NetRexx Tutorial - Table of Contents

The NetRexx Tutorial
Object Oriented Programming on the Internet

Alpha Internet pre-release
Version voro145; Updated 18 May 1998
Pierantonio Marchesini / ETH Zurich

. Review of this book
Preface

PART ONE

. Basic concepts
. Introduction to NetRexx

. Language Basics
. Operations on Numbers

Operations on Strings
. Control Structures

PART TWO

. Classes and Objects in NetRexx
. More on NetRexx Classes

. Operations on files
. Tﬁreads

. Socket and Networking
. Interface with the system _
. Process Control and Exceptions

7252 bytesg
9272(bytes

12857 (bytes
54029 (bytes
28894 (bytes
54911(bytes
64198 (bytes
38112(bytes

65221 (bytes
37303 (bytes
63608 (bytes

18818(bytes UPDATE!
75406 (bytes UPDATE!

32918(bytes
18117 (bytes

Database Operations 5560(bytes
PART THREE
Applets 5241 (bytes

: Graphical Interfaces
. Advanced Graphics

883 bytesg EMPTY
851(bytes) EMPTY

Advanced Networking 37617 (bytes
. Full OOP projects 2040(bytes
PART FOUR
. Additional Instructions - 63538(bytes) MPDATEY
. Advanced Algorithms - 14070(bytes
- NetRexx for REXXers - 19789(bytes) VPPATE!Y
. Tools - 16214(bytes
. The xclasses JAR library - 8830(bytes) UPDATE!
- Miscellaneous - 4682 (bytes
- Appendix A: Bibliography - 11470(bytes) VUPPBATE!
. Appendix 1: Installation - 9480(bytes UPDATE!
. Appendix Z: changes in this file - 2312(bytes
. Index - 27279(bytes UPDATE!|

NOTE: This HTML version of the book is provided as-is for all those people that cannot use the .ps file, since they

do not have access to a Poscript Printer.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:31(GMT +2).

http://www.netrexx.org/Tutorial/nr_toc.htmi[11/4/2010 2:27:30 PM]

NetRexx Tutorial - Table of Contents

http://www.netrexx.org/Tutorial/nr_toc.htmi[11/4/2010 2:27:30 PM]

NetRexx Tutorial - Review of this book

The NetRexx Tutorial
@ - Review of this book

DI SCLAI MER:

ALL THE EXAMPLES PRESENTED IN TH S BOOK HAVE BEEN TESTED ON
SEVERAL PLATFCORMS.

TH S DOCUMENT IS PROVIDED ON AN 'AS-1S BASIS. THE AUTHOR
TAKES NO RESPONSABILITY FOR ERRONEQUS, M SSING OR M SLEADI NG
| NFORVATION, OR FOR ANY LOSS OF DATA, BUSINESS OR HARDWARE,

Dl(.JIIEJ<TO THE USE OF ANY |INFORVATION OR CODE GVEN [N TH S
BOCK.

Allrights reserved. No parts of this publication may be reproduced stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior consent of the
author.

Copyri ght (C) 1997 by Pi erantoni o Marchesi ni
of the ETH / Zurich.

You can get a copy of the latest version of this document
from nmpi e@h.i bmcom

Copyri ghts:
Net Rexx is Copyright (C 1997 by |BM Corporation
Tr ademar ks:

WS, VM CMVS, |BM are trademarks by I|nternational
Busi ness Machi nes Cor porati on.

HH#H#H # # # # # HHH#

#H# # # H#i# # #
#HH # # ## #

OBH# #H BHHBHH HHBHH # #HH# # # O#HH O# HAH
#H# #H # # # # # ## # # #H # #
HH#HH

This document is available in an as-is format for all the people interested in NetRexx. This document is still in DRAFT
form. All the sections marked:

* % %

*** M SSI NG PART

* % %

should be regarded as on-going or future work.
Look in "Appendix Z" to see the latest changes in the document.

Feel free to send me any comment, question, etc. on this document. My email is Pierantonio.Marchesini@cern.ch.

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

NetRexx Tutorial - Review of this book

English is NOT my mother tongue, as you might have already guessed from those very first sentences. The final book
will be corrected (I promise) by a professional editor. If a particular sentence is way too obscure (since | wrote it in my
Italian-English) please let me know, and it will be corrected.

A full description of this document current status is available in the next page.

Since, as | said, this is a 'living' document, the following table resumes the status of the various chapters, as they
appear in this document. A 0 means that the chapter is still totally empty. A 10 means that the chapter is finished and
only corrections are pending.

Part One

Basi c concepts

I ntroduction to Net Rexx
Language Basics
Operations on Numbers
Qperations on Strings
Control Structures

oOOONN

Part Two

bj ects, Casses and Interfaces
Operations on files

Socket s and Networ ki ng

System I nterface

Thr eads

Dat abase Operati ons

ONUIOIoH U]

Part Three
Appl ets

Graphical Interfaces
Advanced G aphics
Advanced VEB server
Ful |l OOP projects

OFrROOR

Part Four

Addi tional Instructions
More on Al gorithns

Net Rexx for REXXers
Tool s

M scel | aneous

Opd~pN

Review of this book

* What is NetRexx? Quoting NetRexx's author, Mike Cowlishaw, "NetRexx is a programming language derived
from both REXX and Java(tm); NetRexx is a dialect of REXX, so it is as easy to learn and use as REXX, and it
retains the portability and efficiency of Java." Using NetRexx you can create programs and applets for the Java
environment more easily than programming in Java itself. Using NetRexx you rarely have to worry about the
different types and numbers that Java requires. The "dirty" job is done by the language for you.

e What is REXX? REXX is an interpreted language originally developed by IBM in 1979. REXX was designed to be
platform-independent and is the procedural language shipped with the operating system both on Mainframe
Systems (MVS, VM/CMS) and on Personal Systems (0S/2, Amiga). REXX is available on almost any platform as a
product, or as a public domain implementation. Due to its simplicity and ease of use, REXX can be thought as a
'Personal' Language - practical not only for the professional programmer, but also for the occasional one. For

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

NetRexx Tutorial - Review of this book

File:

example, you can use it to quickly test an algorithm before implementation, even when using other languages.
To whom is this book addressed? This book is addressed both to neophytes and to experienced programmers
starting to program on ANY system where the Java JDK is installed. Almost all the programming examples
found in this book are taken from 'real-life' situations. Among other useful skills, you will learn how to write: a
small routine for randomly accessing a 1.000.000 record file in a few milliseconds, a real client server application
using sockets, a 'pocket calculator' with 200 significant digits, and pull-down menus using curses.
What are the covered topics?

o Introduction to the NetRexx language

o Numbers,Strings and Control Structures

o Class and Methods

o Operations on files, sockets and threads

o Applets

o Graphical User Interfaces
Is this a User Guide, a Tutorial or a Reference Manual? The answer is ""something of all these". In fact, the best
definition is probably an "Advanced User Guide with Reference Sections". Previous programming experience is
needed in order to fully understand this book, and thus it is NOT a user guide in the true sense of the term.
However, | felt it necessary to include reference information for those users who might not have the NetRexx
reference book readily available to them. Some chapters also needed amplification, since they describe
functions not documented elsewhere.
Where can | find the examples? All the examples used in this book are available on Internet via WWW at the
URL:

http://wwen. cern. ch/ news/ net r exx/ exanpl es

nr_1.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:32(GMT +2).

http://www.netrexx.org/Tutorial/nr_1.html[11/4/2010 2:27:32 PM]

http://wwwcn.cern.ch/news/netrexx/examples

NetRexx Tutorial - Preface

The NetRexx Tutorial
@ - Preface

Preface

2 Introduction.

This book is addressed to both professional programmers and end users who want to learn more about the
NetRexx language.

NOTE: The following documentation refers to NetRexx version 1.00 and following.

*** This section is:

*** and will be available in next rel eases

2 When to use NetRexx.

This topic is likely to be a source of endless arguments (both pro and con).
This is my genuine opinion.
PROs:

» NetRexx is very easy to read. You can practically program in English (1)
 thereis only ONE NetRexx native data type (the string);
e there is almost no need for special characters (like delimiters, identifiers, etc);
» NetRexx has very powerful features, such as arbitrary numeric precision, parsing, easy string handling, etc.
* NetRexx is not tailored to a particular operating system; the very same code canrunon:
o Windows 95/NT (TM),
o UNIX (TM) (eg. AIX (TM), HP/UX (TM), IRIX (TM), SunOS (TM), Solaris (TM), etc.),
o 0S/2(TM),
o Macintosh (TM),

In fact NetRexx will run on any platform that supplies a Java Virtual Machine (JVM) (TM) (more on this later.
 If youare (or were) a FORTRAN, PL/I or PASCAL programmer you will probably find NetRexx closer to your
'way-of-programming' than any other language available for the JVM. NetRexx eases the transition for

programmers familiar with "procedural languages into the object oriented paradigm.

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

http://www.netrexx.org/Tutorial/nr_foot.html#FOOT1

NetRexx Tutorial - Preface

CONs:

e NetRexx is not (or at least not exactly) Rexx, so Rexx (or Object Rexx) fans will be faced with a "transition
period". You cannot get your Rexx code immediately running in NetRexx (as you can do with Object Rexx)
unless it is a very simple program.

* NetRexx compiles your program into Java byte-code. The code is then very much slower, in terms of
execution, than a native Object Rexx or "classic" Rexx. I've measured up to a order of magnitude slower.
This performance problem is due to the Java byte-code running in the JVM and is not an inherant problem
with NetRexx; raw Java code is just as slow!

» About the examples in this book.

>From the very first chapters, | will present and discuss some 'real' NetRexx program atoms (i.e. code fragments
(usually methods)) that you can use in your programs after having learnt the language.

| have noticed that many 'user guides' present as examples, programs you will probably never use again in your
life; in fact these programs are often totally useless, brought into existence only so that the author can show
particular features of the language involved.

| prefer to give you something 'real'; program atoms you can insert in your code, or programs you can run and use
even after having finished with this book. The obvious disadvantage in such an approach is that some constructs
may not be entirely clear, since they will only be explained several chapters further on. Please be patient, and do
not be concerned about things that, at a particular point in your progress through the book, are not completely
understood. You can always come back to them later.

*** This section is:

*** and will be available in next rel eases

2 Book structure

This book is divided into four parts.

Part One
(Witing sinple prograns)

Basi c Concepts

I ntroduction to NetRexx
Language Basics
Qperations on Nunmbers
Qperations on Strings
Control Structures

Part Two))
(Object Oriented Programi ng)

- (bjects, Casses and Interfaces

- Qperations on files
- Sockets and Networking

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

NetRexx Tutorial - Preface

- stem Interface
- Threads)
- Database Operations

Part Three)
(I'nterfacing with the VEB)

- Applets

- Graphical Interfaces
- Advanced Graphics

Part Four]
(Advanced topics)

Addi ti onal Instructions
More on Al gorithms

Net Rexx for Rexxers
Tool s

M scel | aneous

» Conventions.

In order to be consistent, a 'standard' is being followed in presenting the various code samples and running
examples.

When | show a full program example, the code appears like this:

02

say 'This is a code exanple'
5

say
06

exit O
07

codeex. nrx

NIk Download the source for the codeex.nrx example

Line numbers may be used in comments related to the code. You will find the file id at the bottom right-hand
corner of the code, making it easier to find the referenced portion of the code if you already have the sample code
on your computer.

When referring to only a small piece of a program, the code appears like this:

if test then
do
say 'Running in test node.'
end

i f exanple

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

http://www.netrexx.org/examples/codeex.nrx

NetRexx Tutorial - Preface

Example sessions are presented like this:

What you should type is written in bold characters. The rsI3pm1 (NNN) prompts are simply those of the machine
from which sample sessions were taken, so just ignore them.

Syntax examples appear as:

rc = socket("VERSION"™)

with the method invocation in bold characters, and the arguments in italics.

Data File Samples appear as:

o mmm e +
data file
sanpl e
ot o e o ot o o o o o o o e o e o e o o e e e o e e e e e e e e e e oo oooo--o- +
sanpl e. DATA

with, again, the file id at the bottom right-hand corner.

+ Acknowledments

Several reviewers have helped, by questions and comments, to clarify the aims and exposition of the book. Mark
Hessling was extremely helpful in reading the preliminary version of the book, which was typeset using his XEDIT-
like text editor; THE.

Many thanks also to Bernard Antoine and David Asbury of the CERN CN division for their help and suggestions.
@ Summary

Let us now make a resume' of what we have seen so far in this chapter.

*** This section is:

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

NetRexx Tutorial - Preface

*** and will be available in next rel eases

File: nr_2.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:33(GMT +2).

http://www.netrexx.org/Tutorial/nr_2.html[11/4/2010 2:27:33 PM]

NetRexx Tutorial - Basic concepts

The NetRexx Tutorial
@ - Basic concepts

Basic concepts

In this chapter I'll try to give an overview of all the basic concepts which, in my opinion, are required to fully
understand the following chapters.

If you're familiar with the concepts exposed here, you can just jump immediately to the next chapter.

» The Java language

Java is an object-oriented programming language developed by Sun Microsystems (TM). A Java program might
look like a C or C++ program, due to Java's similarities to those languages. Indeed, Java is not based on C, neither
on C++. There has been no effort to make Java compatible with those two languages.

One important point to keep in mind is that Java was designed with the idea to allow execution of code across a
network.

The main feature of Java is that the COMPILED code is platform independent. To achieve this, Java compiles to an
intermediate form; Java byte-code. This code is then interpreted "on-the-fly" by a platform-dependent, Java
interpreter.

(conpi |l ation)
javac hello.java

hel | o. cl ass

The Java Compiler creates a Java class file, which does not contain any instruction which is architecture
dependent. You will not find Pentium, rs6000, MAC, etc. instructions in a class file: you will find code which is
understood by a Java Virtual Machine: an interpreter which knows how to translate the Java byte-code into your
machine's instructions.

| JAVA BYTE CODE | <- architecture independent

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

NetRexx Tutorial - Basic concepts

JAVA VI RTUAL MACHINE | <- architecture dependent

/ /
/MACHI NE /(PC, MAC, W5 | <- your nmachine

So, the Java Virtual Machine is just a special interpreter, that "understands" a class file.
The idea is not new: it was available in UCSD Pascal, and the intermediate code was the so-called p-code.

When running code across a network, you must eliminate some of the language features which might allow any
malicious code to gain access to your computer. Notably, Java's designers had to take away the concept of a
"pointer", largely used in Cand C++. Java programs cannot access arbitrary addresses in your machine memory.

2 Java and the WEB

The capability to interpret Java byte-code is available on most WWW browsers available today.

If an HTML document contains a <class> statement, the browser will fetch the class, (if you don't already have it
on your machine) and execute the code. The important thing to stress is that the code, at this point, runs on YOUR
machine, not on the server from where you downloaded the HTML document.

VWAV Br owser http Daenon
(client) (server)
(URL)
--(URL reguest)—--—>
<--(HTM. doc)------
<ci ass >
--(class request)-->
<--(class)----------
CLASS runs
HERE

Java adds local interaction to the WEB, and offloads processing from the server to the client.

What's the gain in such an approach? Why not run the code directly in the server side? (like you do whenever you
issue a cgi-bin command)?

If your application manipulates data and displays it graphically, the Java approach is definitely more efficient, both
in terms of reduced network traffic and perceived execution speed.

For example: suppose that your company wants to display several histograms on their WWW home page. You
could have the pictures (in gif or jpg format) stored in the HTML daemon directory. Each time the document is
requested, potentially hunders of kilobytes of data is transfered across the network. Using Java, you download
the application that implements a histogram viewer, and the data to build the histogram to your machine; usually

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

NetRexx Tutorial - Basic concepts

significantly less data than the pre-built images.

2 JDK

JDKis an acronym for Java Developer Kit. It is a set of programs that allows you to compile your java code and to
execute it (using the Java Interpreter).

The JDK is distributed freely by Sun, and you can download it from Sun's site:

http://java.sun.com

See the Appendix | for more details.
The JDKis made up by the following tools:

e acompiler javac

e adebugger

e aninterpreter, or, if you prefer, a Java Virtual Machine (Java VM) java
e an applet viewer appletviewer

e other miscellaneous tools

The JDK also includes all the Java class files that you need to compile and run your java programs.

The JDK is NOT a visual development environment, like Microsoft's J++ or Symatec's Cafe'. Sun's JDK has been
defined as "primitive" [GREHAN, 1997] by some authors, since all the package's tools run from the command line.
Other people [HAROLD, 1997] definitely prefer JDK's "minimalist" approach vs. more fancy products, sometimes
still in beta test.

If you are an "old fashion" programmer like me, you'll probably prefer JDK's approach, which resembles the
development process | followed on VM/370 and VS/COBOL; edit, compile, and run all from the command line.

For NetRexx there is no IDE at the moment, so you are forced to use JDK's approach anyway.

2 Java Classes

Like other languages; notably FORTRAN, Java is a relatively simple language. The power of these languages is
derived, not from the language itself, but from the extensibility of the language. Without high level mathematical
packages and functions in FORTRAN, you would not be able to do much of any significance. Java, without its Class
Libraries is the same.

» Applications

An application is, generally speaking, a stand-alone program which you launch from the command line. An
application has unrestricted access to the host system. An application can read/write files on your system using
your access privileges, it can open socket connections with any address, etc.

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

http://java.sun.com/

NetRexx Tutorial - Basic concepts

Technically, a NetRexx application is a NetRexx program that has a main() method, or no method at all (NetRexx
will add the main() for you).

» Applets

An applet is a program which is run in the context of an applet viewer or of a WEB browser. An applet has very
limited access to the system where it runs; for example, an applet cannot read files, neither can it establish socket
connections to systems other than the one from where the applet was downloaded.

Technically speaking, an applet is a NetRexx class which extends the Java class java.applet.Applet.

» Javascript

You might have found, in several WEB pages, portions of code that are executed by the browser. This code is
written using javascript. To make it clear, javascript has nothing to do with java. The black beverage that you find
in fast-foods has nothing to do with the nectar you drink at ""La Tazza d'oro" (Via degli Orfani 82, in Rome). People
(not the same people, indeed) call both of them coffees, but that's the only thing they share. So Java and
Javascript just share (a portion of) the name. "The intersection of Java and Javascript is the empty set." [VAN DER
LINDEN, 1997].

Javascript was invented by Netscape Inc., and it is a simple scripting language, imbedded in HTML files. It offers
loops and conditional tests.

As an example of Javascript, look at the following code:

o m m e m oo +
<HTM_> | 01
<PRE> | 02
Here | snoop sone info about you: | 03

04

<script |anguage= "JavaScript"> | 05
<l-- | 06
var where = docunent.referrer | 07
var name = navi gator. appName | 08
var vers = navigator.appVersion | 09
docunent.witeln ("You canme here from'"+where+"'.") | 10
docunent.wite ("You use:'"+nane+" "+vers+"'.") | 11
I o--> | 12
</script> | 13
</ PRE> | 14
</ HTML> | 15

o s o e o e e o o o o e o o e o e e e o e o e e e e e e e e e e e e e e e e e e oo o— oo +

jsc.htnm

 Just in time Compilers

2 JavaBeans

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

NetRexx Tutorial - Basic concepts

JavaBeans is a public specification developed by Sun, in consultation with other vendors and with the Java
community. JavaBeans is a component model, which lets you build and use Java-based components.

The beans is just a Java class with some additional descriptive information. Why this additional information?
Because this information is used to make beans reusable software components, which can be manipulated by
building tools. This allows non-programmers, using an authoring tool, to assemble an application using the
provided components.

» Additional sources of information
Java

The "home" of Java is:

http://java. sun. conl

JavaBeans

The first place is definitely

http://splash.javasoft.con beans/spec. htm

contains a good tutorial, and the specifications for JavaBeans 1.0.

You should then look at:

http://ww\?2. hursley. i bm con netrexx/nrbean. ht m

for the NetRexx implementation.

For more general informations, look at

http://splash.javasoft.con beans/

» Summary

File: nr_4.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:34(GMT +2).

http://www.netrexx.org/Tutorial/nr_4.html[11/4/2010 2:27:34 PM]

http://java.sun.com/
http://splash.javasoft.com/beans/spec.html
http://www2.hursley.ibm.com/netrexx/nrbean.htm
http://splash.javasoft.com/beans/

NetRexx Tutorial - Introduction to NetRexx

The NetRexx Tutorial
@ - Introduction to NetRexx

Introduction to NetRexx

2 Introduction

In this chapter I try to give a global overview of the NetRexx language, along with a bit of history and some
information on how to install and run it, etc. Probably the most interesting part starts from the paragraph A Small
Journey Around NetRexx, where | try to develop some small programs, purely with the aim of giving you a "feeling"
for this language. You can happily jump straight to this section, and leave all the details for later.

» History of Rexx and NetRexx

Rexx was conceived, designed and developed by Mike Cowlishaw of IBM UK. The original motivation was to
replace the then (1979) inadequate IBM command language (JCL and EXEC2). The basic idea was to develop
something similar to PL/I, but easier to use. During the last 25 years Rexx developped a large community of users,
since IBM wasis shipping it as part of it's major Operating Systems (MVS, VM, 0S/2). IBM estimates that there are
about 6 millions of Rexx Programmers around the world.

NetRexx was again conceived, designed and developed by Mike Cowlishaw IBM Fellow, in 1996. The motivation is
is to create a language easier and simpler than Java, but keeping Java's main advantages.

Like Rexx, NetRexx is a real general-purpose language, tuned for both scripting and application development.

» Availability of NetRexx.

The latest versions of NetRexx are available on IBM's WEB site at the following URLs:

http://wwv. i bm coml Technol ogy/ Net Rexx/ nrdown. ht m

USA Server or at

http://ww2. hursley.i bm conl netrexx/nrdown. htm

UK Server

On those sites you will find the NetRexx toolkit and the NetRexx Language Reference document, written by Mike

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.ibm.com/Technology/NetRexx/nrdown.htm
http://www2.hursley.ibm.com/netrexx/nrdown.htm

NetRexx Tutorial - Introduction to NetRexx

Cowlishaw.

The NetRexx documentation and software are distributed free of charge under the conditions of the IBM
Employee-Written Software program.

NetRexx is distributed in 2 formats:

e zip format for Windows/95, Windows/NT and OS/2;
e tar+compress format for UNIX platforms (like AlX, Solaris, HP/UX, IRIX, Linux, DecOSF, etc.)

» Installing NetRexx on your machine.

Prerequisites

In order to install and run NetRexx, you need to have already installed:

e the Java runtime and toolkit (from the 1.x Java development kit)
e atext editor

Installation

Installing NetRexx is an easy process. In a nutshell, you need to:

¢ download the code using your preferred WEB browser

e unpack the distribution

e install the some files from the distribution inside the Java bin and lib subdirectories.
e change the CLASSPATH environment variable

¢ check theinstallation

You should consult the URL

http://ww?2. hursley.ibmconf netrexx/doc-nrinst.htm

for more information about the installation. In Appendix | you'll find some examples of installation.

» Additional sources of documentation

You can find additional informations at the URLs:

http://ww2. hursley.ibmcomnetrexx/nrlinks. htm

For a collection of applets and classes written in NetRexx look at:

http://wwv. nultitask. com au/ netrexx/fac/

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www2.hursley.ibm.com/netrexx/doc-nrinst.htm
http://www2.hursley.ibm.com/netrexx/nrlinks.htm
http://www.multitask.com.au/netrexx/fac/

NetRexx Tutorial - Introduction to NetRexx

The NetRexx Mailing list archives are at:

http://ncc. hursley.ibm conl maj ordono/ | BM NETREXX/ ar chi ves/

The IBM redbook devoted to NetRexx can be found at:

http://ww. redbooks. i bm com S&G42216/2216ht . ht m

The IBM reference is SG24-2216-0.

» A Small Journey Around NetRexx

In this section | present a series of small programs, with which we will increase functionality and complexity. With
these examples, | want to give you the 'feel' of NetRexx. Of course, if you are an experienced REXX programmer,
you can quickly skip this section and go to the next chapter.

@ The "Hello, world!" Program.

Here is an example of your first NetRexx program, which you can call 'hello.nrx’.

e T N I T I T N EE—. +
| -- Qur first NetRexx Program | 01
02
| say '"Hello World!" | 03
exit O
04
e I T T .. +
hel | 0. nrx

NI =k Download the source for the hello.nrx example

The third line contains a print statement to your terminal. Note that you DO NOT need to put a semi-colon (';') at
the end of aline. You need one only if you want to put two or more statements on the same line, like it would be
for:

say 'Hello World!"; exit O
In the fourth line, the exit statement is not mandatory; this means you can even avoid writing it. But it is indeed

good practice always to exit from a program with the exit instruction. Even better, exit also with areturn code, as
in exit o.

To run your program you now need to type:
java COM i bm netrexx. process. Net RexxC hel | o

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://ncc.hursley.ibm.com/majordomo/IBM-NETREXX/archives/
http://www.redbooks.ibm.com/SG242216/2216ht.htm
http://www.netrexx.org/examples/hello.nrx

NetRexx Tutorial - Introduction to NetRexx

If the compilation was successful, you can now run the program typing:

java hello

Adding some variables

Suppose that you now want to add some variables in your program. An example:

o e mmmm e e e mm e e e e e e e e m e mm— =
-- another very sinple NetRexx program
02
mont h_nanme = ' Decenber’ -- string
no_of days = 31 - - numnber
say 'The nmonth of' nonth_name 'has' no_of days 'days.'
exit O
06
o s o e o et o o o o o o o o e e e o e o o e e e e e e e e e e e e e e e e e oo oo +
simpl el. nrx

[EEtelle#2m Download the source for the simplet.nrx example

As you see, the variable assignment operation is a very easy one, in NetRexx. You just need to type:
vari abl e = value

You do NOT need to declare the variable before the assignment. The only important thing to remember is that ALL
variables are treated as strings, so the value you want to associate with them MUST go between single quotes (').
You might ask yourself: "Also numbers are treated as strings?". And, yes, also numbers are strings, so it is little
wonder that the following example lines are perfectly equivalent:

days = 31

days = days + 1
days = ' 31

days = days + '1'

Of course, as you have seen, you can avoid the (') marks when you deal with numeric quantities.

Asking Questions and Displaying the Result

If you want to make your first program a little more complex, the usual way is to ask a question. Here is the final

result:

| -- sinmple2.nrx | 01
| -- ask a question and display the answer | 02

|03

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple1.nrx

NetRexx Tutorial - Introduction to NetRexx

say 'How many days are in Decenber?

answ = ask

| say 'Your answer is' answ .' | 06

exit O
07
+

simpl e2. nrx
Resolrceons: Download the source for the simple2.nrx example

The instruction that tells NetRexx to get the input from the keyboard and put it into the variable named 'answ' is:

answ = ask

2 Adding Choices

Well, as it is the program is not really useful: you can answer anything, even a string of characters, and the
program blindly accepts the answer. To make the code alittle more 'intelligent' we try to distinguish between a

good and a bad answer. Here is how: The code:

-- sinple3.nrx
-- ask a question and check the answer

03
say 'How many days are in Decenber?

answ = ask

05
if answ = 31
06
then say 'Correct Answer.' | 07
el se say 'Wong Answer.' | 08
exit O
09
o +

simpl e3. nrx

2
1NNl Download the source for the simple3.nrx example

9 Guessing the correct answer

Now we want our program to ask another question, in a case where the first has been answered correctly. We
allow the user to make mistakes with the second question. The program will continue until a correct answer is

given (or the user gets fed-up and hits CNTRL-C!).

I T e e T N .. +

| /* sinple3.nrx | O

| * ask a question and check the answer [
*/

03

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple2.nrx
http://www.netrexx.org/examples/simple3.nrx

NetRexx Tutorial - Introduction to NetRexx

correct _answ = 31 | 04
| oop forever
06 say 'How many days are in Decenber?
answ = ask
07
if answ = correct_answ | 08
t hen
09
do
10
say 'Correct.'
11
| eave
12
end
13
el se say 'Wong Answer. Try again.' | 14
end
15
exit O
16
i +
simpl e4. nrx
Il Te#5 Download the source for the simple4.nrx example

@ More than one correct answer

Suppose we now ask a question for which there is more than one correct answer. We need to get the answer from
the user, and test it against a series of good answers. It can be done with this program:

o +
/* sinple5. nrx | 01
* verify answer froma |ist | 02
*
/
03
good_answ = ' APRIL JUNE SEPTEMBER NOVEMBER | 04
| oop forever
05
06 say 'Tell me a nmonth with 30 days.'
answ = ask -- get the input
07
08 parse answ answ . -- only the 1st word
answ = answ. upper () -- uppercase it | 09
i f good_answ. wordpos(answ) = 0 | 10
t hen
11
do
12
say 'You said ""answ". It is wong.' | 13
say 'Try again.'
14
end
15
el se
16
do
17
say 'Correct.'
18
| eave
19
end
20
end
21

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple4.nrx

NetRexx Tutorial - Introduction to NetRexx

exit O
22

si mpl e5. nrx

[eEtelMd#24m Download the source for the simples.nrx example

There are several new things introduced. Let us look at them: line 4: Here we enter a loop from which we will
never exit, (loop forever). This might seem dangerous, but is not. The instruction leave in line 19 gives us an
escape path: the only way to exit the loop is to enter a good answer. lines 7,8,9: The instructions are meant to
"grab the answer, get only the first world, and uppercase it". This will make life much easier later.

In fact, what parse answ answ . does is:

user types answ val ue
January JANUARY

I don't know I

February FEBRUARY

pl ease, stop it! PLEASE,

NOTE: The lines

answ = ask -- get the input
parse answ answ . -- only the 1st word
answ = answ. upper () -- uppercase it

can be written as:
parse ask.upper() answ .
which is the NetRexx equivalent for the Classical REXX:
parse upper pull anws .
line 10: The instruction good_answ.wordpos(answ) is the key to the program's functioning. It says: Look in the list

good_answ and try to find answ. If you find it, tell me its position. Otherwise, tell me 0. Thus, if the answer is
wrong, we get 0, and we continue to loop. An alternative way to perform this task as follows:

o o o o o o o o o e e e o e ==
/* sinple6.nrx
* verify answer froma list
*
/
03
good =0
good[0] = 4
good[1] = "APRIL' | 06
good[2] = ' JUNE | 07
good[3] = ' SEPTEMBER | 08
good[4] = ' NOVEMBER | 09
| oop forever
say 'Tell me a nmonth with 30 days.'

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple5.nrx

NetRexx Tutorial - Introduction to NetRexx

11
12 answ = ask -- get the input
13 parse answ answ . -- only the 1st word
answ = answ. upper () -- uppercase it | 14
found = 0
15
loop i = 1 to good][0]
16
if good[i] <> answ then iterate | 17
found =1
18
| eave
19
end
20
if found = 0O
21
t hen
22
do
23
say 'You said ""answ ". It is wong.' | 24
say 'Try again.'
25
end
26
el se
27
do
28
say 'Correct.
29
| eave
30
end
31
end
32
exit O
33
o m m e m oo +
si mpl e6. nrx

NI 5% Download the source for the simple6.nrx exampl

In line 04 we initialise an ARRAY to a default value. The initialization practice is not needed, in a program so short
as simple6.nrx; but it is a must in more complicated programs. This line tells NetRexx: "initialise any good[] array
variable to 0."

Classical REXX users will remember the "standard" initialization of a STEM variable:
good. =0
In lines 05-09, we define the values of good[] array. An ARRAY variable is an array of values, and usually (even if it

is not mandatory) the o element (good[0]) contains the information "how many elements are there in this array?".
Since there are four elements, good[o0] is equal to 4. Here is another example of ARRAY:

vari abl e val ue

line[O 3

linell Test line no 1
linel2 Anot her one
linel3 third line

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple6.nrx

NetRexx Tutorial - Introduction to NetRexx

If we then want to see if an answer is correct, we need to set a flag (found) to FALSE (0) and 'scan' the array until
we find the right answer, when we set the flag to TRUE, and exit from the loop (line 14). Then, depending on the
value of the flag, we display the appropriate answer as in the previous example. You may have noticed from the
length of the two examples that as a rule of thumb it is easier to have data structures in the form of strings thanin
the form of STEMS N at least when you have very simple entities such as those used in these examples.

24 More than one list

Suppose you want a program that shows the number of days in a particular month. Since we are lazy, we will not
write the full month name, the three first letters are enough. In this case we need two lists: one containing the
month names (month_list), and another containing, IN THE SAME ORDER, the number of days of the given month

(days_list).
T N NN N NN . +
[* sinple7.nrx | 01
* use two lists
02
*/
03
0ZDnth_Iist = '"JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Ogays_list = 31 28 31 30 31 30 31 31 30 31 30 31
good = 0
06
| oop while good = 0
07
say 'Tell me a nmonth (JAN, FEB, etc.)'
parse ask.upper() answ . | 09
if nonth_list.wordpos(answ) <> 0 | 10
then good =1
11
el se say 'Wong, Try again.' | 12
end
13
days = days_list.word(nmonth_list.wordpos(answ)) | 14
say 'Month "'answ " has' days 'days.' | 15
exit O
16
o m o e o ee e me oo +

simpl e7.nrx

[Nl A2k Download the source for the simplez.nrx example

Dealing with files (1)

In the previous example, the two variable month_list and days_list are long strings. In real life this kind of
information is stored in files containing the data used by the program. A file example can be the following:

* This file contains the month list, with the nunber
* of days correspondi ng
*

January 31
February 28
Mar ch 31

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/simple7.nrx

NetRexx Tutorial - Introduction to NetRexx

April 30
May 31
June 30
July 31

August 31
Sept enber 30
Cct ober 31
Novenber 30
Decenber 31

mont h. | i st

To make the example a little more interesting, we have added comment lines (all lines starting with an asterisk
("*")) and blank lines. The following program reads the file month.list and counts the number of months, printing
the total number of months and days in a year.

o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
-- monthfile.nrx
-- test file I/0O
02
03
infid = xfile('"nonth.list") | 04
05
rc = infid.read() | 06
if rc <> 0 then
07
do
08
say 'Error reading' infid.name'."’ | 09
exit 1
10
end
11
12
total =10
13
monthl ="'
14
loop i = 1to infid.lines | 15
parse infid.line[i] nmonth days . | 16
17 if month ='' then iterate
if nonth.left(1) = "'*" then iterate | 18
mont hl = nonthl nonth | 19
total = total +days
end
21
22
say 'There are' nonthl.words() 'nonths.' | 23
zay "For a total of' total 'days.'
exit O
25
o m o e o ee e me oo +
mont hfil e. nrx

ResoUrces Download the source for the monthfile.nrx example

In line '06' we issue a read over the file. All the lines are moved into the STEM list and are ready to process. See
below for more information about this instruction. Note line '07': if something is not right ('such as the file being
non-existent) we exit with an error message. It is always a GOOD IDEA to check return codes from operations that
might otherwise disturb the correct functioning of the program. The skipping of the comment and blank lines is

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/monthfile.nrx

NetRexx Tutorial - Introduction to NetRexx

done in lines '17' and '18'. NOTE: The reading of the file was performed using some instructions:

infid = xfile("nmonth.list') -- define the file
rc = infid.read() -- issue the read

those instructions are not part of the native NetRexx, but they are part of an extension package of this book. This
extension package is called xfile and it should be installed in order to correctly run the example shown above. In a
nutshell, you need to:

o grab xfile.nrx from the NetRexx Tutorial WWW site;
e compileit;

Look at the "Tools" section for more information about this subject. A tool is also available to compile all the
"library" files in an easy way (look for xbuild).

s "Real" Example no. 1

I don't know about you, but for me this story of months is becoming a bit tedious. | suggest trying a REAL
program, which you might even want to write down (or copy from the repository) and use.

@ Write a tailored finger command.

The standard finger UNIX command is a good and simple example of a socket client-server application: a client
application finger running on your local machine goes to query a server (which runs a fingerd daemon) who
answers giving a list of the logged on people on the server machine itself.

We will write a simple finger client and will format the fingerd's output in a more compact form.

@ Finger output format

The output of the fingerd daemon is in the following format:

Here | just used the standard UNIX finger command, as it is available on any UNIX machine.

Note also that I just showed only few lines. Some systems might have hundreds of lines.

What we want is a more compact output format, which just shows the number of sessions each user has active,

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

NetRexx Tutorial - Introduction to NetRexx

and a flag that shows if the inactivity time of a terminal session is less than an hour.

Also, we want to write a program that runs not only on UNIX, but also on WNT, W95, MAC (and | could continue)

in a word, on any machine where NetRexx runs.

2 The full 'xfinger' code.

In the first lines we need some initialisation, like the program version, the author, and some constants, like the

port for the finger daemon, and a Carriage Return - Line Feed sequence of character
simple fingerd protocol.

s, which are required by the

/*/xfinger

VERS| ON = 'v1r 000
AUTHOR = 'P. A Marchesi ni, ETHZ
DEFAULT PORT =int 79;

CRLF = "\ xOD\ xOA'

We now get the system we want to talk with. If the user doesn't give one, or he types -h or --help we give some

help.

o m m m e +
parse arg system | 09
|fdsysten1: "-h'" | system="'--help' | system=""' then “%%

o]
parse source . . nynang'.' | 12
say nyname 'version' VERSION '(c)' AUTHOR] | 13
say 'Purpose : sanple inmplenentation of a finger client.' |ﬁf5
say
say 'java xfinger SYSTEM | 16
say 17
exit 1, 18
end 19
o m m e m oo +

Now comes the "real" fun. We define a socket port (25) and we define it on the fingerd PORT (27). Since we need
to transfer data over the link, we have to define an INPUT (28) and OUTPUT (29) communication.

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

o m m e m oo +
-- issue the client socket command |%%
out =0 23
i =0 24
s = Socket null; 25
do 26

s = Socket (system DEFAULT_PORT); | 27
sin = Dat al nput St rean{(s. getlnputStream)); 28
sout = PrintStream(s.getQutputStream()); 29
line = String 30
line =crlf -- retrieve all entries 31
sout.println(line) -- wite nBeg 32
| oop forever 33
I ne = sin.readLine(); 34
if (line = null) then do 35

| eave 36

end 37

NetRexx Tutorial - Introduction to NetRexx

i =j+1) 38
out[j] = line 39
end) 40
catch el=l OException 41
_say "ERROR ' el'.' 42
finally 43
o 44
if (s \=null) then s.close() 45
catch e2=l OException 46
say 'ERROR ' e2'.' 47
end 48
end 49
out[0] =j 50
U +

Now comes a very important point:
If what you are looking for is just an equivalent of the UNIX(tm) finger command, then you're already done.

All you would need at this stage is to output the array out[] and, voila', you'd have your nice, working, finger client
which runs on all the platforms we saw above, without recompiling!

But we want even more, so let's build a better output, as we discussed.

o +
-- order the output, now g%
sessions = 0 54
active ="' 55
users ="' 56
loop i = 2 to out[O0] . -- skip the first line 57

parse out[i] userid . 35 quiet 40 . 58

If quiet ="' then 59

do 60

active[userid] = "'*' | 61

end | 62

i f users.wordpos(userid) = 0 then | 63

do 64

users = users userid 65

end 66

sessions[userid] = sessions[userid] + 1 | 67

end | 68
e +

We define a list of users (initialised to the empty string (56)). We also assume that a user is inactive, and we
initialize the active array to the inactive status (54). The first line is not interesting, so we loop over the lines
starting from the second till the last one (57). We PARSE the line, getting the remote userid, and (after 35
characters) the activity flag (58).

If the flag is empty, than the user is active, so we set the active array to active ("*") for him (59-62). If it's the first
time we encounter this user, we add him to the user list (63-66).

Finally, we increment the session counter for him (67).

We've now all the information we need. Let's print it on the screen.

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

NetRexx Tutorial - Introduction to NetRexx

oline ="'
72
list = users
73
Loop while list <> "'
parse list user |ist
76
item = user'('sessions[user]','active[user]')' | 77
oline = oIine|Liten1Ieft 14) 78
if oline.length() > 80 then 79
0
80 i
say oline
81 Y
oline ="'
82
end
83
end
84
if oline <>"'' then say oline
85
86
exit O
87
N T N I N N T I TN +

xfinger.nrx

m Download the source for the xfinger.nrx example

We get the user list(73). We loop over it, analysing user by user (74-75). We generate an output line, and showing
it on the screen when it's longer than 80 characters (77-84).

And finally that's a full output of the command we just created.

(NOTE: so few active people since it was taken at 2:00 AM 8-))

» Real example no. 2

We now write a simple Infix to Polish notation converter, with the purpose of writing a program capable to
understand expression of the kind:

1 + 54 + abs(7-6*2)

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/examples/xfinger.nrx

NetRexx Tutorial - Introduction to NetRexx

and write, hopefully, the correct result.

A complete discussion of the problem can be found in KRUSE, 1987, p. 455.

*** This section is:

*** and will be available in next rel eases

@ Translation from INFIX form to POLISH form.

o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
-- method...... . translate
-- purpose.....: convert an infix tokenized string to a Polish
- - Not at i on
72
73
met hod transl ate(i ntk=Rexx) public static | 74
75
-- initialization | 76
77
valid_tokens = '+ - * [/ abs' | 78
29 stk ="' -- enpty stack (work)
pol ="' -- output stack
80
81
loop until intk ="'
82
parse intk t intk
83
sel ect
84
when t = "'(' then
85
do
86
stk =t stk -- push()
87
end
88
when t = ')"' then
89
do
90
parse stk t stk
91
loop while t <> " ('
92 p (
ol = pol t -- out put
93 p p p
parse stk t stk -- pop()
94
end
95
end
96
when valid_tokens.wordpos(t) <> 0 then | 97
do

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

NetRexx Tutorial - Introduction to NetRexx

98
| oop forever
99
if stk ='"'" then |eave
00
tkl = stk.word(1) | 01
if tkl ="'(" then |eave
02
if priority(tkl) < priority(t) then |eave | 03
if priority(tkl) = priority(t) & priority(t) =6 | 04
then | eave
05
parse stk x stk
06
pol = pol x
07
end
08
stk =t stk
09
end
10
ot herw se
11
do
12
pol = pol t
13
end
14
end
15
end
16
loop while stk <> "'
17
parse stk x stk
18
ol = pol x
19 p p
end
20
pol = pol.space() | 21
return po
22
23
o m o e e o e +
xstring. nrx(Method: transl ate)
Resolrcea Download the complete source for the xstring.nrx library

@ Evaluation of Postfix expressions.

This is the evaluation part.

*** This section is:

*** and will be available in next releases

o mm m e +

| -- nmethod......: eval r pn | 36
| -- purpose.....: eval uates an RPN expression | 37

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Introduction to NetRexx

38

40

42
43
44

46
47
48
49
50

52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

met hod eval rpn(i nt k=Rexx, preci si on=Rexx) public static

-- initialization

if precision =
then precision = 9

numeric digits precision
stk ="' -- stack

loop while intk <>
parse intk tk intk
sel ect

when 'abs'.wordpos(tk) <> 0 then
do

parse stk pl stk
sel ect
when tk = "abs' then r = pl.abs()
ot herwi se NOP
end
stk = r stk
end

when "+ * - /' . wordpos(tk) <> 0 then
do

parse stk p2 pl stk

sel ect
when tk = '+ then r = pl + p2
when tk = '-'" then r = pl - p2
when tk = '*" then r = pl * p2

when tk = '/' then r = pl / p2
ot herwi se NOP
end
stk = r stk
end
ot her wi se
do
stk = tk stk
end
end

end

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

| 39

| 41

| 45

| 51

| 60

NetRexx Tutorial - Introduction to NetRexx

| 78

+

| 77
| stk = stk.space()
return stk
|79
|80
o o o o e e o o e e e e o e m = =
xstring. nrx(Met hod: eval rpn)

Download the complete source for the xstring.nrx library
% Summary
Here is a resume' of what we have covered in this chapter:

Conpiling and running a program (on any platform

Jjava COM. ibm.netrexx.process.NetRexxC PROG
Java PROG .
- ex.: java COMibm netrexx. process. Net RexxC hel |l o

java hello

*** This section is:

*** and will be available in next rel eases

File: nr_5.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:35(GMT +2).

http://www.netrexx.org/Tutorial/nr_s.html[11/4/2010 2:27:36 PM]

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Language Basics

The NetRexx Tutorial
@ - Language Basics

Language Basics

2 Introduction

In this chapter we overview some of the NetRexx basics for syntax and structure. To avoid making it too boring, | have
tried to make it as short as possible.

2 Comments

Any sequence of characters delimited by a'/*' and a '*/' is considered by NetRexx as a comment and will NOT be
executed. Also, any sequence of characters following a double - character will be considered as comments (up to
the end of line).

Comments can be nested.

/* This is a valid coment */

-- Anot her comment

You are totally free to write the comments as you prefer, but here are some examples:

N /***/ |0+1
/* */ 02
[* This is one type of coment */ 03
/* */ 04
/***********~k***/ |05

06
/* 07
* This is another type of conment | 08
*/ 09

10
-- Yet another set of coment |11
-- lines 12
-- 13

g +

As a matter of taste | prefer the second style; it also requires less typing effort to add a new line.

e Starting a program with a comment is indeed good programming practice and you should say what the
program does and the like. The following is an example of this. It is a bit lengthy, but all this can be built
automatically with a program skeleton builder (see rxtls in later chapters).

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics

o st o e o et o e o o e e o e e e o e e o e e o e o e e e e e e e e e e e e oooo- - +
/* Program . rxtlss 01
* Subsystem : rxt 02
* Aut hor . P.A Marchesini (marchesi @hi ft3.cern.ch). | 03
* Created : 4 Dec 1994 on narchesi @hi ft3.cern.ch | 04
* Info : 05
* Copyright : none. 06
* 07
* Id Info 08
M e e 09
* v1r000 First rel ease. | 10
: v1lr010 Latest release (see rxtlss. H STORY file for details) |1112
*/ 13
ot o e o ot o o ot e o e o e o e o e o e e e o e e e e e e e e e e e e oo oo +
prog2

» Blank Lines

Blank lines are ignored. Enough said.

