
NetRexx
Programming Guide
RexxLA

Version 3.02 of March 23, 2013

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-0-6

Publication Data
c⃝Copyright The Rexx Language Association, 2011-2013
All original material in this publication is published under the Creative Commons - Share Alike 3.0
License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk
14, 1074HRAmsterdam, a registered company governed by the laws of the Kingdom of TheNetherlands.

This edition is registered under ISBN 978-90-819090-0-6

9 789081 909006

ISBN 978-90-819090-0-6

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

The NetRexx Programming Series i

Typographical conventions iii

Introduction v

1 Meet the Rexx Family 1
1.1 Once upon a Virtual Machine 1
1.2 Once upon another Virtual Machine 1
1.3 Features of NetRexx 2

2 Learning to program 3
2.1 Console Based Programs 3
2.2 Comments in programs 5
2.3 Strings 5
2.4 Clauses 6
2.5 When does a Clause End? 6
2.6 Long Lines 6
2.7 Loops 7
2.8 Special Variables 9

3 NetRexx as a Scripting Language 11

4 NetRexx as an Interpreted Language 13

5 NetRexx as a Compiled Language 15
5.1 Compiling from another program 15
5.2 Compiling from memory strings 16

6 Calling non-JVM programs 17

7 Using NetRexx classes from Java 21

8 Classes 23
8.1 Classes 23
8.2 Dependent Classes 24
8.3 Properties 24
8.4 Methods 24
8.5 Inheritance 24
8.6 Overriding Methods 24
8.7 Overriding Properties 24

III

9 Using Packages 25
9.1 The package statement 25
9.2 Translator performance consequences 25
9.3 Some NetRexx package history 25
9.4 CLASSPATH 26

10 Programming Patterns 27
10.1 Events 27
10.2 Recursive Parse 27
10.3 Observer 27

11 Incorporating Class Libraries 29
11.1 The Collection Classes 29

12 Input and Output 31
12.1 The File Class 31
12.2 Streams 31
12.3 Line mode I/O 31
12.4 Byte Oriented I/O 31
12.5 Data Oriented I/O 31
12.6 Object Oriented I/O using Serialization 31
12.7 The NIO Approach 31

13 Algorithms in NetRexx 33
13.1 Factorial 33
13.2 Fibonacci 34

14 Using Parse 37

15 Using Trace 39

16 Concurrency 41
16.1 Threads 41

17 User Interfaces 43
17.1 AWT 43
17.2 Web Applets using AWT 43
17.3 Swing 47
17.4 Web Frameworks 47

18 Network Programming 49
18.1 Using Uniform Resource Locators (URL) 49
18.2 TCP/IP Socket I/O 49
18.3 RMI: Remote Method Interface 49

19 Database Connectivity with JDBC 51

20 WebSphere MQ 55

21 MQTT 61
21.1 Pub/Sub with MQ Telemetry 61

IV

22 Component Based Programming: Beans 65

23 Using the NetRexxA API 67
23.1 The NetRexxA constructor 68
23.2 The parse method 68
23.3 The getClassObject method 69
23.4 The exiting method 69
23.5 Interpreting programs contained in memory strings 69

24 Interfacing to Open Object Rexx 73
24.1 BSF4ooRexx 73

25 NetRexx Tools 75
25.1 Editor support 75
25.2 Java to Nrx (java2nrx) 76

26 Using Eclipse for NetRexx Development 77
26.1 Downloading Eclipse 77
26.2 Setting up the workspace 77
26.3 Shellshock 78
26.4 Installing SVN 78
26.5 Downloading the NetRexx project from the SVN repository 78
26.6 Setting up the builds 79
26.7 Using the NetRexx version of the NetRexx Ant task 79
26.8 Setting up the Eclipse NetRexx Editor Plugin (Optional) 80

27 Platform dependent issues 81
27.1 Mobile Platforms 81
27.2 IBM Mainframe: Using NetRexx programs in z/OS batch 82

28 Translator inner workings 83
28.1 Method resolution 84

Index 85

V

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the Net-
Rexx programming language and its use and applications. This section lists the other
publications in this series, and their roles. These books can be ordered in convenient
hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide This guide is meant for an audience that has done some pro-
gramming and wants to start quickly. It starts with a quick
tour of the language, and a section on installing the Net-
Rexx translator and how to run it. It also contains help for
troubleshooting if anything in the installation does not work
as designed, and states current limits and restrictions of the
open source reference implementation.

Programming Guide The Programming Guide is the one manual that at the same
time teaches programming, shows lots of examples as they
occur in the real world, and explains about the internals of
the translator and how to interface with it.

Language Reference Referred to as the NRL, this is the formal definition for the
language, documenting its syntax and semantics, and pre-
scribing minimal functionality for language implementors.
It is the definitive answer to any question on the language,
and as such, is subject to approval of the NetRexx Architec-
ture Review Board on any release of the language (including
its NRL).

NJPipes Reference The Data Flow oriented companion to NetRexx, with its
CMS Pipes compatible syntax, is documented in this man-
ual. It discusses installing and running Pipes for NetRexx,
and has ample examples of defining your own stages in Net-
Rexx.

i

Typographical conventions

In general, the following conventions have been observed in theNetRexx publications:. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the console,
are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing

1 −− salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� �
�

�visibility

�

�
�modifier

�

�
�deprecated

�� �

�

�
�unused

�� �

�

iii

Introduction

The Programming Guide is the book that has the broadest scope of the publications in
the NetRexx Programming Series. Where the Language Reference and theQuick Begin-
nings need to be limited to a formal description and definition of the NetRexx language
for the former, and a Quick Tour and Installation instructions for the latter, this book has
no such limitations. It teaches programming, discusses computer language history and
comparative linguistics, and shows many examples on how to make NetRexx work with
diverse techologies as TCP/IP, Relational Database Management Systems, Messaging
and Queuing (MQTM) systems, J2EE Containers as JBOSSTM and IBM WebSphere Ap-
plication ServerTM , discusses various rich- and thin client Graphical User Interface Op-
tions, and discusses ways to use NetRexx on various operating platforms. For many
people, the best way to learn is from examples instead of from specifications. For this
reason this book is rich in example code, all of which is part of the NetRexx distri-
bution, and tested and maintained. This has had its effect on the volume of this book,
which means that unlike the other publications in the series, it is probably not a good
idea to print it out in its entirety; its size will relegate it to being used electronically.

Terminology

The NetRexx Language Reference (NRL) is the source of the definitive truth about the
language. In thisProgrammingGuide, terminology is sometimes usedmore loosely than
required for the more formal approach of the NRL. For example, there is a fine line
distinguishing statement, instruction and clause, where the latter is a more Rexx-like
concept that is not oftenmentioned in relation to other languages (if they are not COBOL
or SQL). While we try not to be confusing, clause and statement will be interchangibly
used, as are instruction and keyword instruction.

Acknowledgements

As this book is a compendium of decades of Rexx and NetRexx knowledge, it stands
upon the shoulders of many of its predecessors, many of which are not available in print
anymore in their original form, or will never be upgraded or actualized; we are indebted
to many anonymous (because unacknowledged in the original publications) authors of
IBM product documentation, and many others that we do know, and will thank in the
following. If anyone knows of a name not mentioned here that should be, please be in
touch.

v

A big IOU goes out to Alan Sampson, who singlehandedly contributed more then
one hundred NetRexx programming examples. The Redbook authors (Peter Heuchert,
Frederik Haesbrouck, Norio Furukawa, Ueli Wahli, Kris Buelens, Bengt Heijnesson,
Dave Jones and Salvador Torres) have provided some important documents that has
shown, in an early stage, how almost everything on the JVM is better and easier done
in NetRexx. Kermit Kiser also provided examples and did maintenance on the trans-
lator. Bill Finlason provided the Eclipse instructions. If anyone feels their copyright is
violated, please do let us know, so we can take out offending passages or paraphrase
them beyond recognition. As the usage of all material in this publication is quoted for
educational use, and consists of short fragments, a fair use clause will apply in most
jurisdictions.

vi

1

Meet the Rexx Family

1.1 Once upon a Virtual Machine

On the 22nd of March 1979, to be precise, Mike Cowlishaw of IBM had a vision of
an easier to use command processor for VM, and wrote down a specification over the
following days. VMTM (now called z/VM) is the original Virtual Machine operating
system, stemming from an era in which time sharing was acknowledged to be the wave
of the future and when systems as CTSS (on the IBM 704) and TSS (on the IBM 360
Family of computers) were early timesharing systems, that offered the user an illusion
of having a large machine for their exclusive use, but fell short of virtualising the entire
hardware. The CP/CMS system changed this; CP virtualised the hardware completely
and CMS was the OS running on CP. CMS knew a succession of command interpreters,
called EXEC, EXEC2 and RexxTM (originally REX - until it was found out, by the IBM
legal department, that a product of another vendor had a similar name) - the EXEC roots
are the explanation why some people refer to a NetRexx program as an “exec”. As a
prime example of a backronym, Rexx stands for “Restructured Extended Executor”. It
can be defended that Rexx came to be as a reaction on EXEC2, but it must be noted
that both command interpreters shipped around the same time. From 1988 on Rexx was
available on MVS/TSO and other systems, like DOS, Amiga and various Unix systems.
Rexx was branded the official SAA procedures language and was implemented on all
IBM’s Operating Systems; most people got to know Rexx on OS/2. In the late eighties
the Object-Oriented successor of Rexx, Object Rexx, was designed by Simon Nash and
his colleagues in the IBMWinchester laboratory. Rexx was thereafter known as Classic
Rexx. Several open source versions of Classic Rexx were made over the years, of which
Regina is a good example.

