ISBN 0-13-780651-5 (Second edition), 1990 In German: ISBN 3-446-15195-8 Carl Hanser Verlag, 1988 ISBN
0-13-780784-8 P-H International, 1988 In Japanese: ISBN 4-7649-0136-6 Kindai-kagaku-sha, 1988

3. [MSG, 1985]Personal REXX User's Guide (PC-DOS and OS/2 REXX) version 2.0 Mansfield Software Group, Inc.,
1985-1990

4. [HAWES, 1987]ARexx User's Reference Manual (The REXX Language for the Amiga) William S. Hawes, 1987
5. [TWG, 1990]uniREXX Reference Manual (REXX for a variety of Unix systems) The Workstation Group, 1990
6. [SLAC, 1990] Proceedings of the REXX Symposium for Developers and Users SLAC Report-368, 235pp, June

11, 1990
7. [GARGIULO, 1990] REXX In the TSO Environment -- Gabriel F. Gargiulo ISBN 0-89435-354-3, QED Information

Systems Inc., Order #CC3543; 320pp, 1990 Revised edition: ISBN 0-89435-418-3, QED Information Systems
Inc., 471pp, 1993

8. [RUDD, 1990] Practical Usage of REXX -- Anthony S. Rudd ISBN 0-13-682790-X, Ellis Horwood (Simon &
Schuster), 1990

9. [QUERCUS, 1991] Personal REXX User's Guide (PC-DOS and OS/2 REXX) version 3.0 Quercus Systems, 268pp,
1991

10. [PREXX, 1991] Portable/REXX for MS/DOS (Guide, Reference manual, Examples Reference, Reference
Summary, and Learning to Program with Portable/REXX)

11. [WATTS, 1991] REXX/Windows (Product Guide and Reference) Keith Watts, Kilowatt Software, 1991
12. [SLAC, 1991] Proceedings of the REXX Symposium for Developers and Users SLAC Report-379, 244pp, May 8-

9, 1991
13. [ZAMARA, 1991] Using ARexx on the Amiga -- Chris Zamara and Nick Sullivan ISBN 1-55755-114-6,

424pp+diskette, Abacus, 1991
14. [GOLDBERG, 1991] The REXX Handbook -- Edited by Gabe Goldberg and Phil Smith III ISBN 0-07-023682-8,

672pp, McGraw Hill, 1991
15. [GIGUERE, 1991] Amiga Programmer's Guide to ARexx -- Eric Giguere Commodore-Amiga, Inc., 1991

NetRexx Tutorial - Appendix A: Bibliography

http://www.netrexx.org/Tutorial/nr_32.html[11/4/2010 2:28:13 PM]

16. [DANEY, 1991] Programming in REXX -- Charles Daney ISBN 0-07-015305-1, 300pp, McGraw Hill, 1992
17. [SLAC, 1992] Proceedings of the REXX Symposium for Developers and Users SLAC Report-401, 401pp, May 3-

5, 1992
18. [CALLAWAY, 1992] The ARexx Cookbook -- Merrill Callaway ISBN 0-9632773-0-8, 221pp, Whitestone, 1992

(Companion diskette: ISBN 0-9632773-1-6)
19. [KIESEL, 1993] REXX--Advanced Techniques for Programmers -- Peter C. Kiesel ISBN 0-07-034600-3, 239pp,

McGraw Hill, 1993
20. [BURNARD, 1993] Denise Burnard, IBM AIX REXX/6000, Reference 1, IBM, 1993
21. [NIRMAN, 1993] REXX Tools and Techniques -- Barry K. Nirmal ISBN 0-89435-417-5, 264pp, QED, 1993
22. [GORAN, 1994] REXX Reference Summary Handbook (OS/2) -- Dick Goran ISBN 0-9639854-0-X C F S Nevada,

Inc, 102pp, 1993. ISBN 0-9639854-1-8 (second edition), 148pp, 1994.
23. [HALLETT, 1993] OS/2 2.1 REXX Handbook: Basics, Applications, and Tips -- Hallett German ISBN 0442-01734-

0, 459pp, Van Nostrand Reinhold, 1993
24. [SLAC, 1993] Proceedings of the REXX Symposium for Developers and Users SLAC Report-422, 247pp, May