2 Assignments

We define as assighment the operation to store (assign) a value into a variable. The assignment operation is done
with the = (equal) sign, as you can see from the following syntax diagram:

vari abl e = expression

Naturally, what NetRexx does is the following: the expression is evaluated, and the result is assigned to the
variable. Some examples:

o st o e o et o e o o e e o e e e o e e o e e o e o e e e e e e e e e e e e oooo- - +
est = 01
line = "This is |ine' 02
03
sum=a + b + c 04
line = 'The sumis:' sum 05

ot o e o et o o o e o m o e o e o e o o e o e o e e e e e e e e e e oo oo oo +

ch0001. nrx

INEll¥el2hn Download the source for the ch00oL.nrx example

There are also other types of assighments, using the parse instruction, as we will see in later chapters.

o Literal Strings

Aliteral string is a sequence of any characters delimited by a single quote character ' or by a double quote ". A
NULL string is a string with no (zero) characters in it. Here are some examples:

o m m m ea o a +
| string = "This is a test’ | 01

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

http://www.netrexx.org/examples/ch0001.nrx

NetRexx Tutorial - Language Basics

string = "I'm happy to use quotes" | 02
string = '1"m even nore happy now | 03
string = 'Enough of the "" quotes' | 04
string ="' /* a NULL string */ | 05
o mmm e—a - +

quot eexanpl e. nrx

el e 425 Download the source for the quoteexample.nrx example

NOTE:

e You are free to use single (') or double (") inverted commas. The only recommendation I would like to give
is: Be consistent. Once you have adopted one or the other form, always use the same form N at least on the
same program N as this is more agreeable for those reading it.

e Asyou have probably noticed, a double "" or " allows you to put a SINGLE " or ' in a string delimited by the
given quote character.

» Hexadecimal Strings

A hexadecimal string is a sequence of valid HEX characters (0-9, a-f, A-F), with a '\x' (or '\X' if you prefer).

T T e e N N T .. +
nunl = '\ x00\x01' | 01
crlf = "\xOD\xOA" -- Carriage Return & Line Feed | 02

T +

pr og6

» Special Characters

There are few of them in NetRexx, and certain of them have a special meaning when outside a literal string. These
are:

the delimter

the continuation character
the | abel identifier

the start expression

the end expression.

array elenent (start).
array element (end).

———— o~ - -

2 Delimiter Character

NetRexx does not need to be told that a statement is ended, as the End-of-Line character automatically implies
this, and there is no need to type a";" at the end of a line. But if you need to put more than one clause on a line,
then you MUST use the ";" sign.

statenment _1 ; statenent_2 ; statenment_3

In the following example, note that the three loop loops are equivalent:

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

http://www.netrexx.org/examples/quoteexample.nrx

NetRexx Tutorial - Language Basics

/* delimexa.nrx | 01
*/

02

loopi =1 to 10 -- no delimter

say i -
04
end - -
05

06
%oop i =1 to 10; -- delimter

say i; -

end; .-
09

10
Eoop i =1to 10; say i; end; -- on only one line

exit O

del i m exa. nrx

Download the source for the delim exa.nrx example
@ Continuation Character

If your NetRexx statement is too long for one line, use the - character to signal to the interpreter that you wish to
continue with the next line.

statement -

conti nuati on_of _statenent -
agai n_conti nuation_of _statenment -
term nati on_of _stat enent

Here is the usual example:

dm e mm e e e e e e e e e e m e mmm o mm e mm—m = - - =
/* cont_exa. nrx
*/
02
gay "Very long |ine'
say 'Very' -
04
"long’ -
05
"line.’
06
exit O
07
S +

cont _exa. nrx

DwnI the source for the cont exa.nrx exampl

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

http://www.netrexx.org/examples/delim_exa.nrx
http://www.netrexx.org/examples/cont_exa.nrx

NetRexx Tutorial - Language Basics

2 Variables and Constants

Avariable is an object whose value may be changed during the execution of a NetRexx program. The value of a
variable is a single character string that can contain any character. There are four groups of symbols:

e constant
e simple
e arrays

Constant symbols.

The symbol starts with a digit (0...9) or a period (.). Here are some valid constant symbols:

82
. 92815
3. 1415

Simple symbols.

The simple symbol does NOT start with a digit (0...9) or a period (.), and does NOT contain a period (.). Here are
some valid simple symbols:

test
pi _G&
s

_Greek
Is_it_ok?

e NOTE1: NetRexx is case insensitive: i.e. the symbols, such as TEST, test, and Test (I could go on, but I'm sure
you understood what | mean), all refer to the SAME variable.
e NOTE2: An uninitialised variable is automatically trapped by NetRexx at compilation time.

Arrays.

The array is a simple symbol whose last character is a [. Here are some valid arrays:

t[]

lis
?H o_test[]

As a convention, if indexed by a number the stem contains the same number of items as in its stem.o value. This is
NOT done by the language itself, but as you will later see, it is useful to use this convention for arrays indexed by
integers.

vari abl e val ue

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics

list[O N ---+
list[1l line 1 of list

I(lst 2 second line of |ist |
list N last line of stemlist. <-+
@ Resume'.

This table is a resume' of what we've seen so far concerning constants and variables. In the first column we see
the definition, and in the others what it does and does not have.

DCES DOES NOT EXAMPLE

const ant start with '.'" , 0-9 - 2, 3.9
sinmpl e -) start with '." , 0-9 Ioippo
array contain [] - |st‘4]

list[1,j]

Operations on Arrays.

As we have seen, arrays are a special category of variables. Consider the following small program:

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- arrayexa.nrx
02
new i st = int[100]
newist[1l] =1
04
Ogay new i st[1] -- will print 1
say newist[2] -- will print O
06
07
list = " NuLL'
08
list[2] = "test’ | 09
1(s)aylist[l] -- will print EMPTY
say list[2] -- will print test
11
12
exit O
13
o +
array_exa. nrx
[Nl 00 Download the source for the array_exa.nrx example
NOTEs:
e line 2:

*** This section is:

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

http://www.netrexx.org/examples/array_exa.nrx

NetRexx Tutorial - Language Basics

*** and will be available in next rel eases

» Special Variables

*** This section is:

*** and will be available in next rel eases

» Outputting something with say

Use the instruction say to output something on your default output character stream (i.e. your screen). The
format of the instruction is:

say expression

Unlike Clanguage, in REXX you do NOT need the newline character ('\n') at the end of your expression; NetRexx
automatically does it for you. Examples:

list = 'you and ne'

total = 200

say 'The list is" list'." -> The list is you and ne.
say 'Total is:' total/2 -> Total is: 100

» Exiting a program.

Use the instruction exit to unconditionally leave a program, and (optionally) return a character string to the caller.
The format is:

exit expression
Example(s):

exit 34

if rc <> 0 then
do
say 'Unrecoverable error.
exit 23
end

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics
As a convention, a program that ends correctly (i.e. with no error) should exit with 0; a non-zero exit code means

there has been a problem.

exit O -> program ended K
exit <> 0 -> problens

different error codes (or messages) might be helpful in understanding what has happened and why the program
did not complete correctly.

2 Warning about Exit Status of UNIX Processes.

The Bourne shell puts the exit status of the previous command in the question mark (?) variable (the C shell uses
the status variable instead). There is indeed a warning: this variable (status or ?) is a 255 bit (1 byte) value. So if
your NetRexx program exits with (for example)

exit 300
or:
exi t (300)

you will get:
echo $? -> 44 éB(JJRNE shel I')
echo $status -> 44 C shel |)

This 'feature' should not be underestimated. A user once contacted me to say that his program was aborting in an
'undocumented way', as the $status code he was getting was not in the man page for the program. It took me
some time to realize that the return code he was getting (253) was coming from an 'exit -3' instruction.

» Getting the arguments from the shell (or input line).

Another important thing you will want to do is to get the arguments from the shell whenever your program is
called. In fact, what you will need to dois call a program with 'something' entered on the same line on which you
typed the command, and to use this 'something' inside the program. There are several ways with NetRexx to get
the arguments used to call that particular program. The simplest is to use a parse arg instruction, as in:

parse arg vari abl e_nane

What parse arg variable_name tells NetRexx is the following: "get the parameters the program was called with,
and put them in the variable (a string) called variable_name". Consider this simple example:

[* parrot.nrx
1

| * echoes back what you type on command |ine

[~/

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics

| 03
parse arg si
04

| say 'you said "'sl1l'".'
05

exit O

06

parrot.nrx

m Download the source for the parrot.nrx example

This program was called parrot for the very simple reason that it 'parrots' back to you whatever you type in in the
command line.

Note that what follows the parse arg, is not necessarily a variable name: it can be any parsing template, as we will
see in the chapter concerning string handling. This allows a great flexibility in parameter entering, such as in the
following example:

T I NN NN I NN +
/* parsearg.nrx | 01
*/parses command line input with ONLY 2 fields | 02
*

03
parse arg infile outfile . | 04
say 'infile =""infile "."' | 05
say 'outfile = ""outfile ".' | 06
exit O

07

O T NI +

par searg. nrx

m Download the source for the parsearg.nrx example

What we have told NetRexx is the following: get the input argument arg; put the first word in the variable 'infile'
infile; put the second word in the variable 'outfile' outfile; forget about all the rest ".". To give you the feel of it,

we try it out here:

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

http://www.netrexx.org/examples/parrot.nrx
http://www.netrexx.org/examples/parsearg.nrx

NetRexx Tutorial - Language Basics

We will get back to parsing in a later chapter (when we'll deal with string operations).
» Real Examples

@ Adding an item to an array (updating array[o0])

If you use the convention of having stem[0] as the item count for your stem, you need to have a pointer that
contains the number of items you have. Suppose that your array is called list[]. To save the various items in such
an array, you will have to build a construct as in the following example:

i =0
do | oo

i =1+l

list[i] = whatever_you_want
end
list[0] =i

Here is a better way of doing the same thing:

list = xarray()
do | oo

(...
list.ad_|ist whatever_you_want
end

We eliminate the need for the index variable i, which makes the program: a) easier to read, and b) less error prone
since we 'might' for some reason overwrite the pointer variable. This approach is particularly useful for an output
file: you build the various lines out output, and then, when you've finished the processing, you can write all the
output (contained in the array list[]) in one go. The following program illustrates this approach. To repeat: in
these examples are some new concepts you will find explained later on. You should not spend too much time right
now on their details. What | want is to give you are real 'program-atoms' that you can put in your programs even
when you have completely mastered the language. NOTEs:

line 1: we define an object of the class xarray;
line 2: we add an item;

line 3: we add another one;

line 7: we display the items we collected;

And this is what you will get running the above program:

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics

» This chapter's tricks.

@ Avoid the NEWLINE character.

At this point you might ask yourself: "But what if | do not want to have a NEWLINE?" In that case you cannot use
say, but rather a small workaround. This is how to do it:

str ='M test’
Systemout.print(str'\x0D)

s Chapter FAQ

QUESTION: Can comments be nested? Yes, comments can be nested, so you can happily write something like

/*

cal)
5* step 1.00
:/start procedure

-- coment

*

This feature is useful if you want to comment out a whole piece of code (comments included) to easy you
compilation tests.

NOTE: In JAVA comments can NOT be nested.
QUESTION: How do I do Charin/Charout screen I/O?

You use the "\-" at the end of string, like in this code atom:

say 'This will| appear \-'
say 'as one line.'

which will print:
This will appear as one line.

on your terminal.

@ Summary

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Language Basics

Here is a resume' of what we have seen in this chapter.

_ comments /* */

- ex.: /* this is a conmment */
-- and this another one

_delimter character
- ex.: say 'l ; say '2

_ continuation character | -

- ex.: say 'this is a' -
"long line'
_arrays variabl e[]
- ex.: list[]

- ex.: out[]

_ reserved variabl e nanes |

*** This section is:

*** and will be available in next rel eases

File: nr_6.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:37(GMT +2).

http://www.netrexx.org/Tutorial/nr_6.html[11/4/2010 2:27:38 PM]

NetRexx Tutorial - Operations on Numbers

The NetRexx Tutorial
@ - Operations on Numbers

Operations on Numbers

2 Introduction

In this chapter we will analyse the basic arithmetic operations that you can perform on numbers. In NetRexx numbers
are usually treated as strings of characters (containing digits and, eventually, a." sign and/or a '-' sign). This explains
the possibility of having arbitrary precision arithmetic, independent of the H/W precision of your machine.

» Arithmetic Operations

NetRexx handles the four basic arithmetic operations: Addition, Subtraction, Multiplication and Division. You have
also other three special operators to perform Power Operation, Integer Division, and Remainder Division. To
perform an arithmetic operation, you simply need to place the appropriate operator between the two terms, and
assign what will be the result to a variable. Here is an example of this operation:

When the Interpreter encounters such an expression, the terms on the right side are evaluated, and the variable
(here 'a") will get the final result (which is, as you might suspect, '9'). The following table shows the operations
that you can perform on numbers:

+ Add.
- %Ibt _ra;:t.
ti .
/ Di vi dg. Y
% I nt eger divide.
(i.e. divide and return the integer part)
/1 Remai nder .

(i.e. divide and return the rem nder;
this is NOT nodul o, as the result may
be negative)

*x Power .
- nunber as prefix) same as 0-number.
+nunber as prefix) same as O+nunber.

Some additional examples:
a = 23 /* Assignment */

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

b =1 /* Assignnment */
c=a+b [* Expression */
d=a?** c + 89 /* Expression */

Although | believe you may be able to imagine the result of 1+1, | would like to present some small examples of
arithmetic operations. The result is shown in the right column.

1+1 -> 2

1+9 -> 10

4*7 -> 28

2**4 -> 16

(1+2)/3 -> 1

1/3 -> 0.333333333
4/ 3 -> 1.33333333
5/ 3 -> 1.66666667
1//3 -> 1

4/ /3 -> 1

5//3 -> 2

198 -> 0

498 -> 1

598 -> 1

» The three ways to divide.

A special mention should be devoted to the 'three' divide operators that are used in NetRexx. The [operator
performs the regular division. This produces the same result as you would get using the division key on your
pocket calculator. If the result is not an integer number, you will get the integer part, a dot and as many digits as
the precision is set to (see later in this chapter for considerations about precision). The % operator performs a
division and returns ONLY the integer part of the result. Note that the result in NOT rounded (contrary to what |
believed at the beginning of my REXX programming). It is simply truncated. The // operator again performs a
division, but it returns the remainder. As you have seenin the table, this is NOT a MODULO operation, since the
result might be negative. (As you will remember from school, the MODULO is a positive integer). At the risk of
being pedantic, | propose a final four examples:

13/ 2
13 % 2
13 /1 2
-13 /1 2

Lo

o

oo

oo

» Operator Precedence

The operator precedence (or order of evaluation) controls the order in which operations are performed. NetRexx
arithmetic uses the same rules you learned in primary school. This table resumes the operator precedence:

Precedence G oup Operators

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

POVER .
MLTIPLY & DVIDE * , [, /] , %
Low ADD & SUBTRACT + -

As you can imagine, operators with highest precedence are evaluated first, down to the lowest ones.

If you are in doubt.

If you happen to be in doubt about operator precedence, (I sometimes am N especially when dealing with
different computer languages), you can use a simple trick: use parentheses. So do not be afraid to write:

value = 2 + (4 * 32)
instead of the more terse:
value = 2 + 4 * 32
Of course, you should not use a lot of redundant parentheses inside a loop that is iterated 100 000 times in your

program. The first expression in the above example is a little more CPU consuming, but in an average programiit is
perfectly all right, and saves time that could be lost with bugs.

» Other operations on Numbers.
There are many operations you can perform on numbers apart from the ones we have just seen. These operations
are performed by NetRexx built-in functions, i.e. functions that are provided by the language itself. You call on

those functions in the following way:

result = argunent. function()

as you can see from the example(s):

val ue = -9. abs()

say val ue -> 9
max = -9.max(7)

say max -> 7

This is a table of the NetRexx built-in functions that deal with numbers.

nunber . abs()
Returns the absol ute val ue of nunber;

nunber . d2c()
Converts the number from Decinmal to Character;

number . d2x()

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

Converts the nunmber from Deci mal to Hexadeci mal ;

nunber . f or mat ()
Performs a rounding and format over numnber;

nurber . max(nunber 1)
Returns the largest nunber froma given list;

nunber . m n(nunber 1)
Returns the snallest nunber froma given list;

nunber . si gn()
Returns the sign of a nunber;

nunber . trunc()
Returns the integer part of a nunber;

| again provide some examples: the right-hand column contains the results of the operations.

-2.abs() -> 2

2. abs() -> 2

12. m n(1) -> 1

12. min() -> 12

1. max(42) -> 42

12. max() -> 12
-17.sign() -> -1
17.sign() -> 1

n = 23.34

n.trunc(0) -> 23
n.trunc() -> 23
n.trunc(3) -> 23.340
n.trunc(8) -> 23.34000000
125. d2x() -> 7F
71.d2c() -> G

Some of these instructions require a bit of more attention, and we will look at them in the paragraphs that follow.

» The format() instruction.
Use the format instruction to round and format a number. The syntax of the instruction is:

out = format(nunber, before, after)

where before and after refers to characters before and after the decimal point.

nunber. f ormat (before , after)

INININNNNNN.- NNNNNNNNNNNNN

(deci mal point)

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

Suppose that the value of nis "-3.1415". This is what we get for the format() instruction:
PP g

n. format (4, 2) -> "o-3.14
n.format (7, 5) -> " - 3.14150"
n. format (2, 3) -> "-3. 142"

n. format () -> "-3.1415"

» The xmath.random() instruction

As you would expect, the xmath.random() function returns a random number. "How random" strongly depends
on the implementation of Java. In NetRexx you really get random values, while on VM/CMS you get 'pseudo-
random' values. This means that, in the first case, whenever you start a program you get different values; on the
contrary, in the second case, the values (although random) are always the same if you do not specify a different
seed. The syntax of the instruction is, as we saw:

nunber = xmat h. randon(max_val ue)

You luckily do not need to modulo the result if you need random values within a certain interval N the 'max_value'
parameter will do it for you. A classical application of the random number generator is when you need (for
example) to output a cookie message. If you have 150 cookie messages, you do not want to have random
numbers greater than 150. All you need to specify, in order to be sure that you do not get values greater than 150,
is:

ptr = xmat h. random(150)

Arandom(o) will be accepted, but will generate something that is not really random (the question left to you
being "why?"). This is how the xmath.random() function is implemented.

o mmm e +
-- nethod......: random 08
-- purpose.....: | 09

10
met hod randon{ max=Rexx) public static; | 11
max = max. abs()
12
n = Mat h.randon() * nax | 13
n = n.trunc()
14
return n
15
16
met hod randon() public static; | 17
n = randon{ 1000) | 18
return n
19
20
g +

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

| xmat h. nr x(Met hod: r andom) | “

[Nl ##hn Download the complete source for the xmath.nrx library

» Comparative operators.

Now that you know how to perform the basic operations on two numbers, you might also want to compare them
N i.e. to look at which is larger or smaller, or check if they're equal. More formally, the comparative operators are
used to compare two variables (or a variable and a constant) between them. The comparative operators return:

1 - if the result of the conparison is true

0 - otherw se

NetRexx has two sets of operators: the normal comparison and the strict comparison. The strict comparison is
just what its name suggests N two numbers must be strictly identical in order to pass the comparison.

NORVAL conparati ve operators:

True if terns are equal;

\=, 7= Not equal ;

> G eater than;

< Less than;

>< |, <> Greater than or |ess than
(same as NOT EQJAL?

>= | A<, \< Greater than or equal to,
not | ess than;

<=, A>, \> Less than or equal to,

not greater than;
STRI CT conparative operators:

== True if the terns are strictly equal
(identical)

==, A~== True if terns are strictly not
equal

>> strictly ?reater t han;

<< strictly [ess than

>>= | ~<< , \<< strictly greater than or equal to,
strictly not |ess than;

<<=, ~<< , \>> strictly less than or equal to,

strictly not greater than;

BOOLEAN oper at or s:
& AND;
[I nclusive OR
&& Excl usive OR;
AN LOG CAL NOT

We will see how to perform comparisons in the next chapter.

» Controlling the precision.
The precision is the number of significant digits used in floating point computations. Roughly speaking, it is the

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

number of digits you are expecting to have after a'.! sign in a floating point number. This table will (I hope) clarify
the idea:

val ue preci sion
1/3 . 333333333 9
1/3 . 333333333333333333 18
1/3 . 33333 5

The precision of your arithmetic computations is controlled in NetRexx by the instruction:

Nurmeric Digits [expression]

In NetRexx, the default value for precision is 9. In this small program we look how the instructions dealing with
precision work:

say 1/3 -- 0. 333333333

Nurmeric Digits 18 N 9 digits

say 1/3 -- 0. 333333333333333333
- 18 digits

You might now ask: "why not always run with high precision say, of 100 significant digits?" The answer is simple: the
higher the precision, the slower the program. So use higher precision only when you need it, otherwise keep to the
standard one. To make this point even clearer, consider the following small program, which will allow you to
measure the performance speed of your machine by changing the precision:

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===

-- exercise the precision
parse arg prec .

02
say 'Running at precision "'prec'".
nuneric digits prec

tl = tinmer()

05
loop i =1 to 1000

06
j = 1/i

07
=

08

end

09

say tl.elapsed() | 10
exit

11

o m o e o ee e me oo +

nunper f . nrx

\SEELell o2 Download the source for the numperf.nrx example

To runit, just type java numperf NNN where NNN is the precision you want N as in the following screen dump:

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/examples/numperf.nrx

NetRexx Tutorial - Operations on Numbers

The following table was built using my HP Vectra Pentium 133MHz machine.

B +
| timng for 1000 divisions at NNN digits precision

o m e e o e ma—mao +

NNN time

5 1.001 sec

9 2.642 sec

18 6.084 sec

50 37.181 sec
- +
nunperf table

These numbers will (as you can imagine) change for different machines. As a rule of thumb, the faster the machine
for INTEGER operations, the smaller will be the time for big values of NNN. | again stress the fact that the
FLOATING POINT capabilities of your machine are totally irrelevant for this computation: the numbers are strings,
and the floating point engine of your computer is not used by the NetRexx interpreter.

» A useful program: eval.

We now look at a program that will allow you to play a little with numbers. It is called eval. The basic idea is to
have a small calculator that you can use to perform Arithmetic calculations from your command line.

02
parse arg expr
03

r = xstring.interpret(expr, 24) | 04
say fr
5
exit
06
B T T TP +
eval . nrx

m Download the source for the eval.nrx example

You invoke it simply by typing:
java eval expression

Again, in order to give you the 'feeling', here is a dump of a sample session where | use eval.

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/examples/eval.nrx

NetRexx Tutorial - Operations on Numbers

Note for UNIX users: expressions such as:

1*2

are (unfortunately) interpreted by the shell. In fact, the shell will try to find, in your current directory, all the files
that have filenames starting with 1 and ending with 2. As there normally are none, you will get a "No Match", and
the answer will be "java: No Match", definitely NOT what you would have expected. To avoid this strange
behaviour put the expression between quotes, as here:

"t qx

or call the program without any argument. The program will then prompt you for an expression, and (now that
there is no shell intervention) you can freely put in any character.

» Other Mathematical functions with arbitrary precision.

*

* WARNI NG _ o .

* The so called SLAC arbltrarK precision function package
: will be inplenmented in xmath v2.000

The other mathematical high-level functions (like sin() cos() , etc.) are available with the usage of an external
package.

In the following table we summarise all the available functions. As you notice ALL the functions havean" "
character after the function name.

Note also that ALL those functions are arbitrary precision functions and are totally platform independent (i.e.
you'll get the same result for the 400th decimal digit of sin(2) on an HP, SGlI, PC, etc.).

e() - returns the value of natural base e
pi () - return the value of P
XtoY(x , y) - x to the yth power

In(x) - log of x

| 0g10(X)

| ogbase(x , y) -

sqrt(x) - square root

exp(x)

fact(n) - factorial of N

sin(x , pr , node - sine of x

cos(x , pr , node - cosine of x

tan(x , pr , node - tangent of ox

sec(x , pr , node - secant of x

csc(x , pr , node - cosecant of x

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

cot(x , pr , node) cotangent of x

asin(x , pr , node - arcsine of x

acos(x , pr , node - arccosi ne of x

atan(x , pr , node - arctangent of ox

sinh(x , pr - hyperbolic sine of x

cosh(x , pr - hyperbolic cosine of Xx

tanh(x , pr - hyperbolic tangent of ox
asinh(x , pr - hyperbolic arcsine of x
acosh(x , pr - hyperbolic arccosine of x
atanh(x , pr - hyperbolic arctangent of ox

NOTE: As previously stated those functions are arbitrary precision, and are NOT machine H/W dependent.

» Real Examples

In order to provide some examples of the mathematical NetRexx functions, | think it better to present some 'real’
algorithms that may prove to be useful even if you do not use NetRexx. These programs, although they present
language features that it would be better to explore in the next chapter, are taken 'as-is' from the 'Collected
Algorithms from the ACM' book. The only difference you might notice is that we have taken out all the 'GOTOs',
replacing them with a more structured approach (after all, those algorithms were invented in 1962, well before
even REXX was invented). What | would like to stress is the fact that NetRexx is very good for algorithm
description. What might interest you are, de facto, only the functions. The rest of the program has been presented
simply as an example of how to call the functions themselves.

Greatest Common Divisor (gcd).

The following code is a small example of a call to a routine that computes the gcd of two integer numbers. The
format of the call is:

n = xmat h. gcd(nl, n2)

| parse arg nl n2
01

| say xmath.gcd(nl, n2)
exit O
03

| -- nethod......: gcd
| -- purpose.....: find the greatest comon divisor

[met hod gcd(a=int,b=int) public static

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/examples/gcd.nrx

NetRexx Tutorial -

Operations on Numbers

if a=0then returnb
30
if b =0 then return a
31
r2 = a
32
rl =b
33
| oop forever
34
rr =r2/rl
35
g =rr.trunc()
36
r =r2 - rl*g
37
if r =0 then returnrl
38
r2 =rl
39
rl =r
40
end
41
42
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
xmat h. nr x(Met hod: gcd)
Resolrcea Download the complete source for the xmath.nrx library

The gcd() function is a NetRexx function that (unlike the BUILT-IN functions) such as max(), min(), etc. are USER-
WRITTEN.

@ Simultaneous Linear Equations Solution

The following piece of code shows how to call arroutine (called gauss) that performs the solution of a system of
linear equations with the Gauss Method.

o +
-- gauss

02

n =3

03

a = rexx[n+1, n+1] | 04
y = rexx[n+l1]

05

Cc = rexx[n+l]

06

07

a[1,1] = 13; a[1,2] =-8; a[1,3] =-3; y[1l]] = 20 | 08
a[2,1] = -8; a[2,2] = 10; a[2,3] =-1; y[2] = -5 | 09
a[3,1] =-3; a[3,2] =-1; a[3,3] =11; y[3] =0 | 10
11

rc = xmat h. gauss(n, a,y, c) | 12
say "RC." rc'.’'

13

14

say 'Solution:' | 15
loop i =1ton

16

say c[i].format (NULL, 3) | 17

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

end
18

exit
19

gauss. nrx

Download the source for the gauss.nrx example

Here is the code itself. Of course, you can grab it and put it inside your program(s).

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

o e mmm e e e e e e e e e e e mm——— -
-- nethod......: gauss
-- purpose.....:

45
met hod gauss(n=int, a=Rexx[,],y=Rexx[],c=rexx[]) public static;
b = rexx[n+l, n+1]
w = rexx[n+1]
48
error =0
49
loop i =1ton
50
loop j =1ton
51
bli,j] = a[i,j]
end
53
Wil = y[i]
54
end
55
loop i =1ton-1
56
big = b[i,i].abs()
I =i
58
il =i+1
59
loopj =il ton
60
ab = b[j,i].abs()
if ab > big then
62
do
63
big = ab
64
I =]
65
end
66
end
67
if big =20
68 g
then error =1
69
el se
70
do
71
if I<>i then
72
do
73
loop j=1 to n
74
hold = b[l,]]
75

| 52

| 57

| 61

http://www.netrexx.org/examples/gauss.nrx

NetRexx Tutorial - Operations on Numbers

b[1,j] = b[i,j] | 76
bl[i,j] = hold
77
end
78
hold = W]
79
Wil =wi]
80
wi] = hold
81
end
82
loop j =il ton
83 pJ
t =b[j,i]/b[i,i] | 84
loop k =il ton
85
b[j,k] = b[j,k] - t*b[i,K] | 86
end
87
Wil =wjl - t*wi]
88
end
89
end
90
end
91
if b[n,n] = 0 then error =1
92
el se
93
do
94
c[n] = wn]/b[n,n] | 95
i =n- 1
96
loop until i =0
97
sum = 0
98
loop j =i+l to n
99
sum = sum + b[i,j] * c[j]
00
end
01
c[i] = (Mi] - sum) [/ b[i,i]
02
i =i-1
03
end
04
end
05
return error
06
07
o m m m e oo +
xmat h. nr x(Met hod: gauss)
IG5 Download the complete source for the xmath.nrx library

s Operations on HEX Numbers

In this section we will look at how to perform favourite operations on HEX quantities. A HEX number is treated by
NetRexx as a string. This string is composed of numbers (0-9) and letters (A-F). Although | am sure you know what
a HEX number looks like, here are some simple assignments:

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

hex1l = ' FEA078'
hex2 = ' CAFE
hex3 = ' 1AB052'

As you will have noticed, | have defined these quantities as PURE strings. This makes the conversion work that we
will need to do very much easier. But now what happens if you try to sum hex1 to hex2? As NetRexx understands

ONLY decimal arithmetic, the operation is going to fail. The only way out is to build a small function that performs
the HEX operation. This function will perform all the conversion work for us, both in the hex to decimal part and in
the decimal to hex re conversion. The routine | propose is hexop() and you call it up using the following syntax:

hex = hexop(hexl operation hex2)

NOTE: the 'operation’' must be put into quotes. Why? Because we want to avoid REXX interpreting it as an
ARITHMETIC addition (remember that hex1 and hex2 are NOT hexadecimal quantities). This is the function itself
and, as you can see, it is very short:

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- method......: hexop
-- purpose.....: execute an HEX operation
71
met hod hexop(i n=Rexx) public static
parse in nl op n2
73
nl = nl.x2d()
74
n2 = n2.x2d()
75
sel ect
76
- when op = '+ then n3 = nl + n2
28 when op = '-' then n3 = nl - n2
29 when op = '/' then n3 = nl1 / n2
when op = '*' then n3 = nl1 * n2
80
ot herw se
81
do
82
say 'Invalid operation.' | 83
exit 1
84
end
85
end
86
n3 = n3. d2x()
87
return n3
88
89
o m m m ema oo +
xmat h. nrx(Met hod: hexop)
1IN T2 Download the complete source for the xmath.nrx library

As you will note from the code (apart from the parse and the interpret instruction, which we will cover later), we

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

do a double translationEN first from HEX to DECIMAL for the two terms (x2d), and then, once we have the result,
back to HEX (d2x). I do not check whether the data (and the operation) are correct or not: this is left to the calling
code (or to you, if you want to enhance it). Some examples:

say xnath.hexopE'FFFF + 1A'; -> 110019
say xmath. hexop(' FFFE / 2' -> ' 7FFF

» Operations on Binary Numbers

Binary numbers are composed only of '0' or '1'. Again, these numbers will be NetRexx strings. At the risk of
appearing very pedantic, here are some examples of binary quantities:

bi n1
bi n2

'10010010°
' 100001111000

The very same considerations for HEX quantities are to be found in relation to binary numbers. Since we cannot
directly perform arithmetic on them, we are forced to use a function expressly made for the purpose. This function
is similar to the hexop() we just saw (in fact, in accordance with my fancy, | have expressed this in its name, calling
it: binop()). The only additional complication lies in the fact that you can convert to and from binaries starting only
from HEX quantities. The syntax for the function is:

bin = binop(binl operation bin2)

The code is a small variation on hexop:

o m o e o et o o o o o o e o e e e o e o e o e e e e e e o e e e e e e e e eo o o— oo +
-- nethod......: binop | 05
-- purpose.....: execute a BIN operation | 06

07
met hod bi nop(i n=Rexx) public static | 08
parse in nl op n2
09
nl = nl. b2x.x2d() | 10
n2 = n2. b2x.x2d() | 11
sel ect
12
13 when op = '+ then n3 = nl + n2
» when op = '-' then n3 = nl - n2
15 when op = '/' then n3 = nl / n2
16 when op = '*' then n3 = nl * n2
ot herw se
17
do
18
say 'Invalid operation.' | 19
exit 1
20
end
21
end
22

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Numbers

| n3 = n3.d2x. x2b() | 23
return n3
24

xmat h. nr x(Met hod: bi nop)
Il ##l=0v Download the complete source for the xmath.nrx librar

Again, no check is made to ascertain if the quantities are truly binary and the operation a valid one. Some
examples:

say xmath. bin_op('1010 + 10 -> '1100
say xmath. bin_op('1110 / 10 -> '0111

Remark on HEX and BINARY operations

A conclusive remark: as you will have have noticed, in this last case (as in the one before that, for HEX quantities)
the BINARY operations are CPU-intensive in NetRexx. To perform a single addition we do six conversions and two
operations (without counting the function above). | have presented the two subroutines in order to show that 'it
can be done', and in a rather easy way. However, as a rule you should remember that it is always a good idea to

perform ALL the arithmetic operations in your programs as decimal operations, and perform conversions at the
beginning (and end) of the program itself.

2 Tricks with numbers.

Put dots in long numbers.

It is usually a very difficult thing to read big numbers, if they're written as:
100345902

and it would be nice to display them in the form

100, 345, 902

The following xmath function will do the job.

e
-- nethod......: dotify
-- purpose.....: put dots into a nuneric string
92
met hod dotify(n=Rexx) public static
if n.datatype('N) = 0 then return n
parse na'.'" b
95
if b<>"" then b ="."b
96
c ="
97

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

loop for ((a.length() - 1) % 3) | 98
c3 = a.right(3)
99
c =","]lc3]]c
00
a = a.left(a.length() - 3) | 01
end
02
return aj|c||b | 03
04
S T T I T N +
xmat h. nrx(Met hod: doti fy)
I o0 Download the complete source for the xmath.nrx library

@ Convert numbers in Computer Units.

Another usual conversion is to take a number and express it in Computer Units (K (kilo), M (mega), G (giga), etc.)

n cu

452 -> 452

1025 > 1K
1000000 -> 976K (why ??7?)

The following function will do this.

e
-- method......: n2cu
-- purpose.....: convert n to Conputer Units
29
met hod n2cu(n=Rexx) public static
nuneric digits 32 -- set high precision | 31
30 list =" KMGT P -- Kilo Mega G ga Tera Peta
base =1
33
max = 1024
34
unit ="'
35
| oop forever
36
if n < mx then
37
do
38
out = (n%ase)||unit | 39
| eave
40
end
41
42 parse list unit I|ist -- get next unit, pls
base = nmax
43
mex = max*1024
44
end
45
nuneric digits 9 | 46
return out
47

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

48
e m m e e e o o o o o e e e e e e e e e e e eeaaoo- +
xmat h. nr x(Met hod: n2cu)
Resolrces Download the complete source for the xmath.nrx library

Call example:

say 'File size is' xmath.n2cu(size)'."'

@ Convert seconds to hours.

That's my last favourite conversion routine. | use it to convert seconds to a more readable human format.

7272 -> 2:01:12
100000 -> 1d-03:46:40

T T T NN N . +
-- nmethod......: s2h | 49
-- purpose.....: convert seconds to hours (or days) | 50

51
met hod s2h(s=Rexx) public static | 52
h = s%3600
53
s = s//3600 -- nodul o | 54
m = s%0
55
s = s//60 -- nodul o
56
- if h > 24 then -- express h in DAYSd- HH
do -- if necessary
58
d = hok4d
59
h = h//24
60
h = h.right(2,'0") | 61
h =dd-"h
62
end
63
m=mright(2,'0") | 64
s = s.right(2,'0") | 65
out = h':'m:'s
66
return out
67
68

o m o e o ee e me oo +

xmat h. nr x(Met hod: s2h)

Resources™ Download the complete source for the xmath.nrx library

Call example:

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/library/xmath.nrx
http://www.netrexx.org/library/xmath.nrx

NetRexx Tutorial - Operations on Numbers

say 'Tinme elapsed' xnmath.s2h(sec)'.'

» Chapter FAQ

QUESTION: How do | round-up a number? As we saw, the '/' divide operator does a 'crude and simple' truncation on
the result. If you need a real round up, then you should use the format(NULL,0) instruction, like in the following

example:

rounded = n. fornmat (NULL, 0)

You can try out the following code to test yourself.

o +
i- Round up exanple
02
parse arg nl n2
03
n3 = nl/n2
04
gay "Result:' n3
say 'Round :' n3.fornmat(NULL, 0) | 06
exit O
07
o +
roundup. nrx

INElU¥elhn Download the source for the roundup.nrx example

% Summary

We resume what we've seen so far in this chapter.

_ basic operations + - *
- ex.: atb
| Nuneric Digits NN

_ setting precision . N
- eX.: Nunmeric Digits 20

digits

__query precision o
- ex.: nn = digits

*** This section is:

*** and will be available in next rel eases

File: nr_7.htm.

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

http://www.netrexx.org/examples/roundup.nrx

NetRexx Tutorial - Operations on Numbers

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:38(GMT +2).

http://www.netrexx.org/Tutorial/nr_7.html[11/4/2010 2:27:39 PM]

NetRexx Tutorial - Operations on Strings

The NetRexx Tutorial
@ - Operations on Strings

Operations on Strings

2 Introduction

As we already said, in NetRexx there is only ONE native data type: the string. We already saw how to define a string;
now we will concentrate our attention on how to operate on the strings, starting with the simplest operations (such
as concatenating two strings together) and ending with one of the most powerful features of NetRexx, the string
parsing. This chapter unfortunately contains long reference sections. | hope you will not get too tired going through
them.

» The string.

| remind you that we defined a string as "a sequence of characters" of arbitrary length and content. Strings are
defined like this:

string = "This is a strin
s is another one'

string_new = '"and thi

You canuse ' or " quotation marks to delimit a string when you define it.

» String Concatenation

The first operation you might want to perform on a string (better on two or more strings) is to concatenate them,
i.e. form a single string with a set of strings. NetRexx provides you with three ways of performing this:

(bl ank) Concatenate ternms with one blank in between;
|] Concatenate without an intervening bl ank;

(abuttal) Concatenate wi thout an intervening bl ank;

Concatenation without a blank might be forced by using the || operator. The same result can be obtained if a literal
string and a symbol are abutted. This is the abuttal operator. Suppose you have a variable p1 that contains the
string 'my' and a variable p2 that contains the string 'simple test'. Look at the concatenation:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

si npl e

say pl p2 ->'ny sinple test'’
no bl anks

say pl||p2 -> 'nysinple test'
abut t al

say 'ny'p2 -> 'nmysinple test'

The following additional examples might better clarify how concatenation works:

/* setting */ /* s values */

sl = 'Tyranno'

s2 ="'’

s3 = ' Saurus'

s = sl s3 s = 'Tyranno Saurus'

-- notice |I put MANY spaces between sl and s3: they
-- have no effect

s = sl s3 s = '"Tyranno Saurus

s = sl||s3 s = 'TyrannoSaur us

s = sl||" '"|]|sS s = 'Tyranno Saurus

-- Here spaces count!

s = s1||" "|]s3 s = 'Tyranno Saur us
s = sl s2 s3 s = '"Tyranno - Saurus
s = sl||s2|]|s3 s = ' Tyranno- Saur us

s = sl s2 s3 s = "Tyranno - Saurus
s = sl1'-'s3 s = 'Tyranno- Saur us

» Comparative operators.

The very same comparative operations that can be done with numbers can, of course, be done with strings. The
comparative operators return:

1if the result of the conparison is true

0 ot herwi se

NetRexx has two sets of operators: the normal comparison and the strict comparison. The strict comparison is
really what its name suggests: two strings must be strictly identical in order to pass the comparison.

NORMAL conparative operators:

True if terns are equal;

\=, 7= Not equal ;

> Greater than;

< Less than;

>< | <> Greater than or |ess than
(same as NOT EQJALP

>= | A<, \< Greater than or equal to,
not | ess than;

<=, ">, \> Less than or equal to,

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

not greater than;
STRI CT conparative operators

== True if the terns are strictly equal
(identical)

=, /== True if ternms are strictly not
equal

>> strictly greater than;

<< strictly [ess than

>>= | ~<< |, \<< strictly greater than or equal to,
strictly not |less than;

<<= , ~<< , \>> strictly less than or equal to,
strictly not greater than;

BOOLEAN oper at ors:
& AND;

[I ncl usive OR
&& Excl usi ve OR
AN LOG CAL NOT

You will probably never need some of these operators, although it is good to know that they exist in order to
avoid 'reinventing the wheel' when faced with a particular problem. The most important operators are definitely =
, M=, <, >; youwill be using them for 99% of your comparisons.

2 A small program for checking comparisons.

We give a small example that shows the difference between the strict and the normal operators: the program we
run is as follows:

T N NN N NN . +
-- strict test
02
str = 'test'
03
str[1l] = "test' | 04
str[2] ="' test'
05
str[3] = "test '
06
say 'Comparing "'str'".' | 07
loopi =1to 3
08
normal = (str = str[i]) | 09
strict = (str == str[i]) | 10
say normal strict | 11
end
12
exit O
13
o m em oo +
strstrict.nrx

Resolrceon, Download the source for the strstrict.nrx example

and the result is:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/examples/strstrict.nrx

NetRexx Tutorial - Operations on Strings

» Miscellaneous functions on strings.

Although this book is not a true reference, | would like to present some of the many built-in functions available in
NetRexx. For a complete list, consult the NetRexx Reference. The purpose of including this list here is so that I can
be sure that you at least know that some instructions exist. In fact, | have to admit that once | wrote myself a
function in order to find out the last occurrence of a character in a string. A colleague later showed me that this
function already existed (it is called lastpos()).

St andard Net Rexx functions

i nformation. abbrev(info,length)
Check if '"info' is a valid abbreviation for the
string 'infornation'

string. center(length, pad)
Centers a string

stringl. conpare(string2, pad)_
Compares 2 strings N O is returned if the strings
are identical, and if they are not, it returns the
position of the first character not the
sane;

string. copi es(n)
Makes 'n' copies of the given string 'string'

string.delstr(n,Iength)
Del etes the sub-strin? of 'string' that begins at the
n-th character, for 'length' characters;

string. del word(n, | ength)
Sane as above, but now the integers 'n' and 'length'
i ndi cate words instead of characters, i.e. space
delimted sub-strings;

new. i nsert (target, n, | ength, pad)
Inserts a string ('"new) into another ('target');

hayst ack. | ast pos(needl e, start)
Returns the position of the last occurrence of the
string 'needle' into another, 'haystack'; if the
string is NOT found, O is returned; see also pos();

string.left(length[, pad])
Returns the string 'length' characters with the
| eft-nost characters of 'string';

string. |l ength()
Returns the 'string" length

string.lower([n[,length])
Returns a | ower case copy of the string.

Lowering will be performed from character n
for length characters. |f nothing
is specified, lower() will |owercase the

whol e string, fromthe 1st character.

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

new. over | ay(target, n, | ength, pad)
Overlays the string 'new onto the string 'target'
starting at n-th character;

hayst ack. pos(needl e, start)
Returns the position of one string 'needle' inside
anot her one (the 'haystack');

string. reverse()
Returns the 'string' , swapped fromend to start;

string. right(length, pad)
Returns a string of length '"length’ with the 'length
of right-nost characters of a string 'string';

start . sequence(end)
Returns a string of all one-byte character
representations starting from characters 'start'
up to character 'end
It replaces REXX' s xrange() function

string. space(n, pad)
Formats the blank-delinmted words in string 'string
with 'n'" 'pad' characters;

string.strip(option,char)
Rermoves Leading, Trailing, or Both (Leading and
Trailing) spaces from string 'string'

string. substr(n,I|ength, pad)
Returns the substring of string that begins at the
'n' -th character;

string. subword(n, | ength)
Returns the sub-string of string 'string’ that starts
at the 'n'-th word (for 'length” words: DEFAULT is
up to the end of string);

string.transl ate(tabl eo,tablei, pad)
Transl ates the characters in string 'string ; the

characters to be translated are in '"tablei’, the
correspondi ng characters (into which the characters
will be translated), are In 'tableo'

string.verify(reference, option,start)
Verifies that the string 'string' is conposed ONLY of
characters from 'reference’

string.word(n)
Returns the 'n'-th blank delimted word in string
"string'

string. wordi ndex(n)
Returns the character position of the 'n'-th word
in string 'string';

string. wordl engt h(n)
As above; but returning its |ength;

string. wordpos(phrase, start)
Searches string 'string' for the first occurrence
of the sequence of blank-delinmted words in 'phrase'

string.words()
Returns the nunmber of words in string 'string'

string. upper()
Returns the string uppercase;

string. | ower()
Returns the string converted | owercase;

You might now say: Thanks a lot for this list, but what are the most important functions, i.e. the most used ones |

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

should remember? To make myself clearer, | have taken a sample of REXX programs written by a group of people
and have tried to print out some statistics on the functions you just saw. This is the result:

substr......: 361 19% length......: 252 13%
wor dpos.: 214 11% upper.......: 164 8%
right.......: 152 8% space.......: 147 7%
insert......: 110 5% words.: 109 5%
strip.......: 74 3% translate...: 70 3%
abbrev......: 58 3% | ast pos.....: 48 2%
copies......: 31 1% pos.........: 30 1%
overlay.....: 23 1% delword.....: 14 0%
reverse.....: 5 0% verify......: 4 0%
subword.....: 1 0% Xrange......: 1 0%
lower.......: 1 0% center......: 0 0%
wor di ndex. . .: 0 0% delstr......: 0 0%
conpare.....: 0 0%

nmost used string functions

As you can see, at the top of the 'TOP-10' string functions is the substr instruction. Functions such as compare()
never appeared. For comparison, the parse instruction (see next chapter) received 567 hits, whilst the do got 690.
I've not included those instructions in the list simply because | wanted to look at only the string functions we've
seen so far.

» Some 'particular’ string functions.

Some of the functions you have just seen require a bit more discussion. This will be taken care of in the section that
follows.

2 translate().