1.2 Once upon another Virtual Machine

In 1995 Mike Cowlishaw ported JavaTM to OS/2TM and soon after started with an ex-
periment to run Rexx on the JVMTM . With Rexx generally considered the first of the
general purpose scripting languages, NetRexxTM is the first alternative language for the
JVM. The 0.50 release, from April 1996, contained the NetRexx runtime classes and a
translator written in Rexx but tokenized and turned into an OS/2 executable. The 1.00
release came available in January 1997 and contained a translator bootstrapped to Net-
Rexx. The Rexx string type that can also handle unlimited precision numerics is called
Rexx in Java and NetRexx. Where Classic Rexx was positioned as a system glue lan-

1

guage and application macro language, NetRexx is seen as the one language that does
it all, delivering system level programs or large applications.
Release 2.00 became available in August 2000 and was a major upgrade, in which

interpreted execution was added. Until that release, NetRexx only knew ahead of time
compilation (AOT).
Mike Cowlishaw left IBM in March 2010. IBM announced the transfer of NetRexx

source code to the Rexx Language Association (RexxLA) on June 8, 2011, 14 years
after the v1.0 release.
On June 8th, 2011, IBM released the NetRexx source code to RexxLA under the

ICU open source license. RexxLA shortly after released this as NetRexx 3.00 and has
followed with updates.

1.3 Features of NetRexx

Ease of use The NetRexx language is easy to read and write because many instructions
are meaningful English words. Unlike some lower level programming languages
that use abbreviations, NetRexxinstructions are common words, such as say, ask,
if...then...else, do...end, and exit.

Free format There are few rules about NetRexx format. You need not start an instruc-
tion in a particular column, you can also skip spaces in a line or skip entire lines,
you can have an instruction span many lines or have multiple instructions on one
line, variables do not need to be pre-defined, and you can type instructions in up-
per, lower, or mixed case.

Convenient built-in functions NetRexx supplies built-in functions that perform vari-
ous processing, searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic calcula-
tions.

Easy to debug When a NetRexx exec contains an error, messages with meaningful ex-
planations are displayed on the screen. In addition, the trace instruction provides
a powerful debugging tool.

Interpreted The NetRexx language is an interpreted language. When a NetRexx exec
runs, the language processor directly interprets each language statement, or trans-
lates the program in JVM bytecode.

Extensive parsing capabilities NetRexx includes extensive parsing capabilities for
character manipulation. This parsing capability allows you to set up a pattern to
separate characters, numbers, and mixed input.

Seamless use of JVM Class Libraries NetRexx can use any class, and class library
for the JVM (written in Java or other JVM languages) in a seamless manner, that
is, without the need for extra declarations or definitions in the source code.

2

2

Learning to program

2.1 Console Based Programs

One way that a computer can communicate with a user is to ask questions and then com-
pute results based on the answers typed in. In other words, the user has a conversation
with the computer. You can easily write a list of NetRexx instructions that will conduct a
conversation. We call such a list of instructions a program. The following listing shows
a sample NetRexx program. The sample program asks the user to give his name, and
then responds to him by name. For instance, if the user types in the name Joe, the reply
Hello Joe is displayed. Or else, if the user does not type anything in, the reply Hello
stranger is displayed. First, we shall discuss how it works; then you can try it out for
yourself.

Listing 2.1: Hello Stranger
1 /∗ A conversation ∗/
2 say "Hello! What's your name?"
3 who=ask
4 if who = '' then say "Hello stranger"
5 else say "Hello" who

Briefly, the various pieces of the sample program are:
/* ... */ A comment explaining what the program is about. Where Rexx programs

on several platforms must start with a comment, this is not a hard requirement for
NetRexx anymore. Still, it is a good idea to start every program with a comment
that explains what it does.

say An instruction to display Hello! What’ s your name? on the screen.
ask An instruction to read the response entered from the keyboard and put it into the

computer’s memory.
who The name given to the place in memory where the user’s response is put.
if An instruction that asks a question.
who = ” A test to determine if who is empty.
then A direction to execute the instruction that follows, if the tested condition is true.
say An instruction to display Hello stranger on the screen.
else An alternative direction to execute the instruction that follows, if the tested con-

dition is not true. Note that in NetRexx, else needs to be on a separate line.
say An instruction to display Hello, followed by whatever is in who on the screen.
The text of your program should be stored on a disk that you have access to with the
help of an editor program. OnWindows, notepad or (notepad++), jEdit, X2 or SlickEdit

3

are suitable candidates. On Unix based systems, including MacOSX, vim or emacs are
plausible editors. If you are on z/VM or z/OS, XEDIT or ISPF/PDF are a given. More
about editing NetRexx code in chapter 25.1, Editor Support, on page 75.
When the text of the program is stored in a file, let’s say we called it hello.nrx, and

you installed NetRexx as indicated in the NetRexx QuickStart Guide, we can run it with
nrc -exec hello

and this will yield the result:
NetRexx portable processor, version NetRexx after3.01, build 1-20120406-1326
Copyright (c) RexxLA, 2011. All rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

If you do not want to see the version and copyright message every time, which would
be understandable, then start the program with:
nrc -exec -nologo hello

This is what happened when Fred tried it.
Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?
Fred
Hello Fred

The ask instruction paused, waiting for a reply. Fred typed Fred on the command line
and, when he pressed the ENTER key, the ask instruction put the word Fred into the
place in the computer’s memory called “who”. The if instruction asked, is “who” equal
to nothing:
who = ’’

meaning, is the value of “who” (in this case, Fred) equal to nothing:
”Fred = ’’

This was not true; so, the instruction after then was not executed; but the instruction
after else, was.
But when Mike tried it, this happened:

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

Hello stranger
Processing of ’hello.nrx’ complete

Mike did not understand that he had to type in his name. Perhaps the program should
have made it clearer to him. Anyhow, he just pressed ENTER. The ask instruction put
” (nothing) into the place in the computer’s memory called “who”. The if instruction
asked, is:
who = ’’

4

meaning, is the value of “who” equal to nothing:
’’ = ’’

In this case, it was true. So, the instruction after thenwas executed; but the instruction
after else was not.

2.2 Comments in programs

When you write a program, remember that you will almost certainly want to read it
over later (before improving it, for example). Other readers of your program also need
to know what the program is for, what kind of input it can handle, what kind of output it
produces, and so on. You may also want to write remarks about individual instructions
themselves. All these things, words that are to be read by humans but are not to be
interpreted, are called comments. To indicate which things are comments, use:
/* to mark the start of a comment
*/ to mark the end of a comment.

The /* causes the translator to stop compiling and interpreting; this starts again only
after a */ is found, which may be a few words or several lines later. For example,
/* This is a comment. */
say text /* This is on the same line as the instruction */
/* Comments may occupy more
than one line. */

NetRexx also has line mode comments - those turn a line at a time into a comment. They
are composed of two dashes (hyphens, in listings sometimes fused to a typographical
em dash - remember that in reality they are two n dashes.
-- this is a line comment

2.3 Strings

When the translator sees a quote (either ” or ’) it stops interpreting or compiling and just
goes along looking for the matching quote. The string of characters inside the quotes is
used just as it is. Examples of strings are:
’Hello’
”Final result: ”

If you want to use a quotation mark within a string you should use quotation marks of
the other kind to delimit the whole string.
”Don’t panic”
’He said, ”Bother”’

There is another way. Within a string, a pair of quotes (of the same kind as was used to
delimit the string) is interpreted as one of that kind.
’Don’’t panic’ (same as ”Don’t panic”)
”He said, ””Bother””” (same as ’He said, ”Bother”’)

5

2.4 Clauses

Your NetRexx program consists of a number of clauses. A clause can be:
1. A keyword instruction that tells the interpreter to do something; for example,

say ”the word”

In this case, the interpreter will display the word on the user’s screen.
2. An assignment; for example,

Message = ’Take care!’

3. A null clause, such as a completely blank line, or
;

4. A method call instruction which invokes a method from a class
’hiawatha’.left(2)

2.5 When does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to extend a
clause over many lines. The rules are:. Usually, each clause occupies one line.. If you want to put more than one clause on a line you must use a semicolon (;) to
separate the clauses.. If you want a clause to span more than one line you must put a dash (hyphen) at the
end of the line to indicate that the clause continues on the next line. If a line does not
end in a dash, a semicolon is implied.

What will you see on the screen when this exec is run?

Listing 2.2: RAH Exec
1 /∗ Example: there are six clauses in this program ∗/ say "Everybody cheer!"
2 say "2"; say "4" ; say "6" ; say "8" ; say "Who do we" −
3 "appreciate?"

2.6 Long Lines

Since the days of the punch card images are over the lines in program sources have
become longer and longer, and with NetRexx being a free format language, there is
no real technical reason to limit line length. Still, for readability and for ease access to
words within a line, it is often indicated to keep lines relatively short and tidy. For this
reason, the continuation character ’-’ can be used. This also makes it possible to split
long literal strings over lines.