18-20, 1993
25. [GARGIULO, 1994] Mastering OS/2 REXX -- Gabriel F. Gargiulo ISBN 0-471-51901-4, 417pp, Wiley-QED, 1994
26. [RUDD, 1994] Application Development Using OS/2 REXX -- Anthony S. Rudd ISBN 0-471-60691-X, 416pp,

Wiley-QED, 1994
27. [SCHINDLER, 1994] Teach Yourself REXX in 21 Days -- William F. Schindler & Esther Schindler ISBN 0-672-

30529-1, 527pp, SAMS, 1994
28. [RICHARDSON, 1993] Writing OS/2 REXX Programs -- Richardson ISBN 0-07052-372-X, McGraw-Hill, 1993
29. [RICHARDSON, 1994] Writing VX-Rexx for Programs (with disk) -- Richardson ISBN 0-07911-911-5, McGraw-

Hill, 1994
30. [KYNNING, 1985] REXX Procedursprak--hur du programmerar din PC med OS/2 -- Bengt Kynning ISBN 91-44-

48541-7, 300pp, Studentlitteratur (Sweden), 1994
31. [GERMAN, 1992] Command Language Cookbook -- Hallett German ISBN 0-442-00801-5, 352pp, Van Nostrand

Reinhold, 1992
32. [QUERCUS, 1992] Personal REXX User's Guide, Version 3.0 -- OS/2 Supplement Quercus Systems, 94pp, 1992
33. [HOCKWARE, 1993] VisPro/REXX (Visual programming with REXX) Hockware Inc, 196pp, 1993
34. [KEES, 1993] REXX in der Praxis -- Peter Kees ISBN 3-486-22666-5, 279pp, Oldenbourg, 1993
35. [WATCOM, 1993] VX-Rexx for OS/2 (Programmer's Guide and Reference) 2.0 ISBN 1-55094-074-0 Watcom

International Corp.,724pp, 1993

 IBM Books and Manuals

These are the books that you can obtain directly from IBM. The first number is the IBM BOOK number, which you
should use when ordering the book.

 Cross-system books

 ZB35-5100 The REXX Language, 2nd Ed.
 -- Cowlishaw
 SC26-4358 SAA CPI: Procedures Language Reference
 SC24-5549 SAA CPI: REXX Level 2 Reference
 G511-1430 IBM REXX Compiler and Library/370:
 -- Introducing the Next Step in REXX

NetRexx Tutorial - Appendix A: Bibliography

http://www.netrexx.org/Tutorial/nr_32.html[11/4/2010 2:28:13 PM]

 (CMS, MVS)
 SH19-8160 REXX/370 (Compiler and Library/370):
 -- User's Guide and Reference
 (CMS, MVS)
 SK2T1402 REXX/370 Compiler and Library V1R2.0
 -- Online Product Library
 LY19-6264 IBM REXX Compiler and Library/370:
 -- Diagnosis Guide (CMS, MVS)
 SB20-0020 The REXX Handbook
 -- Ed. Goldberg & Smith

 System-specific books, grouped by system

 SC24-5708 AIX/6000:
 AIX REXX/6000 Reference

 SH24-5286 IBM REXX for Netware Reference Guide

 S01F-0271 OS/2 Version 1.3 Procedures Language
 2/REXX Reference
 S01F-0272 OS/2 Version 1.3 Procedures Language
 2/REXX User's Guide
 S10G-6268 OS/2 (Version 2.0) Procedures Language
 2/REXX Reference
 S10G-6269 OS/2 (Version 2.0) Procedures Language
 2/REXX User's Guide
 SR28-5250 OS/2 (Version 2.1) REXX Handbook
 GG24-4199 OS/2 REXX: From Bark to Byte (Redbook)

 SC24-5239 VM/SP: System Product Interpreter
 Reference
 SC24-5238 VM/SP: System Product Interpreter
 User's Guide
 SX24-5126 VM/SP: System Product Interpreter
 Reference Summary
 SB09-1326 VM/SP: System Product Interpreter Reference
 (Chinese)
 SB09-1325 VM/SP: System Product Interpreter
 User's Guide (Chinese)
 GG22-9361 The System Product Interpreter
 (REXX) Examples and Techniques -- Brodock
 SC12-1599 VM/SP: System Product Interpreter Handbuch
 (German: SC24-5239, July 1984)
 SC24-5357 VM/IS: Writing Simple Programs with REXX
 SC23-0374 VM/XA: System Product Interpreter Reference
 SC23-0375 VM/XA: System Product Interpreter User's Guide
 GH19-8118 CMS REXX Compiler General Information
 SH19-8120 CMS REXX Compiler User's Guide & Reference
 LY19-6262 CMS REXX Compiler Diagnosis Guide
 LN19-9048 CMS REXX Compiler Diagnosis Guide TNL
 SH19-8146 CMS REXX Compiler User's Guide and Reference
 -- Supplement
 GC24-5406 VM/SP: Program Update Info.
 -- REXX Language Enhancements