The translate function is used N as the name suggestsEN to translate the characters that form a string, following a
very simple rule: if a character is in a table (usually called TABLELI), it is translated into the corresponding character
present in another table (usually called TABLEO). If a given character is not in the TABLEI, then it remains
unchanged. The syntax of the function is:

trans = str.transl ate(tabl eo,tablei)

Some examples will better clarify:

"TEST' .translate(' O ,'E) -> "' TOST
"CAB .translate('***'," ABC) -> N EEE
"(INFO'.translate(" ',"()') ->" INFO"

A often-made mistake is to invert the logic for TABLEO and TABLEI: | do this myself, and put TABLEO where TABLEI
should be, and vice versa. To avoid this confusion, | suggest you always try to translate before, so that you can be
sure that your tables are correctly placed. What's the use of translate()? A typical case is when you want to get rid
of characters you do not wish to process. In this way your TABLEI will contain all the unwanted characters, and

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

TABLEO will just be an empty string. Another possible application is an ASCII to EBCDIC converter (or EBCDIC to
ASCII).

» Parsing.
The parsing feature of NetRexx is, in my opinion, one of the most useful and powerful features of the language
and probably deserves a chapter to itself. By the term parsing we mean the splitting up of a selected strings into

assigned variables, under the control of a template. The syntax of the instruction is the following:

parse variable tenplate

The variable is the original string you want to split-up, whilst the template is the set of rules to be used to do this
split-up (together with the variables that will hold the result).

original _string

tenplatle
R L +o-- - (...)---+ PARSI NG
I I I I
Vv Vv \ v
stringl string2 string3 stringN

You might consider the template as a 'filter', or as a 'set of rules'. NetRexx 'reads' these rules before splitting up
the original string into the targeted ones, and then uses the rules to complete the task. There are several ways to
parse a string. In brief, you can parse a string

e into words;

 using literal patterns;

e using periods as place-holders;

e using unsigned numbers as positional patterns;
¢ using signed numbers as positional patterns;

e with variable patterns;

We will now analyse all possible cases for a particular 'flavour’' for the parse instruction, the parse var.

Parsing into words.

This is probably the most simple case: the variable is split into words defined by the variable(s) that follow the one we
want to parse.

string = 'Very Sinple String'
parse strilng wor dl word2 word3
+---> wordl 'Very'

+---> word2 'Sinple
+---> word3 'String'

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

str = '"This sinple string, | hope, is parsed.'

par se s}r pl p2 rest

+---> pl "This'

+---> p2 "sinpl €'

+---> rest ‘'string, | hope, is parsed.’
str = 'Short string'

parse s}r pl p2 rest

+---> pl ' Short'
+---> p2 "string'
+---> rest " (NULL)

parsing into words

As you can see, the template is simply a set of variables, which will hold the result after the split by word has been
performed. Each variable holds a word. A word is a set of characters divided by a SPACE ("').

Parsing with literal patterns.

In this case NetRexx will scan the data string to find a sequence that matches the value of the literal. Literals are
expressed as quoted strings. The literals DO NOT appear in the data that is parsed.

str = "Here | am'
parse sfr pl 'I'" p2
+---> pl ' Her e'
+---> p2 ' am'
str = 'This sinple string, | hope, is parsed.'
parse str p1 ',' p2',' p3
+---> pl "This sinple string'
+---> p2 " 1 hope'
+---> p3 ' is parsed.’
par se s}r pl 'sinple' p2 '," p3 'is' p4d'.’
+---> pl ' Thi s’
+---> p2 "string'
+---> p3 " | hope,’
+---> p3 ' parsed'

parsing with literal patterns

| stress the fact that the characters (or strings) that you use to build your literal patterns DO NOT appear in the
final parsed result.

Parsing using periods as place holder.

The symbol '.! (single dot) acts as a place holder in a template. It can be regarded as a "dummy variable", since its
behaviour is exactly the same as a variable, except that the data is not stored anywhere. Use it when you 'really don't
care' about some portions of a string.

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

str = 'This sinple string, | hope, is parsed.’
parse str . pl . . p2 .

+---> pl ' sinpl e’

+---> p2 " hope, '

parsing using periods as place hol der

As you can see, the terms This, string, , I, and is is parsed. have simply disappeared. It is a common construct to
put the '.! at the end of a parsing instruction, simply to avoid the extra arguments that would pollute the last valid
argument in the parsing itself. You should keep an eye on the '." as the /dev/null for parsing. It can eat a word (if in
the middle of a pattern) or even all the remaining part of a string, if the '." is the last term.

parsing using unsigned numbers.

If you put unsigned numbers in a pattern, NetRexx will treat them as references to a particular character column in the
input.

str = 'This sinple string, | hope, is parsed.'

parse str pl 10 p2 20 p3

+---> pl " This sinp'

+---> p2 "le string,"'

+---> p3 " | hope, is parsed.’
str = TEST

parse str 1 pl 1 p2 1 p3

+--> pl ' TEST'
+---> p2 ' TEST'
+---> p3 ' TEST'

par si ng using unsigned nunbers

As you can see, the variable p1 holds the characters from the original str string from the first to the ninth column.
The variable p2 holds the characters from the 10th column to the 19th. The variable p3 holds the rest of the input.
Note that the space is treated as is any other character. In the second example we see an interesting feature: we
canrestart from a given position when this is defined by an unsigned integer.

Parsing using signed numbers.

Signed numbers can be used in a template to indicate a displacement relative to the character position at which the
last match occurred.

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

parse str 3 pl +4 p2

+---> pl ' DEFG
+---> p2 "H LM

parse str 3 pl +4 p2 6 p3

+---> pl ' DEFG
+---> p2 "H LM
+---> p3 " CGH LM

parsi ng using signed nunbers

Let us look at the first example: the first '3' tells the interpreter 'Position yourself at the 3rd character of "str".' (this
is "D"). Then 'p1 +4' instructs it to 'Put in "p1" the characters that follow, until you have reached the 4th character
from where you were' (this will build "DEFG"). Then we see "p2" which tells it to: 'Put all the rest in 'p2'. So that 'p2'
comes to be "HILM".

Parsing with variable patterns.

(Don't worry, this is the last case!) Using '("')' to delimit a variable in a template will instruct NetRexx to use the value
of that variable as a pattern.

delim=",
str = 'This sinple string, | hope, is parsed.’
parse s}r pl (delim p2 (delim p3
+---> pl "This sinple string'
+---> p2 " | hope'
+---> p3 ' is parsed.’

parsing with variable patterns

This is probably the most complex case, since the pattern is variable.

Parsing with ALL methods intermixed.

Of course you will ask yourself: "I've seen all those methods for parsing a string, but can | intermix them?". The
answer is N as you can imagine, since | asked this question rhetorically N "Yes!". Your template can intermix all the
methods we've seen so far, and it can became extremely complicated. You can write:

parse test 1 flag +1 info tape . '-' rest 80 comment

s Strings & Parsing in the real life.

Implement a stack or a queue using a string.

A stack is an example of abstract data type (see KRUSE, 1987, pg. 150).

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

Usually the implementation of a stack is done using arrays, which require particular attention for conditions like
empty-stack full-stack, etc.

If we make the assumption that you're dealing with numeric quantities (or with space delimited alphanumeric
quantities), the implementation of a stack (or a queue) is extremely easy and elegant using a simple string.

This is how you do it:

giééL =" -- enpty stack

stack = n stack -- push() n into the stack
E)é'réze stack m stack -- pop() mfrom the stack
entries = stack.words() -- count stack itens

To be even more clear, let's follow the example:

op st ack

stack =" "

stack = 1 stack 1

stack = 2 stack 21

stack = 3 stack 321

parse stack m stack 21 m=1
stack = 4 stack 4 21

parse stack n stack 21 n =1

Parsing a list of words.

You will often find yourself with a string that contains a list of items (words). If you need to process all the items
from this list, here is a simple trick for doing it. The basic idea is the following:

do while list <> "
parse list itemlist

processing over 'itemn

end

the variable list is parsed with itself, and what we obtain is only its first word, keeping what remains. In fact, we
are just 'eating-up' list word by word, in each iteration. This small piece of code illustrates the trick:

loop while list <> "'

o +
-- pexl.nrx

01

02

OI3i st = 'MARTIN DAVI D BOB PETER JEFF
i =0

04

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

parse list itemlist
i =i+l
07
say i.right(2,'0") itemleft(10) Iist | 08
end
09
exit O
10
i +
pexl. nrx

m Download the source for the pexi.nrx example
NOTEs:

e line 2: we define the list. Note that the procedure that follows will eat-up all the list variable, so that you
need to save it if you plan on using it later;
e line 5: this is the real parsing phase;

Here is what you get when you runiit.

» Sorting.

In the NetRexx language there are no built-in sort functions.
@ sorting a string

The following program atom str_sort.regproto does a sort over a string. Even if this is not a built-in function, you
call it as if it were:

sorted = xtring.sort(string, 'R)

where string is our unsorted string, and 'R’ is an optional parameter to signify a reverse sorting. The code is:

o e e e e e e e e e e e e e c e mmmmmmemememcmemmmemmemeececececemmecemmmememccemmeemmeeeeem———====
-- nmethod......: sort
-- purpose.....: Sort a string

66_ A = Ascending: ABCD...
- - R = Reverse: ... DCBA

67

68

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/examples/pex1.nrx

NetRexx Tutorial - Operations on Strings

met hod sort (stri=Rexx, node=Rexx) public static | 69
20 if mde <> 'R then node ="'
ws = stri.Wrds() | 71
incr = ws%
72
loop while incr >0
73
loop i = incr+l for ws
74
j = i-incr
75
loop while j >0
76
k = j+incr
77
wW = stri.Word(j) | 78
wk = stri.Wrd(k) | 79
if node = 'R
80
81 then do ; If W >= wk Then Leave ; end
8o else do ; If w < wk Then Leave ; end
stri = stri.Subword(1,j-1) wk - | 83
stri.Subword(j+1,k-j-1) w - | 84
stri. Subword(k+1) | 85
j =j-incr
86
End
87
End
88
incr = incra@
89
End
90
stri = stri.space() | 91
Return stri
92
93
o m m m e +
xstring.nrx(Method: sort)

Download the complete source for the xstring.nrx library

A sample program that calls such a routine is:

o o o o o o o o o e e e o e ==
-- conposers. nrx
02
composers = 'Bach Vivaldi Verdi Mbzart Beethoven Mnteverdi
04
say 'Unsorted:' conposers'.' | 05
say 'Sorted..:' xstring.sort(conmposers,'A)"'."’ | 06
say 'Sorted.R "' xstring.sort(conposers,'R)"'."’ | 07
exit O
08
S +
conmposers. nrx

Mzl l¥e 4=l Download the source for the composers.nrx example

and here is a sample output:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/examples/composers.nrx

NetRexx Tutorial - Operations on Strings

» Other string manipulation examples

@ A simple "censure"

The following code is a simple implementation of a ""censor" over a string. Suppose that you totally want to get rid
of a string inside another string, or replace it with 'XXX' characters (like real censors do). The small method
described above might help you.

o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
-- method......: censure
-- purpose.....: get totally rid of a string sequence
-- inside a string
47
nmet hod censur e(sl=Rexx, s2=RexXx, ch=Rexx) public static | 48
-- initialization | 49
os ="'
50
repl ="'
51
if ch <>'"' then
52
do
53
n = s2.1ength() | 54
repl = ch. copies(n) | 55
end
56
57
- -- do the job: this is really easy with parse ()
loop while s1 <> "'
59
arse sl pl(s2)sl
50 p pl(s2)
if sl <> "'
61
then os = os||pl|]|repl | 62
el se os = os||pl
63
end
64
65
-- all done
66
return os
67
68
nmet hod censure(sl=Rexx, s2=Rexx) public static | 69
return censure(sl,s2,") | 70
71
o s o e o et o o o o o e e e e e o e o e e e e e e e e e e e e e e e e e e oa— oo +
xstring. nrx(Method: censure)

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

[SEellid 420 Download the complete source for the xstring.nrx library

You should look at the way it is implemented: the string is parsed, till it is exausted, using:
parse string (search) string

where search is a value determined at runtime.
2 An animated status line.

Some programs take a long time to run, so that the person sitting in front of the terminal might ask "What ARE
they doing?". So it is often nice to show the user 'where' the programis in the processing. For example, if a
program has to process 300 files, and each file takes one or more seconds to process, you might want to use the
routine that follows, in order to keep the person sitting at the terminal informed as to how many files the program
has done, and how many there are yet to go. The following routine shows:

1. a 'rotating' synbol (-
2. a nunber of 'done' item : nnnn/ NNNN
3. a graphic scale of 'done' itens N []
4. a nuneric percent : nnn%

5. an additional information nmessage . string

The routine that is really of interest to you is called info_display. In this example, between the various displays we
really do nothing (just a sleep instruction). This 'sleep' should be replaced by your computation intensive/time
expensive part of the code.

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa

-- nethod......: di spl ay

-- purpose.....:

64

met hod di spl ay(i 1=Rexx, i 2=Rexx, r est =Rexx) public

pt = dinfop//4 +1

66
f1 ="-\\|/".substr(pt,1) | 67
di nfop = dinfop+l | 68
nl =11/i2*20

69
n2 = i1/i2*100

70
nl = nl.format(3,0) | 71
n2 = n2.format (3, 0) | 72
cu = '.'.copies(20) | 73
cu = cu.overlay('*",1,nl,'*") | 74
sl = il.right(4,'0") | 75
str = f1 s1||"/"||i2.right(4,"0") '"['cu'] -' rest | 76
System out. print(str'\x0D) | 77

78

o +
xstring. nrx(Met hod: di spl ay)

el g 4200 Download the complete source for the xstring.nrx library

Of course, you cannot see the motion in the figure, but you can use your imagination. You should simply try it on a

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

real terminal, and you will get, on the very same line, something that 'moves' and shows (more or less) this:

2 A hashing function.

I will not discuss in detail the concepts of hashing. | leave this to more specialised literature [KRUSE, LEUNG,
TONDO ; 1991]. I will simply note that hashing is used to perform fast searches in databases, and hashing functions
are used to index a hashing table. The basic idea of a hashing table is to allow a set of keys to be mapped into the
same location as that of an array by means of an index function. For the moment we are not interested in
implementing a full hashing table algorithm, so we will will concentrate on the hashing function itself. We need an
algorithm that takes a key (a string) and builds a number. The algorithm must be quick to compute and should
have an even distribution of the keys that occur across the range of indices. The following function hash can be
used for hashing keys of alphanumeric characters into an integer of the range:

0 ... hash_size

You call the function issuing:

nn = hash(key)

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

e
-- method......: hash
-- purpose.....:
04
met hod hash(str=Rexx) public static
hash_size = 1023
06
t =0 -- zero total
07
I = str.length() -- str length
09 |l oop while str <> "' -- loop over
10 parse str ch +1 str -- get one
t = t+ch.c2d() -- add to total
11
end --
12
out = (t*l)//hash_size -- fold it to SIZE
» return out

| 08

| 13

NetRexx Tutorial - Operations on Strings

xstring. nrx(Method: hash)

SesoUrcess Download the complete source for the xstring.nrx library

The algorithm shown is rather fast, and produces a relatively even distribution. The basic idea is in the loop that
adds-up the decimal value of each character. | then multiply this value with the original length of the string, and
modulo for the hash table size.

Converting from/to BASE64 (MIME).

The small programs that we analyse in this section are merely two small examples of how you can implement a
BASE-64 converter. You can find more info on the Sun Implementation for a BASE64 Decoder/Undecoder
methods at the URL:

http://ww. java. no/javaBl N docs/ api/sun. m sc. BASE64Decoder . ht ni
http://ww. | ava. no/| avaBl N docs/ api/sun. m sc. BASE64Encoder . ht n

Keep in mind that the MIME protocol (see RFC 1341 and 1342) is a mechanism by which you can send binary files by
mail. The basic idea is the following: you take a set of bytes, you split by chunks of 6 bits each, you build 4 new
bytes and you map this new quantity in base 64 (2**6 = 64). Suppose you want to translate the string "Thi" to
base 64. Here is the procedure:

1. Oiginal string:
i

"Th
2. Translated in HEX
'54 68 69

3. translated in Bl NARY:
' 01010100 01101000 01101001'

4. ditto (group by 6):
' 010101 000110 100001 101001

5. Add '00' in front of each 6 bits:
' 00010101 00000110 00100001 00101001

6. New quantities (in HEX):

'15 06 21 29
7. Convert to Base 64:
IVG]p‘

The two following programs will convert one (a2m) from a generic string to a BASE-64 string, and the opposite for
the other (m2a). Look at the listing for a2m. From line 16 to line 211 put into comments the steps which | described
above for the conversion (note how each step is an instruction). The whole algorithm is based on the parse and
the translate function.

-- nethod......: a2m
-- purpose.....: Convert a string fromASCIlI to M NME

| met hod a2n(str=Rexx) public static
[b64 = '\ x00'.sequence('\X3F")

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/library/xstring.nrx
http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Decoder.html
http://www.java.no/javaBIN/docs/api/sun.misc.BASE64Encoder.html

NetRexx Tutorial - Operations on Strings

e64 = " ABCDEFGH JKLMNOPQRSTUWKYZ" || - | 21
"abcdef ghi j kI mopqgr st uvwxyz" || - | 22
"0123456789+/ " | 23

24
out ="'
25
|l oop while str <> "'
26
- parse str bl +3 str [* 1 */
bit = c2x(bl).x2b() /[* 2, 3* |28
’9 parse bit pl +6 p2 +6 p3 +6 p4 [* 4 %/
bitn = '00' pl' 00' p2' 00' p3' 00' p4 /* 5 %/ | 30
bl n = x2c(bitn. b2x) [* 6 */ | 31
base = bl n.transl at e(e64, b64) [* 7 *]/ | 32
i f base.length()<>4 then | 33
do
34
app = '='.copies(4-base.length()) | 35
base = base|| app
36
end
37
out = out|| base
38
end
39
return out
40
41
i +
xstring.nrx(Method: a2m
IS %e/#5 Download the complete source for the xstring.nrx library

The opposite of a2m is m2a:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

o o o o o o o o o e e e o e ==
-- method......: nRa
-- purpose.....: Convert a string fromMME to ASCI
44
met hod nRa(str=Rexx) public static
b64 = '\ x00'.sequence('\x3F")
e64 = " ABCDEFGH JKLMNOPQRSTUVWKYZ" || -
"abcdef ghi j kl mopqr st uvwxyz" || -
"0123456789+/ "
50
out ="'
51
loop while str <> "'
52
parse str bl +4 str
53
base = bl.transl ate(b64, e64) | 54
basex = c2x(base)
55
bit = basex.x2b() | 56
- parse bit 3 pl 9 11 p2 17 19 p3 25 27 p4 33
bitn = pl||p2||p3|]|p4 | 58
new = x2c(bitn.b2x()) | 59
out = out||new
60
end
61
return out
62

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

xstring. nrx(Method: nRa)

=zl lel==hm Download the complete source for the xstring.nrx library

Those programs could be used as building blocks for a real MIME packer/unpacker routine. Note that you will need
quite a bit of work to make them really useful: what is missing is a proper handling of line splitting in the output
file (in a2m).

s Tricks with strings

TRICK: Avoid multiple substr() calls with just one parse. If you find yourself using more than one substr() function in
araw, you should probably consider rewriting your code using a more appropriate parse function. Suppose you
have to split a time stamp in its components.

YYMVDDhhnmss (timestanp)

\ e - second
Fm e e e e - - - - m nut e

The first and most obvious approach is the following:

year = substr(timestanp, 1,2
Emnt? = substr(tinmestanp, 3, 2

And so on. The alternative using parse is:

parse var timestanp year +2 nonth +2 day +2
our +2 mnute +2 second +2

The gain (both in terms of execution speed and coding) is clear: you use one instruction instead of six. Your code is
also easier to modify (and to adapt to different formats of time-stamps). TRICK: Use the parse with '." to avoid the
need for issuing a space() afterwards. The title of this trick is a cryptology trick in itself. "How's that?" Simple.
Suppose you need to parse lines of this format:

node=r sl 3pnil
os=Al X

Depending on what the left term of the '=' sign is (we will call it the key), you will need to perform certain actions.
What you can do is something along these lines:

parse var line key '='" attributes
I f key == 'node' then C
if key == "os' then (...)

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Operations on Strings

This works well until there are no extra spaces between the key and the '=' sign. But this is precisely what will
happen if someone modifies the file containing these lines, as we have seen. You must be 100% sure that someone

will write:
node = rsl 3pnl
os = Al X

Now the value of key will be: ""node " and "os ", and this is not exactly what we expect. The first solution that will
came to mind is the following (at least it was the first that came to my mind before learning this trick):

arse var line key '=' attributes
ey = space(key)

if key == '"node' then (...)

if key == "o0s' then (...)

The trick (finally we come to it), is to use a'." in the parse, as here:

parse var line key . "= attributes
If key == 'node' then (...)
if key == 'os' then (...)

This will avoid any space() instruction, acting as a 'space-eater'. TRICK: Avoid unexpected results from a missing
wordpos(). This particular trick | learned from Eric Thomas, the author of LISTSERV(tm) (probably the most popular
Mailing List Server Software). | offer a concrete example: suppose you want to write a program that translates a
given TCP/IP port number in its "human" meaning, i.e. a program that tells you that port 21is FTP, port 23 is
TELNET, etc. You will write two lists , one containing the port numbers, the other the 'human meaning'. These lists
will then be:

portl

='21 23 37
servicel = "'ft

p telnet tinme'

Note that those two lists are "ordered": 21is the port number for FTP, 23 for TELNET, and so on, i.e. the nth
element of the list portl corresponds to the nth element of the list servicel. The existence of this one-to-one
correspondence is the basis of our discussion. Suppose that the port number for which we want to know the
'human meaning' is contained in the variable port. The obvious way to find out its meaning is, first, to identify the
position in the string portl of the variable port, and second, use this number to extract (using the function word()
the corresponding value in the list servicel). Each of these words translates into a sentence:

service = servicel.word(portl.wordpos(port))

This code is correct, but 'buggy'; what happens if you enter a port number that is not in portl? The result of
wordpos() will be 0, and a word with a second argument zero will cause a buggy "ftp" answer. We could check
that port is in portl before doing the wordpos(), but there is a simpler solution:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Operations on Strings

service = ('unknown' servicel).word(portl.wordpos(port) + 1)

The trick is simple: we add a term in front of servicel (the 'unknown' term) and we add 'plus 1' to wordpos(). In
this way we can be sure that we have covered the case when port is not in portl. The code is now correct, and can
handle unexpected errors. | provide the full final code as aresume':

-- portn.nrx
1

02
parse arg port

03
portl ='21 23 37'

04
servicel = "ftp telnet ting' | 05
service = ('unknown '||servicel).wrd(portl.wordpos(port)+1) | 06
§ay service
exit O

08

o o h e h e b e L b L b L bl e L e L b L el el e e e e e e e e e e m e e e e e e e e eemmaoaeaoaaaaaa +

portn.nrx

IMe=lelb¥#@=0n Download the source for the portn.nrx example

Of course there are many more services (look to /etc/services if you want to see them. Note also that this is NOT
the way to find out the service name from the port number; rather, see the chapter on sockets in order to discover
how to obtain it from the system itself.

» Chapter FAQ

QUESTION: How do | know the program's name at running time? This is a real FAQ. Suppose that you have written
(or created, to make your work more important) a program called toto. How does toto know its name? You could
put the information inside a variable in toto but that is UGLY, and whenever you rename the program, you will
need to remember to change that variable. The solution is the parse source instruction N do

parse SOURCE . . nynane .

SMALL ADDENDUM for UNIX users. If you place the program toto in a directory in your PATH (for example,
[usr/local/bin) and you execute it, you will notice an interesting effect: myname is no longer toto, but
[usr/local/bin/toto. This might be interesting, since you're now capable of ascertaining the directory from which
your program was called, but the question then becomes how to eliminate the (probably unwanted)
[usr/local/bin? You do it by coding:

myname = nynane. substr(nynane.lastpos('/"') + 1)

QUESTION: Can | put the character '00'X in a string? Yes. The only thing you need to remember is to make the byte a
HEX constant, as here:

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/examples/portn.nrx

NetRexx Tutorial - Operations on Strings

"this is a '\x00' 'test'

string
"\ x00\ x00\ x00'

string

As arule of thumb, you can put any character you like in a string; the only thing you should remember is that you
might have problems if you try a say of this string. QUESTION: How do I display strings containing control
characters? You can use the c2x() instruction, in order to see the string in HEX. A more elegant way is to translate
all the non-printable characters to a'.' (or to any other character you prefer). This small program shows you how
todoit:

R I I P +
-- nodi sp

02
str = '"This is a \x03\x09\ xFE test.' | 03
tablei = '"\x00'.sequence('\x1F)|]|'\x80'.sequence('\xFF") | 04
tableo = '.'.copies(tablei.length()) | 05
say str.transl ate(tabl eo,tablei) | 06
exit O
07

o m o e o e e o o o o o e o e e e o o e e e o e e e e e e e e e e e e e e oo oo +

nodi sp. nrx

Resolrcesn Download the source for the nodisp.nrx example

Note how I build the tablei: | use sequence() over all the unprintable characters (from '00'x to '1F'x, and from '80'x
till 'FF'x). tableo is simply a sequence of '.! (for the same length of tablei). That is all I need. Note, however, that
this will only work for ASCII systems: EBCDIC systems will require a different tablei.

2 Summary

We resume some of the concepts we have encountered in this chapter.

_ concatenate a string | || or abutta
(with no spaces) | - ex.: sl]|s2
| - ex.: nl1' %
_ concatenate a string | bl ank
(with spaces) | - ex.: sl s2

*** This section is:

*** and will be available in next rel eases

File: nr_8.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

http://www.netrexx.org/examples/nodisp.nrx

NetRexx Tutorial - Operations on Strings

Last update was done on 18 May 1998 21:47:40(GMT +2).

http://www.netrexx.org/Tutorial/nr_8.htmi[11/4/2010 2:27:42 PM]

NetRexx Tutorial - Control Structures

The NetRexx Tutorial
@ - Control Structures

Control Structures

2 Introduction.
No algorithmic language would be complete without instructions that allow the execution of statements depending

on certain conditions for performing iterations and selections. NetRexx has many such instructions for allowing
program flow control. Probably the most important is the do...end construct.

» Statement Block.
A statement block is a sequence of statements enclosed by a do (...) end. A statement block looks like this:

do
statement _1
st at ement _2

siéienﬁnt_N
end

NetRexx executes these statements in sequence N from the first to the last. Syntactically, a block of statements is
accepted in place of any single statement.

s if[then/else.

The if/then/else construct is used to conditionally execute an instruction or a group of instructions. The
if/fthen/else construct can also be used to select between two alternatives.

i f expression
then instruction
el se instruction

The expression is evaluated, and MUST result in 'o' or '1'. Thus, as you can imagine:

i f expression

then instruction if expression results to 1
el se instruction if expression results to O
» NOP

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

It is usually difficult to do 'nothing'. However, the nop instruction was created for just such a purpose:itis a
dummy instruction.

NOP

It is useful as target for a then or else clause:

t hen NOP

exanpl e of NOP

2 loop for (with a repetitor)

The loop instruction is used (as we have already seen), to group a set of instructions, and to execute (optionally)
more than once. In its easier case, the loop for looks suspiciously like the C-language for statement. Let us
consider a first case:

| oop for expression
statenent _1
st at ement _2

(...)
statenment _N
end

In this case, expression - an expression that evaluates a number - tells NetRexx 'how many times to execute the
loop'. Here is an example:

/* this statenent will be executed 3 tines */
loop for 3

say 'Hello
end

do N exanpl e

Will print on your screen:

Hel |l o
Hel |l o
Hell o
list = 'MARTIN JOE PAULA'
/* this statenment will be executed 3 tines */

loop for list.words()
parse |ist name |Ist
say 'H!' name

end

second do N exanpl e

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

Will print on your screen:

H MARTI N
H JCE
H PAULA

Of course, you can use a variable (which we will regard as an index) to run the iteration. This is a 'controlled
repetitive loop'. Amore complex case is the following:

| oop name = exprl to expr2
statement _1
st at ement _2

(...)
statenment _N
end

Examples:

| oop exanpl e

Will print on your screen:

GORWNE

loop with 2 indices

Will print on your screen:

WNFRPWN -

In the above examples, we always incremented by a positive quantity (+1). What about when your increment is
NOT +12 The solution is again a do, but now with a by statement. Our do loop will then look like:

| oop varname = exprl to expr2 by expr3

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

statenent _1
statement _2

(...)
statenment N
end

And here are some examples:

by exanpl e

Will print on your screen:

RORFRN

x2 = 2.5

increment = .1

loop x = x1 to x2 by increnent
say X

end

by exanpl e

Will print on your screen:

NI
I ENATNYS

You can even add a repetition counter, which sets a limit to the number of iterations if the loop is not terminated
by other conditions. Our loop loop will then look like the following:

| oop varname = exprl to expr2 by expr3 for expr4é
statenment _1
st at ement _2

siéienﬁnt_N
end

Example:

D
>
o

1
N
\I

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

Will print on your screen:
1.8

» loop/while/until.

The while and until constructs commonly found in other programming languages are also available in NetRexx, as
a condition to the ubiquitous loop statement. Here is how to build a simple while loop:

| oop while expression
statement _1
statenent _2

(...)
statenment _N
end

And here is how to build a simple until loop:

| oop until expression
statement _1
statenent _2

siéienEnt_N
end

Consider the example:

whi |l e exanpl e

i =1

loop until i > 6
say i "\-'
i =i+l

end

--->Will print: 123456

» do resume.
Anice NetRexx feature is that you can combine the loop in its repetitive form with the loop in its conditional form

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

(i.e. the while/until construct we just considered). This can lead to constructs that look like:

loop i =1to 10 while i < 6
say i "\-'
end

conbi ned exanpl e

---> This code will print: 12 3 4 5. There is a nice 'side effect' to this feature, and that is the possibility of building a
while/until loop without incrementing (or decrementing) the control variable yourself. Consider the case we just
looked at:

do while exanple

---> This code will produce: 1.0 1.5 2.0 2.5 We need to define the start value i = 1.0, and define the step incrementi=
i+.5. All this can be avoided with the following construct:

do by while exanple

---> Will print: 1.0 1.5 2.0 2.5 This code is much more compact. Aresume' of what we have seen so far on the do
instruction:

| oop repetitor conditiona

T < _ VWH LE expr_w
_ UNTIL expr_u

L < var = expr_i TO expr_t BY expt_b FOR expr_f
expr _r

instruction_1

instruction_2

ihéiruction_N

s select.

The select instruction is used to execute one of several alternative instructions. The format is:

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

sel ect
when expression_1 then instruction_1
when expression_2 then instruction_2
when expression_3 then instruction_3

ot her wi se i nstruction_N
end

What NetRexx does is evaluate the expressions after the when. If the result is '1', then what follows the
corresponding then is executed (this can be anything N a single instruction, a set of instructions inside a do ... end
clause, etc.). Upon return, the control will pass directly to the end instruction. If none of the when expressions
resultin a'1', then the otherwise instruction is executed. NOTE: the otherwise clause is NOT mandatory, but if
none of the when expressions results in a't', and the otherwise is not present, you will get a'SYNTAX error'. It is
thus wise to ALWAYS add an otherwise clause at the end of a select, usually with a NOP instruction.

5*'tL|s will print a flag correspondlng to the */
/* inactivity tinme of a termnal: */
/[* the table is the follow ng */
[* hour 0...1...2...3...4...5...6...7...8 */
[* flag Rk e */
/[* where '"hour' is since how many hours the */
/[* terminal is inactive, and flag is the */
[* flag we want to d|splay */
[* inactive: time (in hours) a termnal */
[* has been inactive */
sel ect)

when inactive < 1 then flag = '*'

when inactive < 2 then flag = ";"'

when inactive < 4 then flag = ":’

otherwise flag = ".
end
(...)

sel ect exanpl e

2 iterate.

Use the iterate instruction to alter the flow of control within a repetitive do loop (i.e. any do construct which is
NOT a plain do). The syntax is:

do (expression)
statenent _1

siéienﬁnt_N_
(condition) iterate [nane]
statement _N+1

st at ement M
end

If program flow reaches the iterate instruction, the control is passed back to the do instruction, so that the
statements statement_N+1,...statement_M are NOT executed. Here is an example:

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

then iterate

iterate exanple

---> This will print: * 1 * 2 * * 4 * 5 The iterate instruction also supports a 'name' following it, and name (if present)
must be the variable name of a current active loop. Consider this following code atom:

num = 7
loop i =1 to num
line ="
Ioo?] =1 to num
if 1 =] then
do
say |ine
iterate i
end
line = line j
end
end

iterate exanple II

This code will print:

RPRRRRR
NN N NN
WwWww
DD

a1

s leave.

Use the leave instruction to exit immediately from a do loop. The syntax is:

| oop (expression)
statenent _1

(...)

stat enent _N

(condition) |eave [nane]
st at ement _N+1

st at enent M
end

The flow of control is passed to the instruction that FOLLOWS the corresponding end in the loop loop. Here is an
example:

loopi =1to 5
say '* \-'
if i = 3 then |eave
say i '"\-'

end

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

---> The above code will produce the output: * 1 * 2 * You should note that leave is similar, in a certain sense, to
the iterate instruction: like it, leave 'breaks' the normal flow of control in the do loop. Pictorially:

| oop <------ +

» Real Examples.
As usual, we now present some 'real-life' examples.

Simulating the 'foreach’ instruction.

As you may have noticed, the foreach instruction does not exist in NetRexx. And if you are a shell programmer,
you may well also be without it. However, here is a trick for simulating it with @ minimum of effort:

loop while list ~=" | -> foreach item (list)
Fars$ list itemlist
end end

foreach exanpl e

The only thing you need to remember is that the list variable, at the end of the do loop, will be NULL; remember to
save it if you plan to use it later.

Reading a 'stanza’ file.

Configuration files are usually divided in the UNIX terminology into 'stanzas'. A 'stanza’ is a uniquely identified
portion of the file that contains the parameters for a specified entity. VM programmers may identify a 'stanza’' as a
single entry in a NAMES file: an identifier marks the start of a stanza, and a set of parameters follows, until a new
stanza (or an End_of File) is reached. Let us look at a 'stanza' example:

B +

coment |ine
node: rsl 3pnl # first stanza

machi ne: rs6000 # defines node

vendor: |BM # rsl 3pni

| ocation: b32r035 # |
node: sgl 3pml # second one

machi ne: 1 ndi go2 # defines node

vendor: Sd # sgl 3pmL

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

| ocation: bllr023 #

node: hpl 3sn05
machi ne: 730/ 50
vendor: HP
|l ocation: b71r233

Source file: test.stanza

You should note that:

e the character # is used as a comment. If a line starts with a #, it is ignored, and if a line contains a #, all what
follows it is also ignored;
e blanklines are ignored.

The following program is composed of a small call to a routine that does the job of:

 reading the configuration file that contains all the stanzas;
e finding out the one we are looking for;
e setting the output variable to the required values for the selected stanza.

As you can see, the function is a good example of utilisation of the do, leave, iterate instructions.

-- readst.nrx
1

02
parse arg nodeid
03

04

05

06

07
é- read the file

09
infid = xFile('test.stanza') | 10
rc = infid.rd_file() | 11
if rc <> 0 then
12
do
13
say 'problemreading "'infid.name'"."' | 14
exit 1
15
end
16
17
output ="'
found =10
19
loop i =1 to infid.line[O0] | 20
if infid.line[i] ="' then iterate | 21
parse inf d line[i] key rest "# . | 22
03 if key = '# then iterate

if key = 'node:' then

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Control Structures

24
do
25
if found then | eave
26
if rest = nodeid then
27
do
28
found = 1
29
iterate
30
end
31
end
32
if found = 0 then iterate
33
parse infid.line[i] line "# . | 34
output = output line | 35
end
36
out = output. space() | 37
if out ="'
38
then say 'Not found.'
39
el se say output.space() | 40
41
exit O
42
o m m e o ee e ee oo +
readst. nrx
MDWM the source for the readst.nrx exampl
NOTEs:

e line 16: we read the configuration file containing ALL the stanzas;

e line 21: we ignore empty lines;

e line 23: we ignore comment lines as well;

e line 24: check if this keyword identifies a new stanza;

e line 26: if we have already found the stanza we wanted, there is no need to continue further;
e line 27: if this is the stanza we wanted, remember that we found it, and iterate;

e line 33: up to now we have not found the stanza, so iterate;

Run this program and here is the result you will get:

< Expanding a list.

The following problem might appear totally 'academic'. It did to me until | encountered the following problem. A

http://www.netrexx.org/Tutorial/nr_9.htmi[11/4/2010 2:27:44 PM]

http://www.netrexx.org/examples/readst.nrx

NetRexx Tutorial - Control Structures

directory contained a set of files (more than 20 000), each identified by a number (as filename). To make the
problem clearer, my directory contained these files:

10000 10001 10002 10003
%ooo? 10005 10006 10007
33002 33003 33004 33005

The user needed to perform operations on a subset of the files N for example:

10000 10981 10982 10983 21900 21901
or: 30291 30292
or: 67234 67235 67236 67237 77889 88974 88975

The user had to start from N and continue until item M, or from item J for K files. There was no easy solution with
UNIX standard wild-cards. And the only solution was to write the items one by one. The small program (and

routine) that follows is a possible solution to the problem N it expands a pattern according to a very simple syntax:

first-|ast
first. how _many

The expansion is then of the type:

10020- 10022 -> 10020 10021 10022
30452. 4 -> 30452 30453 30454 30455

The program will accept any combination of items containing '.! or'-', or simple single items. The program is really
very simple:

B +
parse arg teststr | 01
say expandlist(teststr) | 02
exit O | 03

o m m m e e e e e o e meemea—an +

explist.nrx

INEERINT4m Download the source for the explist.nrx example

And of course requires this small function: (I present it separately so that you can quickly put it inside a bigger
program if you like it).

e
-- nethod......: listexpand
-- purpose.....:
74
met hod |i stexpand(il =Rexx) public static

ol ="'
76

loop while il <> "'

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

http://www.netrexx.org/examples/explist.nrx

NetRexx Tutorial - Control Structures

77
parse il it il
78
if it.pos('.') <> 0 then | 79
do
80
parse it f'.'n
81
loop i =f to f+n-1
82
if ol.pos(i) <> 0 then iterate i | 83
ol =ol i
84
end
85
iterate
86
end
87
if it.pos('-') <> 0 then
88
do
89
parse it f'-'
%0 I i f I
oopi =f to
91 P
if ol.pos(i) <> 0 then iterate i | 92
ol =ol i
93
end
94
iterate
95
end
96
if ol.pos(it) <> 0 then iterate | 97
ol =ol it
98
end
99
Ret urn ol
00
01
o m m m h e b e L e L e L e e b L b L b e e e e h e h e e e e e e e e e e m e e e e e e e eeaoaoeoaaaaaa +
xstring. nrx(Method: |istexpand)

m Download the complete source for the xstring.nrx library

Here is what you can use it for:

@ Operation on arrays.

http://www.netrexx.org/Tutorial/nr_9.htmi[11/4/2010 2:27:44 PM]

http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Control Structures

It is sometimes usefull to convert information from an array, to a string, and viceversa.

o m m m h e h e L e L el el bl el e e e h e h e mmaoeeeoaaaaaa +
-- nethod......: a2s | 31
-- purpose.....: converts a Rexx array to a string | 32

33
met hod a2s(a=Rexx) public static | 34

a=a
35

out ="'
36

loop i =1 to a[0]
37

out = out afi]

38

end
39

return out
40
41
S +

xstring.nrx(Method: a2s)

Download the complete source for the xstring.nrx librar

o o o o o o o o o e e e o e ==
-- method......: s2a
-- purpose.....: converts a string to an array
20
met hod s2a(str=Rexx, a=Rexx) public static
a=a
22
i =0
23
|l oop while str <> "'
24
parse str nn str
25
i =i+l
26
a[i] = nn
27
end
28
a[0] =i
29 [0]
30
o m o e o ee e me oo +
xstring. nrx(Met hod: s2a)

Download the complete source for the xstring.nrx library

The following example will show the utilization of such functions.

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Control Structures

02

03

-- convert a string to an array | 04
05

b = rexx(") | 06
xstring.s2a('52 45 66 3 4',b) | 07
goop i =1 to b[0]

say i ':'" b[i]

end

10

11

-- convert an array to a string | 12
13

c = rexx(") | 14
c[0] =3

15

c[1l]] = '"This is a test'

16

c[2] = '"another el.

17

c[3] = 'LAST O\E."*

18

19

S = xstring.a2s(c) | 20
say s
21
22

exit O
23
S T T I T N +
tarray. nrx
Il Download the source for the tarray.nrx example

s Chapter FAQ

*** This section is:

*** and will be available in next rel eases

s Chapter Summary

A resume' of some of the concepts we've encountered in this chapter:

_ block of instructions | do (...) end
| - ex.: do
| i nstructions
| i nstructions
| end

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

http://www.netrexx.org/examples/tarray.nrx

NetRexx Tutorial - Control Structures

_ 'for' loop loop for n=n1l to n2 (...) end
- ex.: loopi =1to

i nstructions

i nstructions

end
_ '"while' loop | oop while expr (...) end
- ex.: loop while i <6
i nstructions
i nstructions
end

*** This section is:

*** and will be available in next rel eases

File: nr_9.htn.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:43(GMT +2).

http://www.netrexx.org/Tutorial/nr_9.html[11/4/2010 2:27:44 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

The NetRexx Tutorial
@ - Classes and Objects in NetRexx

Classes and Objects in NetRexx

As we already said, NetRexx, like its cousin Java, is an object-oriented (OOP) language . The term object-oriented has
become so widely used that we need to give it a more concrete meaning.

This section assumes no knowledge of object-oriented concepts.

At the end of this section, | hope that you'll get the feeling of how OOP can be "fun".

2 Some basic ideas.

The Object Oriented Programming basic ideas are simple ones. Unfortunately, OOP has developed some special
terminology, and many introductory works become totally incomprehensible to people encountering the subject
food the first time.

OOP has four key concepts. You can remember them from the acronym "A PIE": think about the big pie that
software vendors are sharing in selling us their OOP products. The components are:

A - Abstraction
P - Pol ynor phi sm
I - Inheritance
E - Encapsul ation

In the following part of the chapter, we will consider, as an example, the OOP representation of a 3 dimensional
vector.

A 3d vector, we will see, can be defined in a computer using three numbers (this is the ABSTRACTION). A whole
series of operations can be performed on a 3d vector (like inverting it, summing with other vectors, etc), making
sure that we never corrupt the values of it (this is the ENCAPSULATION part). Using the concepts we used to
define the 3d vector, we can build a 4d vector, keeping some of the functions we used to encapsulate the 3d
vector (and this is the INHERITANCE part). Indeed, some functions (like the sum) must be overridden by the new
4d vector functions (to take account of the 4th dimension), and that' all for the POLYMORPHISM.

Resuming it in few lines definitely looks hard, but (you'll see) there is nothing more.

2 A vector class

In this section we develop a simple example class, that we will call vector3d, that, as you can easily guess, will

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

represent a geometric object in a three-dimensional space.

A vector, quoting Feynman, is three numbers. In order to represent step in space, say from the origin to some
particular point P whose location is (x, y, z), we really need three numbers, but we are going to invent a single
mathematical symbol, r. (...) It is not a single number, it represents three numbers: x, y and z. (FEYNMAN, 1963).

In those words Feynman has, de facto, extracted out the essential characteristics that we need to consider in
order to represent a vector on a computer. This process is called abstraction.

Translating the above words in the NetRexx language, we get:

class vector3d public
properties public

XC -- X conponent
yc -- y conponent
Zc -- z conponent

The important thing to note is that we did not define a real vector r. We just defined how we define a vector, i.e.
with 3 quantities xc, yc, and zc.

The lines above contain two new keywords: class and properties.

The class keyword must be followed by the name of the class that we are defining. NOTE: this name MUST be the
filename of the file we are writing: i.e. vector3d.nrx.

After the properties keyword we define the so called data-members, which are, de-facto, variable names.

4 Methods

There is a number of things that we can do with vectors: we can compute their magnitude (or module), we can
inverse them. We can also execute operations with two vectors, like adding two vectors, computing their scalar
product, check if they are equal, etc.

For each of those operations we then define a method which is, if you like, a sort of function that belongs to a class
and that we perform over an object (belonging to this class).

-- nmethod x()
-- wWill return the x conponent of the 3d vector
met hod x() public
-- the code will go here
-- nethod inverse()
-- will inverse a 3d vector
met hod inversei) public
-- the actual code will go here
-- nethod mag()
-- wWill return the magnitude of a vector
met hod mag() public
-- the actual code will go here
-- etc. etc.

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

Why we use the term method, and not just function or procedure ? The reason is just historical [VAN DER LINDEN,
1997] and goes back to Smalltalk-72. For you, just remember that a method is just a function that belongs to a
class.

With the definition of the methods, we then have completed the class definition.

Resuming, if we want to capture the class of 3d vectors, (at least partially) in NetRexx code, we will write:

class vector3d public
properties public
XC X conponent

yc -- y conponent

Zc -- z conponent
nmet hod i nverse() public

XC = -XC

yc = -ycC

zCc = -zcC

met hod nmag() public
mag = Math.sqgrt(xc*xc + Xy*Xy + Xz*Xxz)
return mag

When you define a class, you need to specify:

o e +
CLASS
o m e e e e aao - +
PROPERTIES
(storage definitions) [
e |
METHODS
(operations on the
PROPERTI ES)
R \
oo e e e e e e e e e e e e e e e e e +

Some "real" vectors

The Obijects are instances of a Class. So far we have defined how and what we can do to define and use a vector,
but we need a "real" one, to try out the class definitions, and use it. We need an instance of the class.

By defining the vector3d class in NetRexx, we have now created a new data type. To have a REAL vector3d you
then write:

v = vector3d()
Here you just told NetRexx: "please, treat the variable v as a vector3d: as | told you in the class definition, this

variable will have 3 components associated to it, and | will be capable to perform operations like inverse , mag()
etc. toiit".

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

As you probably realize, all this procedure made you create "something" that is NOT a string. Infact, as | said,
NetRexx has ONLY one NATIVE data type (the string) but you can create your own data types, and vector3d is just
one example.