Listing 2.3: Long lines
1 say 'good' −
2 'night'

This example will concatenate ’good’ and ’night’ with a space inbetween. When you
want to avoid that, use the ’||’ concatenation operator.

6

Listing 2.4: Long lines with string concatenation without space
1 say 'good' −
2 | | 'night'

2.7 Loops

We can go on and write clause after clause in a program source files, but some repetitive
actions in which only a small change occurs, are better handled by the loop statement,
reminding of an anecdote that Andy Hertzfield tells1 Imagine an assignment to neatly
print out a table of exchange rates for dollars and euros for reference in a shop.We could
of course make the following program:

Listing 2.5: Without a loop
1 say 1 'euro equals' 1 ∗ 2.34 'dollars'
2 say 2 'euro equals' 2 ∗ 2.34 'dollars'
3 say 3 'euro equals' 3 ∗ 2.34 'dollars'
4 say 4 'euro equals' 4 ∗ 2.34 'dollars'
5 say 5 'euro equals' 5 ∗ 2.34 'dollars'
6 say 6 'euro equals' 6 ∗ 2.34 'dollars'
7 say 7 'euro equals' 7 ∗ 2.34 'dollars'
8 say 8 'euro equals' 8 ∗ 2.34 'dollars'
9 say 9 'euro equals' 9 ∗ 2.34 'dollars'
10 say 10 'euro equals' 10 ∗ 2.34 'dollars'

This is valid, but imagine the alarming thought that the list is deemed a success and you
are tasked with making a new one, but now with values up to 100. That will be a lot of
typing.
The way to do this is using the loop2 statement.

Listing 2.6: With a loop
1 loop i=1 to 100
2 say i 'euro equals' i ∗ 2.34 'dollars'
3 end

Now the loop index variable i varies from 1 to 100, and the statements between loop
and end are repeated, giving the same list, but now from 1 to 100 dollars.
We can do more with the loop statement, it is extremely flexible. The following di-

agram is a (simplified, because here we left out the catch and finally options) rundown
of the ways we can loop in a program.
A few examples of what we can do with this:
. Looping forever - better put, without deciding beforehand how many times

1http://www.folklore.org: Bob’s background looked to be a lot stronger in hardware than software, so we were somewhat
skeptical about his software expertise, but he claimed to be equally adept at both. His latest project was a rebellious, skunk-works
type effort to make a low cost version of the Star called ”Cub” that used an ordinary Intel microprocessor (the 8086), which was
heresy to the PARC orthodoxy, who felt that you needed custom, bit-slice processors to get sufficient performance for a Star-type
machine. Bob had written much of the software for Cub himself.
”I’ve got lots of software experience”, he declared, ”in fact I’ve personally written over 350,000 lines of code.”
I thought that was pretty impressive, although I wondered how it was calculated. I couldn’t begin to honestly estimate how much

code I have written, since there are too many different ways to construe things.
That evening, I went out to dinner with my friend Rich Williams, who started at Apple around the same time that I did. Rich had

a great sense of humor. I told him about the interview that I did in the afternoon, and how Bob Belleville claimed to have written
over 350,000 lines of code.
”Well, I bet he did”, said Rich, ”but then he discovered loops!”
2Note that Classic Rexx uses do for this purpose. In recent Open Object Rexx versions loop can also be used.

7

http://www.folklore.org

FIGURE 1: Loop

loop

loop
�� �
�

� label name

�

�
�protect term

�

�
� repetitor

�

�
�conditional

�

�

�

� instructionlist �

�

�end
�� �

repetitor

varc =
���
expri �

�to exprt
�� �

�

�
�by exprt

�� �

�

�
�for exprf

�� �

�

�
�varo over

�� �
termo

�for
�� �
exprr

�forever
�� �

�

conditional

while
�� �
exprw�

�until
�� �
expru

�

Listing 2.7: Loop Forever

1 loop forever
2 say 'another bonbon?'
3 x = ask
4 if x = 'enough already' then leave
5 end

The leave statement breaks the program out of the loop. This seems futile, but in
the chapter about I/O we will see how useful this is when reading files, of which we
generally do not know in advance how many lines we will read in the loop.. Looping for a fixed number of times without needing a loop index variable

Listing 2.8: Loop for a fixed number of times without loop index variable

1 loop for 10
2 in.read() /∗ skip 10 lines from the input file ∗/
3 end

. Looping back into the value of the loop index variable

Listing 2.9: Loop Forever

8

1 loop i = 100 to 90 by −2
2 say i
3 end

This yields the following output:
===== Exec: test =====
100
98
96
94
92
90
Processing of ’test.nrx’ complete

2.8 Special Variables

Wehave seen that a variable is a place where some data, be it character date or numerical
data, can be held. There are some special variables, as shown in the following program.

Listing 2.10: NetRexx Special Variables
1 /∗ NetRexx ∗/
2 options replace format comments java crossref savelog symbols binary
3

4 class RCSpecialVariables
5

6 method RCSpecialVariables()
7 x = super.toString
8 y = this.toString
9 say '<super>'x'</super>'
10 say '<this>'y'</this>'
11 say '<class>'RCSpecialVariables.class'</class>'
12 say '<digits>'digits'</digits>'
13 say '<form>'form'</form>'
14 say '<[1, 2, 3].length>'
15 say [1, 2, 3].length
16 say '</[1, 2, 3].length>'
17 say '<null>'
18 say null
19 say '</null>'
20 say '<source>'source'</source>'
21 say '<sourceline>'sourceline'</sourceline>'
22 say '<trace>'trace'</trace>'
23 say '<version>'version'</version>'
24
25 say 'Type an answer:'
26 say '<ask>'ask'</ask>'
27
28 return
29

30 method main(args = String[]) public static
31

32 RCSpecialVariables()
33
34 return

this The special variables this and super refer to the current instance of the class and
its superclass - what this means will be explained in detail in the chapter Classes
on page 23, as is the case with the class variable.

digits The special variable digits shows the current setting for the number of decimal
digits - the current setting of numeric digits. The related variable form returns the
current setting of numeric form which is either scientific or engineering.

9

null The special variable null denotes the empty reference. It is there when a variable
has no value.

source The source and sourceline variables are a good way to show the sourcefile and
sourceline of a program, for example in an error message.

trace The trace variable returns the current trace setting, which can be one of the
words off var methods all results.

version The version variable returns the version of the NetRexx translator that was
in use at the time the clause we processed; in case of interpreted execution(see
chapter 4 on 13, it returns the level of the current translator in use.

The result of executing this exec is as follows:
===== Exec: RCSpecialVariables =====
<super>RCSpecialVariables@4e99353f</super>
<this>RCSpecialVariables@4e99353f</this>
<class>class RCSpecialVariables</class>
<digits>9</digits>
<form>scientific</form>
<[1, 2, 3].length>
3
</[1, 2, 3].length>
<null>

</null>
<source>Java method RCSpecialVariables.nrx</source>
<sourceline>21</sourceline>
<trace>off</trace>
<version>NetRexx 3.02 27 Oct 2011</version>
Type an answer:
hello fifi
<ask>hello fifi</ask>

It might be useful to note here that these special variables are not fixed in the sense of
that they are not Reserved Variables. NetRexx does not have reserved variables and any
of these special variables can be used as an ordinary variable. However, when it is used
as an ordinary variable, there is no way to retrieve the special behavior.

10

3

NetRexx as a Scripting Language

The term scripting is used here in the sense of using the programming language for
quickly composed programs that interact with some application or environment to per-
form a number of simple tasks.
You can use NetRexx as a simple scripting language without having knowledge of,

or using any of the features that is needed in a Java program that runs on the JVM - like
defining a class name, and having a main method that is static and expects an array of
String as its input.
Scripts can be written very fast. There is no overhead, such as defining a class, con-

structors and methods, and the programs contain only the necessary instructions. In this
sense, a NetRexx script looks like an oo-version of a classic script, as the ceremonial
aspects of defining class and method can be skipped. These will be automatically gen-
erated in the Java language source that is being generated for a script.
The scripting feature can be used for test purposes. It is an easy and convenient way

of entering some statements and testing them. The scripting feature can also be used for
the start sequence of a NetRexx application.
Scripts can be interpreted or compiled - there is no rule that a script needs to be inter-

preted. In both cases, interpreted or compiled, the NetRexx translator adds the necessary
overhead to enable the JVM to execute the resulting program.
The scripting facility and its automatic generation of a class statement can lead to

one surprising message when there is an error in the first part of the program: class x
already implied when the automatically generated class statement (using the program
file name) somehow clashes with the specified name that contains the error. When not
using scripting mode, this error message nearly always indicates an error that occurred
before the first class statement.

11

4

NetRexx as an Interpreted Language

In the JVM environment, compilation and interpretation are concepts that are not as
straightforward as in other environments; JVM code is interpreted on several levels.
When we are referring to interpreted NetRexx code, we indicate that there is no inter-
mediate Java compilation step involved. A JVM .class file is always interpreted by the
JVM runtime; the NetRexx translator is able to execute programs without generating
either .java or .class files.
This enables a very quick edit-debug-run cycle, especially when combined with the

command line feature that keeps the translator classes resident (the -prompt option), or
one of the IDE plugins for NetRexx.
For NetRexx to deliver this functionality, the translator has been designed to have an

analogous interpret facility for every code generation part.3

3This is the right way to explain this feature, because historically, the compiler was first (1996) and the interpretation facility
was added later (in 2000).