 LYC0-9075 VM/ESA: V1: REXX/370 LISTING
 SC24-5598 VM/ESA: R2: REXX/VM Primer
 SC24-5465 VM/ESA: R2.2: REXX/VM User's Guide
 SC24-5466 VM/ESA: R2.2: REXX/VM Reference
 ST00-8323 VM/ESA: R2.2: REXX/VM Reference Summary
 GC24-5607 VM/ESA: R2.2: REXX/EXEC Migration Tool

 SC28-1882 TSO/E V2R1.1 REXX User's Guide
 SC28-1883 TSO/E Version 2 REXX/MVS Reference

 SC23-3803 Using REXX to Access OpenEdition
 MVS Services

 SC24-5512 AS/400 Procedures Language 400/REXX
 Reference
 SC24-5513 AS/400 Procedures Language 400/REXX
 Programmer's Guide
 SC24-5552 AS/400 Procedures Language 400/REXX
 Reference, Version 2
 SC24-5553 AS/400 Procedures Language 400/REXX

NetRexx Tutorial - Appendix A: Bibliography

http://www.netrexx.org/Tutorial/nr_32.html[11/4/2010 2:28:13 PM]

 Programmer's Guide, V 2
 SBOF-6819 OS/400: REXX/400 Support

 SC33-6528 VSE/ESA: REXX/VSE User's Guide
 SC33-6529 VSE/ESA: REXX/VSE Reference
 LY33-9144 VSE/ESA: REXX/VSE Diagnosis Reference
 GC33-6533 VSE/ESA: REXX/VSE Licensed Program
 Specifications
 SK2T-0063 VSE/ESA: REXX/VSE V1R1 Online Product
 Library

 SH21-0482 REXX Development System for
 CICS/ESA and REXX Runtime
 Facility for CICS/ESA Guide and Reference

 Applications and other REXX-related books

 GG24-1615 Using REXX in Practice: EXEC2 to
 REXX Conversion Experiences
 GG24-3401 REXX/EXEC Migration To VM/XA SP
 SC33-0478 GDDM REXX Guide
 SR21-0864 SRA VM Using the CMS System
 Product Interpreter
 SH20-7051 VM/SP System Product Interpreter:
 SQL/Data System
 Interface: Program Description/Operations
 Manual
 GG66-3144 NetView Release 3: REXX Presentation Guide
 -- Gibbons & Quigley
 GG66-3158 CMS Pipelines Tutorial
 -- Hartmann, Kraines, and Lynn
 GR28-2920 CUA 2001 VM Applications Core
 Functions Programmer's Reference Guide
 (CUA support for VM REXX applications)
 S246-0078 REXX Reference Summary Handbook (OS/2)
 -- Dick Goran
 SC23-3803 Using REXX to Access OpenEdition
 MVS Services

File: nr_32.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:06(GMT +2).

NetRexx Tutorial - Appendix I: Installation

http://www.netrexx.org/Tutorial/nr_33.html[11/4/2010 2:28:14 PM]

The NetRexx Tutorial
 - Appendix I: Installation

Appendix I: Installation

 Installation on WIN/95 WIN/NT and SOLARIS

 Download the JDK

Sun directly distributes the JDK for Windows/95, Windows/NT and Solaris (both SPARC and x86). The download
can be performed from:

http://java.sun.com/products/jdk/1.1/index.html

Select the platform, read the download condition, and fetch the code using your preferred WEB browser.

NOTE: due to a problem with Netscape 3.01, I was forced to directly issue the FTP commands, in order to fetch the
code.

ftp ftp.javasoft.com
> anonymous
> YOUR_EMAIL_ADDRESS
> bin
> cd pub/jdk1.1
> get jdk1.1.1-win32-x86.exe
> quit

 Installing Java on AIX

 Checking installation

Using your preferred editor, enter the following program, calling it hellojava.java.