NOTE for Java Programmers: Note that this definition is a bit different of what you would do in Java. If you had to
write the very same code in Java you would do:

vector 3d v;
v = new vector3d();

In NetRexx, the dynamical definition of the object is done automatically for you (saving one line of typing).
2 Initialising the Vector values

Now that we have a real vector3d object v, we can use its data fields and initialise it to some values.

We do it like this:

-- Vv is a vector3d object

v = vector3d()

-- initialise the vector 2, 3, 1
V.XC = 2

v.yc = 3

v.zc =1

» Memory Model
Consider the following definitions, were we define two vectors vt and v2:

vl
v2

vector3d(1, 3, O
vector3d(0, 1, 1

It is important to consider how NetRexx defines those objects (and the class methods) in your computer's

memaory.
oj ect s: Code:
Fome oo + o e e e +
xc=1 | vector3d() |
vl:|[yc=3 ::::::::>:::::::::::>| X(|
XC=0 = y ;
= z
B + = mag
= phl8
R + =
xc=0 =
v2: yC:]_ —=======>= T +
xc=1
Foee oo +

We can see that an object is an instance of a class (which is a new, user defined, type).

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

Each object (the vectors v1 and v2 in our example) has its own data.

On the contrary, only ONE copy of the code for a class is shared by all the objects (that we now know we can call
instances of the class).

Using vector3d Methods.

So far, we just defined the vector v, but we have done nothing with it.

To access vector3d methods, we use the very same syntax we used to access the data of the object.

v = vector3d()

i- I?itialise val ues

m= v. mag8 -- conpute vector' mag
p = v.phi -- conpute vector's PH

In classical non-0O0 languages (FORTRAN, REXX, Pascal, etc.) the above call would have been written like:

m
p

mag(v
hC (V)
while, in NetRexx, we wrote:

m
p

v oRe

The difference is not just cosmetics: we are stressing the fact that the "center" of our attention is the v object, not
the action that we are performing (the computation of the MAG or of PHI).

We see that properties and methods are considered at the same logical level (even if, as memory is concerned,
treated in different ways).

So:
V.XCc = 2 -- neans:
-- assign 2 to the xc conponent of v
m = v.nmag() -- means:

- - aﬁply met hod "mag()" to v, and store
the result in "nf

2 Initialising a vector: the constructor.

If we look closer to the instruction we used to create a vector:

v = vector3d()

we notice the usage of the parentheses () after the vector3d. This looks really like a method call. Infact, we are

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

calling a special method, called constructor, which is used to perform all the initialisations that are needed to
prepare the new object.

The constructor is a "special" method, that's why it MUST have the same name of the class. So, since our class is
called vector3d, to define the vector3d constructor method we'll write:

cl ass vector3d

-- constructor
met hod vector3d(...) public
<

| MJST use the same nanme for |
the CLASS and for the CONSTRUCTOR |

-- nmethod......: vector3d
-- purpose.....: constructor
met hod vect or 3d(x=Rexx, y=Rexx, z=Rexx) public
this.xc = x
this.yc =y
this.zc = z

In order to use the constructor for our vector initialization, we'll then write:
v = vector3d(2,3,1)

which is exactly the same as writing, when we had not defined the constructor:

v = vector3d() -- ditto like

V.XCc = 2 - -

v.yc = 3 - - v = vector3d(2,3,1)
v.zc =1 --

Defining more than one constructor.

You'll find that having just one constructor method is usually not enough. Even in our simple class, it would be nice
if it was possible to write something like:

zero = vector3d() -- define a vector 0 0 0O

v = vector3d(3,2,1)

z = vector3d(v) -- define a vector like v,
--i.e. 321

unary = vector3d(1) -- define a vector 1 11

You can do this in NetRexx writing "additional" methods, with the same name, but with different arguments. In

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

our example, we'll write:

-- overl oaded constructors

nmet hod vector3d() public
t his(0, 0, 0)

nmet hod vect or 3d(x=Rexx) public
thi s(x, x, x)

met hod vector3d(vl=vector3d) public
this(vl. x,vl.y,vl. z)

What we just achieved is an operation of "method overloading", i.e. define a method with the same name, but
different arguments.

2 Undefined constructor

So far we have defined 4 constructor methods, which are (just to summarise):

met hod vect or 3d(x=Rexx, y=Rexx, z=Rexx) public
met hod vector3d() public
met hod vect or 3d(x=Rexx) public

met hod vector 3d(vl=vector3d) public

This tells NetRexx that there are 4 ways to define a new vector. What happens if you try to write:
a = vector3d(1, 2)
Simple: NetRexx does not know how to treat this case, so you'll get a very nasty message saying:

4 +++ a = vector3d(1,?2)

+4++ ANNNNNNN
+++ Error: cannot find constructor 'vector3d.vector3d(byte, byte)'

which means: "l do not know how to deal with this special case of vector3d followed by 2 arguments."

2 The main() method

The main() method is a special one. It is the method that will automatically be called if you invoke a class directly
from the command line.

Recall the parrot program:

| /* parrot.nrx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

01
* echoes back what you type on comand |ine | 02
*/

03

parse arg sl

04

say 'you said "'sl1'".'
05

exit O
06
e m ot e e e e e e e e e e e e e e e e eeaaaao- +
parr ot.nrx
ResoUrces Download the source for the parrot.nrx example

If you want to write the very same code using a class, you'll do:

o e e e e e e e e e e e e e c e mmmmmmemememcmemmmemmemeececececemmecemmmememccemmeemmeeeeem———====
-- This class inplenments a class version of parrot.nrx
02
class parrotc public
04
met hod mai n(argunments=String[]) public static | 05
parse Rexx(argunments) si | 06
say 'you said "'sl1l'".'
07
exit O
08
g +
parrotc. nrx
I e#5 Download the source for the parrotc.nrx example

The two programs are perfectly equivalent (although the first one is definitely less typing). Infact, what NetRexx
does is to translate the 1st one into "something" that looks like the 2nd one.

The main() method is very useful if you want to test a class. You will just put the class test cases, and run it typing
java PROGNAME.

@ Putting all those pieces together

This is probably the most important section we've seen so far, since we finally apply in reality what we've been
doing till now.

We have afile, called vector3d.nrx, that contains all the properties and methods used by the vector3d class. We
compile it, and obtain a vector3d.class class file.

We can now edit a file that exercises the 3d vectors. The easiest one can be something like:

| -- tvec3ds.nrx | 01

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/parrot.nrx
http://www.netrexx.org/examples/parrotc.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

02
a = vector3d(1,1,1) -- define a vector | 03
say 'Vector "a" conponents:' a.components()'."’ | 04
05
a.inverse() -- inverse it | 06
say 'Vector "a.inverse()" is' a.conponents()'.’ | 07
exit O
08
09
i +
tvec3ds. nrx
I %e#5 Download the source for the tvecds.nrx example

As you can see, we do very little: just define a vector3d a, display his components, invert it, and check that all was
OK.

We compile tvec3ds.nrx. NetRexx will grab the vector3d class definition at compile time, so it will know how a
vector3d looks like. We end up with with a tvec3ds.class, which we can run as usual.

Resuming:

-- conpile
1]> java COM i bm netrexx. process. Net RexxC vect or 3d. nrx
2] > java COM i bm netrexx. process. Net RexxC tvec3ds. nrx
--_run
[3]> java tvec3ds

To visually resume what we did, here's a picture:

vect or 3d. nr x tvec3ds. nrx

(java 1BM.. vector3d) (java IBM.. tvec3ds)
= [1] = [2]

S TS + [TS —— +

| |
JAVA CODE| =============| JAVA CODE|
A A . A
vect or 3d. cl ass tvec3ds. cl ass

QL

(java tvec3ds)

[3]

The following program illustrates all what we've implemented in the vector3d class.

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/tvec3ds.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

deeecemmeemmemmemeammmmmmsmmeeamsmssmmeasssmec;c;ccecsmsmmesmsm-m-msmcesmsmeammmccmam==n=n==
i— tvec3d. nrx
-- exercise the 3dimvector class
03
a = vector3d(1)
b = vector3d(3,4,3)
¢ = vector3d()
06
d = vector3d(b) | 07
e = vector3d()
08
f = vector3d()
09
10
say 'Vector "a" conponents:' a.conmponents()'.' | 11
say 'Vector "b" conponents:' b.conmponents()’.’ | 12
say 'Vector "c" conponents:' c.components()'."’ | 13
say 'Vector "d" conponents:' d. conponents()‘ ' | 14
say 'Say "a.mag()" i1s: 'a.mag()' | 15
16
e.zero()
7
e. add(a)
18
e. add(b)
19
say 'Vector "at+b" is' e.conponents()'.’ | 20
e.inverse() | 21
say 'Vector "e.inverse()" is' e.components()'.’ | 22
23
e = vector3d. add(a, b) | 24
say 'Vector "a+b" is' e.conmponents()'.’ | 25
26
f = vector3d.greater(a,b) | 27
say 'Vector "greater(a,b)" is' f.conmponents()'."’ | 28
29
36- let's play with an array of vectors
31
k = 200
32
v = vector3d[k] | 33
v[1] = vector3d(1,1,1) | 34
v[2] = vector3d(2,2,1) | 35
v[3] = vector3d(O0, 2,0) | 36
e.zero()
37
loopi =1to 3
38
say 'vector "v['i']" is' v[i].conponents()'."' | 39
e.add(v[i]) | 40
end
41
say 'Vector "INTEGRAL" is' e.components()'."’ | 42
43
exit O
44
e N I T I I T . +
tvec3d. nrx
[Nl Download the source for the tvecad.nrx example

*** This section is:

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/tvec3d.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

*** and will be available in next rel eases

» Static Properties and Methods

2 Subclasses and Inheritance

The vector3d class we defined is very good for classical physics. But, for relativistic studies, we need also to add
another dimension: t.

This means that we need a new class, which we'll call vectorLo (as an abbreviation for vectorLorentz: a vector in
the 4 dimension space).

Extending a Class

NetRexx allows you to use the code we already wrote for the 3 dimension vector class, defining vectorLo as an
extension (or subclass) of vector3d

We do this as:

class vectorLo public extends vector3d
pr?pergles public

met hod (...)

The extends keyword tells NetRexx that the newly created vectorLo class is a subclass of vector3d. As such it
INHERITS the variables and methods declared as public in that class.

That's where the real point is: we do not have to define again the method x(), in order to get the x component of a
Lorentz vector, we just use the method we inherited from the 3 dimensional vector3d class.

Some methods, of course, need to be overloaded, like in the case of:

-- method......: conponents
-- purpose.....: prints the conponents

met hod conponents() public returns string
return '('this.xc',"this.yc',"this.zc',"this.tc")’'

to take into account the new dimension.

The Lorenz's vector implementation will be:

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

o e e e e e e e e e e e e e e emmmmmememeeccmeemememeeememecccccceeeeeeeceeeem————==~
-- This class inplements a Vector in a 4 dinentional space
02
class vectorLo public extends vector3d
properties public
tc
05
06
-- nmethod......: vectorlLo
-- purpose.....: constructor
09
met hod vect or Lo(x=Rexx, y=Rexx, z=Rexx, t =Rexx) public
super (x,Y, z)
this.tc =t
12
13
met hod vectorLo() public
this(0,0,0,0)
16
met hod vect or Lo(x=Rexx) public
t hi s(x, x, X, x)
19
met hod vectorLo(vl=vectorLo) public
this(vl. xc,vl.yc,vl. zc,vl. tc)
22
-- method......: conponents
-- purpose.....: prints the conponents
25
met hod conponents() public returns string
return ' ("this.xc',"this.yc',"'this.zc',"tc')’
28
-- method......: main
-- purpose.....: runs the test case
31
met hod mai n(args=String[]) public static
ar gs=ar gs
33
a = vectorlLo(1,1,1,1)
b =a
35
36
say 'Vector "a" conponents:' a.components()’."’
say 'Vector "b" conponents:' b.conmponents()'."’
say b. mag()
39
40
exit O
41
e e e e e e e e e e e e e eemcmmemmmmesmsmememeeeeaesmsmeececccccsmsmeemmecmcce_a——=a==-

| 01
| 03
| 04
| 07
| 08
| 10
| 11
| 14

| 15

| 17
| 18

| 20
| 21

| 23
| 24

| 26
| 27

| 32

| 34

| 37

vectorLo. nrx

INEERINT%m Download the source for the vectorLo.nrx exampl

s Class Hierarchy

Just to clear out the terminology we speak about superclasses and sublasses, saying:

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/vectorLo.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

| vector3d |
S +
+-(...is a superclass of...)<--+
+->(...is a subclass of...)----+
S +
| vectorlLo |
S +
or, if you prefer:
Fomm e o +
| KEYWORD |
Fommmm e o +

o e + e e e +
SUBCLASS SUPERCLASS

| NHERI TS |
o e o + oo +

» Check if an object belongs to a subclass

It is sometimes useful to check if we have a particular subclass, within a superclass, and perform this check at

runtime.

Java programmers might use the instanceof operator; in NetRexx you just do:

obj ect <= cl ass_nane

using the <= operator.

So, for example, we might have:

cla?s vector3d public
cl ass vectorLo public extends vector3d

(...
class vectorHEP public extends vectorlLo

vl = vectorLo()
if vl <= vectorlLo

Another way to test for a class match, as suggested by Mike Cowlishaw in a recent thread is:
i f OBJECT. getcl ass. getnanme == ' CLASS' then

| resume the above discussion in the following code:

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

1) -- a Lorentz vector

o e mm ==
-- tveclLol. nrx
02
a = vectorlLo(1, 2,1,
b = vector3d(1,1,1) -- a 3d vector
05
-- check if a and b are Lorentz vectors
07
if a <= vectorlLo
08
then say 'a is a Lor vec'
09
if b <= vectorlLo
10
then say 'b is a Lor vec'
11
12
-- get in another way
13
14
say 'a is a:' a.getclass. getnane
say 'bis a b. get cl ass. get nane
17
exit O
18
o o e =

| 01

| 03
| 04

| 06

tvecLol. nrx

8GO e#2 Download the source for the tveclot.nrx example
» First case study: A better approach to vectors.

| presented the example of the 3 dimensional and 4 dimensional vector classes mainly for "educational" purposes.
We saw infact a "minor" problem which is the need to write again some methods for the 4 dimensional vector
class, because we need to take into account the fact that we have an extra dimension (remember the mag()
method). So, if we have to deal with 5 dimensional vectors, we'll need to rewrite AGAIN those methods.

There MUST be a better approach; the idea is to write a class which has NO notion of the space dimension, and use
that to build the 3d, 4d, 5d, etc. vectors.

This class will be called xvector.nrx.

» The xvector class: a generic vector.

The xvector class will implement a N-dimensional vector. We are then forced to use arrays to hold the numerical

values.

The mag() method will look like:

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/tvecLo1.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

-- nethod......: mag | 97
-- purpose.....: vector's elenments nmg | 98
99
met hod nag() public | 00
sum = 0
01
loop i =1 to this.dinension | 02
sum = sum + this.element[i]*this.elenent[i] | 03
end
04
sum = Math. sqrt(sun) | 05
return sum
06
07
o m m em oo +
xvect or. nrx(Met hod: nmag)

M-Dwm th mplete source for the xvector.nrx librar:

o mmm e +
-- nethod......: add | 24
-- purpose.....: adds a vector to another | 25

26

met hod add(vl=xvector,v2=xvector) public static returns xvector | 27
v3 = xvector('0") | 28
v3. di mensi on = v1.di nension | 29
loop i = 1 to vl.dinension | 30
v3.elenent[i] = vl.element[i] + v2.elenent[i] | 31

end

32
return v3

33

34

o s o e o et o o o ok o o o o e e e o e o e o e e o e e e o e e e e e e e oo oo oo +

xvect or. nrx(Met hod: add)

INEEeITel#5 Download the complete source for the xvector.nrx library

» Arevisited 3d vector.

Look now how simple is to build our 3 dimension vector class: we just extend the xvector class and override the
constructor, to allow writing:

v = xvector3d(1, 2, 3)

I'll call the new 3d vector class xvector3d, to avoid confusion with the vector3d one we studied in the previous
sections.

| -- This class inplenents a Vector in a 3 dinensional space
| -- extending the xvector class

|O3
| class xvector3d public extends xvector

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/library/xvector.nrx
http://www.netrexx.org/library/xvector.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

05
-- method......: vectorlLo | 06
-- purpose.....: constructor | 07
08
met hod xvect or 3d(x=Rexx, y=Rexx, z=Rexx) public | 09
super(x','y',"'z) | 10
11
met hod xvector3d() public | 12
this('0','0,'0") | 13
14
met hod xvect or 3d(x=Rexx) public | 15
t hi s(x, x, x) | 16
17
met hod xvect or 3d(vl=xvector3d) public | 18
this(vl.element[1],vl. elenent[2],vl. elenment[3]) | 19
20
-- nethod...... ;. omain | 21
-- purpose.....: runs the test case | 22
23
met hod mai n(args=String[]) public static | 24
ar gs=ar gs
25
a = xvector3d(1,1,1) | 26
b =a
27
28
say 'Vector "a" conponents:' a.display()'."' | 29
say a. mag()
30
say 'Vector "b" conponents:' b.display()'."' | 31
32
exit O
33
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
xvect or 3d. nrx

Resolrceon Download the source for the xvector3zd.nrx example
» Second case study: the command line class cmdline.

After having dealt with vectors, which might not be interesting for you, if you're not a physicist or an engineer,
let's start with some real objects that you are dealing with everyday.

The command line

The command line is one of those objects. With command line | mean all what you enter after a program's name
on the command line (shell or DOS prompt).

pronpt > java mnmy_conmand argunments -options

A command line is usually divided in

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/xvector3d.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

e arguments
e options (introduced with a"-" sign)

Just take a UNIX book and you'll find hundreds, if not thousands of examples. | give you a really small sample:

command options argument s
Is -la test tost -1 -a test tost
df -k /usr -k [usr
cat test NONE t est
tar -cvf o.tar * -C -V *

-f tar

The operations that we do, when analysing a command line in a in a program are (in random order):

e check that the user enters the right number of arguments;
e initialise options to a default value;

e check that the options are valid;

e check that an option requiring an argument has a valid one;

Additional requirements

Since we want to be clever, we add also some requirements:

We want that the arguments and options can be intermixed: this means that:

myprog -t -o test.file input_arg
nyprog -to test.file input_arg
myprog input_arg -o test.file -t

MUST be perfectly equivalent from the user's point of view. (note that this is not always true in UNIX!).

Also, we want to be capable to query, at any time in the program, the value of an option, in order to write
something like:

%I = cmdl i ne()
ifi .option(’ TRACE))
then say 'Tracing is active'

(

Option pre-setting.

In the actual implementation, we need indeed an additional information, which is "how to pass the options and
their default value when we create the cmdline?".

A way is to use a string that holds, separated by a delimiter, the value of :

, t, o, etc.);

- the synbol of the option (like r
s a flag or a variable;

- a paraneter indicating if it'
- the NAME of the option

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

- the default value

We will call this string the rules definition, since we use those rules to define the options.

Example:

"t/ FLA TRACE/ 0

we define an option (-t) which is a flag, known in our program as 'TRACE' and defaulted to o

"o/ VAR/ OUTFI D/ t est . out put’

we define an option (-0) which defines a variable, known in our program as 'OUTFID' and defaulted to test.output

"t/ FLA TRACE/ 0 o/ VAR/ QUTFI D/ t est . out put'

our rules definition is now to have two options, the same as above
Cmdline class overview
The cmdline constructor will accept two arguments: the first one being a rexx string containing the line entered

by the user; the second one being again a rexx string, containing the rules in the format we defined. This allows us
to already prepare all the options and all the arguments.

USER S | NPUT
like: filel -t -0 test

PROGRAMVER' S RULES
like: 't/FLA TRACE/O' -
"o/ VAR/ OFI D/ test . out' |

This object is now aware of the
olotions as entered by the user

all owi ng sonething |ike:

if \cl.option(' TRACE') then ...

The class will look like:

class cmdline
properties private
options
ar gurrent

met hod verify(rexx) pub
met hod optiondunp() pub

(...)

met hod cndl i ne(rexx, rexx) public
nmet hod opti on§rexx§ publ IC
ic
lic

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

2 Cmdline class implementation.

| show now how some of the class methods are implemented.

By far the most complex is the cmdline constructor. We need infact to analyse the command line, as entered by
the user (instr) and parse the options as defined by the programmer (rules).

The first step is to check the rules, set the valid options and set the default option values.

o e mmmm e e e mm e e e e e e e e m e mm— =
-- method......: cndline
-- purpose.....: constructor
97
met hod cndl i ne(i nstr=Rexx, rul es=Rexx) public
99
-- initial setup
00
01
olist ="' -- option_list | 02
oinfo ="' -- option info
03
outstr ="' -- that's the string that holds all BUT the | 04
-- options; we'll return this | 05
06
-- set the defaults
07
08
loop for rules.words() | 09
parse rules rule rules
10
parse rule opt'/'"info
11
olist = olist opt
12
oinfo[opt] = info
13
parse info kin'/'nam /' def | 14
sel ect
15
when kin = 'FLA then
16
do
17
val ue[nam = def
18
end
19
when kin = 'VAR then
20
do
21
def = def.translate(' ','$") | 22
val ue[nam = def
23
end
24
ot herw se
25
do
26

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

NetRexx Tutorial - Classes and Objects in NetRexx

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

say '(parse_UXO Internal error.'
say '(parse_UXO kin was "'kin'".
say '(parse_UXO Aborted.’
exit 901
30
end
31
end
32
end
33
34
-- get the options as entered
36
loop while instr <>
37
parse instr var instr
38
if var.left(1,1) <> "'-' then
do
40
outstr = outstr var
Iterate
42
end
43
svar = var
44
var = var.substr(2,1)
if olist.wordpos(var) = 0 then
do
47
say 'Invalid option "'var'" selected.’
say 'Valid options are "'olist.space()'"."'
say ' Program aborted.'
exit 902
51
end
52
info = oinfo[var]
53
parse info kin'/'nam/"'def
sel ect
55
when kin = 'FLA then
56
do
57
if def ="'0
58
then def = "'1'
59
el se def ="'0
60
val ue[nam = def
61
end
62
when kin = 'VAR then
63
do
64
def = def.translate(’ ','$'")
cho ="
66
| oop for def.words()
parse instr tt instr
68
if tt ="' then
69
do
70
say 'lInvalid argunent for option
say ' Should be a' def.words() 'words string.'
say 'Like default "'def'".'

| 27
| 28
| 29

| 35

| 39

| 41

| 45
| 46

| 48
| 50

| 54

| 65

| 67

| 71
| 72
| 73

NetRexx Tutorial - Classes and Objects in NetRexx

| 74

| 79

| 86

| 88
| 89

| 93

say ' Program Aborted.'
exit 903
75
end
76
cho = cho tt
77
end
78
val ue[nam = cho. space()
end
80
ot herwi se NOP
81
end
82
83 -- here | deal with the case when one enters
-- -tf instead of -t -f
84
85
if svar.length() <> 2 then
do
87
Il = svar.length() - 2
00 = svar.substr(3,11)
instr ='-"00 instr
90
end
91
end
92
argunentlist = outstr.space()
94
o o o o o e e e e e e e o e m e e e e = =
xstring. nrx(Method: cndl i ne)

Download the complete source for the xstring.nrx library

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- method......: option
-- purpose.....:
97
met hod option(i n=Rexx) public
out = val ue[in]
99
return out
00
01
o e e e e e e e e e e e e e e e emmmeememccmemeaemeememecccccemmeemeecccemeeeeeeeece_——====
xstring. nrx(Method: option)

Download the complete source for the xstring.nrx library
Additional examples

This two additional examples should clarify what we did.

-- test for the cndline class

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/library/xstring.nrx
http://www.netrexx.org/library/xstring.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

02
é_ we allow 2 options:

- - -t (TRACE) flag default to O | 04
-- -0 (QUTFID) variable defaulted to test.out | 05

06
garse arg args

08
cl = cmdline(argsl,'t/FLA TRACE 0O - | 09
"o/ VAR/ QUTFI D/ test. out ") | 10
say 'The argunents are:' cl.argunents()'."' | 11
if cl.option(' TRACE) | 12
13 then say 'Tracing is ON
el se say 'Tracing is OFF
say 'The output file is:' cl.option(' QUTFID) | 15
16
exit O
17
i +
tcll.nrx
IRk Download the source for the tclt.nrx example
e T N I T I T N EE—. +
-- anot her test
1
02
class tcl2
3
properties public | 04
05
met hod tcl 2() public | 06
07
met hod main(ar=String[]) public static | 08
argsl = xstring.a2s(ar) | 09
10
-- test for the crdline class
11
12
3 -- we allow 2 options:
1
-- -r (REPLACE) flag default to O | 14
- - -T (TESTLEVEL) variable defaulted to O | 15
16
cl = crmdline(argsl,'r/FLA REPLACE 0O' - | 17
" T/ VAR/ TESTLEVEL/ Q') | 18
say 'The argunents are:' cl.argunents()'.’ | 19
if cl.option('REPLACE') | 20
01 then say 'Replace is ON
9o el se say 'Replace is OFF
say 'The testlevel is:' cl.option(' TESTLEVEL") | 23
24
exit O

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/tcl1.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

Kesolrces: Download the source for the tcl2.nrx example

» This chapter's tricks.

2 Getting the arguments from main()

As we have seen, the arguments in the main() method are passed as an array of string[].

This is clearly different from the approach we saw in Chapter 2 about the argument passing from the command
line, where arg was returning a simple NetRexx string.

To get the arguments in the "right" way (i.e. the way you have been used to) you need to code an extra line:

met hod main(args=String[]) public static

arg = Rexx(args) -- ADD TH S LINE
parse arg pl p2 . -- THI'S as usual
The line:

arg = Rexx(args)

instruct NetRexx to "translate" the array of string args into a single NetRexx variable string.

args[0 -+---(Rexx())--> arg
args|1 -+
a'rQ's n] -+

*** This section is:

*** and will be available in next rel eases

» Chapter Summary

*** This section is:

*** and will be available in next rel eases

http://www.netrexx.org/Tutorial/nr_11.html[11/4/2010 2:27:45 PM]

http://www.netrexx.org/examples/tcl2.nrx

NetRexx Tutorial - Classes and Objects in NetRexx

File: nr_11.htnm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:45(GMT +2).

http://www.netrexx.org/Tutorial/nr_11.htmlI[11/4/2010 2:27:45 PM]

NetRexx Tutorial - More on NetRexx Classes

The NetRexx Tutorial
@ - More on NetRexx Classes

More on NetRexx Classes

2 Introduction

In this chapter we'll look at some "details" we intentionally left uncovered in the previous discussion.
» Basic Concepts

Patterns and Pattern Design

Pattern Design is used to sketch a solution to some particular Object Oriented problem. It has probably already
happened to you (as it did to me) to think: "I've already solved this problem (or a similar one) in the past."” Then
you rush to your code and try to find the solution again. If I'm allowed to make such comparison, then, "Design
Patterns" stand to "Object Oriented Programming" as "Algorithms" stand to "Procedural Programming'. Even
further, Gamma, Helm, Johnson and Vlissides text stands to "Design Patterns" as Knuth's stands to "Algorithms".

The key issue is to make your software reusable. Using Design Patterns, you not only make it such, but you also
reuse other's people efforts to find the right solution.

» Usage of Abstract Classes

A Simple (2) problem

Let us consider a class hierarchy for a simple problem: we consider the "universe" of 2D rectangular objects, where
we'll find Rectangles and Squares. A Venn diagram representing our "universe" might be useful:

o e e e e e e e e e e e meaoaaoo + U
N
RECTANGLE I
\
oo + E
R
SQUARE S
E
oo +
e +

Venn di agram of the
"uni verse" class RECTANGLE
with a subcl ass (SQUARE)

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

NetRexx Tutorial - More on NetRexx Classes

Making an Object Model

Recalling what we saw in the previous section, we can try to implement the above diagram using NetRexx. The
first thing I'd think of is to make a Rectangle class, and have Square defined as a subclass of Rectangle.

Let's make an Object Model for this diagram:

e +
RECTANGLE
Ceee- (RE1)
oo e e e e e e e o
L
* *
* %k k k%
|
e +
SQUARE
) <----(SQL)

Note that, in our diagram:

e classes arerepresented by squared boxes;

e the triangular symbol connects two classes, and represents the "is-a" relationship. It points ALWAYS to the
superclass.

e The "<---()"represents an object, and it points to the class it belongs to.

So, from our picture we can say phrases like: the class "SQUARE" "is-a-subclass-of" the class "RECTANGLE", or the
object "SQ1" is an instance of the class "SQUARE".

2 Implementing it in NetRexx

The actual implementation is trivial: so just look at the code.

-- abex1.nrx
01
-- Inplenents Rectangl es and Squares
03
ZI ass abexl public
properties public | 05
06
met hod main(args=String[]) public static | 07
args = args
08
09
RE1 = Rectangle(l,?2) | 10
11 say REL. area()

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

NetRexx Tutorial - More on NetRexx Classes

12
SQL = _Square(2)
13
say SQL. area()
14
15
exit O
16
17
class _Rectangle
18
properties public | 19
| ength
20
wi dt h
21
met hod _Rect angl e(| =Rexx, w=Rexx) public | 22
length = |
23
width = w
24
met hod area public | 25
return this.length*this.width | 26
met hod set _wi dt h(w=Rexx) public | 27
this.width = w
28
met hod set | engt h(l =Rexx) public | 29
this.length = | | 30
met hod perineter public | 31
return 2*(this.|ength+this.w dth) | 32
33
class _Square extends _Rectangle | 34
met hod _Squar e(s=Rexx) public | 35
super (s, s)
36
met hod area public | 37
return this.length*this.length | 38
met hod perineter public | 39
return 4*this.length | 40
i +
abex1l. nrx

G #5 Download the source for the abext.nrx example
Critics to the above implementation

There is a series of problems with the above implementation; | analyse them in order of increasing importance.

e To compute the perimeter of a Square, we need to do 4*width. It should be more logical to do 4*side.

e We use 2 variables to store a SQUARE's side, since width and length are always equal. This means a waste of
storage.

e Thereis no protection for somebody writing:

SQL = _Square(3
Scﬂ.sef1ength§4;

which is, in my opinion, REALLY a bad thing: we allow people to make squares with different sides.

Using Abstract Class

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/examples/abex1.nrx

NetRexx Tutorial - More on NetRexx Classes

To correctly represent the Venn Diagram, we MUST use three classes. The universe class will be an "abstract"
class, that we can call 2DSHAPE.

Let's revise our Object Model:

oo +
2DSHAPE
Fom e +
|
* *
o e e e o - ok k kK _ _ e +
+| ------ + +|- ------------- +
SQUARE RECTANGLE |
L <--(s) L |+<--(RE1)

Implementation

In order to create an abstract class (i.e. a class that contains at least an abstract method), we use the keyword
abstract (note that in C++ the keyword virtual is used).

That's how you'd implement in NetRexx:

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- abex2.nrx
1
-- abstract class exanple
03
ZI ass abex2 public
05
met hod mai n(args=String[]) public static | 06
args = args
07
Rl = _Rectangle(2,3) | 08
say Rl.area()
09
S1 = _Square(3)
10
say Sl.area()
11
say 'You defined _2Dshape.nobjects 'shapes."’ | 12
exit O
13
14
cl ass _2Dshape abstract | 15
properties public static | 16
nobjects = 0
17
met hod _2dShape() public | 18
nobj ects = nobj ects+1 | 19
met hod area public returns Rexx abstract | 20
met hod perineter public returns Rexx abstract | 21
22

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

NetRexx Tutorial - More on NetRexx Classes

class _Rectangl e extends _2Dshape | 23
properties private | 24
I ength
25
wi dt h
26
met hod _Rect angl e(| =Rexx, w=Rexx) public | 27
super ()
28
length = |
29
width = w
30
nmet hod area public | 31
return | ength*w dth | 32
met hod perineter public | 33
return 2*l ength*w dth | 34
35
class _Square extends _2Dshape | 36
properties private | 37
si de
38
met hod _Squar e(s=Rexx) public | 39
super ()
40
side = s
41
nmet hod area public | 42
return side*side | 43
met hod perineter public | 44
return 4*side | 45
46
o m o m ema oo +
abex2. nrx
IGO0 Download the source for the abex2.nrx example

2 Interfaces

*** This section is:

*** and will be available in next rel eases

» Dynamical Interfaces

@ Sample code

The interface part will look as follows:

| -- runnable.nrx

02
| class runnable interface
[met hod run() public

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/examples/abex2.nrx

NetRexx Tutorial - More on NetRexx Classes

| runnabl e. nr

X

Download the source for the runnable.nrx example

o m m e m oo +
-- dyna2.nrx
1
02
class dyna2 public
03 y p
04
met hod main(args=String[]) public static | 05
arg = Rexx(args)
06
do
07
r = runnabl e;
08
un = d ass.forNane(arg); | 09
r = runnabl e un. new nst ance() | 10
r.run()
11
catch e= Exception
12
say e
13
end
14
exit O
15
16
class testl inplenments runnable 17
met hod run public 18
say 'Hello from class TEST1' 19
20
class test2 inplenments runnabl e 21
met hod run public 22
say 'Hello from class TEST2' 23
24
o m o e o ee e me oo +
dyna2. nrx
Download the source for the dyna2.nrx example
o mm m e +
-- dyna3. nrx
01
02
class dyna3 public
03
04
met hod main(args=String[]) public static | 05
arg = Rexx(args)
06
| oop forever
say 'Enter Class name (A, B,C or quit' | 08
parse ask.upper() nane | 09
10 if name = "QUIT' then | eave

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/examples/runnable.nrx
http://www.netrexx.org/examples/dyna2.nrx

NetRexx Tutorial - More on NetRexx Classes

do
11
r = runnabl e;
12
un = d ass. for Name(nane) ; | 13
r = runnabl e un. new nstance() | 14
r.run()
15
catch e= Exception
16
say e
17
end
18
say 'There are' A n 'instances for A' | 19
say 'There are' B.n 'instances for B.' | 20
say 'There are' C.n 'instances for C' | 22
end
22
say 'End.’'
23
exit O
24
25
-- class A
6
27
class A inplenments runnable | 28
properties static | 29
n=2~0
30
met hod A public | 31
n = n+l
32
met hod run public | 33
say 'Hello fromclass A
34
35
-- class B
6
37
class B inplenments runnable | 38
properties static | 39
n =20
40
nmet hod B public | 41
n = n+l
42
met hod run public | 43
say 'Hello fromclass B
44
45
-- class C
6
47
class C inplenents runnable | 48
properties static | 49
n =20
50
nmet hod C public | 51
n = n+l
52
nmet hod run public | 53
say 'Hello fromclass C
54
o m m m e oo +
dyna3. nrx
IG5 Download the source for the dyna3.nrx example

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/examples/dyna3.nrx

NetRexx Tutorial - More on NetRexx Classes

This is what we get running dyna3:

*** This section is:

*** and will be available in next rel eases

@ Patterns

@ The Singleton

The idea of Singleton is simple: we want to make sure that a class has ONLY one instance, and we want to provide

a global point of access to it.

The structure is (GAMMA, 96, p. 127)

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

NetRexx Tutorial - More on NetRexx Classes

| Singleton |

ihg_etoncperation() ‘
Cet Si ngl et onDat a()

static Uni quel nstance |

sihg et onDat a |

static Instance() M > | return uniquel nstance

2 NetRexx Implementation of the Singleton

The NetRexx implementation of the Singleton Pattern might look like:

o m m m e +
-- Singleton.nrx | 01
- - Net Rexx | nmpl enentati on of Singleton | 02
-- see GAMVA, 1996, p. 127
03
04
class Singleton public | 05
06
properties private static | 07
_instance = Singleton NULL | 08
09
met hod Singleton() private | 10
11
met hod I nstance() returns Singleton public static | 12
if _instance = NULL then
13
do
14
_instance = Singleton() | 15
return _instance | 16
end
17
return _instance | 18
o m o e o e e o o o o o o e o e e e o e o e e e o e e e e e e e e e e e e oo e oo a— oo +
Si ngl et on. nr x
Resourceo Download the source for the Singleton.nrx example

Let's look at it closely. The first "uncommon" feature we find is:

met hod Singleton() private

i.e. the constructor is declared as private. Clients will not be capable to access it with a normal:

s = Singleton()

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/examples/Singleton.nrx

NetRexx Tutorial - More on NetRexx Classes

Instead, they're forced to use the Instance() member function, declared as static.

This means that the clients will need to write:
s = Singleton.lnstance()
in order to get the unique Singleton's instance.

*** This section is:

*** and will be available in next rel eases

» An history class.

Description of the problem

It is sometimes interesting to record the actions that an user enters when dealing with an interactive program.
This is, for example, the case of the history command in an UNIX shell.

First approach.

When | dealt for the first time with an implementation of an history command, my solution was to define a history
buffer (with his length):

properties public static
cmdbuf = Rexx(")
crdbufl = 20

and 2 methods to save/dump the history:

e
-- nethod......: historyd
-- purpose.....: display the history
46
met hod hi storyd(cur=Rexx) public static | 47
if cur < cndbuf
48
then st =1
49
el se st = cur-cndbufl
50
loop i = st to cur-1
51
say i.right(5) cndbuf[i] | 52
end
53
54

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

NetRexx Tutorial - More on NetRexx Classes

o e mmmm e e e mm e e e e e e e e m e mm— =
-- nethod......: hi story
-- purpose.....: hi story
57
met hod hi st ory(a=Rexx, n=Rexx) public static
if a<>"" then

59

do
60

cmdbufl = a

61

end
62

el se

63

do
64

hi st oryd(n) | 65

end
66
67
S I I .. +

xshel | 1. nrx(Met hod: hi story)

Download the complete source for the xshellt.nrx library

In the main loop, | was calling saving the entered command in the buffer

cndbuf [cndno] = todo
cndno cndno+1

2 The history class

The commands are saved in the history buffer inside a circular buffer

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- nethod......: save
-- purpose.....:
68
met hod save(entry=Rexx) public
k = lastrec // maxrec
if record[k] <> NULL then
71
do
72
if entry = record[K]
73
then return
74
end
75
lastrec = lastrec+1l
k = lastrec // nmaxrec
record[k] = entry

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/library/xshell1.nrx
http://www.netrexx.org/library/xshell1.nrx

NetRexx Tutorial - More on NetRexx Classes

hi st ory. nrx(Met hod: save)

Download the complete source for the history.nrx library

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- method......: dunp
-- purpose.....:
47
met hod dunp(n=Rexx) public
first = lastrec - n + 1
49
loop i=first to lastrec
k =i/l maxrec
51
if record[k] = NULL then iterate
if record[k] ="' then iterate
say i.right(5) record[K]
end
55
56
e
hi st ory. nrx(Met hod: dunp)

“+

Download the complete source for the history.nrx library

e
-- nethod......: retrieve
-- purpose.....:
59
met hod retrieve(n=Rexx) public returns Rexx
if n <lastrec - maxrec then return "
if n>lastrec then return "
k = n// maxrec
63
return record[K] | 64
65
B N e N T N . +
hi story. nrx(Met hod: retrieve)

Download the complete source for the history.nrx library

his hi st ory(100)

| oop

get user input
hi s. save(USER_| NPUT)

end

s Additional sources of information

You can find additional information about patterns at:

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://www.netrexx.org/library/history.nrx
http://www.netrexx.org/library/history.nrx
http://www.netrexx.org/library/history.nrx

NetRexx Tutorial - More on NetRexx Classes

http://st-ww.cs. uiuc. edu/users/patterns/

with some tutorial information at:

Ett :vaxw.enteract.con"l~brada /docs/ patterns-intro. htm
ttp:

p WwWw. csc. cal poly. edu/ ~dbutl er/tutorials/w nter96/patterns/

s Chapter Summary

* k%

This section is:

*** and will be available in next rel eases

File: nr_12.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:47(GMT +2).

http://www.netrexx.org/Tutorial/nr_12.html[11/4/2010 2:27:48 PM]

http://st-www.cs.uiuc.edu/users/patterns/
http://www.enteract.com/~bradapp/docs/patterns-intro.html
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/

NetRexx Tutorial - Operations on files

The NetRexx Tutorial
@ - Operations on files

Operations on files

2 Introduction

File /O has always been a 'problem’ in REXX. In fact, REXX was born as a platform-independent language. There were
no (at least not in the first specifications of the language) direct ways to access informations stored into a file. This led
to (quoting some examples) EXECIO in VM/CMS, CMS/PIPES in later VM/CMS, STREAMS in 0S/2, etc.

In NetRexx we use the file access routines that Java provides. In this chapter we will discuss how to access file
information using NetRexx. You will learn how to:

e read/write a file in one single operation;
e use 'pseudo’ RECFM F files on UNIX;
e use indexed file and get a random record out of 1 000 000 within a millisecond.

We will perform this task using an OOP approach.

Thanks to Massimiliano (Max) Marsiglietti, a NetRexx porting of the functions STREAM, CHARIN, CHAROUT etc. has
been done. Those routines will be discussed in the latest section of this chapter.

» Basic Concepts

The Stream 1/0 model

In NetRexx (like in Java) all the 1/0 mechanism is built on Streams. The idea of Streams is similar (but not related)
to the STREAMS in the Unix Kernel.

The Stream class gives you a mechanism "to get from" or "to put in" data into ""somewhere". This "somewhere"
can be afile, a screen or keyboard, the network, an audio device, etc. Your program will not have to care about the
"details" in the implementation. It will just read() or write() to the Input or Output Stream.

read() <---(bytes)---(§|nput Stream)))

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

wite() ----(bytes)-->((CUtput Streang)

Read/Write in Blocks

Before going into the details concerning the file /O operations, let me clarify a point which is, in my opinion,
extremely important.

| have always found the approach in which one tries to "confine" the operations on files inside subroutines more
elegant, and easier to port and maintain. This is in contrast with the usual practice of intermixing file operations
with the normal program flow. Let me make this clearer. The 'standard' approach is the following:

-- "standard" approach to file
-- Read/Wite

open | NPUT_FI LE

open QUTPUT_FI LE

do whil e THERE ARE RECORDS
read | NPUT_FILE
process RECORD
SW|te QUTPUT_FI LE

en

close INPUT FILE
cl ose OUTPUT_FI LE

what | prefer is the following:

-- "alternative" and "preferred" **% BETTER ***
-- approach to FILE I/O

-- oPen|ng/read|ng/cI05|n

the input file is done inside the rd file
net hod
read _file INPUT_FILE

do for RECORDS
process RECORD
end

- - oPen|ngIMW|t|n /cl osing

the output file is done inside the w _file
--_nEthod
wite file OUTPUT_FILE

All the 'dirty' jobs (checking file existence, opening, closing, transferring data to and from an array, etc.) are
reduced by this approach to ONLY two methods (the read_file and the write_file). There are cases where (as we
shall see) there is no choice other than to take the first approach, but these are rare. | have personally used the
second in 95% of programs and, again, it is easier to read, easier to port, simpler to maintain. You might ask
yourself why | stress the benefits of code porting. An example is the code on VM/CMS written some years ago. In
the early versions of Rexx there were NO instructions for file /0, so someone was obliged to use the "infamous"
EXECIO instruction. If all the instructions are 'confined' in two subroutines (now we call'm methods), the changes
are minimal when the code is ported. Otherwise you will need to change it in hundreds of places (if the program is
big). And the more changes you make, the more bugs that can slip in. Summary: use simple methods for file 1/O
operations as much as you can; some of those methods you can see later in this chapter.

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

» Checking file existence

The first thing you might want to do on afile is to check that it really exists. You can use the xfile built-in function
'state”:

rc = xfile.state(file_id)

Alternatively, you could use the HEP/VM function fexist (file exist):

rc = xfile.fexist(file_id)

The output variable (rc in this example) has the following meaning for both functions:

does NOT exi st

rc file
1 : file exists

rc

Here a small example of the function:

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa
- ()
01
if \xfile.state('xstring.nrx")
then say 'File does not exist.
03
04
if \xfile.fexist('/usr/local/bin/tcsh") | 05
then say ' TCSH not present.'
06
07
exit O
08
o m m m ema oo +
fexal. nrx
IS T#50 Download the source for the fexat.nrx example

The implementation of those functions is trivial:

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- method......: state
-- purpose.....: check file existence
41
met hod state(fid=Rexx) public static
in = File(fid)
43
fl = in.exists() | 44
return fl
45
46

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/examples/fexa1.nrx

NetRexx Tutorial - Operations on files

Resolrceon Download the complete source for the xfile.nrx library
» Basic File operations in Java.

This entire section should be regarded as "reference" only. You will find, in fact, the basic I/O operations that you
perform on a file. In my humble opinion it is nice to know these functions exist, but it is much better to use higher
level subroutines that do all the work for you. Therefore, you should skip this section if you are not really interested in
the detail.

Java classes for File access

e java.io.File

e java.io.FileDescriptor

e java.io.RandomAccessFile
e java.io.InputStream

e java.io.OutputStream

e java.io.PrintStream

*** This section is:

*** and will be available in next rel eases

» Writing an extension to the Java File class

In the previous chapter we showed the advantages of the OOP. We now even more clarify those advantages
building our own extensions to the java.lang.Object class File.

This new class (that we'll call xfile) will allow us to:

e use anintermediate array to buffer READ or WRITE operations

e perform appends to existing files

 simulate fixed length files (RECFM F)

o allow the building of an index for fast random access record retrieval

Reading and Writing a whole file.

It is sometimes desirable to read or write an ENTIRE file (i.e. from the first to the last line) with a single operation.
This approach has the obvious advantage of giving 'somebody else' all the bother of opening, read/write and
closing afile. That 'somebody' is merely the code that performs the function. The only drawback to such an

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

operation is that, especially if the file is big, it uses a lot of system resources. Therefore, as a rule of thumb, use the
ENTIRE file approach only for files < 1MB in size when you already know you are using ALL the records.