13

5

NetRexx as a Compiled Language

5.1 Compiling from another program

The translator may be called from a NetRexx or Java program directly, by invoking the
main method in the org.netrexx.process.NetRexxC class described as follows:

Listing 5.1: Invoking NetRexxC.main
1 method main(arg=Rexx, log=PrintWriter null) static returns int

The Rexx string passed to the method can be any combination of program names and
options (except -run), as described above. Program names may optionally be enclosed
in double-quote characters (and must be if the name includes any blanks in its specifi-
cation).
A sample NetRexx program that invokes the NetRexx compiler to compile a program

called test is:

Listing 5.2: Compiletest
1 /∗ compiletest.nrx ∗/
2 s='test −keep −verbose4 −utf8'
3 say org.netrexx.process.NetRexxC.main(s)

Alternatively, the compiler may be called using the method:

Listing 5.3: Calling with Array argument
1 method main2(arg=String[], log=PrintWriter null) static returns int

in which case each element of the arg array must contain either a name or an option
(except -run, as before). In this case, names must not be enclosed in double-quote char-
acters, and may contain blanks.
For both methods, the returned int value will be one of the return values described

above, and the second argument to the method is an optional PrintWriter stream. If the
PrintWriter stream is provided, translator messages will be written to that stream (in
addition to displaying them on the console, unless -noconsole is specified). It is the
responsibility of the caller to create the stream (autoflush is recommended) and to close
it after calling the compiler. The -savelog compiler option is ignored if a PrintWriter is
provided (the -savelog option normally creates a PrintWriter for the file NetRexxC.log).
Note: NetRexxC is thread-safe (the only static properties are constants), but it is

not known whether javac is thread-safe. Hence the invocation of multiple instances
of NetRexxC on different threads should probably specify -nocompile, for safety.

15

5.2 Compiling from memory strings

Programs may also be compiled from memory strings by passing an array of strings
containing programs to the translator using these methods:

Listing 5.4: From Memory
1 method main(arg=Rexx, programarray=String[], log=PrintWriter null) static returns int
2 method main2(arg=String[], programarray=String[], log=PrintWriter null) static returns

int

Any programs passed as strings must be named in the arg parameter before any pro-
grams contained in files are named. For convenience when compiling a single program,
the program can be passed directly to the compiler as a String with this method:

Listing 5.5: With String argument
1 method main(arg=Rexx, programstring=String, logfile=PrintWriter null) constant returns

int

Here is an example of compiling a NetRexx program from a string in memory:

Listing 5.6: Example of compiling from String
1 import org.netrexx.process.NetRexxC
2 program = "say 'hello there via NetRexxC'"
3 NetRexxC.main("myprogram",program)

16

6

Calling non-JVM programs

Although NetRexx currently misses the Address facility that Classic Rexx and Object
Rexx do have, it is easy to call non-JVM programs from a NetRexx program - not as
easy as calling a JVM class of course, but if the following recipe is observed, it will
show not to be a major problem. The following example is reusable for many cases.

Listing 6.1: Calling Non-JVM Programs

1 /∗ script\NonJava.nrx
2

3 This program starts an UNZIP program, redirect its output,
4 parses the output and shows the files stored in the zipfile ∗/
5

6 parse arg unzip zipfile .
7
8 −− check the arguments − show usage comments
9 if zipfile = '' then do
10 say 'Usage: Process unzipcommand zipfile'
11 exit 2
12 end
13
14 do
15 say "Files stored in" zipfile
16 say "−".left(39,"−") "−".left(39,"−")
17 child = Runtime.getRuntime().exec(unzip ' −v' zipfile) −− program start
18

19 −− read input from child process
20 in = BufferedReader(InputStreamReader(child.getInputStream()))
21 line = in.readline
22

23 start = 0 −− listing of files are not available yet
24 count = 0
25 loop while line \= null
26 parse line sep program
27 if sep = '−−−−−−' then start = \start
28 else
29 if start then do
30 count = count + 1
31 if count // 2 > 0 then say program.word(program.words).left(39) '\−'
32 else say program.word(program.words)
33 end
34 line = in.readline()
35 end
36

37 −− wait for exit of child process and check return code
38 child.waitFor()
39 if child.exitValue() \= 0 then
40 say 'UNZIP return code' child.exitValue()
41

42 catch IOException
43 say 'Sorry cannot find' unzip
44 catch e2=InterruptedException
45 e2.printStackTrace()
46 end

17

Just firing off a program is no big deal, but this example (in script style) shows how
easy it is to access the in- and output handles for the environment that executes the
program, which enables you to capture the output the non-jvm program produces and
do useful things with it.4 Line 17 starts the external command using the JVM Runtime
class in a process called child. In line 20 we create a BufferedReader from the child
processes’ output. This is called an InputStream but it might as well have been called
an OutputStream- everything regarding I/O is relative - but fortunately the designers of
the JVM took care of deciding this for you. In lines 25-35 we loop through the results
and show the files stored in the zipfile. Note that we do (line 14) have to catch (line
42) the IOException that ensues if the runtime cannot find the unzip program, maybe
because it is not on the path or was not delivered with your operating system.
Starting from JVM 1.5 releases, there is a new way to accomplish the same goal, in

a cleaner manner and with the added bonus of being able to redirect streams, and use
environment variables. In this regard, the environment variable has made an important
comeback from having its calls deprecated, to easy to use support in the ProcessBuilder
class.

Listing 6.2: Use of ProcessBuilder
1 /∗∗
2 ∗ Class OSProcess implements ways to execute and get output from an OS Process
3 ∗/
4 class OSProcess
5 properties indirect
6 pid = Process
7 returncode
8 commandList = ArrayList()
9 outList = ArrayList()
10

11 properties private
12 listeners = HashSet()
13 /∗∗
14 ∗ Default constructor
15 ∗/
16 method OSProcess()
17 return
18

19 /∗∗
20 ∗ Method run starts an OS process from a command line in an ArrayList
21 ∗ @param command is a List that has the command to be executed as elements
22 ∗ @return List containing the output of the command
23 ∗/
24 method outtrap(command =ArrayList) returns ArrayList
25 this.commandList = command
26 do
27 pb = ProcessBuilder(command)
28 pb.redirectErrorStream(1)
29 this.pid = pb.start()
30 in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
31 line = in.readLine()
32 loop while line <> null
33 this.outList.add(line)
34 line = in.readLine()
35 end
36 pid.waitFor()
37 returncode = pid.exitValue()
38 return this.outList
39 catch iox=IOException
40 say iox.getMessage()
41 return ArrayList()
42 catch InterruptedException
43 say "interrupted"
44 return ArrayList()

4This is akin to what one would do with queue on z/VM CMS and outtrap on z/OS TSO in Classic Rexx.

18

45 end −− do
46

47 /∗∗
48 ∗ Method exec starts an OS process from a command line in an ArrayList
49 ∗ @param then fires off outputEvent events to every registered listener
50 ∗ @return void
51 ∗/
52 method exec(command =ArrayList)
53 this.commandList = command
54 do
55 pb = ProcessBuilder(command)
56 pb.redirectErrorStream(1)
57 this.pid = pb.start()
58 in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
59 line = in.readLine()
60 loop while line <> null
61 line = in.readLine()
62 i = this.listeners.iterator()
63 loop while i.hasNext()
64 op = OutputEventListener i.next()
65 op.outputReceived(OutputLineEvent(this,line,this.pid))
66 end
67 end
68 pid.waitFor()
69 returncode = pid.exitValue()
70 catch iox=IOException
71 say iox.getMessage()
72 catch InterruptedException
73 say "interrupted"
74 end −− do
75
76

77 /∗∗
78 ∗ Method addOutputEventListener supports registering an event listener
79 ∗ @param listener is a OutputEventListener
80 ∗/
81 method addOutputEventListener(listener =OutputEventListener)
82 this.listeners.add(listener)
83

84 /∗∗
85 ∗ Method removeOutputEventListener supports de−registering an event listener
86 ∗ @param listener is a OutputEventListener
87 ∗/
88 method removeOutputEventListener(listener =OutputEventListener)
89 this.listeners.remove(listener)

In the above sample, we are using two different ways to obtain the output from a process
started by the JVM from our own program. The method outtrap waits until the invoked
process is finished and returns all output lines in an ArrayList. Its name is not entirely
coincidental with the similar TSO outtrap function.
Sometimes we cannot wait until the child process is finished, for example when it is

a long running process and we need to capture the output on a line-by-line basis to see
what is happening - in case of the example, this was done to capture the output as part
of a testsuite for a multithreaded file transfer application, which has a server resident
process that is not supposed to end, because one of its tasks is to poll a directory for
incoming files with a specific pattern in the file names. This is implemented using an
Event based pattern (as explained in 10.1 on page 27.