+--+
| class hellojava |01
| { |02
| public static void main (String args[]) |03
| { |04
| System.out.println("Hello World, from Java!"); |05

http://java.sun.com/products/jdk/1.1/index.html

NetRexx Tutorial - Appendix I: Installation

http://www.netrexx.org/Tutorial/nr_33.html[11/4/2010 2:28:14 PM]

| } |06
| } |07
+--+
 hellojava.java

Then you type:

>javac hellojava.java # compile the program
>java hellojava # run it

If the output is the string "Hello World, from Java!" then you've almost done it!

Now you can try an applet. So edit the files hellojavaa.java and hellojavaa.html, as presented below.

+--+
| import java.applet.Applet; |01
| import java.awt.Graphics; |02
| |03
| public class hellojavaa extends Applet { |04
| public void paint(Graphics g) { |05
| g.drawString("Hello world, from Java Applet!", 50, 25); |06
| } |07
| } |08
| |09
+--+
 hellojavaa.java

+--+
| <HTML> |01
| <HEAD> |02
| <TITLE> Hello World </TITLE> |03
| </HEAD> |04
| <BODY> |05
| This is the applet:<P> |06
| <APPLET codebase="classes" code="hellojavaa.class" width=200 height=2|07
| </BODY> |08
| </HTML> |09
+--+
 hellojavaa.html

>javac hellojavaa.java # compile the program
>appletviewer hellojavaa.html # run it

 AIX known bugs

There is a bug in the AIX JIT compiler. This leads to errors like the following one, even in compiling the small
hello.nrx program.

$java COM.ibm.netrexx.process.NetRexxC hello
NetRexx portable processor, version 1.120
Copyright (c) IBM Corporation, 1997. All rights reserved.
Program hello.nrx
java.lang.ArrayIndexOutOfBoundsException: 20
 at netrexx.lang.RexxWords.space(Compiled Code)

NetRexx Tutorial - Appendix I: Installation

http://www.netrexx.org/Tutorial/nr_33.html[11/4/2010 2:28:14 PM]

 at netrexx.lang.Rexx.space(Compiled Code)
 at netrexx.lang.Rexx.space(Compiled Code)
 (...)

To turn OFF the JIT, just do:

 SET JAVA_COMPILER=xxx

 Download the NetRexx Distribution

The latest versions of NetRexx are available on IBM's WEB site at the following URLs:

http://www.ibm.com/Technology/NetRexx/nrdown.htm
USA Server

or at

http://www2.hursley.ibm.com/netrexx/nrdown.htm
UK Server

 Installing NetRexx on UNIX

In the following example I assume that you want to install NetRexx in the directory:

 ~/src/NetRexx

and you've the working Java top tree in:

 ~/src/java/Java

This is the procedure:

 1. Unpack the distribution

 > cd ~/src/NetRexx
 > uncompress NetRexx.tar
 > tar -xvf NetRexx.tar

 2. Install the libraries and demo

 > cd ~/src/java/Java
 > cp ~/src/NetRexx/nrtools.tar.Z .
 > uncompress nrtools.tar
 > tar -xvf nrtools.tar

 3. Set the environment variable CLASSPATH
 You need to add ~/src/java/Java/lib/NetRexxC.zip to the
 CLASSPATH environment variable

 This command will depend on your shell (csh, tcsh, ksh ...)

 > export CLASSPATH=$CLASSPATH:~/src/java/Java/lib/NetRexxC.zip

 4. Test the installation

http://www.ibm.com/Technology/NetRexx/nrdown.htm
http://www2.hursley.ibm.com/netrexx/nrdown.htm

NetRexx Tutorial - Appendix I: Installation

http://www.netrexx.org/Tutorial/nr_33.html[11/4/2010 2:28:14 PM]

 > cd ~/src/java/Java/bin
 > java COM.ibm.netrexx.process.NetRexxC hello
 > java hello

The following small script might save you some typing

+--+
| echo 'java COM.ibm.netrexx.process.NetRexxC' $1 |01
| java COM.ibm.netrexx.process.NetRexxC $1 |02
+--+
 nrc

 Microsoft J++

 The following recepy (originally provided by Bernhard Hurzeler <behurzeler@ucdavis.edu>) gives some
information on how to get MS VJ++ and NetRexx working together.