2 Implementation of read() and write() in xfile.

*** This section is:

*** and will be available in next releases
o s e mm e mm .= =
-- method......: read
-- purpose.....: read a full file into an array
97
met hod read() public
rc =0
99
do
00
in = Datal nputStrean(Fil el nput Strean(Fil e(nane))) | 01
catch er=i oException | 02
rc =3
03
return rc
04
end
05
06
i =0
07
|l oop while in.available <> 0 | 08
i =i+l
09
line[i] = in.readLine | 10
catch er=i oExcepti on | 11
say 'Problemreading file "'nane'".' | 12
say 'Message is "'er'".' | 13
rc =1
14
return rc
15
end
16
line[0] =i
17
lines = line[0]
18
return rc
19
20
g +
xfile.nrx(Method: read)
IG5 Download the complete source for the xfile.nrx library

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

deeecemmeemmemmemeammmmmmsmmeeamsmssmmeasssmec;c;ccecsmsmmesmsm-m-msmcesmsmeammmccmam==n=n==
-- nmethod......: wite
-- purpose.....: ARRAY -> disk file operation
82
met hod write() public
rc =0
84
do
85
out = PrintStream Fil eQutput Stream Fil e(nane))) | 86
catch er=i oException | 87
say ' Problem opening file "'nane'".' | 88
say 'Message is "'er'".' | 89
rc =3
90
return rc
91
end
92
93
loop i =1 to line[0]
94
linew = line[i]
95
96 if recfm="F then -- isrecfm=F ?
do -- Yup, insert the right amount |97
linew = linew left(lrecl) -- of spaces (or truncate | 98
end -- i f necessary)
99
out.println(linew | 00
end
01
02
03 -- we're done. but do not forget to close
-- and flush the printstream | 04
05
out. cl ose() | 06
if out.checkError() then | 07
do
08
say 'ERROR in witing "' name'"."' | 09
rc =1
10
end
11
return rc
12
13
o m o e e o e +
xfile.nrx(Method: wite)
Resources Download the complete source for the xfile.nrx library

@ How to use the new methods.

You use the methods in the following way:

infid = xfile('test.input')

rc = infid.read()

I .
| R IR < read operation
R < file object
oo < ==0 : XK

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

<>0 : problem
(...)
oufid = xfile('test.output')

rc = oufid.write()

I
| R R < read operation
R R < file object
T < ==0 : XK

<>0 : probl em

2 Example of reading of an entire file.

If you need to read an entire file and put its contents into the ARRAY variable, you use the .read() method. Let's
follow a complete example. Suppose your input file is test.data, and it looks like:

data info 1
data info 2

L)
data info N

o m m m ea o a +
(...) [
i(nfi;j = xfile('test.file") ||
rc = infid.read()
if rc <> 0 then /* action on READ fail */

) L

Exanple: read a file

infid.line[O N

infid.linell "data info 1'
i(nfi;j.llnez data info 2
infid.line[N "data info N

o o o eaa +
|('obio)i :1toinfid.line[O; ||
parse infid.line[i] (...
end
)
o o o e e e o em e m e aao- - +

Exanpl e: post read processing

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

2 Writing a whole file

Now consider the opposite situation, where we accumulate information into an ARRAY and we want to write a file
with it (for examplet est . out put).

T T N NN .. +
(...) I
?ufi? = xfile('test.output") |
|'o'?ioi =1to 30 ’

oufid.addl i ne(’ Qutput line' i) |
end i
(...)
rc = oufid.write()
%f rf <> 0 then /* action on WRITE fail */
o o e e e +

Exanple: read a file

» Read/Write access to a file (line by line)

Reading a file line by line

It is sometimes more desirable to read afile line by line and perform certain tasks within the reading loop. A
typical case is when the input file is REALLY big ; for example, a 200MB tape or database. Another instance is when
you really do not need to read all the records of the file, but only certain selected ones ; for example, all the
accounting cards for a certain user. The logic is the following:

open(file)
do whil e NOT(ECF)
record = readline(file)

-- processing

end
close(file)

The following code is an example of this approach. You will notice that it is far more expensive in terms of
instructions and complexity than the read() example.

*** This section is:

*** and will be available in next rel eases

@ Writing a file line-by-line

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

It is also interesting to consider writing a file line-by-line. This is again a case where the file being produced is big,
or where you do not want to store it inside an ARRAY variable. The logic is

open(file
dg fgr aI)I records

-- processing

witeline(file,record)
end
close(file)

Here is a complete example:

*** This section is:

*** and will be available in next rel eases

» Read/Write access to a fixed-format record file

Unlike the VM/CMS and MVS systems, UNIX and Windows systems have no concept of RECORDS in files, so there
is not much point in referring to LRECL and RECFM. However, using the xfile class you can access for read and for
write a 'pseudo’ fixed length file such as you are used on VM or on MVS. The advantage of these files is that you
can access them on a record basis and use the record number as the index.

Suppose, for example, you have a TAPE database containing 300 000 records. To access the 283 954th one, where
the records are all of the same length, you simply need to position yourself at the 283.954*RECL byte, and operate
over a RECL quantity. And that is what the following functions will do. A 'pseudo’ RECFM F LRECL 16 file will
appear like this on your system:

This file does have three records of 16 (actually 17 with the '0A'x character) characters, so it occupies 51 bytes of
disk space. Note that the '0A'x character is not mandatory. You could rewrite the routines presented hereinin
order to avoid it. | prefer having it so that | can look at the produced files with an editor or a browser. The format
of the function to access a RECFM F file is the following:

x_fiIeE'test.FIXED’)
ptions('recfmeF, | recl =80")

o1l

fid
fid.

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

-- wite record 120
fid.recwite(120," Test')

-- read record 133
parse fid.recread(133) rc line

The methods are the following:

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

do e e e e e e e e e e e e e e cmeemmmesmememcmemmemeemeeccccemme e e ———-
-- nmethod......: recio
-- purpose.....: RANDOM access file record read
55
met hod reci o(oper =Rexx, r ecno=Rexx, out =Rexx) public
rc =0
57
58
-- checks & initialization
60
oper = oper. upper()
if recfm<>"'F then
62
do
63
rc = 10
64
return rc 'ERROR not a RECFMEF file.'
end
66
raff = Fil e(nane)
67
size = int raff.length()
skip = (recno-1)*(lrecl +1)
skip = int skip
70
if size <= skip then
71
do
72
rc = 11
73
return rc 'ERROR past file end.
end
75
76
-- access as a Random File
-- and skip till the beginning of
do
79
raf = RandomAccessFil e(nane, "rw")
catch er=i oException
say 'Problem opening file ™'
say 'Message is "'er'".'
rc =3
84
return rc
85
end
86
do
87
raf . ski pByt es(ski p)
catch er=i oException
rc = 4
90
return rc
91
end
92

| 59

| 61

| 65

| 68
| 69

| 74

77
78

81
82
83

| 88
| 89

NetRexx Tutorial - Operations on files

93
if oper = 'READ then
94
do
95
do
96
line = raf.readLi ne() | 97
catch er=i oExcepti on | 98
say 'Problemreading file "'nane'".' | 99
say 'Message is "'er'".’ | 00
rc =3
01
return rc
02
end
03
return rc line
04
end
05
06
-- is it a WRITE operation?
07
08
if oper = "WRITE then
09
do
10
do
11
linew = out.left(lrecl) | 12
buf = Iinew \ x0A | 13
raf . witebytes(buf) | 14
catch er=i oExcepti on | 15
say 'Problemreading file "'nane'".' | 16
say 'Message is "'er'".’ | 17
rc =3
18
return rc
19
end
20
return O
21
end
22
return 11
23
24
o m m m e oo +
xfile.nrx(Method:recio)
Resolrces Download the complete source for the xfile.nrx library
o e mmmm e e e mm e e e e e e e e m e mm— =
-- method......: recwite
-- purpose.....: RANDOM access file record wite
34
met hod recwrite(recno=Rexx, rec=Rexx) public
out = recio(' WRITE , recno, rec)
return out
37
38
o m o e o e e o o o o o e o e e e o o e e e o e e e e e e e e e e e e e e oo oo +
xfile.nrx(Method:recwite)

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

m Download the complete source for the xfile.nrx library

The following program makes use of the above methods, showing all the possibilities:

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- test the xfile fixed record feature
02
arse arg what
03
what = what
04
05
fnane = 'test.Fl XED | 06
fid = xfile(fnane) | 07
fid.options('recfneF, |Irecl=16") | 08
09
say 'Accessing file "'fid.nane'"."’ | 10
fid.addline('this is a test') | 11
fid.addline('another line') | 12
fid.addline('last one') | 13
14
rc = fid wite() | 15
say 'RC' rc' witing "'fid.name'"." | 16
17
/* access a record | 18
*
/
19
say fid.recread(2) | 20
say fid.recwite(2,'New line 2') | 21
say fid.recread(2) | 22
23
exit
24
o o h e h e b e L b L b L bl e L e L b L el el e e e e e e e e e e m e e e e e e e e eemmaoaeaoaaaaaa +
tfix.nrx

m Download the source for the tfix.nrx example

Some explication: In line '08' we write a file, RECFM F LRECL 16 ,using the contents of the stem list.. The file will
look like this:

In line '11', we 'zap' the contents of the record 2, so our file will look like this:

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx
http://www.netrexx.org/examples/tfix.nrx

NetRexx Tutorial - Operations on files

In line '14' we read the record we just zapped in an indexed way N i.e. we access JUST the 2nd record of the file. If
you run it, this is what you get:

You can look at the file with your preferred editor, and check that it's really like | said.

» Indexed files

What we discussed about RECFM F files is also true for RECFM V files. On VM/CMS and MVS systems, you can say:
"get the record NNN of this file", and you get it in a really fast way. In UNIX, this is not possible. If you want the
NNNth record of afile, and the file is NOT fixed length, you MUST read all the file till line NNNth (in the assumption
that a record corresponds to a line). In this chapter we will analyse a method for overcoming this limitation, so you
can at least partially have the benefits of a RECFM V file on VM/CMS. We will write a routine that (without you
doing anything) will build an index file, and use it when you access the file itself. The idea is the following:
Whenever you build a variable record length file (ex. test), an index table for it is built automatically, containing for
eachrecord the displacement (in bytes) from the beginning of the file itself. As the table is RECFM F, it is easy to
find the NNNth record, and, from its contents, to identify the REAL contents of record NNN. Pictorially:

Ho-m - - - + B +
% RRRRRRRR
2 ptr r3 |------ >| RRRRRRRRRR
5 () RRRRRRRRRRR |
HFomm - - - + B +
test. | DX t est
(RECFM F) (RECFM V)

@ When should you use Indexed files?

The kind of applications that are well suited for indexed files are those where you read many times, RANDOMLY, a
big file that you produce or refresh infrequently. An example is the 'phone book' of a company with hundreds of
thousand of records, hashed in some particular form. Another example is a tape database, where the Volume ID of
the tape is de-facto the key to accessing the file.

@ pro and cons for Indexed files.

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

Clearly, if the file is big, the indexed method makes a search for arandom record as much as order of magnitudes
faster. The drawback is that EVERY time you change the file, you need to refresh the index and make sure that no
access to the file is made while the index is being built. In addition, the index itself uses space N a 1 million record
file requires an index file as large as 8MB. Of course if your records are big, this will be just a small percentage of

the total disk space, but if the records are small, you risk the index file becoming bigger than the file itself.

@ The 'rw_filev' routine.
The 'rw_filev' routine is the 'kernel' of our discussion. It has three subfunctions: one for writing a file and, at the

same time the file's index, a second for building an index for an existing file, and a third for reading a random
record.

*** This section is:

*** and will be available in next rel eases

» Handling of binary files.
It is sometimes useful to handle binary files.

2 The xfile routines

The two xfile routines readbuf and writebuf help you dealing with byte quantities.

r eadbuf ()
(FILE) --emeeme--- > fid. buffer
byt e[si ze]
Cmmmm e e m ==
writebuf ()

o mmm e oo +
-- method......: readbuf | 21
-- purpose.....: read an entire file into a buffer | 22
23

met hod readbuf () public | 24
rc =0

25

do
26
fd = Fil e(nane)
27
size = int fd.length() | 28
off =int O
29
fis = FilelnputsStrean(fd) | 30
in = Dat al nput Strean(fis) | 31
30 buf = byte[size]

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

oprc = in.read(buf, of f,size) | 33
catch er=i oException | 34
rc =3
35
say '(readbuf) ERROR ' er'.’' | 36
return rc
37
end
38
if oprc = size
39
then rc =0
40
elserc =1
41
buf fer = buf
42
return rc
43
44
S +
xfile.nrx(Method: readbuf)
IS Te#50 Download the complete source for the xfile.nrx library

The key instruction is:
oprc = in.read(buf, of f,size)

where we read from the input stream size bytes, and we place them in a byte array called buffer.

T N NN N NN . +
-- nethod......: witebuf | 45
-- purpose.....: wite an entire buffer onto a file | 46

47
met hod writebuf() public | 48
rc =0
49
do
50
fd = Fil e(nane)
51
size = int buffer.length | 52
off =1int O
53
fos = FileQutputStrean(fd) | 54
out = Dataout put St rean(fos) | 55
out.wite(buffer, off, size) | 56
out. flush() | 57
oprc = out.size()
58
out. cl ose() | 59
catch er=i oExcepti on | 60
rc =3
61
say '(witebuf) ERROR"' er'.' | 62
return rc
63
end
64
if oprc = size
65
then rc = 0
66
else rc =1
67

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx

NetRexx Tutorial - Operations on files

return rc
68

|69

xfile.nrx(Method: witebuf)

Download the complete source for the xfile.nrx library

@ Examples

Let's look to some real examples.

rc = of . witebuf(
say 'Wite of "'f

24
exit
25

-- test WRITE buffer
02
03
-- init a buffer, please
05
buf = byte[126]
06
loop i =1 to buf.length-1
07
buf[i] =i
8
end
09
10
-- declare the output file
12
fn ="tw.out'
13
of = xfile(fn)
14
15
-- point to the buffer space
16
17
of . buffer = buf
18
19
-- OK, do the wite
20
21

)
n'" got RC' rc'.

| 04

| 11

Download the source for the twb.nrx example

This is how your output file will look like, looking it using hedit (see next section).

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/xfile.nrx
http://www.netrexx.org/examples/twb.nrx

NetRexx Tutorial - Operations on files

» Case study: hedit, a file dump/edit in HEX

Let's look at a program that allows us to dump and edit binary (and even text files) in HEX digits. The program,
called hedit is available on the WEB source page for the tutorial.

The program does:

- read the full file in storage
- display the first "page" worth of dunp
- wait for conmands

@ Some relevant code

The reading of the input file is issued with a simple call to the readbuf method.

fid = xfile(fn)
rc = fid. readbuf ()

We now can use the array:
fid. buffer
to get the byte information of the file contents. Again, remember that:

fid.buffer.length -- buffer's length
fid. buffer[0] -- BUFFER
id buffer[fid. buffer.length-1] --

The method linedis is used to prepare the line that needs to be displayed.

T e L +
| -- nethod......: linedis | 78
| -- purpose.....: prepare a line | 79
I

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

NetRexx Tutorial - Operations on files

80
met hod | i nedi s(bs=rexx, buf=byte[]) public static | 81
obh ="'
82
obc ="'
83
84
-- this logic is not perfect, mght require rewiting | 85
86 -- get 2 bytes a tine, in HEX and in CHAR
87
loopj =0to 14 by 2
88
pl = bs*16+
89
p2 = bs*16+ +1
90
if pl > buf.length - 1 -- past end of buffer | 91
then c1 = "'00 --
92
el se ¢l = rexx buf[pl]
93
if p2 > buf.length - 1
94
then c2 = "'00
95
96 el se c2 = rexx buf[p2]
obh = obh||cl. d2x(2)||02 dz2x(2)"' ' | 97
08 if cl >32 &cl <12 -- only char we can see
then cl1 = cl1.d2c() -- pl ease | 99
else c1 ="."
00
o1 if c2 > 32 & c2 < 127 -- ditto
then c2 = c2.d2c() - -
02
else c2 ="."'
03
obc = obc||cl|]|c2 | 04
end
05
06
-- that's the full line
07
08
ptr = bs*16
09
if dt ='D
10 yp
then ptr = "d' ptr.right(7,'0") | 11
el se ptr = "d'ptr. rlght(,'0") | 12
| = ptr '"-" obh '""'obc'
13
return |
14
15
o +
hedi t . nrx(Met hod: | i nedi s)
IG5 Download the complete source for the hedit.nrx library

The change routine is used to perform a change over a subsequent set of bytes. You perform a change typing:

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

change START byte_string

like:

change 5 CAFE000067

T T NN . +
-- nmethod......: change | 58
-- purpose.....: change a set of bytes | 59

60
met hod change(bs=rexx, up=rexx, buf =byte[]) public static | 61
-- sone checks
62
63
64 if bs <0 | bs > buf.length-1 then
do
65
say 'Invalid start byte.' | 66
return
67
end
68
list = up
69
i = bs
70
loop while list <> "'
71
parse list nb +2 list
72
say nb
73 Y
buf[i] = nb.x2d(2) | 74
i =i+l
75
end
76
77

o m o e o ee e me oo +

hedi t. nrx(Met hod: change)

Resolrcea Download the complete source for the hedit.nrx library

The actual saving is performed by the method save, and the real kernel code is:

ofid:xfile(ofn? -- define QUTPUT file

ofid.buffer = bu -- point to buffer

rc = ofidwitebuf() -- WRITE it!

o e mmm e e e mm e e e e e e e e m e mm— ==
-- nethod......: save
-- purpose.....: saves a buffer

met hod save(sargs=rexx, buf =byte[]) public static
parse sargs ofn .

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

35
36
37
38
39
40

42
43

45

48
49
50
51
52
53

56

-- check if we have a filenane and if it is not

-- already there

if ofn ='" then
do
say 'Mssing fil enane.
return
end
if xfile.fexist(ofn) then
do
say 'File "'ofn'" already exists. OK to overwite?\-'

parse ask.upper() answ
if answ <> "Y' then return

end

-- OK, go head

ofid = xfile(ofn)

ofid. buffer = buf

rc = ofid.witebuf()

if rc =0
then say 'Buffer witten OK to "'ofn""."'
el se say 'Problems witing "'ofn ".'

| 41

| 44

| 46
| 47

hedi t. nrx(Met hod: save)

m Download the complete source for the hedit.nrx library

2 Sample session

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.netrexx.org/library/hedit.nrx

NetRexx Tutorial - Operations on files

» The rxfile package.

2 Availability
The rxfile package is available directly from the author, at the following URL:

http://ww. geocities.com SiliconValley/Park/4218/ RXFI LE. HTML
for rxfile

and

http://ww. geocities.com SiliconValley/Park/4218/
Marsiglietti's home page

*** This section is:

*** and will be available in next rel eases

s Summary

A resume' of what we have seen in this chapter:

*** This section is:

*** and will be available in next rel eases

File: nr_13.htnm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:48(GMT +2).

http://www.netrexx.org/Tutorial/nr_13.html[11/4/2010 2:27:50 PM]

http://www.geocities.com/SiliconValley/Park/4218/RXFILE.HTML
http://www.geocities.com/SiliconValley/Park/4218/

NetRexx Tutorial - Threads

The NetRexx Tutorial
@ - Threads

Threads

2 Introduction

All modern operating systems are multi-tasking. This means than more than one program can concurrently run on
the system at the same time. At least, this is how the user(s) perceive it: the operating system is responsible to
allocate CPU cycles to the various processes, giving the impression that every process has, by itself, an entire CPU
available.

In a multi-threaded system, you can divide each process into several components. These components are called
threads or light weight processes.

In this chapter we will analyse how we can have multiple threads running within our programs.
» Definition of a Thread.

Athread is a component of a process. A thread is synonim of light weight process. Each thread executes a
sequential set of instructions. The result of several threads running in parallel is a concurrent process.

concurrent | --------- AR > thread 1

process > Instruction 1.1
> Enst;uct|on 1.2
> Instruction 1.n

Foee o > thread 2)
> Instruction 2.1
> |nstruction 2.2

(...)
> Instruction 2.n

Fome oo > thread N)
> Instruction
> |Instruction N. 2

Z
[EEN

> |nstruction N n

» When you need to use Threads.

As we saw, threads allow to run multiple instances of the same process on your machine. But, you may ask, what's
the real interest in doing this, if my machine has just one CPU? Aren't those processes going to compete for this

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

NetRexx Tutorial - Threads

unique resource?
1/O limited processes.

While it is true that CPU tied processes will benefit from a multiprocessor H/W environment, it is also true that, on
many OS (notably UNIX and Windows/NT) the I/O subsystem is usually decoupled from the main CPU, so you can
imagine to split your program in 2 parts: one which deals with the 1/0, and one that deals with the CPU intensive
work. A natural example is when you load a WEB containing pictures using Netscape. The text is immediately
retrieved and the pictures are loaded while you can read, scroll, and do any other operation on the page itself
(even if still incomplete). In principle, any picture retrieval can be a separate thread.

Daemons

A daemon s a process that runs on your system and acts as a server. As we will analyse in the next chapter, a
daemon waits on a socket port for work to do. When it receives a request from a client, he dispatches the request.
If the daemon is single-threaded he will not be capable to accept and serve other requests, till he has not finished
the oneis serving. Using threads, you'll be capable to concurrently serve many requests.

SERVER SERVER THREAD

(...)
| oop forever
wait request
di spatch request
Fo---- - > start thread
execute request
answer client
() end thread

end

% monitoring

Another application of threads is monitoring of certain process. Some applications might hung (for a network
problem, for example). You might want to put an external timeout to such occurrences.

2 Threads for UNIX users.

If you are a C (or C++) programmer working on UNIX platforms, and you want to create a process running in
parallel with your main process, you would write something like:

Foommmmmmmm s STt S-S o-T- /o TTTTTTTTTTTTEETEETTETEETEETTETTETTIEETET + THE
/* exanple in Regina UNI X REXX
01 Re
*/ LAMGITAG
02
cel)
o
04
/* issue the fork
05
*/
06

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

NetRexx Tutorial - Threads

i = fork()
07
08
if i >0 then
09
do
10
/* This is the parent process
11 iy
12
say '(parent) Waiting.'
13
rc = waitpid(i)
14
say '(parent) Wait rc:' rc'.'
15
end
16
el se
17
do
18
/* This is the children
19
*/
20
"sleep 1
21
0o say '(child) Starting. Going to sleep.'
"sleep 2
23
say '(child) Ending now.'
24
end
25
exit O
6
o m o e o et o o o o o o e o o e e e o e o e e o o e e e e o e e e e e e e e oo oo +
forkexl. rex

In NetRexx, like in Java, the approachis totally different. The above example will be written like:

o mmm e +
- - package: thrtl
01
-- version: 1.000 beta
02
-- date: 02 APR 1998
03
- - aut hor: P. A Marchesi ni | 04
- - copyright: (c) P.A MArchesini, 1998 | 05
-- latest vers.: http://wwen.cern.ch/ news/ netrexx | 06
07
08
class thrto
9
properties public | 10
11
-- nethod......: main | 12
-- purpose.....: timeout test | 13
14
met hod mai n(args=String[]) public static | 15
arg = rexx(args)
16
arg = arg
17

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Threads

18
1o say 'MAIN starts now. '
child = thrtOhandl er() | 20
child.start() | 21
child.join() | 22
say 'MAIN ends'
23
exit O
24
25
-- nethod......: thrtOhandler | 26
-- purpose.....: | 27
28
class thrtOhandl er extends Thread | 29
properties private | 30
31
met hod t hrt Ohandl er () | 32
33
met hod run() public | 34
say 'CH LD starts.' | 35
do
36
sl eep(2000) | 37
catch e = interruptedException | 38
say 'CGot: "'e'".
39
end
40
say 'CH LD ends.' | 41
o m ot ot o o o o o o o o e e e o e o e o e e o e e e o e e e e e e e e oo oo oo +
thrt0. nrx
[Nl #l#5 Download the source for the thrto.nrx example
s Thread API

2 A first practical example.

It is always a good practice to put a timeout on certain commands that you might issue inside your program. Infact,
especially in a networked environment, a lot of things might ""go wrong", and the program itself might hung
forever.

The following example will show how to implement a timeout on a command that you issue from the command

line.
T N NN N NN . +
- - package: thrtl
01
-- version: 1.000 beta
02
-- date: 02 APR 1998
03
-- aut hor: P. A Mar chesi ni | 04
- - copyright: (c) P.A MArchesini, 1998 | 05

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

http://www.netrexx.org/examples/thrt0.nrx

NetRexx Tutorial - Threads

-- latest vers.: http://wwen.cern.ch/news/netrexx | 06
07
08
glass thrtl
properties public | 10
11
-- nethod......: main | 12
-- purpose.....: tineout test | 13
14
met hod main(args=String[]) public static | 15
arg = rexx(args)
16
parse arg tineout conmand | 17
if timeout =" | command = " then | 18
do
19
say 'Mssing argunents.' | 20
say 'usage : java thrtl TIMEQUT_| N SEC COVMAND | 21
0o say 'exanple: java thrtl 5 sleep 6
exit 1
23
end
24
ti meout = tineout*1000 | 25
26
- say 'MAIN starts now. '
child = thrtlhandl er (conmand) | 28
child.start() | 29
child.join(tinmeout) | 30
if child.isAlive() | 31
t hen
32
do
33
say 'Children still alive. Killing it now' | 34
child. stop() | 35
if child.isAlive() | 36
then say 'ERROR stop() did not work.' | 37
else say '"OK: child killed.'
38
end
39
el se say 'Children finished before tineout.' | 40
41
say 'MAIN ends'
42
exit O
43
44
-- method......: thrtlhandler | 45
-- purpose.....: | 46
47
class thrtilhandl er extends Thread | 48
properties private | 49
comand
50
51
met hod t hrt 1handl er (cnd=r exx) | 52
comand = cnd
53
54
met hod run() public | 55
say 'CH LD starts "' comand' "."' | 56

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Threads

| out = xexec(command)
| out = out
58
[say 'CH LD ends "'conmmand'".'
e o e m e e e e e e m = =

| 57

| 59

_____________ +

thrtl. nrx

Download the source for the thrt1.nrx example

You can try out the code typing:

o tinmeout shown here
ava thrtl 5 sleep 4

j
ti meout shown here
java thrtl 5 sleep 6

#n
$
#
$

*** This section is:

*** and will be available in next rel eases

File: nr_14.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:50(GMT +2).

http://www.netrexx.org/Tutorial/nr_14.html[11/4/2010 2:27:52 PM]

http://www.netrexx.org/examples/thrt1.nrx

NetRexx Tutorial - Socket and Networking

The NetRexx Tutorial
@ - Socket and Networking

Socket and Networking

2 Introduction

*** This section is:

*** and will be available in next rel eases

» Basic Concepts
The socket
» Common Operations

Getting your HOST name.

One of the first things you will want to do, is to determine your machine name, i.e. doing in NetRexx what you
normally get on your shell typing hostname.

You need to use the class InetAddress, in order to gather your current HOST name, with a call like:

host = I net Address. getl ocal Host ()

The following xsock function will accomplish the job, striping out the (probably) unwanted address in numeric
format.

| -- method......: hostnanme
| -- purpose.....: get the hostnane

| met hod hostname() public static
[do

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

NetRexx Tutorial - Socket and Networking

90
host = Inet Address. getl ocal Host () | 91
catch err = UnknownHost Excepti on | 92
say err
93
end
94
parse host nane'/'
95
return name
96
97
o m o e o et o o o o o o o o e e e o e o e e o e e o e e e o e e e e e e e e oo oo oo +
xsock. nrx(Met hod: host nane)

el 4k Download the complete source for the xsock.nrx library

» Client/Server applications

a small client-server application

Aclient is a process (or a program) that sends a message to a server process (or program); it requests the server
to perform a task (also called service).

Client programs usually manage the user-interface portion of the application, validate data entered by the user,
dispatch requests to server program, and sometimes execute some logic. The client-based process is the front-
end of the application that the user sees and interacts with. The client process contains solution-specific logic and
provides the interface between the user and the rest of the application system.

A server process executes the client request performing the task the client requested. Server programs generally:
receive requests from client

e receive requests from client programs,
e execute database retrieval and updates,
e manage data integrity,

e dispatch responses to client requests

Sometimes server programs execute common or complex business logic. The server-based process "may" run on
another machine on the network. This server could be the host operating system or network file server; the server
is then provided both file system services and application services. Resuming, the server process acts as a software
engine that manages shared resources such as databases, printers, communication links, or high powered-
processors. The server process performs the back-end tasks that are common to similar applications.

In this section we examine a very small client-server application.

Our goal is to explain the basics of the client-server model, with the instructions that allows us to connect the
client and the server. For this reason all the details about catching errors are ignored.

Our server is a socket application waiting on a port (we randomly choose the number 6001). The server receives a
line of information, constituted by 2 numbers (n1 and n2). The server computes the sum (n3) and returns it to the
client.

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xsock.nrx

NetRexx Tutorial - Socket and Networking

client server
si de si de
CLI ENT ----nln2 ------- > SERVER
n3 = ni+n2
CLI ENT <emm - N3 --------- SERVER
e eeeemmeemmmmmeeammmmmmsmmemesmsmseseeassmsmec-csmcssmmemmm-memeasmsmammmmemam===n==
-- sserv
-- a VERY primtive socket server
03
port = int 6001
04
listen = Server Socket null | 05
client = Socket null | 06
07
do
08
say 'Listening on port "'port'".' | 09
listen = Server Socket (port) | 10
11
-- wait for a client
12
-- get the nunbers, add them return to him | 13
14
| oop forever
say 'Vaiting connection' | 16
client = listen.accept(); | 17
18
-- we got sonething
19
20
say 'Got request from client.getlnetAddress().getHostNanme() - | 21
[]":"client.getPort(); | 22
in = Datal nputStrean{client.getlnputStream)); | 23
out = PrintStrean(client.getQutputStrean()); | 24
line = in.readLine(); | 25
if line = "exit' then |eave
26
parse line nl n2
27
say 'Got "'line ".’
28
sum = nl+n2
29
out.println(sum; | 30
end
31
catch e=l OException | 32
say 'Error:' e'.’'
end
34
exit O
35
T T NN N . +
sserv. nrx
Il Download the source for the sserv.nrx example

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/sserv.nrx

NetRexx Tutorial - Socket and Networking

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- the SIMPLE client
02
garse arg line
if line ="' then exit 1
04
port = int 6001
05
host = 'pcl 307" -- should be your host name | 06
s = Socket null
07
do
08
s = Socket (host, port); -- hard wire it | 09
sin = Datal nput Strean(s.getlnputStream)); | 10
sout = PrintStrean(s.getQutputStrean()); | 11
12
sout.println(line) -- send command | 13
line = sin.readLine(); -- get answer | 14
say line
15
s.cl ose()
catch e=l CException | 17
say 'Error:'e'.’ | 18
end
19
exit O
20
o +
sclie.nrx
[Nl Tl Download the source for the sclie.nrx example

2 Arevised finger program

The following code is an implementation of the "classical" finger program as you find on UNIX boxes or on WIN/95
WIN/NT.

B +
-- finger
02
03
i mport java. net | 04
import java.io | 05
06
VERSI ON = 'v1r001' | 07
AUTHOR = "'(c) P.A Marchesini, ETHZ | 08
DEFAULT_PORT =int 79; | 09
CRLF = "\ x0D\ x0A
10
11
parse arg uargs
12
if vargs = '-h'" | uargs = '--help'" | uargs ="' then

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/sclie.nrx

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

13
do
14
parse source . . nynane'.' | 15
say nmynane 'version' VERSI ON AUTHOR | 16
say 'Purpose : sanple inmplenentation of a finger client.' | 17
sa
18 Y
say 'java finger user@ysteni | 19
say
20
exit 1;
21
end
22
23
user ="'
24
if uargs.pos(' @) <> 0 | 25
then parse uargs user' @ node | 26
el se node = uargs
27
28
-- issue the client socket conmand | 29
30
s = Socket null
31
do
32
s = Socket (node, DEFAULT_PORT); | 33
sin = Buf f er edReader (| nput St r eanReader (s. get Il nput Strean())) | 34
sout = PrintWiter(s.getQutputStrean(), 1) | 35
line = String
36
line = user|]|crlf
37
sout. println(line) | 38
| oop forever
39
Iine = sin.readLine(); | 40
if (line = null) then do
41
| eave
42
end
43
say line
44
end
45
catch el = | OException | 46
say '# Error from Socket function.' | 47
say '# Message is "'el'".' | 48
say '# Abending.’
finall
50 Y
do
51
5o if (s \=null) then s.close()
catch el = | OException | 53
say '# Error from close.'
54
say '# Message is "'el ".' | 55
say '# Abending.’
56
end
57
end
58
exit
59
o m o em oo +

NetRexx Tutorial - Socket and Networking

fingerl.nrx

INElU¥el=hn Download the source for the finger1.nrx example

In the following session we'll develop an even shorter version of finger, using the "xsock" libraries.

s The "xsock" library.

As | did in the previous (and following) chapters, instead of presenting "dumb" examples, I'll build a small library of
socket methods. This library is called xsock.nrx and is available for download on the "usual" WEB directory for

libraries.

It should give you enough programming examples to build (eventually) your own socket application. You can of

course immediately use it, as shown in the Using the xsock library section.

@ The "open" method

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

e e e e s mmeemmeMmmmemmmsmsmememememmeemmeeemeeem__mm—————a
-- method......: open
-- purpose.....: open a socket
59
met hod open(host =Rexx, prot =Rexx) public
61
-- check if the user entered a protocol or
-- port nunber
63
64
rc =0
65
if prot.datatype('D) = 0 then
do
67
68 -- he just entered a port with a nane,
69 -- try to find the port, unless abort
dport = getservbyname(prot)
if dport = -1 then
71
do
72
say 'lnvalid protocol "'prot'".'
exit 990
74
end
75
port = dport
76
set prot def (prot)
end
78
el se
79
do
80
-- he just entered a numeric port
-- we need to do nothing
82
port = prot
83

| 66

| 70

| 73

| 77

| 81

http://www.netrexx.org/examples/finger1.nrx

NetRexx Tutorial - Socket and Networking

end
84
85
-- do the REAL job
86
87
do
88
S = Socket (host, port); | 89
sin = BufferedReader (I nput StreanReader (s.getlnputStrean())); |90
sout = PrintWiter(s.getQutputStream), 1); 91
catch err = | OException | 92
say err
93
end
94
95
o m o e o et o o o o o o o o e e e o e o e e o e e o e e e o e e e e e e e e oo oo oo +
xsock. nrx(Met hod: open)
INEEeTel#5 Download the complete source for the xsock.nrx library

¥ The "getservbyname' method

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa
-- nethod......: get ser vbyname
-- purpose.....:
98
met hod get servbynane(serv=Rexx) public static
table = 'DAYTIME 13 FTP 21 TELNET 23’ -
o1 "FINGER 79 NNTP 119 | MAP 143" -
"HTTP 80
02
serv = serv. upper() | 03
res = -1
04
loop while table <> "'
05
parse table sn sp table
06
if sn = serv then return sp
07
end
08
return res
09
10
S I I .. +
xsock. nrx(Met hod: get ser vbynane)
Il Download the complete source for the xsock.nrx library

2 Using the xsock library

@ Finding info about a protocol

One of the best places to start is:

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xsock.nrx
http://www.netrexx.org/library/xsock.nrx

NetRexx Tutorial - Socket and Networking

http://ww. freesoft. org/ Connect ed/ REC/ i ndex. ht ni

@ Writing a daytime client.

/* sinple daytine
*/

02

garse arg node .

if node ='' then node = 'shiftl.cern.ch' | 04

05
so = xsock(node, ' DAYTI ME') | 06
so. receive() | 07
go.close()

09
exit
10

dayti nme. nrx

Download the source for the daytime.nrx example

2 Writing a finger client.

/* sinple finger client
*

02
parse arg what
03

parse what user' @ node | 04
if node = '' then
05
do
06
say 'finger user @ode' | 07
exit 1
08
end

so = xsock(node, "' FI NGER) | 11
so. send(user) | 12
so. receive() | 13
so. cl ose()

finger.nrx

Szl e 45 Download the source for the finger.nrx example

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.freesoft.org/Connected/RFC/index.html
http://www.netrexx.org/examples/daytime.nrx
http://www.netrexx.org/examples/finger.nrx

NetRexx Tutorial - Socket and Networking

2 Writing an FTP client using "sun.net.ftp".

The FTP support is contained in the package sun.net.ftp. The package allows easily to implement an FTP client (to
GET and PUT files).

The APl documentation can be found at:

http://ww. java. no/javaBl N docs/api/sun.net.ftp. Ftpdient. htn

The actual implementation of the FTP client wants to mimic the "standard" UNIX ftp command (which you can find
also on Windows/NT). We will call our class xftp and it will be an extention of FtpClient (or sun.net.ftp.FtpClient if
you prefer)

To get the functions in the package sun.net.ftp, we need to type:

i nport sun.net.ftp. Ftpdient
i nport sun.net.ftP.FthnputStream
i mport sun. net. Tel net | nput St ream

The basic functions are:

T N NN N NN . +
-- nethod......: xget | 72
-- purpose.....: fetch the renote file | 73

74
met hod xget (fi ds=Rexx) public | 75
rccl ear ()
parse fids fidr fidl
77
if fidl ='" then fidl = fidr
78
79
-- small check: if the local file is there, pronpt the user | 80
81
if xfile.fexist(fidl) & replace = 'NO then | 82
do
83
say 'Local file "'fidl'" already exists. OKto overwite? (VY]|| 84
i f ask.upper <> 'Y' then
85
do
86
say ' ABORTED by user.' | 87
return
88
end
89
end
90
91
say 'Rermote file........:" fidr'.' | 92
say 'Local file.........:" fidl"." | 93
say 'Transfer type is...:' nopdeab'.' | 94

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.java.no/javaBIN/docs/api/sun.net.ftp.FtpClient.html

NetRexx Tutorial - Socket and Networking

95
buff = byte[16000] | 96
t = timer()
97
totsize = 0
98
do
99
os = FileCQutputStream(fidl) | 00
tis = host.get(fidr) | 01
str = '(READING Tranferred:' totsize 'bytes.' | 02
| oop forever
03
Systemout . print(str'\x0D) | 04
n = tis.read(buff) | 05
06 if n=-1then |eave -- there are no nore bytes intis
totsize = totsize + n | 07
str = "(WRITING Tranferred:' totsize 'bytes.' | 08
Systemout. print(str'\x0D) | 09
os.wite(buff,0,n) | 10
str = '(READING Tranferred:' totsize 'bytes.' | 11
end
12
System out. print (' \x0D') |13
say
14
os. cl ose()
15
sec = t.elapsed() | 16
say 'Transferred "'totsize'" bytes in' sec 'seconds.' | 17
catch err = exception
18
say 'ERROR ' err
19
rcset (12)
20
end
21
22
o m o m ema oo +
xftp. nrx(Method: xget)
IEEeINT#5n Download the complete source for the xftp.nrx library
o e mmmm e e e mm e e e e e e e e m e mm— =
-- nethod......: xput
-- purpose.....: put the renote file
25
met hod xput (fi ds=Rexx) public
rccl ear()
27
parse fids fidl fidr
28
if fidr ="' then fidr = fidl
29
30
a1 -- small check: if the local file is not there
32
if xfile.fexist(fidl) = 0 then | 33
do
34
say 'Local file "'fidl'" does not exist.' | 35
return
36
end
37

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

38
say 'Local file.........: Yofidlt L | 39
say 'Rermote file........: "ofidrt | 40
say 'Transfer type is...:' nodeab' .’ | 41
42
buff = byte[16000] | 43
t = timer()
44
totsize = 0
45
do
46
is = FilelnputStrean(fidl) | 47
tos = host.put(fidr) | 48
str = '(READING Tranferred:' totsize 'bytes.’ | 49
| oop forever
50
Systemout. print(str'\x0D) | 51
n = is.read(buff) | 52
£3 if n=-1then |eave -- there are no nore bytes inis
totsize = totsize + n | 54
str = "(WRITING Tranferred:' totsize 'bytes.' | 55
Systemout. print(str'\x0D) | 56
tos.wite(buff,0,n) | 57
str = ' (READING Tranferred:' totsize 'bytes.' | 58
end
59
System out. print (' \x0D) |60
say
61
tos. cl ose() | 62
is.close()
63
sec = t.elapsed() | 64
say 'Transferred "'totsize'" bytes in' sec 'seconds.' | 65
catch err = exception
66
say 'ERROR ' err
67
rcset (13)
68
end
69
70
i +
xftp. nrx(Method: xput)
[T/ Download the complete source for the xftp.nrx library
o o e e e m e mm e m e m ==
-- method......: xl's
-- purpose.....: list the renote directory (on screen)
13
met hod xl s(t=rexx) public
t =t
15
rcclear()
16
do
17
tis = host.list() | 18
line ="'
19
| oop forever
20
n =rexx tis.read
21

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

0o if n=-1then |eave -- there are no nore bhytes intis
if n =10 then
23
do
24
say line
25 Y
line ="
26
iterate
27
end
28
line = line||n.d2c() | 29
end
30
tis.close() | 31
catch err = exception
32
say 'ERROR' err
33
rcset (3
34 (3)
end
35
36
e e e e e e e e e e e e e e mcmmemmmsmsmemememeeeasmmmeececemcccasmsmemmmeememcecsmsmeemmeeecem———===
xftp.nrx(Method: x| s)

m’:‘m‘Dwnl th mplete source for the xftp.nrx librar

Another function (which is NOT in the standard FTP clients) is the xmore

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- nmethod......: xnore
-- purpose.....: type the file on term nal
39
met hod xnore(fid=Rexx) public
rccl ear ()
41
nlin =1
42
do
43
tis = host.get(fid) | 44
line ="
45
| oop forever
46
n = rexx tis.read
47
48 if n=-1then |eave -- there are no nore bytes intis
if n =10 then
49
do
50
say line
51
line ="'
52
nlin = nlin+l
53
if nlin > pagesize then
54
do
55
ntin =1

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xftp.nrx

NetRexx Tutorial - Socket and Networking

56
say '+++ (ENTER to continue; Qto quit) \-' | 57
if ask = "Q then
58
do
59
| eave
60
end
61
end
62
iterate
63
end
64
line = line|l|n.d2c() | 65

end

66
catch err = exception

67

say 'ERROR ' err
68

rcset (5)
69

end
70
71
o m o e o et o o o o o o o o e e e o e o e e o e e o e e e o e e e e e e e e oo oo oo +
xftp. nrx(Met hod: xnore)
Reaolrcea Download the complete source for the xftp.nrx library

2 A small program using the xftp class

As an example of usage of the xftp class, look at the following program:

-- xftpl.nrx
01

- - this programjust lists the files from a anonynous server
-- and fetches a big one

04
h = xftp('asisftp.cern.ch") | 05
h. exec(' user anonynmous toto@est.cern.ch') | 06
h.exec('Ils") | 07
h. exec('replace Y') | 08
h. exec(' get README. cernlib') | 09
h. exec(' get toto') | 10
say h.rc
11
say h.globrc
12
exit
13
S +
xftpl. nrx

Resolrces:: Download the source for the xftp1.nrx example

@ Writing a trivial NNTP client.

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/library/xftp.nrx
http://www.netrexx.org/examples/xftp1.nrx

NetRexx Tutorial - Socket and Networking

The NNTP protocol is described by RFC 977 The NNTP specifies a protocol for the distribution, inquiry, retrieval,
and posting of news articles using a reliable stream-based transmission of news among the ARPA-Internet
community. NNTP is designed so that news articles are stored in a central database allowing a subscriber to select
only those items he wishes to read. Indexing, cross-referencing, and expiration of aged messages are also

provided.

We will implement a TRIVIAL NNTP client, using the xsock.nrx library. Our program nnt does allow the reading of a

news article and the list of the available ones.

-- trivial NNTP client

02
garse arg group article .

04
-- trivial checks
06
if group ="'" then
07
do
08
say 'Please enter a group. (like "conp.lang.rexx").'
exit 1
10
end
11
12
-- connect and get the greating nessage
14
node = 'news.cern.ch' -- change this with your |oca

so = xsock(node,' NNTP")
so. readl i ne()

18
é_ select the right group

b- and check it's existence

21

so. send(' group' group)
nn = so.readline()

garse nn rc . first |ast

if rc <> 211 then

25
do
26
say 'Sorry but group "'group'" is not active.'
exit 3
28
end
29
30
-- OK, now we can
31
-- - get all the headers
32
-- - get the article bod
33 g y
if article ="

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

news server

| 05

| 09

| 13

| 15
| 16
| 17

| 22
| 23

| 27

NetRexx Tutorial - Socket and Networking

34
then cnd = ' xhdr subject' first'-'last | 35
else cnd = "article' article | 36
so. send(cnd) | 37
nn = so.readline() | 38
Barse nn rc .
if rc > 240 then
40
do
41
say 'Sorry, but article "'group':'article'” is not available.’ | 42
exit 4
43
end
44
45
so.receive(",") | 46
47
-- that's all
48
49
so. cl ose()
50
51
exit O
52
e +
nnt . nr x

m Download the source for the nnt.nrx example

@ Executing NNTP commands interactively

Some small modifications to the above program will allow you to execute commands in an interactive way, in aline
mode like shell.

Once you started the command with java nntp1, just type help and the server will answer with the available
commands.

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/nnt.nrx

NetRexx Tutorial - Socket and Networking

-- sinple | NTERACTI VE | 01
-- news client
02
03
node = 'news.cern.ch’ -- change it to your l|ocal news server | 04
05
-- connect to the NEWS server | 06
07
so = xsock(node,' NNTP") | 08
parse so.readline() . welcone 'ready’ | 09
say wel conme
10
11
é_ wai t for conmands
13
onel i neansw = ' next group' | 14
i =1
15
goop forever
say 'NNTP@node' ['i'] > \-' | 17
i =i+l
18
cmd = ask
19
if cnd = 'quit' | cnd = "exit' then |eave | 20
so. send(cnd) | 21
line = so.readline() | 22
say line
23
” parse cnd cnd rest
i f onelineansw. wordpos(cmd) <> 0 then iterate | 25
parse line cc rest
26
if cc > 300 then
27
do
28
iterate
29
end
30
so.receive(",") | 31
end
32
33
-- we're done
34
35
so. cl ose()
36
say 'Bye.'
37
exit
38
e +
nnt 1. nrx
N5 Download the source for the nntt.nrx example

2 Writing a trivial IMAP client.

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/nnt1.nrx

NetRexx Tutorial - Socket and Networking

RFC 1064 describes the IMAP protocol. IMAP stands for Interactive Mail Access Protocol. The idea is that your mail
messages are stored into a server. Your client connects to the server, so you can read your mail using a PC, a UNIX
workstation, a MAC or whatever without storing the messages locally.