Listing 6.3: Output Line Event
1 import java.util.EventObject
2 /∗∗
3 ∗ Class OutputLineEvent embodies the OutputLineEvent
4 ∗/
5 class OutputLineEvent extends EventObject
6

7 properties indirect
8 pid = Process

19

9 line
10 /∗∗
11 ∗ Default constructor
12 ∗/
13 method OutputLineEvent(ob=Object,line , pid =Process)
14 super(ob)
15 this.line = line
16 this.pid = pid
17 return

Listing 6.4: Output Event Listener
1 import java.util.EventListener
2 /∗∗
3 ∗ Interface OutputEventListener specifies the one mandatory method for this interface
4 ∗/
5 class OutputEventListener interface implements EventListener
6

7 method outputReceived(ob=OutputLineEvent)

The call would look something like this:

Listing 6.5: Example of calling the OSProcess class - registering an eventhandler
1 os = OSProcess()
2 os.addOutputEventListener(this)
3 os.exec(command)

The class must extend OutputEvenListener, and implement this method:

Listing 6.6: Example of implementing the listener method
1 method outputReceived(ob=OutputLineEvent)
2 this.counter = this.counter+1
3 say this.counter ob.getPid() ob.getLine()

20

7

Using NetRexx classes from Java

If you are a Java programmer, using a NetRexx class from Java is just as easy as using
a Java class from NetRexx. NetRexx compiles to Java classes that can be used by Java
programs. You should import the netrexx.lang package to be able to use the short class
name for the Rexx (NetRexx string and numerics) class.
A NetRexx method without a returns keyword can return nothing, which is the void

type in Java, or a Rexx string. NetRexxis case independent5; Java is case dependent. Net-
Rexx generates the Java code with the case used in the class and method instructions.
For example, if you named your class Spider in the NetRexx source file, the result-
ing Java class file is Spider.class. The public class name in your source program must
match the NetRexx source file name. For example, if your source file is SPIDER.NRX,
and your class is Spider, NetRexx generates a warning and changes the class name to
SPIDER to match the file name. A Java program using the class name Spider would not
find the generated class, because its name is SPIDER.class - if the compile succeeded,
which is not guaranteed in case of casing mismatches. If you have problems, compile
your NetRexx program with the options -keepasjava -format. You then can look at the
generated java file for the correct spelling style and method parameters.

5With the default of options nostrictcase in effect.

21

8

Classes

Somewhere in the nineties Object Orientation became one of the mainstream ways to
organize computer programs, and support for this was added to programming languages.
C became C++ with a preprocessor that generates CfootnoteCfront that is not entirely
unlike the NetRexx translator produces Java. Java in itself is syntax-wise a cleaned up
version of C++, but in essence an entirely different language. Its inventor and architect,
James Gosling, has stated on various occasions that he was planning a fully different
syntax for what finally became Java - but that Sun management more or less forced
him to use a C++ derived syntax, because C++ compilers was what SUN did well at the
time. With Brendan Eich having to base JavaScript qua naming and syntax on Java, the
circle that brought the world terse, curly braces based notations, is complete.
For an audience of Rexx programmers, the usual OO presentation goes into the ad-

vantages of the paradigm. Today, that is not really necessary, and OO is a given; it
slightly deviates from earlier notation as result of trying to put data and procedure into
Objects, but it is no great deal, and this NetRexx Programmer’s Guide does not need a
special section on the benefits of the OO paradigm. It is assumed that with a few exam-
ples everyone should be able to get it; some old programmers might resist but there is
really no use in fighting the mainstream. Consequently, this section discusses the way
to do this in NetRexx; the way NetRexx does it is for a very large part formed by the
way the JVM dictates it, adapted to Rexx notational style and conventions.

8.1 Classes

Classes represent a blueprint, ’cookie cutter’ approach in creating objects that do useful
things. A class is defined in a file by the same name (exceptions here for dependent
classes). So a class called Cookie is defined in a file called Cookie.nrx. Its real, which
means its most specific name, including its package specification, is not given by the
file name but by the combination of the class=file + the name given on the package
statement. This enables one to put classes in different packageswithout having to change
the file names.

23

8.2 Dependent Classes

8.3 Properties

8.4 Methods

8.5 Inheritance

8.6 Overriding Methods

8.7 Overriding Properties

24

9

Using Packages

Any non-toy, non-trivial program needs to be in a package. Only examples in pro-
gramming books (present company included) have programs without package state-
ments. The reason for this is that there is a fairly large chance that you will give some-
thing a name that is already used by someone else for something else. Things are not
their names6, and the same names are given to wildly dissimilar things. The pack-
age construct is the JVM’s approach to introducing namespaces into the total set of
programs that programmers make. Different people will probable write some method
that is called listDifferences sometime. With all my software in a package called
com.frob.nitz and yours in a package called com.frob.otzim, there is no danger of
our programs calling the wrong class and listing the wrong differences.
It is imperative to understand this chapter before continuing - it is a mechanical nuts-

and-bolts issue but an essential one at that.

9.1 The package statement

The final words about the NetRexx package statement is in the NetRexx Language
Reference, but the final statement about the package mechanism is in the JVM docu-
mentation.

9.2 Translator performance consequences

Because the NetRexx translator has to scan all packages that it can see (meaning a recur-
sive scan of the directories below its own level in the directory tree, and on its classpath,
it is often advisable (and certainly if . (a dot, representing the current directory) is part of
the classpath) to do development in a subdirectory, instead of, for example, the top level
home directory. If a large number of packages and classes are visible to the translator,
compile times will be negatively impacted.

9.3 Some NetRexx package history

All IBM versions of NetRexx had the translator in a package called
COM.ibm.netrexx.process

6Willard Van Orman Quine, Word and Object, MIT Press, 1960, ISBN 0-262-67001-1

25

The official, SUN ordained convention for package names was, to prepend the reversed
domain name of the vendor to the package name, while uppercasing the top level do-
main. NetRexx, being one of the first programs to make use of packages, followed this
convention, that was quickly dropped by SUN afterwards, probably because someone
experienced what trouble it could cause with version management software that adapted
to case-sensitive and case-insensitive file systems. For NetRexx, which had started out
keenly observing the rules, this insight came late, and it is a sober fact that as a result
some needlessly profane languagewas uttered on occasion by some in some projects that
suffered the consequences of this.With the first RexxLA release of NetRexx in 2011, the
package name was changed to org.netrexx, while the runtime package name was kept
as netrexx.lang, because some major other languages also follow this convention.

9.4 CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indi-
cate a search path for Java classes. The Java Virtual Machine and the NetRexx transla-
tor rely on the CLASSPATH value to find directories, zip files, and jar files which may
contain Java classes. The procedure for setting the CLASSPATH environment variable
depends on your operating system (and there may be more than one way).. For Linux and Unix (BASH, Korn, or Bourne shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH. Changes for re-boot or opening of a newwindow should be placed in your /etc/profile,

.login, or .profile file, as appropriate.. For Linux and Unix (C shell), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

Changes for re-boot or opening of a new window should be placed in your .cshrc file.
If you are unsure of how to do this, check the documentation you have for installing
the Java toolkit.. For Windows operating systems, it is best to set the system wide environment, which
is accessible using the Control Panel (a search for “environment” offsets the many
attempts to relocate the exact dialog in successive Windows Control Panel versions
somewhat).

26

10

Programming Patterns

Much has been made of patterns as aggregations of higher level embodiments of pro-
gramming solutions. It has been observed that of a number of the C++ oriented patterns
in Design Patterns7, a fair number owes its existence to complications in the C++ lan-
guage and it not readily reproducible in a Java Patterns or Ruby Patterns book. The same
goes for NetRexx- in this chapter we would like to present a number of Java patterns
usable in NetRexx, and a number of patterns that are unique to NetRexx.

10.1 Events

10.2 Recursive Parse

This is a pattern unique to Rexx, by virtue of Rexx having the Parse statement. It also
works in NetRexx.

10.3 Observer

The observer pattern can also be referred to as Callback, and the Java Event class deliv-
ers support for it. It is very usable if some result needs to be available for a set of callers,
where the set is 0 to many. It works as follows: (see a simple implementation in section
6.4 on page 20) An object, maintains a list of its dependents, called observers, and noti-
fies them automatically of any state changes, usually by calling one of their methods. It
is mainly used to implement distributed event handling systems. The Observer pattern
is also a key part in the familiar Model View Controller (MVC) architectural pattern.
In the JVM, this object needs to implement the methods of the Listener interface; this
interface specifies the addListener and RemoveListener methods; it keeps a collection
in which references to the added listener objects are maintained. The listening is done to
subclassed Java Event classes. The event specifies the method to be called when ’firing
off’ and event. This means that this method is called on every listener.
One of the larger benefits: it decouples the observer from the subject. The subject

doesn’t need to know anything special about its observers. Instead, the subject simply
allows observers to subscribe. When the subject generates an event, it simply passes it
to each of its observers. Another benefit is that event consuming classes don’t have to
wait until a process is finished, and can consume events as they come in. The OSProcess

7Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Pro-
fessional; 1994

27

class on page 20) uses an event approach to consume output lines from a subprocess -
in the version that puts the output in an ArrayList needs to wait for the subprocess to
end, but the event driven version can monitor a long running process and analyze output
lines whenever they are received.