 1. Put the files in their appropriate directories:

 NetRexxC.zip -> c:\MSDEV\LIB
 NetRexxC.properties -> c:\MSDEV\LIB
 NetRexxR.zip -> c:\MSDEV\LIB
 NetRexxC.bat -> c:\MSDEV\BIN
 NetRexxC.cmd -> c:\MSDEV\BIN
 nrc.cmd -> c:\MSDEV\BIN
 nrc.bat -> c:\MSDEV\BIN

 2. Set the CLASSPATH to:

 c:\Msdev\Lib\NetRexxR.zip;c:\Msdev\Lib\NetRexxC.zip;c:\Msdev\Bin

 On Windows NT 4.0, you follow the icons
 Start,
 Settings,
 Control Panels,
 System,
 Environment tab,
 System Variable

 3. Go to c:\MSDEV\BIN and type the commands:

 -- generate the java source
 > jview COM.ibm.netrexx.process.NetRexxC hello -keep nocompile
 -- compile it
 > jvc hello.java
 -- run
 > jview hello

File: nr_33.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:07(GMT +2).

NetRexx Tutorial - Appendix Z: changes in this file

http://www.netrexx.org/Tutorial/nr_34.html[11/4/2010 2:28:15 PM]

The NetRexx Tutorial
 - Appendix Z: changes in this file

Appendix Z: changes in this file

This chapter will (of course) disappear in the final version.

*
* ver date pgs action
* ------- ------ ---- --
*
* v0r0035 250297 208 - HTML version + restructure of history file
* - put small corrections in chap 1
*
* v0r0032 200297 208 - add xsock (small) and xshell
* to the distribution
*
* v0r0032 180297 208 - write the RECFM F part of xfile
* with the I/O record access
*
* v0r0030 150297 206 - clean existing chap 9
* (before totally wrong)
*
* v0r0029 130297 206 - correct chap 11
* - add xexec example & warning
* - add tar.gz of examples and libraries.
*
* v0r0028 120297 204 - add other conversion examples in chap 4
* - build also a .zip version of the .ps
* Thanks to Francesc Roses for a pointer
* to a zip that compiles on AIX.
*
* v0r0012 - Rearrange the introduction and the Review.
* Restructure the Preface
* Rearrange the chapters in part 4
* Add the Tools chapter
* Put in Bernard's comments & fixes
*
* v0r0010 - Start writing NetRexx for REXXers
*
* v0r0001 020297 - First "public" presentation of the doc.
* This is what Bernard and Mike saw.
*
*
*
*
*

File: nr_34.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:08(GMT +2).

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

The NetRexx Tutorial
 - Index

Index

$?
$status

%, %

'00'X character
'0D'X

*

+

, as continuation character

-
- as continuation character

/, /
/* */
//

;

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

\x, \x
\X

abex1.nrx
abex2.nrx
abs
abstract
abstract class
abstraction
abuttal
acos
acosh
Additional instructions
AIX install
AIX JIT bug
aphello.html
aphello.nrx
API documentation
applets
Applets
Applications
arg
args
array_exa.nrx
ArrayIndexOutOfBoundsException
arrays
arrex1.nrx
asar.nrx
asar.rex
asin
asinh
assignments
associative arrays
atan
atanh
avoid NEWLINE char
AwkTools

base64

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

basic file operations
bean
bibliography
binary files
BINARY numbers
blank lines
Blocks of READ
Blocks of WRITE
build libraries

C++ function pointer
Cafe'
Call
Call command
Calling a program
cannot find constructor
class instances
classes, classes
CMSpipes
codeex.nrx
command line parser
comments
Complex Data Structures
composers.nrx
compound variables
concatenation
constructor
cont_exa.nrx
Continuation Character
continuation character
Control FAQ
convert to CU
cos
cosh
current directory

d2c
d2x
daemon
data structures
database

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

date
date conversion tool
daytime
daytime.nrx
default precision
delim_exa.nrx
Delimiter Character
design patterns, design patterns
determine Operating System
do/end
docs
dumping files in HEX
dyna2.nrx
dyna3.nrx

e
elapsed time
environment
error compiling
Error unmarshaling return
eval
eval.nrx
exceptions, exceptions
exec()
exit
exit status
exitValue()
expose
expp1.nrx
expp2.nrx
expp3.nrx
expression parser

FAQ
fexa1.nrx
fexist
File
file existence check
file operations
file read
file Read and Write