The protocol is a bit more complicate than the above ones: all messages must be prefixed by a TAG that identify
the command. The TAG s in the format "ANNN".

client server

Answer

(...)
Comem e A001 statusl

?nsm$r
R A002” st at us2

The small program that follows implements (again) a trivial IMAP client. You need to change the mail.cern.ch
address with the address of the IMAP server of your Organization.

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa

-- sinple | NTERACTI VE

-- news client

02

03

node = 'mail.cern.ch’ -- change it to your l|ocal news server | 04
05

-- connect to the NEWS server | 06
07

so = xsock(node, ' | VAP) | 08

say so.readline() | 09
10

-- wait for commands
1

12
i =1
13
| oop forever
14
say 'I MAP@node' ['i'] > \-' | 15
i =i+l
16
cmd = ask
17
if cmd = "help' then
18
do
19
say 'LOG N userid passwd’ | 20
say ' SELECT nmai | box (ex. SELECT I NBOX)' | 21
0o say ' LOGOUT
say ' FETCH sequence data (ex. FETCH 1 RFC822)' | 23
04 say 'see RFCLl064

iterate

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

NetRexx Tutorial - Socket and Networking

25
end
26
tag = "A|]i.right(3,"0") | 27
so.send(tag cnd) | 28
| oop forever
29
line = so.readline() | 30
say line
31
parse line atag .
32
if tag = atag then | eave
33
end
34
if cnmd = "logout' then |eave
end
36
37
-- we're done
38
39
so. cl ose()
40
say 'Bye.'
41
exit
42
g +
i mapt . nrx
IG5 Download the source for the imapt.nrx example

» URLs and WEB pages

» The basic concepts

The URL

The URL identifies uniquely a document on the Network.

URL is an acronym. It stands for Uniform Resource Locator; it is the address (or if you prefer, the reference) of an
Internet resource, usually an HTML document.

You probably saw thousands of URLs when "surfing" the Network, in the form of:

http://java.sun.com javastation/jstn. htni

In this URL, like in all other URLs, we can identify 4 basic components, which are:

I

S R > fil ename
(pat hnane of the file
on the server nachine)

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/imapt.nrx
http://java.sun.com/javastation/jstn.html
http://java.sun.com/javastation/jstn.html

NetRexx Tutorial - Socket and Networking

Fooe - > port nunber
(default is 80, so you
can haﬁplly omit :80
here shown for educationa
pur poses)

oo > host nane)
(the nanme of the nmachine
where the docunment is |ocated)

o - > protocol identifier
(can be HITP
FTP
News
Gopher
File - for local files)

4 The HTTP daemon

The most common type of WEB documents are handled by HTTP daemons. Those daemons are waiting (usually)
on port 80, and accept an handfull of commands.

The most common command is GET followed by a path name. The daemon will answer sending back to the client
the selected document.

S +
HTTP
daenon [--------- +
PORT 80 | S GET Wl come. ht
Fom e e e oo Fomm e e oo +
(sends ae------ >

Wl cone. htm)

» Retriving WEB documents, the basic code.

As we saw, the HTTP protocol used by the HTTP daemons is something very similar to the protocols we already
examined for the various socket daemons we encountered so far.

We can write a small program to retrieve a WEB page, using pure sockets:

e T N I T I T N EE—. +
-- REALLY primtive HITP client | 01
-- use basic sockets

02
03
class w3dnp public
04
properties constant | 05
DEFAULT_PORT = int 80; | 06
07
met hod usage public static | 08
09 say "Usage: java w3dnp URL"

say "Exanple: java w3dnp http://wwecn. cern. ch/ Wl cone. htmd " |

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://wwwcn.cern.ch/Welcome.html

NetRexx Tutorial - Socket and Networking

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

for EOF)

exit 1
11
12
met hod main(args=String[]) public static
-- Get the argunents
14
argsl = Rexx(args)
15
if argsl ='' then
16
do
17
usage()
18
end
19
20
01 -- get the URL conponents
- -- very easy with PARSE
parse argsl protocol'://'node' /' docunent
parse node node':' port
25
-- basic checks
26
if protocol <> '"http' then
do
28
say 'Only HTTP protocol, please.'
exit 1
30
end
31
if node = '' then
32
do
33
say 'Mssing server nane.'
exit 2
35
end
36
if port ="' then port = DEFAULT_PORT
38
-- do the real job
39
s = Socket null
40
do
41
S = Socket (node, port);
sin = Datal nput Strean(s. getlnputStrean());
sout = PrintStrean(s.getQutputStrean());
45
cnd = 'CGET' '/'||docunent
sout. println(cnd)
line = String
48
| oop forever
49
50 -- Read a line fromthe server.
line = sin.readLine();
-- Check if connection is closed (i.e.
if (line = null) then |eave
53
54 -- And wite the line to the console.
Say line
55

10

| 13

| 23

| 24

| 27

| 29

| 34

| 37

| 42
| 43
| 44

| 46
| 47

NetRexx Tutorial - Socket and Networking

56 end
catch el=| CExcepti on | 57
Systemerr.println(el) | 58
finally

59
do

60

61 if (s \=null) then s.close()
catch e2=l Oexception | 62
e2=e2

63
end

64

end

65

66

exit O

67

o m o m ema oo +
w3dnp. nr x
1IN T2 Download the source for the w3dmp.nrx example

The parsing of the URL components is done (of course) with two parse instructions, in order to correctly extract
the (optional) port number, in case it is different from 8o.

The code can be made even shorter, using the already discussed xsock library functions.

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa
-- REALLY primtive HITP client
-- use basic sockets (and xsock library)
03
-- Get the argunents
04
if arg ="'' then
05
do
06
07 say "Usage: java w3dnp URL"
say "Exanple: java w3dmp http://wwwen. cern.ch/ Wl cone. htm " | 08
exit 1
09
end
10
11

-- get the URL conponents
12
-- very easy wth PARSE

13
parse arg protocol'://'node' /' docunent | 14
parse node node':' port | 15
16
-- basic checks
17
if protocol <> "http' then | 18
do
19
say 'Only HITP protocol, please.’ | 20
exit 2
21
end
22

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/w3dmp.nrx
http://wwwcn.cern.ch/Welcome.html

NetRexx Tutorial - Socket and Networking

if node = t hen
3

do
24
say 'Mssing server nane.' | 25
exit 3
26
end
27
gf port = '' then port = 'HITP

29
b- do the real job

so = xsock(node, ' HTTP") | 31
so. send(' GET /' docunent) | 32
so. receive() | 33
so. cl ose()
34

w3dnpl. nrx

Download the source for the w3dmp1.nrx example

*** This section is:

*** and will be available in next rel eases

@ Summary

Let's resume what we saw in this chapter.

File: nr_15.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:51(GMT +2).

http://www.netrexx.org/Tutorial/nr_15.html[11/4/2010 2:27:53 PM]

http://www.netrexx.org/examples/w3dmp1.nrx

NetRexx Tutorial - Interface with the system

The NetRexx Tutorial
@ - Interface with the system

Interface with the system

2 Introduction.

One of the most important points for coding effective NetRexx programs, is the ability to dialogue with the operating
system. Thus we want to be capable of executing OS commands, getting the output in a variable or in a array, starting
other processes, and so on.

» Calling System Commands.

Sooner or later you will find yourself in the need to call a System Command from your NetRexx code, and have the
output (if any) stored somewhere.

You should also note that you have ALWAYS an output from a System Command or Program. This is the Return
Code rc from the Command itself.

Pictorially:
Fomm e e + o m e e e e oo +
O S. S L Net Rexx
(0s/ 2 Program
UNLX [---------- S [--------- > di spl ay
V5 result . i Mmedi ately
VANT)> save in a
VARI ABLE
...> save in an
ARRAY
S R + o e e e oo +

As we have just stated, we will distinguish three cases:

e (Callacommand.
e (Callacommand and get the result in a variable.
e Calla command and get the result into an array.

We want also to make some decisions depending on the result of the command we just executed. If the command
fails, i.e. exits with a $SRETURN, not zero we want to be able to choose to continue, inform the user, or abort.

» Related JAVA classes

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

NetRexx Tutorial - Interface with the system

j ava. | ang. Process
] ava. | ang. Runti ne

» Calling a command immediately

This is probably the easiest instance: you want to execute an OS command (or a program). This means you will
write:

(...)

cmd = "zip files.zip filel file2
r = Runtinme. GetRuntine()

? = r.exec(cnd)

It is ALWAYS a good practice to check the return code rc: a command or a program can fail for many reasons, and
your program must be prepared for such eventualities. Note that if you do not check the rc, the program will
happily continue with the following instructions. So we modify the above code as:

ce)

md = "zip files.zip filel file2

Runt | ne. Get Runti ne()

r.exec(cnd)

p. exi t Val ue()

rc <> 0 then

do . .
say 'Command "'cnd'" failed with rc:' rc'.’
exit rc

end

(...)

(
c
r
p
r
i

c
f

This will allow us to check if the zip command in the above example didn't crash for a disk full problem, or for a
missing input file.

Note that in the 2 above examples the output of the command is NOT displayed

A final WARNING

WARNING: | feel necessary to warn you about a potential problems if you abuse of calls to System Commands.
You should NEVER use a call to System Commands if your call can be implemented in Java itself. So you should not

(if you're a UNIX user) do:

NEVER DO THI S !!!

I's = xexec('ls -1 toto',' VAR ,' ABORT")
parse Is.out size .

This code is, infact, no portable (DOS and Windows) do not know about "Is".

NOTE: if you want to implement "Is" you do something like:

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

NetRexx Tutorial - Interface with the system

o mm m e +
| = String[]
01
f =File(".")
02
| = f.list()
03
loopi = 0to l.length-1
say I[i]
end
06
g +
I'ls.nrx
S #n Download the source for the lls.nrx example
s Simple examples
@ Execute a System command
o m m m e +
-- syexl.nrx
1
-- SYstem EXec
02
03
Zlass syexl public
05
met hod main(args=String[]) public static | 06
07
arg = Rexx(args)
08
parse arg cnd
09
10
-- do the REAL job
11
12
do
13
rtim= Runtinme. Get Runti me() | 14
proc = rtimexec(cnd) | 15
dis = Datal nput Strean(proc. getlnputStream()) | 16
17
| oop forever
18
line = dis.readline() | 19
if line = NULL then | eave
20
say line
21
end
22
re = proc.waitFor() | 23

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

http://www.netrexx.org/examples/lls.nrx

NetRexx Tutorial - Interface with the system

say 'Return code:' rc'.' | 24
catch err = | OEXception | 25
say 'ERROR ' err
26
end
27
exit O
28
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
syexl. nrx
Resolrcean Download the source for the syexi.nrx example

@ Execute an "interactive" System command

Some programs, like the following one, might require some "interactive" input.

e T N I T I T N EE—. +
n =20
01
| oop forever
n = n+l
03
say 'Please enter sonething (quit to QUT)' | 04
parse ask line
05
if line = "'quit' then |eave
06
say n '>>>' line
07
end
08
S I I .. +
i nteract.nrx
Resoltceon Download the source for the interact.nrx example

It would be nice if it was possible to make (when needed) the input "automatic". This small example shows how.

I T e e T N .. +
i- syex2. nrx
-- SYstem EXec
02
03
Zlass syex2 public
05
met hod mai n(args=String[]) public static | 06
07
-- this is the interactive conmmand | 08
cnd = 'java interact'
09
10
-- do the REAL job
11
12
do
13
rtim= Runtinme. Get Runti me() | 14

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

http://www.netrexx.org/examples/syex1.nrx
http://www.netrexx.org/examples/interact.nrx

NetRexx Tutorial - Interface with the system

proc = rtimexec(cnd) | 15
dos = PrintStreanm(proc.getQutputStreamn()) | 16
dis = Data InputStrean(proc getl nput Strean()) | 17
dos.println(' help') | 18
dos.printlin(' quit") | 19
dos. cl ose() | 20
21
| oop forever
22
line = dis.readline() | 23
if line = NULL then |eave
24
say line
25
end
26
rc = proc.waitFor () | 27
say 'Return code:' rc'.' | 28
catch err = | OEXception | 29
say 'ERROR ' err
30
end
31
exit O
32
g +
syex2. nrx
IG5 Download the source for the syex2.nrx example

The "key" instructionis:
dos = PrintStrean(proc.getQutputStream))
where we get an OUTPUT stream to the process proc. We now can simulate the keyboard input, which we do via:

dos.printlng'help'g
dos.println(' quit’

so all is like if you were typing help and quit from your keyboard.

#» The xexec method

o mmm e +
| -- nmethod......: xexec
| 33
| -- purpose.....: const ruct or
| 34
I - -
| 35
[met hod xexec%%nd:String,dest:Rexx,oner:Rexx) public
| defg7: dest . upper () -- uppercase paramns

| oner = oner. upper ()
" ARRAY SCR%EN VAR NULL'

" WARNI NG A?OgT | GNORE'
4

| 38

| val i d_dest

[val i d_oner

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

http://www.netrexx.org/examples/syex2.nrx

NetRexx Tutorial - Interface with the system

| 65

| 41
-- setting the defaults
| 42
N | 43
if dest ='" then dest4z defaul t _dest
if oner ='' then oner = default_oner
| 45
| 46
-- check if the parns are K
| 47
| 48
if valid_dest.mnrdpos(?gﬁg) = 0 then
do
| 50
s?%l‘Error: "'dest'" is not a valid destination.
exit 1
| 52
end
| 53
i f valid_oner.mnrdpos(?qﬁl) = 0 then
do
| 55
|5gay "Error: "'oner'" is not a valid ONERROR action.'
exit 1
| 57
end
| 58
| 59
-- do the real job
| 60
| 61
do
| 62
r = Runtinme. GetRuntime() 63
p = r.exec(cmd)
| 64
cr = Dat al nput St rean(Buf f er edl nput St rean(p. getlnputStrean()))
| 66
-- Qutput handling
| 67
| 68
I'ines =0
| 69
out ="'
| 70
i =0
| 71
| oop forever
| 72
s = cr.Readline()
| 73
if s = NULL then |eave
| 74
i f dest.wordpos(' SCREEN) 75
then say s
| 76
i f dest.wordpos(' VAR) 177
then out = out s
| 78

i f dest.wordpos(' ARRAY")

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

NetRexx Tutorial - Interface with the system

| 79
| t hen
[do
I =i+l
| line[j] = s
[end
| end
[lines = j
| line[0] = lines
I
[-- Return code handling
| 89
I - -
| rc = p.exitVal ue()
[if rc <> 0 then
| do
| sel ect
| when oner = 'WARNING then
| 95
[do
| say "WARNING rc=" rc
| 97
| end
| when oner = ' ABORT' then
| 99
| do
[say "WARNING rc=' rc
| 01
| say ' ABORTING '
| 02
| exit 5
[end
| ot herwi se NOP
| end
| end
| catch error = | OException
| 08
[say error
| end
I
[met hod xexec(cnmd=Rexx, desltz=Rexx) public
[t hi s(cnd, dest, def aul t _oner)
| 13
I
| met hod xexec(cnd=Rexx) public 15
| thi s(cnd, def aul t _dest, delflaéjl t _oner)
I

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

| 83

| 91

| 05

| 82

| 87

| 92

"from"'cmd' ".

"from"'cmd' ".

03

| 98

| 04

| 80
| 81
| 84
| 85
| 86
| 88
| 90
| 93
| 94
| 96
| 00
| 06
| 07
| 09
| 10
| 11
| 14
| 17

NetRexx Tutorial - Interface with the system

xsys. nrx(Met hod: xexec)

1Nl Download the complete source for the xsys.nrx library
» Some application: a simple "shell"

With the knowledge we developped in this chapter, we can now imagine to write a simple shell

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- package: xshel
-- version: 1.000 beta

02
-- date: 23 FEB 1997

03
- - aut hor: P. A Marchesin
- - copyright: (c) P.A MArchesini, 1997
-- latest vers.: http://wwen.cern.ch/ news/ netrexx

07
-- This programis free software; you can redistribute it and/or nod| 08
-- it under the terns of the GNU General Public License as published| 09
-- the Free Software Foundation; either version 2 of the License,| 10
-- (at your option) any later version. | 11
12
-- This programis distributed in the hope that it will be useful, |13
-- but WTHOUT ANY WARRANTY; wi thout even the inplied warranty of |14
-- MERCHANTABI LITY or FITNESS FOR A PARTI CULAR PURPCSE. See the |15
-- ONU Ceneral Public License for nore details. | 16
17
-- You should have received a copy of the GNU General Public License| 18
-- along with this program if not, wite to the Free Software| 19
-- Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA | 20
21

22
é— cl ass xshell
- - This class inplements a "shell" environnment, sonething |ike | 24
-- "zsh' or 'bash' (with very less functions!) | 25

26
cl ass xshel |
7

28
properties public static | 29
properties private static | 30
ver si on = 'vOr000 beta' | 31
copyright = '(c) 1997 Pierantoni o Marchesini, ETH Zurich’ | 32
cont act = ' Pi erant oni 0. Mar chesi ni @ern. ch’' | 33
34
-- method......: shell | 35
-- purpose.....: constructor | 36
37
met hod xshel | () public
version = version -- make Net Rexx happy | 39
copyright = copyright -- ditto | 40
contact = contact -- ditto | 41
42
-- method......: main | 43
-- purpose.....: just run typing "java shell” | 44

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

http://www.netrexx.org/library/xsys.nrx
http://wwwcn.cern.ch/news/netrexx

NetRexx Tutorial - Interface with the system

45
met hod main(args=String[]) public static | 46
args = args
47
48
-- Initialization | 49
50
cmdno = 1
51
rc =0
52
validlcnmds = 'history' | 53
54 validecmds = 'Is pwd java' -
"ftp cp help dir'
55
host = xsock. host nanme() -- get ny host,pls | 56
extracnd = "'
57
his = history(100) | 58
59
| oop forever
60
say host '['his.counter()':'rc'] 'extracnd' \-' | 61
todo = ask
62
if extracmd <> "'
63
then todo = extracnd||todo | 64
65
-- check special cases
66
67
if todo ="' then iterate
68
if todo = "exit' | todo = 'quit' then |eave | 69
if todo.left(1l) ="'!" then | 70
do
71
parse todo '!'rest
72
sel ect
73
24 when rest = '!"' then ptr=cndno-1
otherwi se ptr = rest
75
end
76
if ptr <1 then ptr =1
77
extracmd = his.retrieve(ptr) | 78
iterate
79
end
80
81
extracmd = "'
82
cmdno = cndno+l
83
hi s. save(t odo) | 84
parse todo cnd arg
85
arg = ar
86 g g
87
-- process |ocal conmmands | 88

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

NetRexx Tutorial - Interface with the system

89
i f validlcnds.wordpos(cnd) <> 0 then | 90
do
91
sel ect
92
when cnd = 'history' then his.dunp(10) | 93
otherwise say 'Sorry. "'cnmd'" is not yet inplenented.’ | 94
end
95
iterate
96
end
97
98
-- check for .class
99
00
ifdxfile.fexist(cnd‘.class') t hen | 01
0
02
todo = 'java' todo
03
cnd = 'java
04
end
05
06
-- process external conmands | 07
08
ifdvalidecnds.mordpos(cnd) = 0 then | 09
0
10
say 'Invalid conmand "'cnd"' ".' | 11
iterate
12
end
13
c = xexec(todo,' SCREEN ,' | GNORE') | 14
rc =c.rc
15
end
16
exit O
17
o mm m e +
xshel | . nrx

Download the source for the xshell.nrx example

*** This section is:

*** and will be available in next rel eases

File: nr_16.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:53(GMT +2).

http://www.netrexx.org/Tutorial/nr_16.html[11/4/2010 2:27:56 PM]

http://www.netrexx.org/examples/xshell.nrx

NetRexx Tutorial - Process Control and Exceptions

The NetRexx Tutorial
@ - Process Control and Exceptions

Process Control and Exceptions

2 Introduction

In this chapter we will analyse how to better control the program flow of a NetRexx application.
» Basic Concepts

@ Exception

The exception is a mechanism that allows you to (eventually) change the flow of control whenever some
important or unexpected event (usually an error) occurs in your program. You then can try to cope with the
problem (usually alerting the user that the problem has occurred), and avoid major disasters (usually exiting the
program).

Exception Handling

Although NetRexx allows you to ignore (even explicitly) an exception, it is always a good idea to handle it,
especially in the debugging phase of a program.

» Exceptions in real life.

One way to happily generate exceptions, is to avoid any checking of input data. Not performing any validation on
input data is REALLY a bad programming. In this case we'll avoid the checking on purpose, just to see what can
happen.

Look at the following code:

o e mmmm e e e mm e e e e e e e e m e mm— =
-- exppl.nrx
01
-- WARNING this is bad programm ng: no checks on i nput
- - data are performed
03
04
parse arg n

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

NetRexx Tutorial - Process Control and Exceptions

| 05
| inv = 1/n
06
§ay "Inverse is:' inv
exit O
08
S +
exppl. nrx

m Download the source for the expp1.nrx example
This is definitely a bad code since:

¢ we do not check for an empty input
e we do not check for non-numeric input
e we do not check for zero input

So let's the fun begin and try to run some examples:

Those messages are really scaring, aren't they?

@ Handling exceptions: catch

Suppose that we have a block of code that, like in the example above, might generate an exception.

So:

-- this code might generate an exception

BLOCK_OF CODE
()

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

http://www.netrexx.org/examples/expp1.nrx

NetRexx Tutorial - Process Control and Exceptions

In NetRexx, if you want to handle exceptions, you'll write the above code as:

-- this code m ght generate an exception

BLOCK_OF CODE
catch vari abl e _nanme = EXCEPTI ON_NAME
. CODE_TO RUN TN _CASE_OF EXCEPTION
en

(...)

In a nutshell, you put your code into a do ... end clause, and add a catch instruction. Program flow will be passed to
CODE_TO_RUN_IN_CASE_OF_EXCEPTION in case of any EXCEPTION_NAME encountered

The special instruction is catch. Catch is (usually) followed by a statement of the format:

catch error = EXCEPTI ON_NAME
say 'EXCEPTI ON_NAME: got error:' error'.'

» Always run a piece of code: finally.

Sometimes it is important to catch the exception, but also to be guaranteed that some "critical" code is run,

whatever happens to the program, i.e. if the exception is cached or not. Think about a file lock, for example, that
you MUST clean, in case of a program crash.

You use the finally statement, which you are guaranteed is ALWAYS run.

-- this code mght generate an exception

BLOCK_OF CODE
catch variabl e_name = EXCEPTI ON_NAME
CODE_TO RUN TN _CASE_OF EXCEPTION

finally
CODE_TO_RUN_ALWAYS_AND_ANYWAY

end

(...)
2 Resume

To resume what we saw so far:

do
-- This code MGHT
BLOCK_OF_CODE -- generate an exception

cat ch [err =] EXCEPTI (]\ll

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

NetRexx Tutorial - Process Control and Exceptions

CODE FOR EXCEPTI ONL --
catch [err =] EXCEPTI ON2
-- You can catch as many
CODE FOR EXCEPTI ON2 -- exceptions you want
finally
-- code ALWAYS run
CODE FOR EXCEPTI ONL .-

end

» A revisited 'bad-programmer’ inverse computation program

Let's apply what we saw so far to the example we initially made:

o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
i- expp2. nrx
-- WARNING this is bad progranmm ng: no checks on input
- - data are perforned
03
04
parse arg n
5
ok = 0
06
do
07
inv = 1/n
08
say 'Inverse is:' inv
ok =1
10
catch Divi deException | 11
say 'Division exception' | 12
cat ch ex=Nunber For mat Excepti on | 13
say 'Number "'n'" bad for division.' | 14
say 'nessage is "'ex'".' | 15
end
16
if ok
17
then say 'Division is OK'
el se say 'Problens found.' | 19
exit O
20
i +
expp2. nrx

m Download the source for the expp2.nrx example

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

http://www.netrexx.org/examples/expp2.nrx

NetRexx Tutorial - Process Control and Exceptions

s Output the stack trace information

The stack trace contains the information about your program at the time the exception occurred. In particular, it
shows you the line number where the problem did occur. This might help you to solve a LOT of problems.

If you catch the exception, and you want to see the stack trace, you just add the following line:

do

(...

cat 0?1 er = EXCEPTI ON
say ' ERROREXCEPTI ON
er = printStackTrace()

end

NOTE: printStackTrace() outputs to System.err, If you want the output to System.out, just type:

er = printStackTrace(System out)

» Changing the format of the Stack Trace

Maybe you do not like the output format of the stack trace. This function will show you how to change it:

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- method......: dunp
-- purpose.....:
40
met hod dunp(e=Exception) public static
-- trace buffer
42
trace = Rexx(") | 43
44
-- get the error nmessage
45
46
err = e.tostring() | 47
48
-- printStackTrace outputs to a PrintStream | 49
-- we connect a Pipedlnput to grab the output | 50
51
pout = Pi pedCut put Stream() | 52
pin = Pipedl nputStrean) | 53
pi n. connect (pout) | 54
out = PrintStream pout) | 55
in = Dat al nput St rean(pi n) | 56
57
-- get the stack
58
59

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

NetRexx Tutorial - Process Control and Exceptions

e.printStackTrace(out) | 60
61
j =0
62
loop while in.available() <> 0 | 63
str = in.readLine() | 64
parse str 'at' rest
65
if rest ='' then iterate
66
S
67 J J
trace[j] = rest
68 (il
end
69
trace[0] =]
70
parse trace[j] ':'line")’ | 71
say '(dunp) Error found line..:" line'."' | 72
say '(dunp) Message is........:" err'."' | 73
say '(dunp) Full dump follows.:' | 74
say
75
26 loop i = trace[0] to 1 by -1
parse trace[i] pl ('prog :'line')’ | 77
if line ="'" then iterate
78
pl = '('pl.space()')’ | 79
say '(dunp)' prog.left(12) pl.left(30) 'line:" line.right(5) | 80
end
81
say
82
83
o m o m ema oo +
xsyst em nrx(Met hod: dunp)
IS T#5n Download the complete source for the xsystem.nrx library

If we now modify our simple buggy program, like this:

- - expp2.nrx
01

-- WARNING this is bad programm ng: no checks on i nput
Oé_ data are perfornmed

04
parse arg n
05

ok =0
06
do
07
inv = 1/n
08
say 'Inverse is:' inv

ok =1
10
catch erl = DivideException | 11
xsystem dunp(erl) | 12
catch er2 = Nunber For nat Excepti on | 13
xsystem dunp(er2) | 14
end
15

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

http://www.netrexx.org/library/xsystem.nrx

NetRexx Tutorial - Process Control and Exceptions

|if ok

16

|17then say 'Division is OK'

| el se say 'Problens found.'

|exit 0

19
deceeemmeemmmmmmeemmmemmmsemmeemmsmssm;aessm-mccscmcssmeammmcccmam=ann==

| 18

expp3. nrx

m Download the source for the expp3.nrx example

we get the following result:

@ Summary.

*** This section is:

*** and will be available in next rel eases

File: nr_17.htm .

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:54(GMT +2).

http://www.netrexx.org/Tutorial/nr_17.html[11/4/2010 2:27:57 PM]

http://www.netrexx.org/examples/expp3.nrx

NetRexx Tutorial - Database Operations

The NetRexx Tutorial
@ - Database Operations

Database Operations

2 Introduction

An interface to some primitive database functions is available as a NetRexx extension.

*** This section is:

*** and will be available in next rel eases

2 Use NetRexx with JDBC

The following code atom shows how to use NetRexx with JDBC

-- original sanple from Gerhard Hofstaetter (hofg@dvg.co.at)
-- and posted on ibm netrexx
Oé_ use Net Rexx with JDBC

04
i mport java. net.URL
i nport java.sql.
i mport ibmsql.

08
class jdbctl
09

10
met hod jdbct1l
class. forNanme('ibm sql.DB2Driver")
13
met hod main(args = string[]) static
jdbct1()
15
16
17 -- set database as URL

url = "jdbc: db2: edvr0s3

http://www.netrexx.org/Tutorial/nr_18.html[11/4/2010 2:27:59 PM]

| 05
| 06
| 07

| 11
| 12

| 14

| 18

NetRexx Tutorial - Database Operations

19
-- connect to database | 20
connect = DriverManager. get Connection(url) | 21
22
23
-- retrieve data from the database | 24
say 'Retrieve sonme data from the database...'’ | 25
sql st = connect. createStatenent () | 26
resultset = -
27
sql st nt . execut eQuery(' sel ect tabschema, tabnane' - | 28
"from syscat.tables') | 29
30
-- display the result set | 31
-- resultset.next() returns false when there are no nore rows |32
say 'Received results:' | 33
| oop while resultset. next() | 34
owner = resultset.getString(1l) | 35
table = resultset.getString(2) | 36
say 'Omer =' owner 'Table =' table | 37
end
38
39
resul tset. cl ose() | 40
sql stnt . cl ose() | 41
connect . cl ose() | 42
o m m m e—a oo +
j dbct 1. nrx

Download the source for the jdbct1.nrx example

*** This section is:

*** and will be available in next rel eases

File: nr_18.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:56(GMT +2).

http://www.netrexx.org/Tutorial/nr_18.html[11/4/2010 2:27:59 PM]

http://www.netrexx.org/examples/jdbct1.nrx

NetRexx Tutorial - Applets

The NetRexx Tutorial
@ - Applets

Applets

*** This section is:

*** and will be available in next rel eases

» Creating and running your first Applet.

| want to show you how to create and run a very simple Applet. As in the "Hello World!" example, the issue is not
really the code (that giving the colours | use | think you'll just run only one time), but the whole procedure.

The steps can be resumed:

e step 1: Create a class that extends the Java Applet. You'll need to define at least two methods: an init
method and a paint method. This class will be the usual .nrx file that you know how to compile.

e step 2: Create an html file with the right applet definitions.

e step 3: run appletviewer over the above HTML file.

@ The Applet.
o m o e o et o o o o o o e o e e e o e o e o e e e e e e o e e e e e e e e eo o o— oo +
-1- Your very first applet
02
cl ass aphell o extends Appl et | 03
properties private | 04
fo = Font
05
XMAX = 500
06
YMAX = 500
07
08
nmet hod init
09
resi ze(XMAX, YMAX) | 10
fo = Font("Hel vetica", fo.BOLD, 36) | 11

http://www.netrexx.org/Tutorial/nr_20.html[11/4/2010 2:28:00 PM]

NetRexx Tutorial - Applets

| 12

| met hod pai nt (g=gr aphi cs)

[g. set Font (f o) -- set font

[g. set Col or (Col or. Pi nk) -- all pink, pls

| g.fillrect (0, 0, XMAX, YMAX) --

[g. set Col or (Col or. Yel | ow) -- wite yellow

[g.drawstring('Hello there!',10,200) -- nessage

o e m e e e e e e e e e e e m e e e — e m - =

aphel | 0. nrx

m Download the source for the aphello.nrx example

@ The HTML.
e T N I T I T N EE—. +

| <htm > | 01
| test | 02
| <appl et code="aphel |l 0.cl ass" hei ght=100 wi dt h=100 | engt h=100> | 03
| </ appl et> | 04
| </htm > | 05
o m m m ema oo +

aphel | 0. ht
@ The full procedure as typed in.

Fi

le: nr_20.htm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:57(GMT +2).

http://www.netrexx.org/Tutorial/nr_20.html[11/4/2010 2:28:00 PM]

http://www.netrexx.org/examples/aphello.nrx

NetRexx Tutorial - Graphical Interfaces

The NetRexx Tutorial
@ - Graphical Interfaces

Graphical Interfaces

*** This section is:

*** and will be available in next rel eases

File: nr_21.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:57(GMT +2).

http://www.netrexx.org/Tutorial/nr_21.html[11/4/2010 2:28:01 PM]

NetRexx Tutorial - Advanced Graphics

The NetRexx Tutorial
@ - Advanced Graphics

Advanced Graphics

*** This section is:

*** and will be available in next rel eases

File: nr_22.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:47:58(GMT +2).

http://www.netrexx.org/Tutorial/nr_22.html[11/4/2010 2:28:01 PM]

NetRexx Tutorial - Advanced Networking

The NetRexx Tutorial
@ - Advanced Networking

Advanced Networking

In this chapter we will analyse some of the most recent goodies available in JDK 1.1, and consequently in NetRexx.

In this chapter we will analyse:

e The Remote Method Invocation (RMI)
e The Java/NetRexx Servlets

» Basic Concepts

Remote Method Invocation

The RMI (Remote Method Invocation) is a technique by which an object on SYSTEM A can call a method in an
object on SYSTEM B, located somewhere else in the network.

All the sending of parameters, and retrieving of the result will happen in a transparent way, so that the user (and,

before him, the application developper) has the feeling that the method was called locally (like any other method
we saw so far).

So far we saw how the methods are pieces of code run locally by an object:

MACHI NE A

obj ect OBJ
mat(hod) MVETHCD

code for METHOD <--- runs
| ocal ly

(...)

Using RMI we move code for METHOD to be remote.

MACHI NE A MACHI NE B
obj ect OBJ
met hod METHOD met hod METHOD

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

NetRexx Tutorial - Advanced Networking

(...)

code for METHOD <--- runs
renot e

This "extention" of the method across the Network is done using sockets; but all the programming details are
hidden to the programmer, who just have to realize that, being the call remote, the chances that "something-
goes-wrong' are bigger, so he MUST be more carefull for error handling.

2 The Client/Server Model

The following picture might help understanding the Client/Server in the RMI implementation.

o + o e e e e e e e oo oo +
CLI ENT rmcl.nrx || || SERVER rmise.nrx |I
a = obj.nethod() Fo--- - + - + [
rem obj | | |
met hod| ===>| | R +
S actual 0OBJ
O ===> nmet hod
S C <=== return
T K oo +
return U return|<=== | S |
B | E | | T
Fomm - - + T +----- +U
I S | B
o + o e e e e e e oo oo +

As you see, the REAL object exists on the SERVER; from the SERVER's point of view, the object IS the SERVER.

» First example: a time RMI.

This is probably the simplest code you can try, in order to implement an application using the Remote Method
Invocation.

We'll write a program to grab the time information from another machine (even if, for practical purposes, the
example will run Client and Server on the same machine).

Define the remote interface

o m m e m oo +
| class Tine public inplements java.rm .Renpote interface | 01
02
[met hod sayTine() returns String signals java.rm . RenoteException | 03
o o o e o e e o o o o o o e o e e e o e o e oo e e e e e e e e e e e e oo oo oo +
Ti me. nrx

=21l == Download the source for the Time.nrx example

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/Time.nrx

NetRexx Tutorial - Advanced Networking

2 Write the Implementation Class

de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
import java.rm.
i mport java.rm.server. Uni cast Renpt ehj ect
03
class Tinmelnpl public extends Uni cast RenoteQbject inplenents Tine
05
properties private | 06
nynane
07
08
met hod Tinel npl (s=String) signals RenoteException | 09
super ();
10
nynanme = s;
11
12
met hod sayTine() returns String | 13
return '"Hello from nynane 'at' xsys.tine('N) | 14
15
met hod main(a=String[]) public static | 16
17
-- Create and install a security manager | 18
Syst em set Securi t yManager (RM Securit yManager ()); | 19
20
do
21
obj = Tinmelnpl ("Ti neServer"); | 22
Nam ng. rebi nd("// pcl 307/ Ti meServer", obj); | 23
say "TimeServer bound in registry”; | 24
catch e=Exception | 25
say "Timelnpl err: " + e.getMessage(); | 26
end
27
28
o +
Ti mel mpl . nrx
[Nl Download the source for the Timelmpl.nrx example

@ Write an application that uses the Remote Service

de e e e e e e e M e e e eemmmemm e e e ee e e e e e e e e e e e e e e mmmmmm.mm——.—————————aa
import java.rm. -- MJST be here!
02
class Timed public
04
met hod mai n(arg=String[]) public static | 05
arg = arg -- keep NR silent
06
07
do
08

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/TimeImpl.nrx

NetRexx Tutorial - Advanced Networking

obj = Tinme Nam ng. | ookup("//pcl 307/ Ti meServer") | 09
message = obj.sayTine(); | 10
catch e=Exception | 11
say "Timed exception:" e.getMessage() | 12
end
13
say nessage
14
exit
15
e +

Timed . nrx

MD wnl the source for the Timedl.nrx exampl

@ Putting all those pieces together

Provided you have the three above .nrx files stored in the same directory, in order to run the example, you have to
issue the following commands, in your shell

@ First real example: a remote controlled VOLTAGE controller

What we saw so far might appear a little "too much" for such a simple application. In fact, it is.

In the following example we use what we have learnt to build an application where objects last LONGER than the
lifetime of the client application.

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/TimeCl.nrx

NetRexx Tutorial - Advanced Networking

@ The code for Interface, Server and Client

T N NN N NN . +
| class volt public inplements java.rm.Renote interface | 01
02
| met hod get(ch=int) returns int signals java.rm .RenoteException | 03
[met hod set (ch=int,value=int) signals java.rm . RenpteException | 04
o m o e o ee e ae oo +
vol t.nrx
Resources™ Download the source for the volt.nrx example
de e cemememmemmeeRmemmmeeReeee e e e e e e e eeeeeeemeee e e e e ee e m.—.=
-- voltinpl.nrx
-- voltage controller inplenentation
03
04
import java.rm. | 05
i mport java.rm.server. Uni cast Renpt ehj ect | 06
07
class voltinmpl public extends Uni cast RenoteCbject inplements volt | 08
09
properties private | 10
nynane
11
channel = int[100] | 12
13
met hod vol tinpl (s=String) signals RenoteException | 14
super () ;
15
nyname = s;
16
17
-- set a channe
18
met hod set (ch=int, val ue=i nt) | 19
say nynane 'channel:' ch 'set to:' value | 20
channel [ch] = val ue | 21
22
-- fetch a val ue
23
met hod get(ch=int) returns int | 24
return channel [ch] | 25
26
-- main method
27
nmet hod main(a=String[]) public static | 28
29
-- Create and install a security nmanager | 30
System set Securit yManager (RM Securit yManager ()); | 31
32
do
33
obj = voltinpl ("vol tageserver"); | 34
Nam ng. rebi nd("// pcl 307/ vol t ageserver™, obj); | 35
say "vol tageserver bound in registry"; | 36

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/volt.nrx

NetRexx Tutorial - Advanced Networking

| catch e=Exception | 3
| say "voltinmpl err: " + e.getMessage(); | 3
| end
39
|40
S T T I T N +
vol timpl . nrx
[Nl 45 Download the source for the voltimpl.nrx example
o +
-- voltcl.nrx
1
-- client exanple | 02
03
import java.rm. -- MJST be here! | 04
05
class voltcl public | 06
07
met hod mai n(args=String[]) public static | 08
arg = rexx(args)
09
10 parse arg act ch val -- get args
act = act.upper() -- upperacase the action | 11
12
do
13
-- get the renote object | 14
obj = volt Nam ng. | ookup("//pcl 307/ vol tageserver") | 15
16
-- do the job
17
18 if act = 'SET' then -- set a channel
do
19
obj . set(ch, val) | 2
n = obj.get(ch) | 2
end
22
03 if act = "CET' then -- get a channel
do
24
n = obj.get(ch) | 25
end
26
catch e=Exception | 27
say "voltcl exception:" e.getMessage() | 28
end
29
say 'Channel' ch 'value:' n'.’ | 30
exit O
31
o +
vol tcl . nrx
Resoltceon Download the source for the voltcl.nrx example

< Build it

We saw already how to build an RMI application, so | just show again the commands.

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/voltimpl.nrx
http://www.netrexx.org/examples/voltcl.nrx

NetRexx Tutorial - Advanced Networking

2 Remote File Access

Let's now analyse a real case study. We want to implement some (tough primitive) file access method. Our client
application will then be capable to access a Server's file just like if the file was local.

@ The files

For this project we again need 4 files, which are:

rfile.nrx - the Interface

rfileinpl.nrx - the Inplenmentation
rfileserv.nrx - the Server's part
rfileclie.nrx - the dient's part

o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
-- rfile.nrx
1
-- Renote File Access
- - Interface part
03
04
05
class rfile public inplements java.rni.Renmote interface | 06
met hod setfil enane(s=String) signals java.rm .RenoteException | 07
met hod exists() returns int signals java.rm .RenoteException | 08
method list() returns String[] signals java.rm . RenoteException | 09
met hod cat() returns String[] signals java.rn .RenoteException | 10
o e e oo +
rfile.nrx

m Download the source for the rfile.nrx example

% Implementation

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/rfile.nrx

NetRexx Tutorial - Advanced Networking

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

de e e e e mmeemmmemmeeammmeammmsmemeemmsmemeessmsmecmmmesmmmeammmemm-ammemmn.——====
-- rfileinpl.nrx
-- Renmpte File Access
- - | mpl enent ati on part
04
05
i mport java.rm.
import java.rm.server. Uni cast Renbt ehj ect
08
class rfileinpl public extends UnicastRenoteCbject inplenents rfile
10
11
properties private
nynanme
13
fid = File
14
f name
15
16
-- constructor
met hod rfileinpl(s=String) signals RenpteException
super () ;
19
name = s;
20 v
21
-- set the filenane
22
met hod setfil ename(fn=String)
say nynane 'selects' fn
fname = fn
25
fid = File(fn)
26
27
-- check if file exists
28
met hod exi sts() returns int
return fid.exists()
31
-- list a directory
32
method list() returns String[]
return fid.list()
35
-- cat afile
36
nmet hod cat() returns String[]
d = xfile(fnane) -- use xfile
rc = d.read() - -
39
say '(cat) File ""fnanme'" read rc:' rc'.
41
-- | need this till 1 cannot return REXX
nl = d.lines
43
s = String[nl]
44
loop i =1 to d.line[0]
45
s[i-1] = d.line[i]
46
end
47
return s

| 06
| 07

| 09

| 12

| 17
| 18

| 23
| 24

| 33
| 34

| 37

| 38

| 40

| 42

NetRexx Tutorial - Advanced Networking

| 48
o s o e o et o o o o o o e o e e e o e o e e e e e e e e e e e e e e e e e ee oo oo +
rfileinpl.nrx
Resolrcean Download the source for the rfileimpl.nrx example
Server
o et e e e e e e e e e e e e e e e e mmeememeemmemmeemeeccceeeeeeeeeecceeemeee e ———===
-- rfileserv.nrx
-- Remote File Access
- - Server code
03
04
05
i mport java.rm. | 06
i mport java.rm.server. Uni cast Renpt ehj ect | 07
08
class rfileserv public | 09
10
-- main method
11
met hod main(a=String[]) public static | 12
13
myname = "renfil eaccess"” | 14
mynode = "pcl 307" | 15
16
-- Create and install a security nmanager | 17
System set Securit yManager (RM Securit yManager ()); | 18
19
do
20
obj = rfileinpl(nynane); | 21
Nam ng. rebind('//' mynode' /' nynane, | 22
03 say 'Bind of' nyname 'OK.'
” say 'Node is' nynode '.'
say ' SERVER now ready for connections.' | 25
06 say 'H'T CNTRL-C to ABORT'
catch e=Exception | 27
say 'rfileserv error:' + e.getMessage(); | 28
end
29
30
S I I .. +
rfileserv.nrx
Resolrcea Download the source for the rfileserv.nrx example
@ Client
e T N I T I T N EE—. +
| -- rfileclie.nrx | 01
| -- Rermote file Access | 02

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/rfileimpl.nrx
http://www.netrexx.org/examples/rfileserv.nrx

NetRexx Tutorial - Advanced Networking

- - Cient part
03
04
import java.rm. -- MJUST be here! | 05
06
class rfileclie public | 07
08
pr?perties public static | 09
n
10
11
met hod hel p() public static | 12
say 'inplenented commands are:' | 13
say 'java rfileclie |Is <FILE> | 14
say ' state <FILBE>'
15
say ' cat <FI LB
16
exit 6
17
18
method Is(fid=rfile) public static | 19
if fid.exists() = 0 then | 20
do
21
say 'Sorry: renmote file "'fn'" does not exist.' | 22
exit 1
23
end
24
dd = String[]
25
dd = fid.list()
26
loop i = 0to dd.length - 1
27
say dd[i
0g y dd[i]
end
29
30
met hod cat(fid=rfile) public static | 31
if fid.exists() = 0 then | 32
do
33
say 'Sorry: renote file "'fn'" does not exist.' | 34
exit 1
35
end
36
dd = String[]
37
dd = fid.cat()
38
loop i = 0to dd.length - 1
39
say dd[i
20 y dd[i]
end
41
42
43
met hod main(args=String[]) public static | 44
arg = rexx(args)
45
parse arg cnd fn

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

NetRexx Tutorial - Advanced Networking

46
47
if cmd = "help' then
48
do
49
hel p()
50
end
51
do
52
-- get the renote object | 53
fid = rfile Nam ng.l ookup("//pcl307/renfil eaccess") | 54
55
-- do the job
56
if fn ="' then fn ="
57
fid.setfilenanme(fn) | 58
sel ect
59
50 when cnd = 'Is' then Is(fid)
61 when cnd = 'cat' then cat(fid)
ot herwi se say ' Uni npl enented comand.' | 62
end
63
catch e=Exception | 64
dsay "rfileclie exception:" e.getMessage() | 65
en
66
exit O
67
g +
rfileclie.nrx

[T %ehm Download the source for the rfileclie.nrx example
» Additional sources of documentation.

RMl is arather new topic (at least it is in June 1997). You might find some additional information at:

ht t :/;chatsugo.'avasoft.conicurrent/doc/tutoriaI/ etstart. doc. htm

http://ww. wi dget.confggainey/java/rm talk/rm _talk. htn

2 Problems and limitations

Stubs not updated.

If you forget to update the stubs, since you forgot to run "rmic IMPLEMENTATION_FILE", you get a message like:

java.lang. |1 egal AccessError: uninplenented interface method
at ...
(... follows tracedunp ...)

You should then run rmic IMPLEMENTATION_FILE to have the correct interface.