28

11

Incorporating Class Libraries

11.1 The Collection Classes

29

12

Input and Output

12.1 The File Class

12.2 Streams

12.3 Line mode I/O

12.3.1 Line mode I/O using BufferedReader and PrintWriter

12.3.2 Line mode I/O using BufferedReader and BufferedWriter

12.4 Byte Oriented I/O

12.5 Data Oriented I/O

12.6 Object Oriented I/O using Serialization

12.7 The NIO Approach

31

13

Algorithms in NetRexx

13.1 Factorial

A factorial is the product of an integer and all the integers below it; the mathemati-
cal symbol used is ! (the exclamation mark). For example 4! is equal to 24 (because
4*3*2*1=24). The following program illustrates a recursive (a method calling itself)
and an iterative approach to calculating factorials.

Listing 13.1: Factorial
1 /∗ NetRexx ∗/
2

3 options replace format comments java crossref savelog symbols nobinary
4

5 numeric digits 64 −− switch to exponential format when numbers become larger than 64
digits

6

7 say 'Input a number: \−'
8 say
9 do
10 n = long ask −− Gets the number, must be an integer
11

12 say n '! =' factorial(n) '(using iteration)'
13 say n '! =' factorial(n , 'r') '(using recursion)'
14

15 catch ex = Exception
16 ex.printStackTrace
17 end
18
19 return
20

21 method factorial(n = long, fmethod = 'I') public static returns Rexx signals
IllegalArgumentException

22

23 if n < 0 then −
24 signal IllegalArgumentException('Sorry, but' n 'is not a positive integer')
25
26 select
27 when fmethod.upper = 'R' then −
28 fact = factorialRecursive(n)
29 otherwise −
30 fact = factorialIterative(n)
31 end
32

33 return fact
34

35 method factorialIterative(n = long) private static returns Rexx
36

37 fact = 1
38 loop i = 1 to n
39 fact = fact ∗ i
40 end i
41

42 return fact
43

44 method factorialRecursive(n = long) private static returns Rexx

33

45

46 if n > 1 then −
47 fact = n ∗ factorialRecursive(n − 1)
48 else −
49 fact = 1
50

51 return fact

Executing this program yields the following result:
===== Exec: RCFactorial =====
Input a number:
42
42! = 1405006117752879898543142606244511569936384000000000 (using iteration)
42! = 1405006117752879898543142606244511569936384000000000 (using recursion)

As you can see, fortunately, both approaches come to the same conclusion about the
results. In the above program, both approaches are a bit intermingled; for more clarity
about how to use recursion, have a look at this:

Listing 13.2: Factorial Recursive
1 class Factorial
2 numeric digits 64
3

4 method main(args=String[]) static
5 say factorial (42)
6

7 method factorial (number) static
8 if number = 0 then return 1
9 else return number ∗ factorial (number−1)

In this program we can clearly see that the factorial method, that takes an argument
number (which is of type Rexx if we do not specify it to be another type), calls itself in
the method body. This means that at runtime, another copy of it is run, with as argument
number that the first invocation returns (the result of 42*41), and so on.
In general, a recursive algorithm is considered more elegant, while an iterative ap-

proach has a better runtime performance. Some language environments are optimized
for recursion, which means that their processors can spot a recursive algorithm and op-
timize it by not making many useless copies of the code. Some day in the near future
the JVM will be such an environment. Also, for some problems, for example the pro-
cessing of tree structures, using a recursive algorithm seems much more natural, while
an iterative algorithm seems complicated or forced.

13.2 Fibonacci

Listing 13.3: Fibonacci
1 /∗ NetRexx ∗/
2 options replace format comments java crossref savelog symbols
3

4 numeric digits 210000 /∗prepare for some big ones. ∗/
5 parse arg x y . /∗allow a single number or range.∗/
6 if x == '' then do /∗no input? Then assume −30−−>+30∗/
7 x = −30
8 y = −x
9 end
10

11 if y == '' then y = x /∗if only one number, show fib(n)∗/
12 loop k = x to y /∗process each Fibonacci request.∗/
13 q = fib(k)

34

14 w = q.length /∗if wider than 25 bytes, tell it∗/
15 say 'Fibonacci' k"="q
16 if w > 25 then say 'Fibonacci' k "has a length of" w
17 end k
18 exit
19

20 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−FIB subroutine (non−recursive)−−−∗/
21 method fib(arg) private static
22 parse arg n
23 na = n.abs
24

25 if na < 2 then return na /∗handle special cases. ∗/
26 a = 0
27 b = 1
28

29 loop j = 2 to na
30 s = a + b
31 a = b
32 b = s
33 end j
34

35 if n > 0 | na // 2 == 1 then return s /∗if positive or odd negative... ∗/
36 else return −s /∗return a negative Fib number. ∗/

35

14

Using Parse

37

15

Using Trace

39

16

Concurrency

16.1 Threads

Threads are a built-in multitasking feature of the JVM. Where earlier JVM implemen-
tations sometime ran on so-called Green Threads, which is a library that implements
thread support for OS’ses that do not have this facility (an early version of Java was
called GreenTalk for this reason), modern versions all use native OS thread support.
A new thread is created when we create an instance of the Thread class. We cannot

tell a thread which method to run, because threads are not references to methods. Instead
we use the Runnable interface to create an object that contains the run method:
Every thread begins its concurrent life by executing the run method. The run method

does not have any parameters, does not return a value, and is not allowed to signal any
exceptions. Any class that implements the Runnable interface can serve as a target of
a new thread. An object of a class that implements the Runnable interface is used as a
parameter for the thread constructor.
Threads can be given a name that is visible when listing the threads in your system.

It is good practice to name every thread, because if something goes wrong you can
see which threads are still running. Additionally, threads are grouped by thread groups.
If you do not supply a thread group, the new thread is added to the thread group of the
currently executing thread. The threads of a group and their subgroups can be destroyed,
stopped, resumed, or suspended by using the ThreadGroup object.
The next two samples are used in the following programs that illustrate thread usage.

Listing 16.1: Thread sample 1
1 /∗ thread/ThrdTst1.nrx ∗/
2

3 h1 = Hello1('This is thread 1')
4 h2 = Hello1('This is thread 2')
5

6 Thread(h1,'Thread Test Thread 1').start()
7 Thread(h2,'Thread Test Thread 2').start()
8

9 class Hello1 implements Runnable
10 Properties inheritable
11 message = String
12

13 method Hello1(s = String)
14 message = s
15

16 method run()
17 loop for 50
18 say message
19 end

41

Listing 16.2: Thread sample 2
1 /∗ thread/ThrdTst2.nrx ∗/
2

3 h1 = Hello2('This is thread 1')
4 h2 = Hello2('This is thread 2')
5

6 h1.start()
7 h2.start()
8

9 class Hello2 extends Thread
10 Properties inheritable
11 message = String
12

13 method Hello2(s = String)
14 super('Thread Test − Message' s)
15 message = s
16

17 method run()
18 loop for 50
19 say message
20 do
21 sleep(10)
22 catch InterruptedException
23 end
24 end

The second class, Hello2, does not implement the Runnable interface, but subclasses it,
so it inherits its methods. This is a valid approach, and it is up to the developer to choose
an implementation and worry about the semantics of an inherited thread interface. A
newly created thread remains idle until the start method is invoked. The thread then
wakes up and executes the run method of its target object. The start method can be
called only once. The thread continues running until the run method completes or the
stop method of the thread is called.

42

17

User Interfaces

17.1 AWT

17.2 Web Applets using AWT

Web applets can be written one of two styles:. Lean and mean, where binary arithmetic is used, and only core Java classes (such
as java.lang.String) are used. This is recommended for optimizing webpages which
may be accessed by people using a slow internet connection. Several examples using
this style are included in the NetRexx package like the two listed below.

Listing 17.1: Nervous Texxt

1 /∗ NervousText applet in NetRexx: Test of text animation.
2 Algorithms, names, etc. are directly from the Java version by
3 Daniel Wyszynski and kwalrath, 1995
4 ∗/
5 options binary
6

7 class NervousTexxt extends Applet implements Runnable
8
9 separated = char[]
10 s = String
11 killme = Thread
12 threadSuspended = boolean 0
13

14 method init
15 resize(300,50)
16 setFont(Font("TimesRoman", Font.BOLD, 30))
17 s = getParameter("text")
18 if s = null then s = "NetRexx"
19
20 separated = char[s.length]
21 s.getChars(0, s.length, separated,0)
22
23 method start
24 if killme \= null then return
25 killme = Thread(this)
26 killme.start
27
28 method stop
29 killme = null
30
31 method run
32 loop while killme \= null
33 Thread.sleep(100)
34 this.repaint
35 catch InterruptedException
36 end
37 killme = null
38

39 method paint(g=Graphics)

43

40 loop i=0 to s.length−1
41 x coord = int Math.random∗10+15∗i
42 y coord = int Math.random∗10+36
43 g.drawChars(separated, i, 1, x coord, y coord)
44 end
45

46 method mouseDown(evt=Event, x=int, y=int) returns boolean
47 if threadSuspended then killme.resume
48 else killme.suspend
49 threadSuspended = \threadSuspended
50 return 1

Listing 17.2: ArchText

1 /∗ ArchText applet: multi−coloured text on a white background ∗/
2 /∗ Mike Cowlishaw April 1996, December 1996 ∗/
3 options binary
4

5 class ArchText extends Applet implements Runnable
6

7 text ="NetRexx" /∗ default text ∗/
8 tick =0 /∗ display counter ∗/
9 timer =Thread null /∗ timer thread ∗/
10 shadow=Image /∗ shadow image ∗/
11 draw =Graphics /∗ where we can draw ∗/
12