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

file write
file.separator
finally
find
find which OS
finger, finger
finger.nrx
finger1.nrx
Finite Element Method
fixed format
fixed length records
foreach
fork()
forkex1.rex
format
Frequently Asked Questions
FTP client program
FTP get
FTP put
function calls
function pointer in C and C++
functions

gauss.nrx
gcd.nrx
GetRuntime()
giga
greatest common divisor
GUI

Hanoi
hanoi.nrx
hash
hashing function
hedit.nrx change
hedit.nrx linedis
hedit.nrx save
hello.nrx
hellojava.java
hellojavaa.html
hellojavaa.java

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

HEX
HEX char range
HEX dump
HEX edit
HEX numbers
HEX quantities
hexadecimal strings
history
history.nrx dump
history.nrx retrieve
history.nrx save

IBM redbook
if/then/else
IMAP client
IMAP protocol
imapt.nrx
index
indexed files
indexed string
infix
initialise
input line arguments
installation
Installation
instanceof
interact.nrx
interpreter
ISO 2015 & 2711
iterate

J++, J++
JAR
java
Java Developer Kit
Java JDK
Java on AIX
JAVA String[] arrays
Java version
Java Virtual Machine
java.class.path

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

java.lang.IllegalAccessError
java.lang.Object File
java.lang.Process
java.lang.Runtime
java.lang.Thread
java.version
JAVA_COMPILER env variable
javabeans
javascript
JDBC
jdbct1.nrx
JDK
JIT
JPEG
JPG
jpginfo.nrx
jsc.html
julian date
just in time compilers

kilo

latest NetRexx version
leave
length and width of a JPG
linked lists
list expansion
list files in directory
literal parsing
literal strings
lls.nrx
loop
loop over
loop/while/until
lower, lower
ls

mailing list
main arguments
main()

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

matching pattern
max
measure time
mega
memory model
method main()
method overloading
methods
Microsoft J++, Microsoft J++
MIME
monthfile.nrx
multiple
multiple constructors

NetRexx mailing list
NetRexx sources
nnt.nrx
nnt1.nrx
NNTP client
NNTP protocol
nodisp.nrx
NOP
NotSerializableException
nr.HISTORY
nrc
nrenv
nrenv.nrx
Numbers
numperf
numperf.nrx

object model
objects, objects
Operations on BINARY
Operations on HEX
Original Reusable Objects
ORO
OROMatcher
OS version
over

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

p-code
packages, packages
parrot.nrx, parrot.nrx
parrotc.nrx
parse
parse pull
parsearg.nrx
parsing
path.separator
pattern, pattern
pattern design
patterns
PERL associative arrays
Perl5 Regular Expressions
PerlTools
pex1.nrx
pi
pipes
polish
portn.nrx
precedence
precision
Prerequisites
printStackTrace()
procedure
process control
program name
Programs
ps
pull

qsn.nrx main
qsn.nrx partition
qsn.nrx sort_qsnr
quicksort non recursive

random
re-entrant
read file
read file line

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

read implementation
readst.nrx
RECFM F
RECFM V
recursion
redbook on Netrexx
regexp
regular expression
Remote Method Invocation
resume of do instruction
REXX FAQ
REXX procedures
RFC 1064
RFC 1341
RFC 1342
RFC 867
RFC 977
rfile.nrx
rfileclie.nrx
rfileimpl.nrx
rfileserv.nrx
RMI
rmic, rmic
rmiregistry, rmiregistry
roundup.nrx
runnable.nrx
Runtime
rxfile

say
sclie.nrx
select
SG24-2216-0
shell arguments
simple1.nrx
simple2.nrx
simple3.nrx
simple4.nrx
simple5.nrx
simple6.nrx
simple7.nrx
Simultaneous Linear Equations Solution
sin

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

Singleton.nrx
sinh
sleep
Sockets
Solaris SPARC
Solaris x86
sort
source download
Special Characters
special characters
special variables
SQL
sqrt
sserv.nrx
stack trace
stanza
start rmiregistry
state
static
stem
stream I/O model
string concatenation
string sorting
String[]
strings
strings[]
strstrict.nrx
subroutines
sun.net.ftp
sun.net.TelnetInputStream
syex1.nrx
syex2.nrx

tan
tanh
tarray.nrx
tcl1.nrx
tcl2.nrx
TelnetInputStream
tfix.nrx
tgm1.nrx
tgm1.rex