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

http://www.netrexx.org/examples/rfileclie.nrx
http://chatsubo.javasoft.com/current/doc/tutorial/getstart.doc.html
http://www.widget.com/ggainey/java/rmi_talk/rmi_talk.html

NetRexx Tutorial - Advanced Networking

9 rmiregistry problem

You might get an error like:

j ava. | ang. Nunmber For mat Excepti on: SERVER error
at (TRACE)

You usually clear it stopping and restarting the rmiregistry program.

% Method returning REXX variable

There are currently problems if the method returns a REXX type. The message you get is something like:

client exception:
Error unmarshaling return
nested exception Is:
java.io. Not Serializabl eExcepti on: netrexx. | ang. Rexx

*** This section is:

*** and will be available in next rel eases

File: nr_23.htnm.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini/ ETH Zurich.

Last update was done on 18 May 1998 21:47:59(GMT +2).

http://www.netrexx.org/Tutorial/nr_23.html[11/4/2010 2:28:03 PM]

NetRexx Tutorial - Full OOP projects

The NetRexx Tutorial
@ - Full OOP projects

Full OOP projects

2 Introduction

In this chapter I'd like to show some "real" projects developped using OOP techniques and then implemented using

NetRexx.

Those projects are far to be completed; this explains the quotes I used in the previous sentence using the word "real".
But they are definitely larger than the examples showed so far.

Where possible, I'll give some comparison code to show the implementation using other OO languages, notably C++.

The projects developped are:

* A Finite Element Method Analysis Program
e A Mail Client Application

2 A Finite Element Method Analysis program

» A Mailer Application

Mail Headers

You find all the information you need about the MAIL headers in the RFC 822 (STANDARD FOR THE FORMAT OF
ARPA INTERNET TEXT MESSAGES), available at:

ftp://ds.internic.net/rfc/rfc822.txt

*** This section is:

*** and will be available in next rel eases

File: nr_24. htm.

http://www.netrexx.org/Tutorial/nr_24.html[11/4/2010 2:28:04 PM]

NetRexx Tutorial - Full OOP projects

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:00(GMT +2).

http://www.netrexx.org/Tutorial/nr_24.html[11/4/2010 2:28:04 PM]

NetRexx Tutorial - Additional Instructions

The NetRexx Tutorial
@ - Additional Instructions

Additional Instructions

2 Introduction.

We collect here all those instructions that have we have not so far had the pleasure to comment on or show, because
they did not fall into any of the categories we looked at. This does not imply that they are any less important.

s Arrays

The xarray function package

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- method......: dunp
-- purpose.....: dunp array's contents
29
met hod dunp(a=rexx[],nane) public static | 30
len = a.length
31
fil = name' (dinF'len")’ | 32
fil =fil.left(10) | 33
oval ="' DUMWY
34
skip =0
35
dosay = 0
36
loopi =0to len-1
37
if a[i] = NULL
38
then val = "NULL'
39
el se val = ali]
40
dosay = 0
41
if val = oval
42
then skip = skip+l
43
el se dosay =1
44
if i =1len-1 then dosay =1
45
i f dosay then
46
do
47

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

if skip > 0 then
do

48
49

if (i =len - 1) then skip = skip - 1
50

if skip >0 then say fil '"(...' skip 'lines not display|51
if i <>1len-1 then say fil '"['i-1"]" ova

skip =0

52
53
54
55
56

end
say fil '"["i']" val
end

oval = val
57
fil ="' '.copies(10) | 58
end
59

say
60

xarray. nrx(Met hod: dunp)

Download the complete source for the xarray.nrx library

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===

-- method......: copy

-- purpose.....: copy array's contents

53

met hod copy(a=rexx[], b=rexx[]) public static
System arraycopy(a, 0, b, 0, a. | engt h)

56

o mm m e +
xarray. nrx(Method: copy)

Ml =l Download the complete source for the xarray.nrx library
2 Code example no.1

Let's use the routines we've built in the xarray library.

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- arrexl.nrx
1
-- Sinple exanple of array handling

03

04
a = rexx[10] -- define array dinmentions | 05
b = rexx[12] - -

06

07
xarray.init(a,") -- initialize array a | 08
a[0] = "linel -- with some val ues | 09
a[1l] = 'line2

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/library/xarray.nrx
http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

10
11
xarray.dunp(a,'a') -- look at a and b | 12
xarray. dunp(b, ' b") | 13
14
xarray. copy(a,b) -- copy atob | 15
16
b[0] = " XXXXXXXXXX' | 17
xarray.dunp(a,'a') -- look at a and b | 18
xarray. dunp(b,'b') | 19
20
exit O
21
o m o m ema oo +
arrexl. nrx
Resolrces Download the source for the arrex1.nrx example

<@ Non NetRexx Arrays

In this small example we consider how to deal with non NetRexx (Rexx) arrays.

o e e e e e e e e e e e e e c e mmmmmmemememcmemmmemmemeececececemmecemmmememccemmeemmeeeeem———====
-- tstring.nrx
-- small exanmple of String[] handling
03
04
class tstringl public | 05
06
method t1() returns String[] public static | 07
s = String[2]
08
s[0] = 'Francesca’ | 09
s[1] = 'Elisabetta’ | 10
say s.length
11
return s
12
13
met hod main(args=String[]) public static | 14
arg = rexx(args)
15
parse arg .
16
17
in = String[100] | 18
in=1t1()
19
loop i = 0to in.length - 1
20
say in[i]
21
end
22
23
line = rexx(in)
24
say line

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/arrex1.nrx

NetRexx Tutorial - Additional Instructions

| 25

tstringl. nrx

Resolrceon Download the source for the tstring1.nrx example
» Byte Arrays conversion methods

Byte array handling is a bit tedious. This is the motivation of the methods described in xarray.

In a byte array, infact, the quantities are, from the NetRexx point of view, stored as signed integer, so it will be:

a[0] = '01 1
all] = '8l -127
al2] ='FE -2
a[3] = '41 65

In order to convert it to HEX, for example, you'll need to follow the procedure:

ch
ch

ks S RE

The methods we've developed are:

xarray. ba2c(array, start, |l ength
xarray. ba2d(array, start, |l ength

xarray.ba2x§array,start,length
xarray. bagrepx(array, HEX, start

Using the a[] array, we can look at some simple examples, like:

will give:
xarray. ba2x(a, 1, 2) -> 81FE
xarray. ba2c(a, 3, 1) -> A

xarray. bagrepx(a, ' 81FE ,0) -> 2

REMARK: those methods are SLOW! | should probably find a faster way to implement them. Suggestions are
welcome!

Some sample routines

| -- nethod......: ba2x
| -- purpose.....: ByteArray to HEX

[met hod ba2x(a=byte[], start=rexx, | ength=rexx) public static

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/tstring1.nrx

NetRexx Tutorial - Additional Instructions

ostr ="'
61
62 loop i = start to start + length - 1
ch = rexx a[i]
63
xch = ch. d2x(2)
64
ostr = ostr||xch
65
end
66
return ostr
67
68
o m o m ema oo +
xarray. nrx(Method: ba2x)
IMEEeINTe#5n Download the complete source for the xarray.nrx library

The following method will search an ARRAY for an HEX quantity, which you write in the form (for example):

' AOFF'

the methods returns the value of the FIRST occurrence (from the start) of the HEX string.

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

o e mmmm e e e mm e e e e e e e e m e mm— =
-- nethod......: bagr epx
-- purpose.....: grep an HEX qty in a ByteArray
91
met hod bagrepx(a=byte[], search=rexx, start=rexx) public static
| = search.length()
b = byte[l/2]
94
95
-- convert the HEX string | 96
-- to decinmal
97
98
list = search
99
i =0
00
loop while list <> "'
01
parse list nb +2 [|ist
02
b[i] = nb.x2d(2)
03
i =i+l
04
end
05
06
lend = a.length - 1
07
match = 0
08
loop i = start to lend
09
if a[i] == b[0] then
10
do

http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

11

match = 1
12

loopj =1 to b.length - 1
13

if b[j] <> a[i+j] then
14
do
15
match = 0
16
| eave
17
end

18

end
19

if match then | eave
20

end
21
end
22
if match
23
then return i
24
else return -1
25
26
o m o e o et o o o o o o o o e e e o e o e e o e e o e e e o e e e e e e e e oo oo oo +
xarray. nrx(Met hod: bagr epx)
IRl Download the complete source for the xarray.nrx library

@ Example: a JPEG info grabber
To apply the methods described above, let's write a small program that finds the size, in pixels, of a JPEG picture
file.

Without going into details, we say that a JPEG (Joint Photographic Experts Group) file is a binary file. The header
looks like:

Mar ker: FF D8
: FF EO 00 10
ID: 4A 46 49 46 (== JFIF)

JFIF stands for JPEG File Interchange Format. The marker we look at is 'FFCo' that contains the image size.

-- grab info on JPEG file
01

02
parse arg fn
03

if fn ="" then
04
do
05
say 'usage: java jpginfo FILEID | 06
exit 1

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/library/xarray.nrx

NetRexx Tutorial - Additional Instructions

07
end
08

09
b- read input file;

-- if ERROR, abort
11

12
fid = xfile(fn)
13

rc = fid.readbuf () | 14
if rc <> 0 then
15
do
16
say 'Error reading file "'fn'"."' | 17
exit 2
18
end
19
buf = fid.buffer
20
21
-- check for signature
22
23
si = xarray. ba2c(buf, 6, 4) | 24
if si <> "JFIF then
25
do
26
say 'Unable to find signature.’ | 27
exit 3
28
end
29
30
-- find the marker
1
32
p = xarray. bagrepx(buf,' FFC0', 0) | 33
if p=-1then
34
do
35
say 'Could not |ocate "FFCO" nmark.' | 36
exit 4
37
end
38
39
-- all K
40
-- get the info
41
42
w = xarray. ba2d(buf, p+7, 2) | 43
h = xarray. ba2d(buf, p+9, 2) | 44
say h'*'w
5
46
exit O
47
o m o e o et o o o o o o e o e e e o e o e e e e o e e e o e e e e e e e e eo oo oo +
j pgi nfo.nrx

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

Download the source for the jpginfo.nrx example

Additional Readings.

For the graphics formats, |ook at:

http://wsspinfo.cern.ch/fag/graphics/fileformats-faqg/part3

The | ndependent JPEG G oup archive on ftp.uu.net contains an on-line

copy of the JFIF specification and additional JPEG information. Look at:
ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz
ftp://ftp.uu.net/graphics/}peg/}peg.docunﬁnts.gz

» The xsys.time() function.

We use the xsys.time() function to get the local time in the format "hh:mm:ss" (hours, minutes, seconds). The
xsys.time() function can be called with arguments that change the output format a little. The complete list of
arguments is:

N - hh: mm ss - Normal (the default);
c - hh: mmxx - Cvi
L - hh: mm ss. uuuuu - Long
H - hh - Hours
M - nmmm - Mnutes
(m nutes since nidnight)
S - SSSS - Seconds

(seconds since nidnight)

The best way to see all those options is to write a small program that shows all of them. The small timeexat
program does it.

S +
-- sinple test of the xsys.tine() | 01
-- function

02
03
list =" NCHMS Z
04

loop while list <>
5
parse list kind Iist

say xsys.tine(kind) | 07
end
08
exit O
9

ti meexal. nrx

[EEtelMie#2km Download the source for the timeexat.nrx example

Here is what you get if you run it. The output will of course depends on the time at which you runiit.

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/jpginfo.nrx
http://wsspinfo.cern.ch/faq/graphics/fileformats-faq/part3
http://www.netrexx.org/examples/timeexa1.nrx

NetRexx Tutorial - Additional Instructions

» Time your programs with a timer class.

@ The problem

You usually need to measure time intervals in your programs. In this way you can measure how long an operation
takes to perform.

You can use the Java System class System.currenttimemillis()time method, and measure the time differences
yourself.

now = Systemcurrenttinemllis

This method returns the current time in milliseconds GMT since the EPOCH (00:00:00 UTC, January 1, 1970).

The numbers returned are BIG

@ The idea.

We define then a timer class. The two basic instructions are:

cel)
-- define a tiner
timerl = tinmer()

(...)

cel)
-- get the elapsed tine
el apsed = timerl. el apsed()
((;0 get the elapsed time since the LAST reset)

-L'ieset.the timer
zero = tinerl.reset()
(to reset the tiner)

2 The timer class implementation

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

| 46

| 48
| met hod el apsed() public ret u4r9ns Rexx

| current = Systemcurrenttimenmllis
50

[nurmeric digits 16

| 51
| delta = current - start
| 52
| delta = delta/ 1000
| 53
[nunmeric digits 9
| 54
| delta = delta.format(NULL, 3) -
[return delta
| 56
I
| 57
o m m m e +
xsys. nrx(Met hod: el apsed)
Resolrces Download the complete source for the xsys.nrx library
T N NN N NN . +
| -- method......: reset
| 29
| -- purpos<|a.3.0. ... reset the tiner; returns '0.000" seconds
| --
| 31
| met hod reset() public returns 3F;exx
| start = System currenttinerlrisl?!is
| return '0.000
| 34
|
| 35
o m o e o et o o o o o o e o e o e o e o e e e e e e e e e e e e e e e e e oo - oo +
xsys. nrx(Met hod: reset)
Resolrcean Download the complete source for the xsys.nrx library

» The date() function.

WARNI NG
REXX' s date function
will be inplenmented in xsys v2.000.

* Ok ok F X

Use the date() instruction to get the current local date in the format 'dd Mmm yyyy'. As we saw for time() also
date() has many options. These are:

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/library/xsys.nrx
http://www.netrexx.org/library/xsys.nrx

NetRexx Tutorial - Additional Instructions

N - dd Mm yyyy - Nor mal
E - dd/mmyy - Eur opean;
U - mmdd/yy - USA
O - vyy/midd - Ordered;
C - ddddd - days (so far)
in this century;
D - ddd - say (so far)
in this year;
S - yyyymudd - Standard;

As for time(), we do the same exercise also for date(). | simply write the results, since the program is easily
modified from etit.

» The xdate() function

The NetRexx xsys function xdate (for eXtended DATE) is the function for performing all imaginable operations
related to date. The original code was developed for VM/CMS by Bernard Antoine of CERN/CN in IBM/370
assembler code. The version | describe here is a porting of that code done by its original author in pure NetRexx.

This code is totally platform independent, and is available on the WWW NetRexx Tutorial page (in the xsys library).
xdate can be used in two ways:

display a certain date
a given output format
X: Xsys.xdate(' TODAY','U))

rom one format to another

t
i
(
- }o perform a conversion of a date
(ex: xsys.xdate('E ,'01/12/95 ,'J"'))

The valid input formats are:

D, ddd - nunber of days since the beginning of the year
format;

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

J,[yylyyddd
S, [yy] yymud - sorted format;

O [[yylyy/lmmdd - ordered format;

julian fornmat;

E,dd/mi/[yylyyl - European fornat;
Umidd[/[yy]lyy]l - USA fornat;

B, nnnn - nunber of days since the January 1st, 0001
format;

C, nnnn - nunber of days since the beginning of the
century format;

K [yy]l yyww - format according to | SO 2015 & 2711;

I, nnnn - incremental fornmat;

I, +nnnn

I, -nnnn

Output_format may be any single character accepted by the REXX DATE function:

O to obtain the date in ordered form i.e. yy/nmdd

U to obtain the date in USA form i.e. mmdd/yy

E to obtain the date in European form i.e. dd/ myy

S to obtain the date in 'sorted form i.e. yyyymud

J to obtain the date in julian form i.e. yyddd

B to obtain the nunber of days since the January 1st, 0001

C %ﬁeoggﬁiﬂr;he nunber of days since the begi nning of

D to obtain the nunmber of days since the beginning of the year
M to obtain the nonth nane

W to obtain the

weekday nane

In addition, XDATE also accepts:

I to obtain the date in increment form N i.e. relative to today

K to return the id of the current week, in the formyyyyww
(according to ISO 2015 & 2711)

a logical value to tell if the year is a | eap one or not
to obtain the nmonth num (i nstead of name as in M in the range 1b12

to obtain the weekday num (instead of name as in W in the range 1b7

small xdate example

Here is a small example of the xdate function (look at the comments to see what the program really does):

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

-- xdtO
01

-- Exercise a bit the XDATE functions | 02
03
04

-- Get today's date
05
06

say xm sc. xdate(' TODAY") | 07
08

-- Get next nonday's

09

10

say xm sc. xdate(' NEXT' ,"' MONDAY") | 11
12

-- convert 31 DEC 1994 in from European to Julian Fornat | 13
14

say xmisc.xdate('E ,'31/12/94','J") | 15
16

%- find out which weekday | was born

18
say xmisc.xdate('E ,'28/09/67 ,'W) | 19

20
Zi- find out which date will be in 1000 days

22
say xm sc.xdate('l',1000,'E") | 23

24
é- find out how nmany days | have

26
say xm sc.xdate(' TODAY','C) - xm sc.xdate('E,'28/09/67",'C) | 27

28
25- find out when I'll have 20000 days

30

nn = xm sc. xdate(' TODAY',"'C) - xmi sc.xdate('E,'28/09/67",'C) | 31
nn = 20000 - nn

32

say xmsc.xdate('l', nn, 'S") | 33

34
say 'Today is:' xmisc.date('E) | 35
say ' " xmsc.date('W) | 36

37
exit
38

xdt 0. nrx

Download the source for the xdto.nrx example

NOTEs: And here is the output:

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/xdt0.nrx

NetRexx Tutorial - Additional Instructions

If you are wondering about all the possible output formats, here is a program for showing them:

o e m e e —— . m - -
-- xdtl.nrx

-- exercise all XDATE formats

03

04

0Igindz‘OUSJBCDMWI KLNX

|l oop while kind <> "'
06

parse kind item kind

date = xm sc. xdate(' TODAY' ,item | 08
say 'Format "'item" is: 'date'.' | 09
end
10
exit O
11
o s o e o et o o o o o e e e e e o e o e e e e e e e e e e e e e e e e e e oa— oo +
xdt 1. nrx

m Download the source for the xdti.nrx example

And this is what you will get if you run the program:

@ The xsys.sleep() function.

It is often usefull to sleep() N seconds. The easyest way is to call the Thread.sleep() function:

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/xdt1.nrx

NetRexx Tutorial - Additional Instructions

-- just pause MLLISEC
Thr ead. sl eep(M LLI SEC)

where MILLISEC is the time you want to sleep (expressed in milliseconds).

» Complex Data Structures

As we saw in the previous chapters, there is ONLY one native data type in NetRexx, and that is the string. NetRexx
considers even the numbers as strings. Indeed, you can build yourself data types, the most useful one being the
following:

list (string) (stem

CITEMLY ---> value[l TEML
"I TEMR' ---> val ue[l TEM
'(ITE;\/B' , ---> val ue[| TEMB
"I TEMN ---> val ue[| TEMN|

We have a string that holds a list of items, which are in their turn pointers for an array (or for many arrays) holding
the data for that particular array.

9 A case study: printer accounting

We want to see how this data structure works in practice. An accounting program may be the best way. Supposing
we are producing some accounting records whenever an user prints something on a printer, an accounting record
is generated. The format of these records would be the following:

date userid nodeid printerid no_of pages

where:
date.......: the date in the format YYMVDDhhmss;
userid.....: the user identifier;
nodeid.....: the node he used to print from
printerid..: the name of the printer

no_of pages: how many pages he printed.

Here is a small (usually this kind of files is MUCH bigger) example of such afile:

110195110233 nount slil 308.cern.ch prt21 200
110195120000 nmarchesi rsl 3pml. cern.ch prt56 82
120195120340 narchesi rsl 3pnl. cern.ch prt56 20
120195123030 mount hpl 3snl.cern.ch prtll 1
120195123400 clare shift31l.cern.ch prtll 25

printer. CARDS

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

The structure of our accounting program will be:

READ t he accounting file
REDUCE the data

POST processing (if any)
DI SPLAY results

First Version

In our first version for this program, we simply want to see how many pages a user has printed. The following
program (called pracc) will do it. In the first portion of the code, we check for the input argument and read a file.
We will not go into the details: what we do is simply get the lines of the accounting cards into the array infid.line[].

o m o e o et o o o o o o e o e e e o e o e o e e e e e e o e e e e e e e e eo o o— oo +
[* prol ogue
1
*/
02
parse arg fid .
if fid ="'-h'" then
04
do
05
say 'usage pacc <fid>' | 06
exit 3
07
end
08
if fid ="' then fid = "printer. CARDS 09
if \xfile.fexist(fid) then 10
do
11)) _
say 'file "'fid' " does not exist.' | 12
exit 4
13
end
14
infid = xfile(fid)
15
rc = infid.read() | 16
if rc <> 0 then
17
do
18
9 say 'RC:' rc 'from READ.'
1
exit 3
20
end
21
22
N T N I T NN +
pracc. nrx

[EE=telle#2m Download the source for the pracc.nrx example

We are now ready to analyse our data ,i.e. the lines contained in the stem CARDS. As you can see, we loop over the
accounting cards N from the first over to the last one. We parse the information contained in a card line 28. We
check if the user contained in the card is known. If not, we add the user to the 'known users' list (user_list), and
just for double security, we initialise the number of pages printed to o (line 32). We then add the pages for this
accounting card to the total for the user.

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

o m em oo +
/* Data Collection
23
*/
24
user_list ="'
25)
Pagesfprlnted_by =0 26
oopi = 1toinfid.lines) 27
parse infid.line[i] date user node printer pages 28
|fduser_list.mordpos(user) = 0 then 29
0
30
user list = user_|ist user | 31
end
32
gages_printed_by[user] = pages_printed_by[user] + pages | 33
en
34
35
T T N N N N . +
pracc. nrx
I ¥k Download the source for the pracc.nrx example

If we take the data we showed in the example printer.CARDS, this is what we get at the end of the code:

user _list = 'nount marchesi clare
pages_printed_by. mount = 201

pages_printed_by. marchesi = 102
pages_printed_by.clare = 25

Now that the raw data is reduced in this format, we can do whatever we want over it: order by name of the user
the user_list, order by number of printed pages, etc. We can even do nothing, such as here:

Now we can display the 'reduced' data. This is just a loop over the users, and each time we will display the user and
the pages printed.

o m m e m oo +
[* display
36
*/
37
list = user_list
38
loop for list.words() | 39
parse list item i st
éay itemleft(12,'.')"':"' pages_printed _by[iten].right(7) | 41
en
42
43
/* end
44
*/

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

45
exit O
46
o s o e ot o o o o o o o o e e e o e o e e o e o e e e e e e e e e e e e oo oo oo +
pracc. nrx

m Download the source for the pracc.nrx example

That is all. Here is what you get from the program itself:

@ A second version

Suppose that now your manager asks you to have the report not only for users, but ALSO for printers. The
modifications are quite trivial you simply need to create a new list for the printers, and clone the logic you used so

far:
o m o e o et o o o o o o e o e e e o e o e o e e e e e e o e e e e e e e e eo o o— oo +
/* prol ogue
1
*/
02
(LI KE ABOVE)
03
22
/* Data Collection
23
*/
24
user list ="'
printer_list ="' 26
ages_printed_by = 0 27
oopi =1 toinfid.lines) 28
parse infid.line[i] date user node printer pages 29
|fduser list.wordpos(user) = 0 then 30
0
31
user list = user_|ist user | 32
end
33
ifdprinter_list.mordpos(printer) = 0 then | 34
0
35
printer_list = printer_list printer | 36
end
37
pages_printed_by[user] = pages_printed_by[user] + pages 38
gages_printed_by printer] = pages_printed_by[printer] + pages 39
en
40
41
/* display
42
*/
43
list = user_list

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/pracc.nrx

NetRexx Tutorial - Additional Instructions

44
loop for list.words() | 45
parse list itemlist
Say itemleft(12,'.')"':"' pages_printed by[iten].right(7) | 47
en
48
49
list = printer_list 50
loop for list.words() 51
parse list item i st
aay itemleft(12,'.')"':" pages_printed_by[iten].right(7) | 53
en
54
B +
pracc2. nrx

m Download the source for the pracca.nrx example

And this is what you will get on your screen:

» Linked Lists

Another kind of data structure are linked lists. With NetRexx you can easily simulate a linked list data structure. |
remind you of what a linked list is:

PO NTER ---> data.l +--> data.?2
info.1 info.2
next.1l --+ next.2 --> NULL

¥ Case study: a ps tree.

A good case study for the linked lists is a program for building a ps command tree. The UNIX ps command is used
to show the current status of processes running on your machine. Each process has an id (the processid) and a
parent process (also called ppid). The output of the ps command does not immediately show how a process is
"linked" in terms of parent process to the previous ones. Here is a typical example:

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.netrexx.org/examples/pracc2.nrx

NetRexx Tutorial - Additional Instructions

For our discussion, the important columns are the second and the third: the process that started all is the PID
13399; it generated PID 8161; which generated 13026; which executed 10723; which finally executed 14564 (and
fortunately for us, nothing else other than printing what you see here). This is an "easy" case: if we had done a 'ps -
ef', you would have got even more than 100 processes in no particular order. Our pstree wants to make order in
this 'mess’, and see how each process is linked by the parental relationship. The following code does the job. We
skip all the 'unrelevant' portion of the program, since it does not add anything to our discussion. The first thing we
do is execute the ps command with the proper options, depending on whether we want to see all the processes
of the system ps -ef or just the ones belonging to us ps -f.

S T . +
if all 42
then rc = xexec('ps -ef' , '"ARRAY' , ' ABORT 43
else rc = xexec('ps -f' , "ARRAY' , ' ABORT' 44
I +

o m m h h e h e b e L el bl bl el e e e h e h e e e e e e e e e e e h e e MM e e e eeeoeoeoaaaaas +
j =0 45
oop i =2 to out[O0] 46
bsii]Z outri] 48
ps[j] = out[i

end 49
ps[0] = out[0] -1 50

B +

We now create two lists: the pidlis a string containing all the process_ids, while the ppidl is a string containing all
the processes that are parents. The full information about the process is stored in the array info[PID] and the
parent for each process is in ppid[PID]

s +
pid = 52
ppid ="' 53
doi =1to ps[O] 54

par se ps[if pid ppid 55
pidl = pid PI 56
ppidl = ppidl ppid 57
Info[pid] = ps[i] -- full process info 58
ppid|pid] = ppid -- parent 59
end | 60

e +

We loop over the process list. We look for the processes that are not parents of other processes. Those processes
are saved in lastl: they are the last in a chain of processes.

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

B +
list = pidl 62
lastl ="' 63
loop list.words() | 64

parse list item|ist | 65
| f ppldl wordpos(iten) = 0 then |%g
Iastl = lastl item 68
end 69
end 70
B +

Now the most tricky part. We start from all the processes in lastl and go backwards. This is where we use the
pseudo linked list. For each process in lastl we build the chain with the processes in order of generation.

o m m m ea o a +
list = lastl | 72
[oop list.words() | 73
parse list itemlist 74
titem = ppid[iten 75
chalnglten] = titemitem 76
| oop forever 77
titem = ppid[titen 78
if pidl.wordpos(titem) = 0 then |eave 79
cha|n[|ten] = titem chain[iten 80
end 81
end 82

o m m m e m e o - +

o mmm e +
list = lastl | 84
| oop list.words() | 85
arse list itemlist | 86
list = chain[item | 87
say ' ' | 88
l oop Ilist.words() | 89
parse |list iten2 Ilist | 90
parse info[iten2] owner 2 . rest | 91
say pl.left(6) p2. Ieft(6) F owner']'left(,10) rest.left(50) |92
end 93
end 94
o m m m ea - +

A short output example:

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

NetRexx Tutorial - Additional Instructions

» Additional information on Data Structures

You can find additional information about data structures in Java at those URLs:

http://ww\. geocities.com SiliconValley/Wy/7650/]avadata. ht m

http://ww. obj ect space.comjqgl/

*** This section is:

*** and will be available in next rel eases

@ Summary
A resume' of the main concepts encountered in this chapter.

*** This section is:

*** and will be available in next rel eases

File: nr_26.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:01(GMT +2).

http://www.netrexx.org/Tutorial/nr_26.html[11/4/2010 2:28:05 PM]

http://www.geocities.com/SiliconValley/Way/7650/javadata.html
http://www.objectspace.com/jgl/

NetRexx Tutorial - Advanced Algorithms

The NetRexx Tutorial
@ - Advanced Algorithms

Advanced Algorithms

2 Introduction

» Recursive Algorithms

A question that usually crops up in discussion groups about languages (notably comp.lang.rexx) is : 'Can |
implement a recursive algorithm using REXX?'. The answer is: 'Yes'. You can easily make your NetRexx (or REXX)
code re-entrant, and in this way implement any recursive algorithm. You perform this with a method clause.

2 The towers of Hanoi.

Text books usually provide as an example of recursive algorithm, the computation of a factorial (n!). This is
probably not a good choice, as one can easily avoid recursion for this algorithm. | prefer to give the example of the
'"Towers of Hanoi' [KRUSE, 1984, 273]. The game is well known: one must move disks from one '"tower' (1) to a
third (3), without placing a larger disk on top of a smaller.

(ll) (2) (3)

#

HitH
HitH##
HHtHAH]
HHHBHARHH
HHHBHH R

Towers of Hanoi

Using recursion, the solution is extremely simple. Taking the algorithm from the cited source, we can write this
small REXX program.

o m o e o et o o o o o o e o e e e o e o e o e e e e e e o e e e e e e e e eo o o— oo +
(1:I ass hanoi
met hod nove(n=rexx, a=r exx, b=rexx, c=rexx) public static | 02
if n>0 then
03
do
04

nmove(n-1, a, c, b)

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

NetRexx Tutorial - Advanced Algorithms

05
06 say 'Move disk from a '"to b '.'
move(n-1,c, b, a) | 07
end
08
09
met hod main(args=String[]) public static | 10
n = args[O0]
11
nove(n, 1, 2, 3) | 12
exit O
13
14
I T S NN N . +
hanoi . nrx

m Download the source for the hanoi.nrx example

Believe it or not, this is the solution you get from the program. Note that it is also the best possible solution.

In the section about the curses() interface we will see how to get a better output for the solution of the game.

@ Recursive sort algorithms

S +
-- nethod......: partition | 18
-- purpose.....: | 19

20
met hod partition(l=rexx[],!|ow=rexx, high=rexx) public static returns|21
swap(!, I ow, (I ow+hi gh) %2) -- swap pivot in 1st |ocation | 22
pivot = I[low
23
lastsmall = | ow
24
loop i = lowtl to high
25
if I[i] < pivot then
26

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

http://www.netrexx.org/examples/hanoi.nrx

NetRexx Tutorial - Advanced Algorithms

do
27
lastsmall = lastsmall + 1 | 28
swap(l,lastsmall,i) -- nove large to right, small to| 29
end
30
end
31
swap(l,low, |l astsmall) -- put pivot into its proper pos| 32
pi votl ocation = | astsmal | 33
return pivotlocation | 34
35
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
gsn. nrx(Met hod: partition)
Resolrceos: Download the complete source for the gsn.nrx library
+ Removing recursion
o m m e m oo +
-- nmethod......: sort_gsnr | 68
-- purpose.....: sort the list using QuickSort Nonrecursive | 69
70
met hod sort_qsnr(l=rexx[]) public static | 71
72
maxstack = 20 -- up to 1,000,000 itens |73
| owst ack = rexx[maxstack] -- arrays used for the st|74
hi ghstack = rexx[maxst ack] | 75
76
low = 0 -- list bounds
77
high = 1.length - 1
78
79
nstack = 0
80
81
|l oop until nstack = 0
82
if nstack > 0 then
83
do
84
| ow = | owst ack[nst ack] -- pop the stack | 85
hi gh = hi ghst ack[nst ack] | 86
nstack = nstack - 1 | 87
end
88
89
| oop while | ow < high
90
pivotloc = partition(l,Iow, high) | 91
92
-- push larger list into stack, and do the smaller | 93
94
if (pivotloc - low < (high - pivotloc) then | 95
do
96
97 -- stack right sublist and do |eft

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

http://www.netrexx.org/library/qsn.nrx

NetRexx Tutorial - Advanced Algorithms

98
if nstack > maxstack then overfl ow() | 99
nstack = nstack + 1 | 00
| owst ack[nstack] = pivotloc + 1 | 01
hi ghst ack[nstack] = high | 02
high = pivotloc - 1
03
end
04
el se
05
do
06
-- stack left sublist and do right
07
08
if nstack > maxstack then overfl ow() | 09
nstack = nstack + 1 | 10
| owst ack[nstack] = | ow | 11
hi ghst ack[nstack] = pivotloc - 1 | 12
low = pivotloc + 1
13
end
14
end
15
end
16
17
o m m em oo +
gsn. nrx(Met hod: sort _qgsnr)

SEERIRE A2k Download the complete source for the gsn.nrx librar
o o o o o o o o o e e e o e ==
-- method......: mai n
-- purpose.....: just test the main functions sinply running
- - "java gsn"
46
47
met hod main(args=String[]) public static | 48
args = args
49
50
I = rexx[100]
51
build_list(l) | 52
display_list(l) | 53
sort_qgsnr (1) | 54
display_list(l) | 55
56
exit O
57
o m em oo +
gsn. nrx(Met hod: mai n)

Recolrces gy mplete s for the gsn.nrx librar

*** This section is:

* k%

be available in next rel eases

and wil |l

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

http://www.netrexx.org/library/qsn.nrx
http://www.netrexx.org/library/qsn.nrx

NetRexx Tutorial - Advanced Algorithms

@ Summary

Here is the usual resume' of some of the concepts we have encountered in this chapter:

*** This section is:

*** and will be available in next rel eases

File: nr_27.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:02(GMT +2).

http://www.netrexx.org/Tutorial/nr_27.html[11/4/2010 2:28:07 PM]

NetRexx Tutorial - NetRexx for REXXers

The NetRexx Tutorial
@ - NetRexx for REXXers

NetRexx for REXXers

» Introduction
In this chapter we analyse the main differences between the Classical REXX and the NetRexx languages.

NetRexx is NOT REXX, and this you will see from all the following sections.

*** This section is:

*** and will be available in next rel eases

» NetRexx is compiled, and not interpreted.

One of the biggest differences that REXX (or ooREXX) users will find in NetRexx is the fact that now you need to

compile your program.

The usual approach:

LOOP till it works
edit program
run program

END

has now an extra step:

LOOP till it works
edit program
conpi l e program
run program

END

Not only, but since the object is a Java class, you also must call the program using java.

» Differences.

This sections covers all the instructions that are changed, between REXX and NetRexx.

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx Tutorial - NetRexx for REXXers

Continuation Character.

The continuation character is different in NetRexx. The reason is that the "old" REXX one (the ",") could be
difficult to read if (as usually happens) you where calling a function or a procedure.

REXX result = nyfunction(argl , ,
arg2)

nmyfunction(argl , -
arg2)

Net Rexx resul t

Entering Arguments.

In REXX we use the instruction parse pull, or the simple pull to get arguments from the keyboard.

REXX say 'Enter Name'
parse pull upper nane .

Net Rexx say 'Enter Name'
parse ask.upper() nane .

STEMs and ARRAYS.

The STEMs are present in NetRexx, but they're called with a different name. They're are called ARRAYs and the
compound variable separator is not the "." but the "[]" characters. Like STEMS, ARRAY should be initialised to a

value.

REXX list. =
list.0 = 2
list.1 = "'Test'
list.2 = 'Toast'

Net Rexx list =
list[O] = 2
list[1] = 'Test"'
list[2] = 'Toast'

Dealing with multidimensional arrays use the "," character to separate the dimensions; in REXX you still were using
the".".

REXX list.1.2 = 4
list.i.j =6

Net Rexx list[1,2] = 4
list[i,]] = 2

function calls

Any internal NetRexx function is called in an Object Oriented fashion.

REXX n = abs(n)

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx Tutorial - NetRexx for REXXers

Net Rexx n = n.abs()
REXX sn = right(s,2,'0")
Net Rexx sn = s.right(2,'0")

ALL the functions are effected. NOTE: This is clearly a major change. | had a bit of hard time to get used to it, but

after an initial rejection, | find it more "natural".

Look at this example:

REXX bin = x2b(c2x(s))
Net Rexx bin = s.c2x.x2b()

From the second writing it comes very much more evident that what I'm trying to dois a:

c2x. x2b

conversion.
2 xrange()

There is NO xrange instruction in NetRexx.

REXX str = xrange(' 00" X, ' 1F X)
Net Rexx str = '"\x00'.sequence('\x1F)

xrange() is implemented in xstring.
HEX characters.

You use a different method to enter HEX quantities in NetRexx.

REXX crif = "ODOA X
"\ xOD\ x0OA

Net Rexx crilf

» Missing instructions.

2 find() and index()

The find() and index() functions have always been available in the VM/CMS implementation of REXX. Indeed,
they've never been in the "official" REXX.

REXX: find(list,item

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx Tutorial - NetRexx for REXXers

Vv
Net Rexx: list.wordpos(iten)
REXX: i nde>|((st ring,iten
Net Rexx: list.pos(item

Of course you can write your own find() and index() that just do pos() and wordpos().
» Additions

@ upper() and lower()

The upper() and lower() functions are native in NetRexx. They were not available in native REXX.

[* */ REXX
str = str.lower() Net Rexx
str = str.upper()

@ Associative Arrays

Indexed Strings are used to set up "Associative Arrays" in which the sunscript is not necessarily numeric.

In "classic" REXX you would code:

| authorizelist = BB JENW PENNY T TTTTTTTTTTTTTTTITIT I
0%\Ut hori ze.jenny = 'list cat' Lo
authorize.bob = 'list cat wite'
%Jt hori ze. penny = 'Iist’

list = authorizeli st
05
do while list <> "'
06

parse var list id list

say id 'can do "'authorize.id ".'

end

09

exit

10
g +

asar. rex

o mmm e +
| authorize ="'

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx Tutorial - NetRexx for REXXers

01
aut horize['jenny'] = 'list cat'
authorize['bob'] = "'list cat wite
aut hori ze['penny'] = '"list'
| oop id over authorize
say id 'can do "'authorize[id]'"." | 06
end
07
exit
08
o m m m h e L e L b L b L bl e L e L bl e e el e h e e e e e e e m e h e m e e e e MMM emeoaeaoaaaaaa +
asar. nrx

m‘ Download the source for the asar.nrx example

% Program structure

This is probably the biggest difference between REXX and NetRexx. Subroutines and procedures like you knew
them in REXX disappear, and the concept of method replaces them.

The following are some small examples.

Argument passing

/[* conpute the nean value of two nunbers Y

*
/ LAMGUIASG

02
parse arg nl n2 .
03

say 'The nean value of' nl 'and' n2 '"is:' mean(nl,n2)'.’

exit
05

06
nmean: procedure;
7

parse arg il , i2
m= (il+i2)/2

return m

tnrl.rex

- - Show t he usage of a function

class tnril

04

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

http://www.netrexx.org/examples/asar.nrx

NetRexx Tutorial - NetRexx for REXXers

met hod nean(i 1=Rexx, i 2=Rexx) public static | 05
out = (il+i2)/2
return out
07
08
met hod main(args=String[]) public static | 09
arg = Rexx(args)
10
parse arg nl n2
11
say 'nean of' nl 'and' n2 'is:' nmean(nl,n2)'.’ | 12
exit O
13
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
tnrl. nrx

Download the source for the tnri.nrx example

@ Exposing variables

THE

01

*
/ LAMGUIASG

" MAIN
" MAI N

Q
<
Q
2
H
1l

Q
<
<8}
=
N
I

call subl
05
say avarl
06
say avar2
07

exit
08

09
Subl: procedure expose avarl

avarl = 'SUBL'

11
avar2 = 'SUBL'
12
say avarl
13
say avar?2
14
return
15
S +
tnr2.rex
S +
class tnr2
01
properties public static | 02
avarl
03
04
met hod subl() public static | 05

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

http://www.netrexx.org/examples/tnr1.nrx

NetRexx Tutorial - NetRexx for REXXers

avarl = ' SUBL' -- will be changed | 06
avar2 = 'SuBl' -- will NOT be changed | 07
say avarl
08
say avar?2
09
10
met hod mai n(args=String[]) public static | 11
args = args
12
avarl = 'MAIN
13
avar2 = 'MAIN
14
subl()
15
say avarl
16
say avar2
17
exit O
18
T +
tnr2.nrx
IS T2 Download the source for the tnr2.nrx example
*** This section is:
*** and will be available in next rel eases

» This really got me!

In this section | collect all "nasty" problems that | found in NetRexx, and which probably were due to my REXX
background. | hope that this collection will avoid you loosing the time | did lost to find out why a particular
algorithm was not working.

Variable and array/stem with the same name.

In REXX you can have variables that share the same name of a STEM. You can happily write:

line = line.i

and line (a variable), will get the value of the stem variable line.i.

+",' """"""" ST ooTToTTTTTETETETETEEEESESEEEEOETIEEEEEEEIEEEE IR E TR T T + THE
line.1 = 'Test |ine'

01 Re
0I2i ne.2 = 'anot her one' LA
line.3 = 'last one'

03
doi =1to 3

04

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

http://www.netrexx.org/examples/tnr2.nrx

NetRexx Tutorial - NetRexx for REXXers

line = line.i
05
say line
end
07
exit
08
o m o e o et o o o o o o o o e e e o e o e e o e e o e e e o e e e e e e e e oo oo oo +
tgml. rex

In NetRexx such approach will not work. In the following program, infact, the statement:
line = line[i]

will just initialise the whole array line[] to line[1]. SO ALL THE ARRAY INFORMATION WILL BE OVERWRITTEN.

e
line = Rexx(")
line[l] = "test line
02
line[2] = 'another one'
line[3] = "'last one
04
loopi =1to 3
05
line = line[i]
06
say line
end
08
S +
tgnt. nrx

INEERINTE0m Download the source for the tgmi.nrx exampl

In REXX, you would have achieved the same result writing:

line. =1line. 1

s Chapter FAQ.

Would it be possible to make a REXX to NetRexx translator?

Yes, as you could see a lot of the differences in the syntax could be made in an automatic way. It is simple to
translate an instruction like:

sl

left(s,3)

to:

sl

s.left(3)

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

http://www.netrexx.org/examples/tgm1.nrx

NetRexx Tutorial - NetRexx for REXXers

| plan to write some code that will do a 'first step' translation. So far | know nobody who did it.

@ Summary

*** This section is:

*** and will be available in next rel eases

File: nr_28.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:03(GMT +2).

http://www.netrexx.org/Tutorial/nr_28.html[11/4/2010 2:28:09 PM]

NetRexx Tutorial - Tools

The NetRexx Tutorial
@ - Tools

Tools

2 Introduction

2 General Tools

Get your environment

Whenever you have a problem, or you suspect a bug in NetRexx, you should always report it to the NetRexx
mailing list.

To give people a better idea of your environment, you might also provide the information that this small program
provides, so to help the readers to guess where the problemis.

The real important instruction is:
p2 = Rexx System getProperty(item)
So, for example:

myos = Rexx System getProperty('os.nane')
-- will display your OS

myid = Rexx System getProperty('user.nane')
-- will display your USERI D

o s o e o e e o o o o o e e o e e e e e o e e e o e e e e e e e e e e e e oo ee o o— oo +
/* Program : nrenv

01
* Subsystem : nrtools | 02
* Aut hor . Pierantoni o Marchesini. | 03

04* Cr eat ed : 7 Feb 1997.
* Info : CGet the NetRexx environment | 05
* Copyright : (c) P.A Marchesini / ETHZ 1997. | 06
*

07
* |d I nfo

08
K o e .-

09
* v1r000 First release. | 10

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

NetRexx Tutorial - Tools

* v1r000 Latest rel ease
*

12
*/

13

pro_ver = 'v1r000'

15

parse source env nt nynang'.'

say 'Welcone to "'nynane'". Version
say

18

say 'NetRexx........:' version

say 'Environnment....:' env

21

22
é— set the properties

pro_ver'.

24
25
prop = 'java.version java.vendor'
"java.vendor.url java.class.version
"java. class. path os.nane os.version file.separator'
' pat h. separat or user.nane user.hone user.dir'
"awt.tool kit'
31
-- find out which string is |longer, in order
-- to have a cl eaner output
34

list = prop
35

max_len = 0
36
loop while list <>

parse list itemlist

if itemlength() > max_|en
then max_len = itemlength()
end
41

42
-- loop over properties.
-- display the property and the val ue

45
say
46
| oop while prop<>"
parse prop item prop

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

48
pl = '<item >
49
pl = pl.right(nmax_| en+2)
p2 = Rexx System getProperty(item
52
if itempos('separator') <> 0 -- if it's a separator,
54 t hen -- we print also the HEX val ue
do
55
p2 = "'"p2.c2x()""' X " p2'.
end
57
58
if item= "java.class.path’ then -- if it's a path, then split
do -- the different directories

| 11

| 14

| 16
| 17

| 19
| 20

| 26
| 27
| 28
| 29
| 30

| 47

| 50
[51

| 53

| 56

NetRexx Tutorial - Tools

pathl = p2
61
| oop while pathl <>
62
parse pathl path';'pathl | 63
say pl '=" path
64
pl = ''.right(20) | 65
end
66
iterate
67
end
68
69
say pl '=" p2
70
end
71
sa
72 Y
exit O
73
o s o e o e e o o o o e o m o e e e e e o e e o e e e e e e e e e e e e oo e oo oo +
nrenv. nrx

m Download the source for the nrenv.nrx example

Depending on your Operating system, you can redirect the output of the program to afile, like:

java nrenv > nrenv. out

Thisis what | get if | run the command on my system.

@ Building the Tutorial's libraries

In order to get the libraries provided with the tutorial correctly installed, you have to follow the procedure
described in this section.

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

http://www.netrexx.org/examples/nrenv.nrx
http://www.sun.com/

NetRexx Tutorial - Tools
Getting the code.
The code is freely available at:
http://wwinfo.cern.ch/news/netrexx/library/alllib.tar.gz

or, at the URL:

http://wwinfo.cern.ch/news/netrexx/library/

as individial files. Download all the files inside a single directory, using your preferred
2 Installing the libraries.

You have to compile "by hand" two programs: xsys.nrx and xbuild.nrx, in EXACTLY this order. Then you just use
the newly created xbuild.class to build all the other libraries.

So you'll type:

>java COM i bm netrexx. process. Net RexxC xsys. nrx
> ava COM i bm netrexx. process. Net RexxC xbui I d. nrx
> ava xbuild

If you do not get any nasty error messages, you're done, and you can use the libraries.