13 method init
14 s=getParameter("text") /∗ get any provided text ∗/
15 if s\=null then text=s
16 shadow=createImage(getSize.width, getSize.height) /∗ image ∗/
17 draw=shadow.getGraphics
18 draw.setColor(Color.white) /∗ background ∗/
19 draw.fillRect(0, 0, getSize.width, getSize.height) /∗ .. ∗/
20 draw.setFont(Font("TimesRoman", Font.BOLD, 30)) /∗ font ∗/
21
22 method start
23 if timer=null then timer=Thread(this) /∗ new thread ∗/
24 timer.setPriority(Thread.MAX PRIORITY) /∗ time matters ∗/
25 timer.start /∗ start the thread ∗/
26
27 method stop
28 if timer=null then return /∗ have no thread ∗/
29 timer.stop /∗ else stop it ∗/
30 timer=null /∗ .. and discard ∗/
31

32 method run /∗ this runs as thread ∗/
33 loop while timer\=null
34 tick=tick+1 /∗ next update ∗/
35 hue=((tick+133)//191)/191
36 draw.setColor(Color.getHSBColor(hue, 1, 0.7))
37 draw.drawString(text, 0, 30)
38 this.repaint /∗ .. and redraw ∗/
39 Thread.sleep(119) /∗ wait awhile ∗/
40 catch InterruptedException
41 end
42 timer=null /∗ discard ∗/
43

44 method update(g=Graphics) /∗ override Applet's update ∗/
45 paint(g) /∗ method to avoid flicker ∗/
46

47 method paint(g=Graphics)
48 g.drawImage(shadow, 0, 0, null)

. Full-function, where decimal arithmetic is used, and advantage is taken of the full
power of the NetRexx runtime Rexx class.
An example using this style is the belowWordClock.nrx.

Listing 17.3: WordClock

1 /∗ WordClock −− an applet that shows the time in English. ∗/

44

2 /∗ ∗/
3 /∗ Parameters: ∗/
4 /∗ ∗/
5 /∗ face −− the font face to use ∗/
6 /∗ size −− the font size to use ∗/
7 /∗ ∗/
8 /∗ −− ∗/
9 /∗ Based on the ancient QTIME.REXX, and typical Java applets. ∗/
10

11 class WordClock extends Applet implements Runnable
12

13 timer=Thread null /∗ the timer thread ∗/
14 offsetx; offsety /∗ text position ∗/
15 now /∗ current time ∗/
16

17 method init
18 /∗ Get parameters from the <applet> markup ∗/
19 face=getParameter("face") /∗ font face ∗/
20 if face=null then face="TimesRoman"
21 size=getParameter("size")
22 if size=null then size="20" /∗ font size ∗/
23

24 setFont(Font(face, Font.BOLD, size))
25 resize(size∗20, size∗2) /∗ set window size ∗/
26 offsetx=size/2 /∗ and where text will start ∗/
27 offsety=size∗3/2 /∗ note Y is from top ∗/
28 parse Date() . . . now . /∗ initial time is fourth word ∗/
29
30 method start
31 if timer=null then timer=Thread(this) /∗ new thread ∗/
32 timer.setPriority(Thread.MAX PRIORITY) /∗ time matters ∗/
33 timer.start /∗ start the thread ∗/
34
35 method stop
36 if timer\=null then do /∗ have thread ∗/
37 timer.stop /∗ .. so stop it ∗/
38 timer=null /∗ .. and discard ∗/
39 end
40
41 method run
42 /∗ Use the Java Date class to get the time ∗/
43 loop while timer\=null
44 parse Date() . . . now . /∗ time is fourth word ∗/
45 this.repaint /∗ redisplay ∗/
46 parse now ':' ':'secs /∗ where in minute ∗/
47 wait=30−secs /∗ calculate delay in seconds ∗/
48 if wait<=0 then wait=wait+60
49 /∗ say 'secs, wait:' secs wait ∗/
50 Thread.sleep(1000∗wait) /∗ wait for milliseconds ∗/
51 catch InterruptedException
52 say 'Interrupted...'
53 end
54 timer=null /∗ done ∗/
55

56 method paint(g=Graphics)
57 g.drawString(wordtime(now), offsetx, offsety) /∗ show it ∗/
58

59 /∗ WORDTIME −− a cut−down version of QTIME.REXX
60 Arg1 is the time string (hh:mm:ss)
61 Returns the time in english, as a Rexx string
62 ∗/
63 method wordtime(arg) static returns Rexx
64 /∗ Extract the hours, minutes, and seconds from the time. ∗/
65 parse arg hour':'min':'sec
66 if sec>29 then min=min+1 /∗ round up minutes ∗/
67

68 /∗ Nearness phrases − this time using an array ∗/
69 near=Rexx[5] /∗ five items ∗/
70 near[0]='' /∗ exact ∗/
71 near[1]=' just gone'; near[2]=' just after' /∗ after ∗/
72 near[3]=' nearly'; near[4]=' almost' /∗ before ∗/
73

74 mod=min//5 /∗ where we are in 5 minute bracket ∗/
75 out="It's"near[mod] /∗ start building the result ∗/

45

76 if min>32 then hour=hour+1 /∗ we are TO the hour... ∗/
77 min=min+2 /∗ shift minutes to straddle a 5−minute point ∗/
78

79 /∗ Now special−case the result for Noon and Midnight hours ∗/
80 if hour//12=0 & min//60<=4 then do
81 if hour=12 then return out 'Noon.'
82 return 'Midnight.'
83 end
84

85 min=min−(min//5) /∗ find nearest 5 mins ∗/
86 if hour>12
87 then hour=hour−12 /∗ get rid of 24−hour clock ∗/
88 else
89 if hour=0 then hour=12 /∗ .. and allow for midnight ∗/
90

91 /∗ Determine the phrase to use for each 5−minute segment ∗/
92 select
93 when min=0 then nop /∗ add "o'clock" later ∗/
94 when min=60 then min=0 /∗ ditto ∗/
95 when min= 5 then out=out 'five past'
96 when min=10 then out=out 'ten past'
97 when min=15 then out=out 'a quarter past'
98 when min=20 then out=out 'twenty past'
99 when min=25 then out=out 'twenty−five past'
100 when min=30 then out=out 'half past'
101 when min=35 then out=out 'twenty−five to'
102 when min=40 then out=out 'twenty to'
103 when min=45 then out=out 'a quarter to'
104 when min=50 then out=out 'ten to'
105 when min=55 then out=out 'five to'
106 end
107

108 numbers='one two three four five six'− /∗ continuation ∗/
109 'seven eight nine ten eleven twelve '
110 out=out numbers.word(hour) /∗ add the hour number ∗/
111 if min=0 then out=out "o'clock" /∗ .. and o'clock if exact ∗/
112

113 return out'.' /∗ return the final result ∗/
114

115 /∗ Mike Cowlishaw, December 1979 − January 1985. ∗/
116 /∗ NetRexx version March 1996; applet April 1996. ∗/

If you write applets which use the NetRexx runtime (or any other Java classes that might
not be on the client browser), the rest of this section may help in setting up your Web
server.
A good way of setting up an HTTP (Web) server for this is to keep all your applets in

one subdirectory. You can then make the NetRexx runtime classes (that is, the classes
in the package known to the Java Virtual Machine as netrexx.lang) available to all the
applets by unzipping NetRexxR.jar into a subdirectory netrexx/lang below your applets
directory.
For example, if the root of your server data tree is
D:\mydata

you might put your applets into
D:\mydata\applets

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the directory
D:\mydata\applets\netrexx\lang

The same principle is applied if you have any other non-core Java packages that you
want tomake available to your applets: the classes in a package called iris.sort.quicksorts
would go in a subdirectory below applets called iris/sort/quicksorts, for example.
Note that since Java 1.1 or later it is possible to use the classes direct from the Net-

RexxR.jar file.

46

17.3 Swing

Swing is the most commonly used name for the second attempt from the SUN engineers
to provide a graphical user interface library for the JVM.With AWT also acknowledged
by SUN to be a quick attempt that was made just before release of the first Java package,
it became clear that it was rather taxing on system resources without compensation by a
pretty look. A case in point is the event mechanism, that indiscriminately sends around
mouse and keyboard events even when nobody is listening to them. The architecture for
Swing prescribes registering for events before they are produced, and tries to have the
drawing done by the Java graphics engine instead of leaning heavily on the operating
system’s native GUI functionality. The user interface widgets that are produced by Java
are called ’light’ and their looks can be changed by applying different skins, called
’look-and-feel’ (LAF) libraries.
In the first months of its existence Swing gathered quite a bad reputation because it

made the Java 1.2 releases that contained it very slow in starting up programs that used
the library. Consequently, much was invested in performance studies by SUN engineers
and these problems were solved. One of the things that came out is that dividing the
libraries in a great many classes, done for performance reasons, worked counterproduc-
tive. All these problems were solved over the years, and developments in hardware and
multithreading took care of the rest, and nowadays Swing is a valid way of producing a
rich client user interface.
For esthetical reasons, it is best to research a bit in the third party look-and-feel li-

braries that can be obtained. Swing can be made to look beautiful, but it takes some care
and the defaults are not helping.