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

thread API
thread definition
Thread.sleep(MILLISEC)
threads
thrt0.nrx
thrt1.nrx
time
Time.nrx
TimeCl.nrx
timeexa1.nrx
TimeImpl.nrx
timeout on a command
timer class
timestamp
tnr1.nrx
tnr1.rex
tnr2.nrx
tnr2.rex
towers of Hanoi
trace
translate
translate to lowercase
translate to uppercase
tree for ps command
tstring1.nrx
tvec3d.nrx
tvec3ds.nrx
tvecLo1.nrx
twb.nrx

UCSD Pascal
undefined constructor
unimplemented interface method
UNIX
UNIX streams
upper, upper
URL
user.dir
userid
userid()
using a class

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

vector
vectorLo.nrx
Venn Diagram
version
virtual
virtual class (C++)
volt.nrx
voltcl.nrx
voltimpl.nrx

w3dmp.nrx
w3dmp1.nrx
watchdog
WEB
WEB pages
Windows Magazine
Windows/95
Windows/NT
word
wordpos
write file
write implementation
www.winmag.com

xarray.nrx ba2x
xarray.nrx bagrepx
xarray.nrx copy
xarray.nrx dump
xbuild.nrx main
xdate
xdt0.nrx
xdt1.nrx
xexec
xfile
xfile.nrx read
xfile.nrx readbuf
xfile.nrx recio
xfile.nrx recwrite
xfile.nrx state
xfile.nrx write
xfile.nrx writebuf

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

xfile.read()
xftp
xftp.nrx xget
xftp.nrx xls
xftp.nrx xmore
xftp.nrx xput
xftp1.nrx
xmath.nrx binop
xmath.nrx dotify
xmath.nrx gauss
xmath.nrx gcd
xmath.nrx hexop
xmath.nrx n2cu
xmath.nrx random
xmath.nrx s2h
xrange
xshell.nrx
xshell1.nrx history
xshell1.nrx historyd
xsock.nrx getservbyname
xsock.nrx hostname
xsock.nrx open
xstring.nrx a2m
xstring.nrx a2s
xstring.nrx censure
xstring.nrx cmdline
xstring.nrx display
xstring.nrx evalrpn
xstring.nrx hash
xstring.nrx listexpand
xstring.nrx m2a
xstring.nrx option
xstring.nrx s2a
xstring.nrx sort
xstring.nrx translate
xstring.sort
xsys.nrx elapsed
xsys.nrx reset
xsys.nrx xexec
xsys.sleep(SEC)
xsystem.nrx dump
xvector.nrx add
xvector.nrx mag
xvector3d.nrx

NetRexx Tutorial - Index

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

||

File: nr_35.html.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:09(GMT +2).

	netrexx.org
	NetRexx Tutorial - Table of Contents
	NetRexx Tutorial - Review of this book
	NetRexx Tutorial - Preface
	NetRexx Tutorial - Basic concepts
	NetRexx Tutorial - Introduction to NetRexx
	NetRexx Tutorial - Language Basics
	NetRexx Tutorial - Operations on Numbers
	NetRexx Tutorial - Operations on Strings
	NetRexx Tutorial - Control Structures
	NetRexx Tutorial - Classes and Objects in NetRexx
	NetRexx Tutorial - More on NetRexx Classes
	NetRexx Tutorial - Operations on files
	NetRexx Tutorial - Threads
	NetRexx Tutorial - Socket and Networking
	NetRexx Tutorial - Interface with the system
	NetRexx Tutorial - Process Control and Exceptions
	NetRexx Tutorial - Database Operations
	NetRexx Tutorial - Applets
	NetRexx Tutorial - Graphical Interfaces
	NetRexx Tutorial - Advanced Graphics
	NetRexx Tutorial - Advanced Networking
	NetRexx Tutorial - Full OOP projects
	NetRexx Tutorial - Additional Instructions
	NetRexx Tutorial - Advanced Algorithms
	NetRexx Tutorial - NetRexx for REXXers
	NetRexx Tutorial - Tools
	NetRexx Tutorial - The xclasses JAR library
	NetRexx Tutorial - Miscellaneous
	NetRexx Tutorial - Appendix A: Bibliography
	NetRexx Tutorial - Appendix I: Installation
	NetRexx Tutorial - Appendix Z: changes in this file
	NetRexx Tutorial - Index