24 Some notes on xbuild

The most important part of the xbuild.nrx program is the following:

e e e e e e e e e mememememmemmmmsmemememesmeeesmmeem-meeemsmemmm-me-me-cemmemmmeeem-m—=—===
-- method......: main
-- purpose.....: just run typing "java xbuild"
62
met hod mai n(args=String[]) public static

arg = Rexx(args)
64
65

-- Need hel p?
66
67

if arg ='-h" | arg = '--help' then
68

do
69
hel p()
70
exit 1
71
end

72

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

http://wwwinfo.cern.ch/news/netrexx/library/alllib.tar.gz
http://wwwinfo.cern.ch/news/netrexx/library/

NetRexx Tutorial - Tools

73
version()
74
-- K let's do it
75
76
todo = 'xmath.nrx xstring.nrx xsys.nrx xsock.nrx' - | 77
"xshell .nrx xurl.nrx' | 78
79
say 'Checking libraries.’ | 80
list = todo
81
loop while list <> "'
82
parse list itemlist
83
if state(item) = 0 then | 84
do
85
say 'File ""itemi" does not exist. Aborting.' | 86
exit 2
87
end
88
say 'Library "'"item" present.’ | 89
end
90
say
91
92
say 'Building now the libraries.' | 93
list = todo
94
loop while list <> "'
95
parse list itemlist
96
say 'Building now "'"item".' | 97
cnd = "java COM i bm netrexx. process. Net RexxC item | 98
c = xexec(cnd,' SCREEN ,' | GNORE') | 99
rc = c.rc
00
if rc =0
01
then say 'Conpilation was OK.' | 02
else say "WARNING rc:' rc '"from"' cnmd" ".' | 03
end
04
exit O
05
o m o e o et o o o o o o e o e e e o e o e e e e o e e e o e e e e e e e e eo oo oo +
xbui I d. nrx(Met hod: nai n)
ResoUrces™ Download the complete source for the xbuild.nrx library

* k%

This section is:

* k%

File:

and will be available in next rel eases

nr_29. htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

http://www.netrexx.org/library/xbuild.nrx

NetRexx Tutorial - Tools

Last update was done on 18 May 1998 21:48:04(GMT +2).

http://www.netrexx.org/Tutorial/nr_29.htmlI[11/4/2010 2:28:10 PM]

NetRexx Tutorial - The xclasses JAR library

The NetRexx Tutorial
@ - The xclasses JAR library

The xclasses JAR library

2 Introduction

XCLASSES PACKAGE DOCUMENTATI ON
(c) P.A Marchesini, 1998
* k%

*¥*E* o xarray

* % %

SUMVARY

Handl es array operations, and, mainly byte array
conversions. It's a collection of static nethods.
NOTE: ARRAY needs to be defined as:

an_array = rexx[NN
anot her _array = rexx| NN
byt earray = byte

METHODS

xarray.init(ARRAY, VALUE)
initializes a Rexx array ARRAY with val ue VALUE
Exanpl e
xarray.init(an_array,'test test')

xarray. copy(ARRAY1, ARRAY2)
copyes a Rexx array ARRAY1l into array ARRAY2.
Exanpl e
xarray. copy(an_array, anot her _array)

xar ray. dunp(ARRAY, ARRAYNANE)
dunps the entries of ARRAY on the screen; duplicate
Iines are skipped.
Exanpl e
xarray. dunp(an_array, ' an_array')

xarr ay. ba2x(BYTEARRAY, START, LENGTH)
convert byte array BYTEARRAY from byte to HEX string
starting at byte START for LENGTH byt es.

xarray. ba2c(BYTEARRAY, START, LENGTH)
as above, but converting to CHAR

xarray. ba2d(BYTEARRAY, START, LENGTH)
as above, but converting to DECH MAL.

| oc = xarray. bagr epx(BYTEARRAY, SEARCH, START)
will search in byte array BYTEARRAY the HEX string
SEARCH, starting from START.
Exanpl e:
ptr = xarray. bagrepx(buf,' ODOF , 0)

xarr a?/. bahexdunp(BYTEARRAY, START, END)
will dunp HEX the contents of bytearray BYTEARRAY
Exanpl e:
fid = xfile('xarray.class')
rc = fid. readbufé?
xarray. bahexdunp(fid. buffer, 0, 100)

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

NetRexx Tutorial - The xclasses JAR library

* % %

**x xcndl i ne

* % %

SUMVARY

use this class to parse the command |ine options (which, in the

UNI X convention, are entered with a '-' sign).

METHODS

cl = xcndline(LI NE, CONTROL)
where LINE : line entered by the user
CONTROL : defines the control sequence to parse the options
the format is
FLAG [FLA| VAR] / VARI ABLE_NAME/ DEFAULT_VALUE

EXAMPLE

cl = xcndline(rexx(args), t/FLA/TRACE/O‘ -
' r/ FLA/ REPLACE/ 0 -
"o/ VAR QUTFI D/ test . out ")

If the user types:
nytest test -ro pippo.txt

-> say cl. argunents() = test
say cl.option(' TRACE) =1
say cl.option(' REPLACE') = 0
say cl.option(' QUTFID) = pippo.txt
NOTES
- next release will have a syntax like PERL getopt() available too
* % %
*xx o oxdir
* % %
SUMVARY
Handl es all operations on a directory, listing, conparing
etc.
METHODS
xdi r (DI RECTORY)
xdir

constructors. Default directory is the
current directory ("."

str_| s(DI RECTORY) -
issue a "lIs" command. Qutput returned in a REXX

string.
PROPERTI ES
rc - return code of last valid operation
options
EXAMPLES
say xdir.str_Is("/java")
NOTES

* % %

*** xexec
* % %

SUMVARY
Use this class to run a system conmmand.
METHODS
cnd = xexec(COVMAND, OUTPUT, ONERRCR)
wher e:
COWAND : is a valid comand on the systen1you are
runni ng on (e. "ls","cp", "copy", etc.)
QUTPUT : can be any co i nation o
SCREEN : the output mﬁll go on STDOUT
VAR : the output will go on a variable

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

NetRexx Tutorial - The xclasses JAR library

ARRAY : the output will go on an array

or
~NULL . forget about output
ONERROR : is one of: o
| GNORE : areturn code <> 0 is ignored
WARNING : print a warning nessage if rc <> 0
ABORT . abandon ship if rc <> 0
PROPERTI ES
l'i nes : lines of output) _
l'ine : array of output lines; |ine[0]=no.of out |ines
out . string of output (when VAR is active)
rc : return code
EXAMPLES

test = xexec('cp test toast',' NULL',6' ABORT')

test = xexec('pwd','VAR , ' ABORT")
say 'The path is "'test.out'".'

test = xexec('ls -I'," ARRAY',' WARNI NG)
loop i = 1 to test.line[O0]
say '>>>' test.line[i
end
NOTES

- The examples are valid on a UNIX platform

- The exanples are provided just as EXAMPLES
there are infact better ways to do 'ls',' pwd
in NetRexx itself

* k%

***x xfile
* k%

SUMVARY
METHODS
PROPERTI ES
EXAMPLES
NOTES

* k *

* k% xftp

* k *

SUMVARY
METHODS
PROPERTI ES
EXAMPLES
NOTES

* k%

*** xmat h
* % %

SUMVARY
Mai nly provi de conversion tools
METHODS

str = xmath. n2cu(NNN) .)
converts nuneric quantity NNN to conputer units
Exanpl e:
say xmath. n2cu(2048) -> 2K

str = xmat h. s2h(SEC)
converts SEC to HH MM SS
Exanpl e:
say xmath.s2h(3661) -> 1:01:01

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

NetRexx Tutorial - The xclasses JAR library

str = xmat h. doti fy(NNN)

pu s the "," in a big nunmber, for easy reading

Exanpl e:
say xmath.dotify(100203) -> 100, 203

str = xmat h. hexop(HEXCP)
will execute a sinple hex operation
Exanpl e:
say xmath. hexop('1A + 10') -> 2A

str = xmat h. bi nop(HEXCP)
executes a si npl e bin operation.
Exanpl e .
say xmat h. bi nop('10 + 11') -> 101

n = xmat h. randonm MAX)
returns an random i nteger with maxi mrum val ue
not greater t han MAX
Exanpl e
say xmat h. random(25) -> 12 (MAYBE)

n = xmat h. gcd(m n) o
returns the Greatest Common Divisor of Mand N

rc = xmat h. gauss(N, A[Ré_ Y[] C[])] .
upon return code find using the
Gauss Met hod the sol utlon C[] for the array Al,]
and vector Y[]

* k%

* k% XSys

* k%

SUMVARY

This is just a collection of methods for "systent related
i nformation.

METHODS

str :xssuserld)
return your current userid.

say 'I am runni ng on user xsys. userid()
str = xsys nodei d())
return the nane of the node you are running

Exanpl e:
say '|I amrunning on system "'xsys.nodeid()"'"

xsys. tinme()
xs s ti me(FMT)
return the current tine.
FMF is the sanme as on C assical REXX
Exanpl e:
say 'Now is:' xsys.tinme()'

Xxsys. dat e()
xs s dat e(FMT)
return the current date.
FMT is the sanme as on C assical REXX
Exanpl e:
say 'Today is' xsys.date()'

str = xsys xdat e(| FMT, DATE, OFMT)
rperf orm date conversi on.

str
str

Exampl e
say xsys.xdate('E ,'12/01/97".'J")

xsys. di e(RC, MESSAGE)

program wi || abort with RC return code, displaying
MESSAGE on STDOUT;
Exanpl e

le
xsys. di e(320 Program aborted. ")

xsys. sl eep(SEC)
program wi |l sleep for SEC seconds

* % %

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

NetRexx Tutorial - The xclasses JAR library

*xE o xtinmer
* % %

SUMVARY
Use xtiner class to build tinmers inside your prograns.
METHODS
xtimer() - constructor) _
The starting time is set to 0.000 sec
reset () - the tinmer is reset to 0.000 sec
el apsed() - Returns the el apsed tinme since the
| ast reset() (or object creation)
Format is SSSSS. MVWM
(seconds. nmi | li seconds)
PROPERTI ES
EXAMPLES

atimer = xtimer()
-- sone job here

say 'Took.....:' atimer.elapsed (sec).'
atimer.reset()
-- sone other job here

say 'Took.....:' atiner.elapsed (sec).’

File: nr_30.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:05(GMT +2).

http://www.netrexx.org/Tutorial/nr_30.html[11/4/2010 2:28:11 PM]

NetRexx Tutorial - Miscellaneous

The NetRexx Tutorial
@ - Miscellaneous

Miscellaneous

2 Introduction

In this chapter | collect all the information that could not fit in the previous chapters.

You might find usefull references to additional documents as well.

» Packages and JAR files

Packages

In Java terminology the word "package' means a collection of individual .class files contained in a directory. A
package is then a directory and a library, and you use it to group more than one class together.

You then perform the grouping of the source NetRexx files in a directory. And now comes the most important
point: the directory name MUST match the package name.

Real example

In this subsection I'll show how I built the first time my xclasses.jar file.

1.00 create a directory called "xcl asses"”
and go into it

nkdir xcl asses

cd xcl asses

2.00 edit the classes that make the package
ADD a "package xclasses" line at beginning
then conpile it with nrc

edit *.nrx

nrc *.nrx

3.00 build the JAR file
g FROM THE DI RECTORY ABOVE
cd ..
jar -cvf [javallib/xclasses.jar xclasses/*.class

4.00 change the CLASSPATH and add

C:\java\lib\xcl asses.jar) _)
export CLASSPATH=$CLASSPATH'; C:\java\li b\ xcl asses.jar"
5.00 test it

cd /spool /test
cat tl1.nrx

AARHH ARt LeHHTE LAHFHH HAHHT

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

NetRexx Tutorial - Miscellaneous

i mport xcl asses.

rc = xexec('ls -1")
$ nrc tl
$ java t1

» Pipes for NetRexx and Java

Ed Tomlinson has ported the VM/CMS Pipes functionality on NetRexx (and Java). You can find all the information
at the URL:

http://ww. camorag/~tondins/njpipes. htni

» Additional Informations available on the WEB.

Comments about NetRexx

An article about NetRexx has appeared on the Windows Magazine (Windows Magazine, July 1997, page 156). You
can find a copy on:

http://ww. wi nmag. com library/1997/0701/winlall4. htm

2 REXX FAQ.

For the REXX FAQ, you should consult the page:

http://ww. nm ndspring.com ~dave martin/ RexxFAQ ht m

or (in its non-frame version)

http://ww. m ndspring.com ~dave martin/ FAQNoFranes. ht ni

» Regular expressions.

Although I'm not a REGEX fan (since all you can do in a Regular Expression you can do with native NetRexx
functions), there are a lot of colleagues who are really REGEX lovers.

So, for pattern matching issues, look at:

http://ww. wi n. net/~stevesoft/pat
http: //www. | ava. no/ | avaBl N docs/ api /sun. mi sc. Regexp. ht m
http://wwv. | ava. no/ | avaBl N docs/ api / sun. m sc. RegexpPool . ht ni

A good set of packages is also available at the Original Reusable Objects, ORO Site:

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

http://www.cam.org/~tomlins/njpipes.html
http://www.winmag.com/library/1997/0701/winla114.htm
http://www.mindspring.com/~dave_martin/RexxFAQ.html
http://www.mindspring.com/~dave_martin/FAQNoFrames.html
http://www.win.net/~stevesoft/pat
http://www.java.no/javaBIN/docs/api/sun.misc.Regexp.html
http://www.java.no/javaBIN/docs/api/sun.misc.RegexpPool.html

NetRexx Tutorial - Miscellaneous

http://ww\ oroi nc. com’ downl oads/ i ndex. ht nd

You will find a Java regular expression package (OROMatcher), a Easy to use Perls regular expressions in Java
package (PerlTools) and a AWK regular expressions for Java (AwkTools).

% Summary

File: nr_31.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:06(GMT +2).

http://www.netrexx.org/Tutorial/nr_31.html[11/4/2010 2:28:12 PM]

http://www.oroinc.com/downloads/index.html

NetRexx Tutorial - Appendix A: Bibliography

The NetRexx Tutorial
@ - Appendix A: Bibliography

Appendix A: Bibliography

2 Non-IBM Books and Manuals on REXX

This is a list of titles you can find about classical Rexx.

1.

\.J'l-b

10.

11.
12.

13.

14.

15.

[OHARA GOMBERG, 1985] Modern Programming Using REXX -- Robert P. O'Hara and David R. Gomberg In
English: ISBN 0-13-597311-2 Prentice-Hall, 1985 ISBN 0-13-579329-5 (Second edition), 1988 (From REXXPress,
7 Gateview Court, SF CA 94116-1941, USA)

[COWLISHAW, 1985]The REXX Language -- M. F. Cowlishaw In English: ISBN 0-13-780735-X Prentice-Hall,
1985 ISBN 0-13-780651-5 (Second edition), 1990 In German: ISBN 3-446-15195-8 Carl Hanser Verlag, 1988 ISBN
0-13-780784-8 P-H International, 1988 In Japanese: ISBN 4-7649-0136-6 Kindai-kagaku-sha, 1988

[MSG, 1985]Personal REXX User's Guide (PC-DOS and OS/2 REXX) version 2.0 Mansfield Software Group, Inc.,
1985-1990

. [HAWES, 1987]ARexx User's Reference Manual (The REXX Language for the Amiga) William S. Hawes, 1987

[TWG, 1990]uniREXX Reference Manual (REXX for a variety of Unix systems) The Workstation Group, 1990
[SLAC, 1990] Proceedings of the REXX Symposium for Developers and Users SLAC Report-368, 235pp, June
11, 1990

[GARGIULO, 1990] REXX In the TSO Environment -- Gabriel F. Gargiulo ISBN 0-89435-354-3, QED Information
Systems Inc., Order #CC3543; 320pp, 1990 Revised edition: ISBN 0-89435-418-3, QED Information Systems
Inc., 471pp, 1993

[RUDD, 1990] Practical Usage of REXX -- Anthony S. Rudd ISBN 0-13-682790-X, Ellis Horwood (Simon &
Schuster), 1990

[QUERCUS, 1991] Personal REXX User's Guide (PC-DOS and OS/2 REXX) version 3.0 Quercus Systems, 268pp,
1991

[PREXX, 1991] Portable/REXX for MS/DOS (Guide, Reference manual, Examples Reference, Reference
Summary, and Learning to Program with Portable/REXX)

[WATTS, 1991] REXX/Windows (Product Guide and Reference) Keith Watts, Kilowatt Software, 1991

[SLAC, 1991] Proceedings of the REXX Symposium for Developers and Users SLAC Report-379, 244pp, May 8-
9, 1991

[ZAMARA, 1991] Using ARexx on the Amiga -- Chris Zamara and Nick Sullivan ISBN 1-55755-114-6,
424pp+diskette, Abacus, 1991

[GOLDBERG, 1991] The REXX Handbook -- Edited by Gabe Goldberg and Phil Smith 111 ISBN 0-07-023682-8,
672pp, McGraw Hill, 1991

[GIGUERE, 1991] Amiga Programmer's Guide to ARexx -- Eric Giguere Commodore-Amiga, Inc., 1991

http://www.netrexx.org/Tutorial/nr_32.htmi[11/4/2010 2:28:13 PM]

NetRexx Tutorial - Appendix A: Bibliography

16.
17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

27.

28.
209.

30.

31.

32.

33-

34.
35.

[DANEY, 1991] Programming in REXX -- Charles Daney ISBN 0-07-015305-1, 300pp, McGraw Hill, 1992

[SLAC, 1992] Proceedings of the REXX Symposium for Developers and Users SLAC Report-401, 401pp, May 3-
5,1992

[CALLAWAY, 1992] The ARexx Cookbook -- Merrill Callaway ISBN 0-9632773-0-8, 221pp, Whitestone, 1992
(Companion diskette: ISBN 0-9632773-1-6)

[KIESEL, 1993] REXX--Advanced Techniques for Programmers -- Peter C. Kiesel ISBN 0-07-034600-3, 239pp,
McGraw Hill, 1993

[BURNARD, 1993] Denise Burnard, IBM AIX REXX/6000, Reference 1, IBM, 1993

[NIRMAN, 1993] REXX Tools and Techniques -- Barry K. Nirmal ISBN 0-89435-417-5, 264pp, QED, 1993
[GORAN, 1994] REXX Reference Summary Handbook (0S/2) -- Dick Goran ISBN 0-9639854-0-X CF S Nevada,
Inc, 102pp, 1993. ISBN 0-9639854-1-8 (second edition), 148pp, 1994.

[HALLETT, 1993] 0S/2 2.1 REXX Handbook: Basics, Applications, and Tips -- Hallett German ISBN 0442-01734-
0, 459pp, Van Nostrand Reinhold, 1993

[SLAC, 1993] Proceedings of the REXX Symposium for Developers and Users SLAC Report-422, 247pp, May
18-20, 1993

[GARGIULO, 1994] Mastering OS/2 REXX -- Gabriel F. Gargiulo ISBN 0-471-51901-4, 417pp, Wiley-QED, 1994
[RUDD, 1994] Application Development Using OS/2 REXX -- Anthony S. Rudd ISBN 0-471-60691-X, 416pp,
Wiley-QED, 1994

[SCHINDLER, 1994] Teach Yourself REXX in 21 Days -- William F. Schindler & Esther Schindler ISBN 0-672-
30529-1, 527pp, SAMS, 1994

[RICHARDSON, 1993] Writing OS/2 REXX Programs -- Richardson ISBN 0-07052-372-X, McGraw-Hill, 1993
[RICHARDSON, 1994] Writing VX-Rexx for Programs (with disk) -- Richardson ISBN 0-07911-911-5, McGraw-
Hill, 1994

[KYNNING, 1985] REXX Procedursprak--hur du programmerar din PC med OS/2 -- Bengt Kynning ISBN 91-44-
48541-7, 300pp, Studentlitteratur (Sweden), 1994

[GERMAN, 1992] Command Language Cookbook -- Hallett German ISBN 0-442-00801-5, 352pp, Van Nostrand
Reinhold, 1992

[QUERCUS, 1992] Personal REXX User's Guide, Version 3.0 -- OS/2 Supplement Quercus Systems, 94pp, 1992
[HOCKWARE, 1993] VisPro/REXX (Visual programming with REXX) Hockware Inc, 196pp, 1993

[KEES, 1993] REXX in der Praxis -- Peter Kees ISBN 3-486-22666-5, 279pp, Oldenbourg, 1993

[WATCOM, 1993] VX-Rexx for OS/2 (Programmer's Guide and Reference) 2.0 ISBN 1-55094-074-0 Watcom
International Corp.,724pp, 1993

2 IBM Books and Manuals

These are the books that you can obtain directly from IBM. The first number is the IBM BOOK number, which you
should use when ordering the book.

Cross-system books

ZB35- 5100 The REXX Language, 2nd Ed.

- Cow i shaw

SC26- 4358 SAA CPI: Procedures Language Reference
SC24-5549 SAA CPl: REXX Level 2 Reference
G511-1430 | BM REXX Conpiler and Library/370:

- Introducing the Next Step in REXX

http://www.netrexx.org/Tutorial/nr_32.htmi[11/4/2010 2:28:13 PM]

SH19- 8160

SK2T1402
LY19- 6264
SB20- 0020

NetRexx Tutorial - Appendix A: Bibliography

(CMB5, WS)
REXX/ 370 (Conpil er and Library/370):
-- User's Cuide and Reference

(CV5, WS)
REXX/ 370 Conpiler and Library VIR2.0
-- Online Product Library
| BM REXX Conpil er and Library/370:
-- Diagnosis Guide (CM5, WS
The REXX Handbook
-- BEd. Goldberg & Smith

System-specific books, grouped by system

SC24-5708

SH24- 5286
SO01F-0271
SO01F-0272
S10G- 6268
S10G- 6269

SR28- 5250
G324- 4199

SC24- 5239
SC24-5238
SX24-5126
SB09- 1326
SB09- 1325
Gx22-9361
SC12- 1599
SC24- 5357
SC23-0374
SC23- 0375
GH19- 8118
SH19- 8120
LY19- 6262
LN19- 9048
SH19- 8146
GC24- 5406
LYCO- 9075
SC24- 5598
SC24- 5465
SC24- 5466
ST00- 8323
GC24- 5607

SC28- 1882
SC28- 1883

SC23- 3803

SC24- 5512
SC24- 5513
SC24- 5552
SC24- 5553

Al X/ 6000:

Al X REXX/ 6000 Reference
| BM REXX for Netware Reference QGuide
OS5/ 2 Version 1.3 Procedures Language
2/ REXX Ref erence

OS5/ 2 Version 1.3 Procedures Language
2/ REXX User's Cuide

OS5/ 2 (Version 2.0) Procedures Language
2/ REXX Ref erence

OS5/ 2 (Version 2.0) Procedures Language
2/ REXX User's Cuide

OS5/ 2 (Version 2.1) REXX Handbook

0S/2 REXX: From Bark to Byte (Redbook)

VM SP: System Product
Ref erence
VM SP: System Product
User's Cuide
VM SP: System Product
Ref erence Sunmary
VM SP: stem Pr oduct
(Chi nese
VM SP: System Product
User's Cuide (Chinese)
The System Product Interpreter

R Exanpl es and Techni ques -- Brodock
VM SP: System Product Interpreter Handbuch
(CGerman: SC24-5239, July 1984)
VMIS: Witing Sinple Prograns with REXX
VM XA: System Product Interpreter Reference
VM XA: System Product Interpreter User's Quide
CVM5 REXX Conpil er General |nformation
CVMB REXX Compiler User's Quide & Reference
CV5 REXX Conpil er Diagnosis Guide
CVMB REXX Conpi |l er Diagnosis Guide TNL
CM5 REXX Conpiler User's Guide and Reference
- - Suppl enent
VM SP: Program Update Info.
-- REXX Language Enhancenents

Interpreter
Interpreter
Interpreter
Interpreter Reference

Interpreter

VM ESA: V1. REXX/ 370 LI STING

VM ESA: R2: REXX/ VM Pri mer

VM ESA: R2.2: REXX/ VM User's Quide

VM ESA: R2.2: REXX/ VM Reference

VM ESA: R2.2: REXX/ VM Reference Summary
VM ESA: R2.2: REXX/EXEC M gration Tool

TSO E V2R1.1 REXX User's Cuide
TSO E Version 2 REXX/ MS Ref erence

Usi ng REXX to Access OpenEdition
MWS Services

400/ REXX
400/ REXX
400/ REXX
400/ REXX

AS/ 400 Procedures Language
Ref er ence

AS/ 400 Procedures Language
Programmer's Guide

AS/ 400 Procedures Language
Ref erence, Version 2

AS/ 400 Procedures Language

http://www.netrexx.org/Tutorial/nr_32.htmi[11/4/2010 2:28:13 PM]

NetRexx Tutorial - Appendix A: Bibliography

Programmer's QGuide, V 2

SBOF- 6819 0OS/ 400: REXX/ 400 Support

SC33- 6528 VSE/ ESA: REXX/ VSE User's Cuide

SC33- 6529 VSE/ ESA: REXX/ VSE Reference

LY33-9144 VSE/ ESA: REXX/ VSE Di agnosi s Reference

GC33- 6533 VSE/ ESA: REXX/ VSE Li censed Program
Speci fi cati ons

SK2T- 0063 VSE/ ESA: REXX/VSE V1Rl Online Product
Li brary

SH21- 0482 REXX Devel opnent System for

Cl CS/ ESA and REXX Runti ne

Facility for ClCS/ ESA CGuide and Reference

Applications and other REXX-related books

G&4-1615 Using REXX in Practice: EXEC2 to

REXX Conver si on Experiences
G&24-3401 REXX/EXEC M gration To VM XA SP
SC33- 0478 GDDM REXX Gui de

SR21- 0864

SRA VM Using the CM5 System

Product Interpreter
SH20- 7051 VM SP System Product Interpreter:
SQL/ Data System
Interface: Program Description/ Qperations
Manual
GX6-3144 NetView Rel ease 3: REXX Presentation Guide
-- G bbons & Quigley
G66- 3158 CMS Pipelines Tutori al
-- Hartmann, Kraines, and Lynn
GR28-2920 CUA 2001 VM Applications Core
Functions Programmer's Reference QGuide
(CUA support for VM REXX appli cations;
S246- 0078 REXX Reference Summary Handbook (OS/2
-- Dick CGoran
SC23-3803 Using REXX to Access OpenEdition
MWS Servi ces
File: nr_32.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:06(GMT +2).

http://www.netrexx.org/Tutorial/nr_32.htmi[11/4/2010 2:28:13 PM]

NetRexx Tutorial - Appendix I: Installation

The NetRexx Tutorial
@ - Appendix I: Installation

Appendix I: Installation

» Installation on WIN/95 WIN/NT and SOLARIS

Download the JDK

Sun directly distributes the JDK for Windows/95, Windows/NT and Solaris (both SPARC and x86). The download
can be performed from:

http://java.sun. com products/jdk/1.1/index. htni

Select the platform, read the download condition, and fetch the code using your preferred WEB browser.

NOTE: due to a problem with Netscape 3.01, | was forced to directly issue the FTP commands, in order to fetch the
code.

ftp ftp.javasoft.com

> anonynpus

> YOUR_EMAI L_ADDRESS

> bin

> cd pub/jdkl.1

> get jdkl.1.1-wi n32-x86. exe
> quit

» Installing Java on AIX

@ Checking installation

Using your preferred editor, enter the following program, calling it hellojava.java.

g + -

| class hellojava | 01 ugrj

I { bli tati id in (Stri n ||0023 2/
public static void main ring args =

| 5 —_—

| Systemout.printin("Hello Wrld, from Java!"); | 05 JAVA

http://www.netrexx.org/Tutorial/nr_33.htmi[11/4/2010 2:28:14 PM]

http://java.sun.com/products/jdk/1.1/index.html

NetRexx Tutorial - Appendix I: Installation

| } |
|} I
g +
hel | oj ava. j ava
Then you type:
>j avac hel | oj ava. j ava # conpile the program
> ava hel | oj ava # run it

If the output is the string "Hello World, from Java!" then you've almost done it!

Now you can try an applet. So edit the files hellojavaa.java and hellojavaa.html, as presented below.

o f e il + jﬁ
i mport java. appl et. Appl et; | 01 :
i mport java.awt . Graphi cs; ||02 %)
03 =
public class hell ojavaa extends Applet { | 04 =
public void paint(Gaphics g) { | 05 JAVA
g.drawsString("Hello world, from Java Applet!", 50, 25); | 06
| 07
} | 08
| 09
o s o e o et o o o o o o o o e e e o e o o e e e e e e e e e e e e e e e e e oo oo +
hel | oj avaa. j ava

e T N I T I T N EE—. +
<HTM_> 01
<HEAD> 02
<TITLE> Hello World </TITLE> 03
</ HEAD> 04
<BODY> 05
This is the applet:<P> 06
<APPLET codebase="cl asses" code="hel |l oj avaa. cl ass" w dt h=200 hei ght =2| 07
</ BODY> 08
</ HTM.> 09

o m e e e e e e e e e e e e e e e e e mmmmmmmmmmmmmmmmemmmmmmmmmmeememmmm e mm——— =

hel | oj avaa. ht m

>j avac hell oj avaa.j ava # conpile the program
>appl etvi ewer hel | oj avaa. ht m # run it

@ AIX known bugs

There is a bug in the AIX JIT compiler. This leads to errors like the following one, even in compiling the small
hello.nrx program.

$j ava COM i bm netrexx. process. Net RexxC hel | o
Net Rexx portable processor, version 1.120
Copyright (c) |BM Corporat ion, 1997. Al ri ghts reserved.
Program hel | 0. nrx
java. | ang. Arrayl ndexQut Of BoundsExcept i on:
at netrexx. | ang. RexxWor ds. space(Oon‘pHed Code)

http://www.netrexx.org/Tutorial/nr_33.htmi[11/4/2010 2:28:14 PM]

NetRexx Tutorial - Appendix I: Installation

at netrexx.lang.Rexx.spaceECaniIed deeg
at netrexx. | ang. Rexx. space(Conpi | ed Code

(...)
To turn OFF the JIT, just do:

SET JAVA_COWPI LER=xxx

» Download the NetRexx Distribution
The latest versions of NetRexx are available on IBM's WEB site at the following URLs:

http://wwv. i bm coml Technol ogy/ Net Rexx/ nrdown. ht m
USA Server

orat

http://ww2. hursley.ibm conl netrexx/nrdown. ht m
UK Server

» Installing NetRexx on UNIX

In the following example | assume that you want to install NetRexx in the directory:
~/ src/ Net Rexx

and you've the working Java top tree in:
~/ src/javal Java

This is the procedure:

1. Unpack the distribution

> cd ~/src/ Net Rexx
> unconpress Net Rexx.tar
> tar -xvf NetRexx.tar

2. Install the libraries and deno

cd ~/src/javal Java

cp ~/src/ NetRexx/nrtools.tar.Z .
unconpress nrtool s.tar

tar -xvf nrtools.tar

3. Set the environment variabl e CLASSPATH)
You need to add ~/src/javal/Java/lib/ Net RexxC.zip to the
CLASSPATH environment vari abl e

VVVYV

This command will depend on your shell (csh, tcsh, ksh ...)
> export CLASSPATH=$CLASSPATH: ~/ src/j aval/ Java/li b/ Net RexxC. zi p

4. Test the installation

http://www.netrexx.org/Tutorial/nr_33.htmi[11/4/2010 2:28:14 PM]

http://www.ibm.com/Technology/NetRexx/nrdown.htm
http://www2.hursley.ibm.com/netrexx/nrdown.htm

NetRexx Tutorial - Appendix I: Installation

> cd ~/src/javalJaval bin
> java COM I bm netrexx. process. Net RexxC hel | o
> Java hello

The following small script might save you some typing

T N NN N NN . +

| echo 'java COM i bm netrexx. process. Net RexxC $1 | 01

| java COM ibm netrexx. process. Net RexxC $1 | 02

o m m m ema oo +
nrc

2 Microsoft J++

The following recepy (originally provided by Bernhard Hurzeler <behurzeler@ucdavis.edu>) gives some
information on how to get MS VJ++ and NetRexx working together.

1. Put the files in their appropriate directories:

Net RexxC. zi p -> c:\VSDEW LI B
Net RexxC. properties -> c:\MSDEWLIB
Net RexxR. zi p -> c:\VSDEW LI B
Net RexxC. bat -> c:\ MSDEW BI N
Net RexxC. cnd -> c:\ MsDEW\ BI N
nrc. cnd -> c:\ MSDEW BI N
nrc. bat -> c:\ MsDEW BI N

2. Set the CLASSPATH to:
c:\ Msdev\ Li b\ Net RexxR. zi p; c: \ Msdev\ Li b\ Net RexxC. zi p; c: \ Msdev\ Bi n

On Wndows NT 4.0, you follow the icons
Start,
Settings,
Control Panels,
System
Envi ronnment tab,
System Vari abl e

3. Go to c:\MSDEWBIN and type the conmands:
-- generate the java source .
> jview IOO\/I_ i bm netrexx. process. Net RexxC hell o -keep noconpile
-- conpile it
> jvc hello.java

-- run
> jview hello

File: nr_33.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:07(GMT +2).

http://www.netrexx.org/Tutorial/nr_33.htmi[11/4/2010 2:28:14 PM]

NetRexx Tutorial - Appendix Z: changes in this file

The NetRexx Tutorial
@ - Appendix Z: changes in this file

Appendix Z: changes in this file

This chapter will (of course) disappear in the final version.

vOr 0030 150297 206 - clean existin?
(before totally

vOr 0029 130297 206 - correct chap 11

vOr 0001 020297 - First "public"

EE I B I R R I I R I N N S I I R I

File: nr_34.htnl.

ver dat e pgs action
vOr 0035 250297 208 - HTML version + restructure of history file
- put snall corrections in chap 1
vOr0032 200297 208 - add xsock (small) and xshel
to the distribution
vOr0032 180297 208 - wite the RECFM F part

with the I/O record access

- add xexec exanple & warning
- add tar.gz of exanples and libraries.

vOr 0028 120297 204 - add other conversion exanples in chap 4
- build also a .zip version of the .p

Thanks to Francesc Roses for a pointer
to a zip that conpiles on Al X

vOr 0012 - Rearrange the introduction and the Review.
Restructure the Preface
Rearrange the chapters in part
Add the Tool s chapter
Put in Bernard's comments & fixes

v0Or 0010 - Start witing NetRexx for

presentati on of the doc.
This is what Bernard and M ke saw.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:08(GMT +2).

http://www.netrexx.org/Tutorial/nr_34.html[11/4/2010 2:28:15 PM]

NetRexx Tutorial - Index

The NetRexx Tutorial
@ - Index

Index
°

e $2

e $status
°

.« %%
°

e '00'X character

e 'oD'X
o

. *
o

* +
o

e , as continuation character
o

. -

e - as continuation character
o

Ll

. 2%

o/l
o

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e abexi.nrx

e abex2.nrx

e abs

e abstract

e abstract class
e abstraction
e abuttal

® acos

e acosh

e Additional instructions
e AlXinstall

o AIXJIT bug

e aphello.html

e aphello.nrx

e APl documentation
e applets

e Applets

e Applications

J?.é

°
Q)

res

e array exa.nrx

e ArraylndexOutOfBoundsException
e arrays

e arrexi.nrx

e asar.nrx

e asar.rex

e assignments
e associative arrays

e avoid NEWLINE char
e AwkTools

base64

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e basic file operations
e bean

e bibliography

e binary files

e BINARY numbers

e blanklines

e Blocks of READ

e Blocks of WRITE

e build libraries

e C++ function pointer
e Cafe'

e Call

e Call command

e Calling a program

e cannot find constructor
¢ class instances

e classes, classes

e CMSpipes
e codeex.nrx

e command line parser

e comments

e Complex Data Structures
e composers.nrx

e compound variables
e concatenation
e constructor

e cont_exa.nrx

¢ Continuation Character
e continuation character
e Control FAQ

e convert to CU

® COS

e cosh

e current directory

°
O
(@

2
2
e daemon

°
O
<

e data structures
e database

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e date

¢ date conversion tool
e daytime

e daytime.nrx

o default precision
o delim exa.nrx

e Delimiter Character

e design patterns, design patterns
e determine Operating System

e do/end

* dOCS

e dumping files in HEX

e dynas.nrx

e dyna3z.nrx

0.

°
(]

e elapsed time

e environment

e error compiling

e Error unmarshaling return

e eval
e eval.nrx

e exceptions, exceptions
o exec()

e exit

e exit status

o exitValue()

* expose

e exppl.nrx

e expp2.nrx

e expp3.nrx

e expression parser

* FAQ

e fexat.nrx

o fexist

e File

o file existence check
e file operations

e file read

o file Read and Write

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e file write

e file.separator
e finally

e find

e find which OS
e finger, finger
o finger.nrx

e fingert.nrx
e Finite Element Method

e fixed format

e fixedlength records
e foreach

e fork()
e forkexi.rex
e format

e Frequently Asked Questions
e FTP client program

o FTP get

e FTP put

e function calls

e function pointerin Cand C++
e functions

e gauss.nrx

e gcd.nrx

* CetRuntime()

. giga

e greatest common divisor
e GUI

e Hanoi
e hanoi.nrx
e hash

 hashing function

e hedit.nrx change
e hedit.nrx linedis

e hedit.nrx save
¢ hello.nrx

¢ hellojava.java
e hellojavaa.html
¢ hellojavaa.java

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

o HEX

e HEX charrange

e HEX dump
e HEX edit

e HEX numbers

e HEX gquantities

e hexadecimal strings
e history

e history.nrx dump

e history.nrx retrieve
e history.nrx save

e |IBM redbook
o if/then/else

e IMAP client

e IMAP protocol
e imapt.nrx

e index

e indexed files
e indexed string
e infix

e initialise

e input line arguments
e installation

e Installation

e instanceof

e interact.nrx

e interpreter

e [SO 2015 & 2711
e jterate

e Java Developer Kit
e Java JDK

e Java on AlX
e JAVA String| | arrays
e Java version
e Java Virtual Machine

java.class.path

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e java.lang.lllegalAccessError
e java.lang.Object File

e java.lang.Process

e java.lang.Runtime
java.lang.Thread

e java.version

e JAVA COMPILER env variable
e javabeans

e javascript

e JDBC

e jdbcti.nrx

°
—
)
Z

IT
EG

[]
[

[]
—
B

°
-
A

P

e jpginfo.nrx

e jsc.html

e julian date

e justin time compilers

o |atest NetRexx version

e leave

e length and width of a JPG
e linked lists

e list expansion

e list files in directory

e literal parsing

e literal strings

e lls.nrx

* loop

e loop over
¢ loop/while/until

e lower, lower
e ls

e mailing list
e main arguments
e main()

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e matching pattern

e max
e measure time
e mega

e memory model
e method main()

e method overloading
e methods

e Microsoft J++, Microsoft J++
e MIME

e monthfile.nrx

e multiple

e multiple constructors

e NetRexx mailing list

e NetRexx sources
e nnt.nrx

e nnti.nrx
e NNTP client

e NNTP protocol

e nodisp.nrx

e NOP

e NotSerializableException
e nr.HISTORY

e nrc

* nrenv

e nrenv.nrx

e Numbers

e numperf
e numperf.nrx

e object model

e objects, objects

e Operations on BINARY
e Operations on HEX

 Original Reusable Objects
e ORO

e OROMatcher

e OS version

* over

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e p-code

packages, packages
parrot.nrx, parrot.nrx
parrotc.nrx

° m

e parse pull
parsearg.nrx

e parsing
path.separator

e pattern, pattern

* pattern design

e patterns

e PERL associative arrays
e Perls Regular Expressions
e PerlTools

e pexi.nrx

=2

e pipes
° M

e portn.nrx

e precedence

e precision

e Prerequisites

e printStackTrace()
e procedure

e process control
e program name

rams

BB

e gsn.nrxmain

e gsn.nrx partition

e gsn.nrxsort gsnr

e quicksort non recursive

e random

e re-entrant
e readfile

e read file line

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

read implementation
e readst.nrx

e RECFMF
e RECFMV
e recursion
e redbook on Netrexx

® regexp

e regular expression
e Remote Method Invocation

e resume of do instruction

o REXXFAQ

e REXX procedures
e RFC 1064

e REC 1341

e RFC1342

e RFC 867

e RFEC 977

e rfile.nrx

o rfileclie.nrx

e rfileimpl.nrx

e rfileserv.nrx

e RMI

® rmic, rmic

e rmiregistry, rmiregistry

e roundup.nrx
e runnable.nrx

e Runtime
e rxfile

¢ 54y

e sclie.nrx

e select

e SG24-2216-0

e shell arguments
e simplet.nrx

e simple2.nrx

e simple3.nrx

e simple4.nrx

e simples.nrx

e simple6.nrx

e simplez.nrx

e Simultaneous Linear Equations Solution

e sSin

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e Singleton.nrx

e Solaris SPARC
e Solaris x86

e sort

e sour wnl

e Special Characters
e special characters
e special variables
. sQL

e sqrt

e sserv.nrx

e stack trace

e stanza

e start rmiregistry

e stream [/O model

e string concatenation
e string sorting

e String[]

e strings

e strings[]

e strstrict.nrx

e subroutines

e sun.net.ftp

e sun.net.TelnetinputStream
e syexi.nrx

e syex2.nrx

[]
|—+

an

h

o tarray.nrx
e tcl.nrx

e tcl2.nrx

e TelnetinputStream

e tfix.nrx

e tgmit.nrx
e tgmi.rex

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

thread API
e thread definition
e Thread.sleep(MILLISEC)
e threads
e thrto.nrx
e thrti.nrx
e time
e Time.nrx
e TimeCl.nrx
e timeexait.nrx
e Timelmpl.nrx
e timeout on a command
e timer class
e timestamp
e tnri.nrx
e tnrirex
e tnr2.nrx
e tnr2.rex
e towers of Hanoi
e trace
e translate
e translate to lowercase

e translate to uppercase
e tree for ps command

e tstring1.nrx

e tvec3d.nrx

e tvec3ds.nrx
e tveclol.nrx

e twb.nrx

e UCSD Pascal

e undefined constructor
e unimplemented interface method
e UNIX

e UNIX streams

e upper, upper

e URL

e user.dir

e userid

e userid()

e using aclass

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

e vector

e vectorlLo.nrx

e Venn Diagram

e version

e virtual

e virtual class (C++)
e volt.nrx

e voltcl.nrx

e voltimpl.nrx

e w3dmp.nrx

e w3dmpi.nrx

e watchdog

e WEB

e WEB pages

e Windows Magazine
e Windows/95

e Windows/NT

e word

e wordpos

e write file

e write implementation
* WWw.winmag.com

e xarray.nrx ba2x
e xarray.nrx repx
e Xxarray.nrx copy

e xarray.nrx dump
e xbuild.nrx main

e xdate

e xdto.nrx

e xdtt.nrx

o Xxexec

o xfile

o xfile.nrx read

o xfile.nrx readbuf
o xfile.nrx recio

o xfile.nrx recwrite
o xfile.nrx state

o xfile.nrx write

o xfile.nrx writebuf

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index

o xfile.read()
 xftp

o xftp.nrx xget

o xftp.nrx xls

o xftp.nrx xmore
o xftp.nrx xput

e xftpi.nrx

e xmath.nrx binop
e xmath.nrx dotify
e xmath.nrx gauss
e xmath.nrx gcd

e xmath.nrx hexop
e xmath.nrx n2cu

e xmath.nrx random
e xmath.nrx s2h

e xrange

e xshell.nrx

¢ xshellt.nrx history

e xshellt.nrx historyd
e xsock.nrx getservbyname
e xsock.nrx hostname
e xsock.nrx open

e xstring.nrx a2m

e xstring.nrx a2s

e xstring.nrx censure
¢ xstring.nrx cmdline
e xstring.nrx display
e xstring.nrx evalrpn
e xstring.nrx hash

¢ xstring.nrx listexpand
e xstring.nrx m2a

e xstring.nrx option

e xstring.nrx s2a

e xstring.nrx sort

e xstring.nrx translate
e xstring.sort

e xsys.nrx elapsed

e Xxsys.nrx reset

e XSys.nrx xexec

e xsys.sleep(SEC)

e xsystem.nrx dump
e xvector.nrx add

e xvector.nrx mag

e xvector3id.nrx

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

NetRexx Tutorial - Index
]

- Ul

File: nr_35.htnl.

The contents of this WEB page are Copyright © 1997 by Pierantonio Marchesini / ETH Zurich.

Last update was done on 18 May 1998 21:48:09(GMT +2).

http://www.netrexx.org/Tutorial/nr_35.html[11/4/2010 2:28:16 PM]

	netrexx.org
	NetRexx Tutorial - Table of Contents
	NetRexx Tutorial - Review of this book
	NetRexx Tutorial - Preface
	NetRexx Tutorial - Basic concepts
	NetRexx Tutorial - Introduction to NetRexx
	NetRexx Tutorial - Language Basics
	NetRexx Tutorial - Operations on Numbers
	NetRexx Tutorial - Operations on Strings
	NetRexx Tutorial - Control Structures
	NetRexx Tutorial - Classes and Objects in NetRexx
	NetRexx Tutorial - More on NetRexx Classes
	NetRexx Tutorial - Operations on files
	NetRexx Tutorial - Threads
	NetRexx Tutorial - Socket and Networking
	NetRexx Tutorial - Interface with the system
	NetRexx Tutorial - Process Control and Exceptions
	NetRexx Tutorial - Database Operations
	NetRexx Tutorial - Applets
	NetRexx Tutorial - Graphical Interfaces
	NetRexx Tutorial - Advanced Graphics
	NetRexx Tutorial - Advanced Networking
	NetRexx Tutorial - Full OOP projects
	NetRexx Tutorial - Additional Instructions
	NetRexx Tutorial - Advanced Algorithms
	NetRexx Tutorial - NetRexx for REXXers
	NetRexx Tutorial - Tools
	NetRexx Tutorial - The xclasses JAR library
	NetRexx Tutorial - Miscellaneous
	NetRexx Tutorial - Appendix A: Bibliography
	NetRexx Tutorial - Appendix I: Installation
	NetRexx Tutorial - Appendix Z: changes in this file
	NetRexx Tutorial - Index