17.3.1 Creating NetRexx Swing interfaces with NetBeans

17.4 Web Frameworks

17.4.1 JSF

47

18

Network Programming

18.1 Using Uniform Resource Locators (URL)

18.2 TCP/IP Socket I/O

18.3 RMI: Remote Method Interface

49

19

Database Connectivity with JDBC

For interfacing with Relational Database Management Systems (RDBMS) NetRexx
uses the Java Data Base Connectivity (JDBC) model. This means that all important
database systems, for which a JDBC driver has been made available, can be used from
your NetRexx program. This is a large bonus when we compare this to the other open
source scripting languages, that have been made go by with specific, nonstandard solu-
tions and special drivers. In contrast, NetRexx programs can be made compatible with
most database systems that use standard SQL, and, with some planning and care, can
switch database implementations at will.

Listing 19.1: A JDBC Query example

1 /∗ jdbc\JdbcQry.nrx
2

3 This NetRexx program demonstrate DB2 query using the JDBC API.
4 Usage: Java JdbcQry [<DB−URL>] [<userprefix>] ∗/
5

6 import java.sql.
7

8 parse arg url prefix −− process arguments
9 if url = '' then
10 url = 'jdbc:db2:sample'
11 else do −− check for correct URL
12 parse url p1 ':' p2 ':' rest
13 if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do
14 say 'Usage: java JdbcQry [<DB−URL>] [<userprefix>]'
15 exit 8
16 end
17 end
18 if prefix = '' then prefix = 'userid'
19

20 do −− loading DB2 support
21 say 'Loading DB2 driver classes...'
22 Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
23 −− Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()
24 catch e1 = Exception
25 say 'The DB2 driver classes could not be found and loaded !'
26 say 'Exception (' e1 ') caught : \n' e1.getMessage()
27 exit 1
28 end −− end : loading DB2 support
29

30 do −− connecting to DB2 host
31 say 'Connecting to:' url
32 jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password')
33 catch e2 = SQLException
34 say 'SQLException(s) caught while connecting !'
35 loop while (e2 \= null)
36 say 'SQLState:' e2.getSQLState()
37 say 'Message: ' e2.getMessage()
38 say 'Vendor: ' e2.getErrorCode()
39 say
40 e2 = e2.getNextException()
41 end
42 exit 1

51

43 end −− end : connecting to DB2 host
44

45 do −− get list of departments with the managers
46 say 'Creating query...'
47 query = 'SELECT deptno, deptname, lastname, firstnme' −
48 'FROM' prefix'.DEPARTMENT dep,' prefix'.EMPLOYEE emp'−
49 'WHERE dep.mgrno=emp.empno ORDER BY dep.deptno'
50 stmt = Statement jdbcCon.createStatement()
51 say 'Executing query:'
52 loop i=0 to (query.length()−1)%75
53 say ' ' query.substr(i∗75+1,75)
54 end
55 rs = ResultSet stmt.executeQuery(query)
56 say 'Results:'
57 loop row=0 while rs.next()
58 say rs.getString('deptno') rs.getString('deptname') −
59 'is directed by' rs.getString('lastname') rs.getString('firstnme')
60 end
61 rs.close() −− close the ResultSet
62 stmt.close() −− close the Statement
63 jdbcCon.close() −− close the Connection
64 say 'Retrieved' row 'departments.'
65 catch e3 = SQLException
66 say 'SQLException(s) caught !'
67 loop while (e3 \= null)
68 say 'SQLState:' e3.getSQLState()
69 say 'Message: ' e3.getMessage()
70 say 'Vendor: ' e3.getErrorCode()
71 say
72 e3 = e3.getNextException()
73 end
74 end −− end: get list of departments

The first peculiarity of JDBC is the way the driver class is loaded. When most classes
are ’pulled in’ by the translator, a JDBC driver traditionally is loaded through the re-
flection API. This happens in line 22 with the Class.forName call. This implies that
the library containing this class must be on the classpath.
In line 32 we connect to the database using a url and a userid/password combination.

This is an easy way to do and test, but for most serious applications we do not want
plaintext userids and passwords in the sourcecode, so most of the time we would store
the connection info in a file that we store in encrypted form, or we use facilities of J2EE
containers that can provide data sources that take care of this, while at the same time
decoupling your application source from the infrastructure that it will run on.
In line 47 the query is composed by filling in variables in a Rexx string and making

a Statement out of it, in line 50. In line 55, the Statement is executed, which yields
a ResultSet. This has a cursor that moves forward with each next call. The next call
returns true as longs as there are rows from the resultset to return.
The ResultSet interface implements getter methods for all JDBC Types. In the

above example, all returned results are of type String.

Listing 19.2: A JDBC Update example

1 /∗ jdbc\JdbcUpd.nrx
2

3 This NetRexx program demonstrate DB2 update using the JDBC API.
4 Usage: Java JdbcUpd [<DB−URL>] [<userprefix>] [U] ∗/
5

6 import java.sql.
7

8 parse arg url prefix lowup −− process arguments
9 if url = '' then
10 url = 'jdbc:db2:sample'
11 else do −− check for correct URL
12 parse url p1 ':' p2 ':' rest
13 if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do

52

14 say 'Usage: java JdbcUpd [<DB−URL>] [<userprefix>] [U]'
15 exit 8
16 end
17 end
18 if prefix = '' then prefix = 'userid'
19 if lowup \= 'U' then lowup = 'L'
20

21 do −− loading DB2 support
22 say 'Loading DB2 driver classes...'
23 Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
24 −− Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()
25 catch e1 = Exception
26 say 'The DB2 driver classes could not be found and loaded !'
27 say 'Exception (' e1 ') caught : \n' e1.getMessage()
28 exit 1
29 end −− end : loading DB2 support
30

31 do −− connecting to DB2 host
32 say 'Connecting to:' url
33 jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password')
34 catch e2 = SQLException
35 say 'SQLException(s) caught while connecting !'
36 loop while (e2 \= null)
37 say 'SQLState:' e2.getSQLState()
38 say 'Message: ' e2.getMessage()
39 say 'Vendor: ' e2.getErrorCode()
40 say
41 e2 = e2.getNextException()
42 end
43 exit 1
44 end −− end : connecting to DB2 host
45

46 do −− retrieve employee, update firstname
47

48 say 'Preparing update...' −− prepare UPDATE
49 updateQ = 'UPDATE' prefix'.EMPLOYEE SET firstnme = ? WHERE empno = ?'
50 updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)
51 say 'Creating query...' −− create SELECT
52 query = 'SELECT firstnme, lastname, empno FROM' prefix'.EMPLOYEE'
53 stmt = Statement jdbcCon.createStatement()
54 rs = ResultSet stmt.executeQuery(query) −− execute select
55

56 loop row=0 while rs.next() −− loop employees
57 firstname = String rs.getString('firstnme')
58 if lowup = 'U' then firstname = firstname.toUpperCase()
59 else do
60 dChar = firstname.charAt(0)
61 firstname = dChar | | firstname.substring(1).toLowerCase()
62 end
63 updateStmt.setString(1, firstname) −− parms for update
64 updateStmt.setString(2, rs.getString('empno'))
65 say 'Updating' rs.getString('lastname') firstname ': \0'
66 say updateStmt.executeUpdate() 'row(s) updated' −− execute update
67 end
68

69 rs.close() −− close the ResultSet
70 stmt.close() −− close the Statement
71 updateStmt.close() −− close the PreparedStatement
72 jdbcCon.close() −− close the Connection
73 say 'Updated' row 'employees.'
74 catch e3 = SQLException
75 say 'SQLException(s) caught !'
76 loop while (e3 \= null)
77 say 'SQLState:' e3.getSQLState()
78 say 'Message: ' e3.getMessage()
79 say 'Vendor: ' e3.getErrorCode()
80 say
81 e3 = e3.getNextException()
82 end
83 end −− end: empoyees

For database updates, we connect using the driver in the same way (line 23) and
now prepare the statement used for the database update (line 50). In this example,

53

we loop through the cursor of a select statement and update the row in line 66. The
executeUpdate method of PreparedStatement returns the number of updated rows
as an indication of success.
From JDBC 2.0 on, cursors are updateable (and scrollable, so they can move back

and forth), so we would not have to go through this effort - but it is a valid example of
an update statement.

54

20

WebSphere MQ

WebSphere MQ (also and maybe better known as MQ Series) is IBM’s messaging and
queing middleware, in use at a great many financial institutions and other companies. It
has, from a programming point of view, two API’s: JMS (Java Messaging Services), a
generic messaging API for the Java world, and MQI, which is older and proprietary to
IBM’s product. The below examples show the MQI; other examples might show JMS
applications.
This is the sample Java application for MQI, translated (and a lot shorter) to NetRexx.

Listing 20.1: MQ Sample
1 import com.ibm.mq.MQException
2 import com.ibm.mq.MQGetMessageOptions
3 import com.ibm.mq.MQMessage
4 import com.ibm.mq.MQPutMessageOptions
5 import com.ibm.mq.MQQueue
6 import com.ibm.mq.MQQueueManager
7 import com.ibm.mq.constants.MQConstants
8

9 class MQSample
10 properties private
11

12 qManager = "rjtestqm";
13 qName = "SYSTEM.DEFAULT.LOCAL.QUEUE"
14

15 method main(args=String[]) static binary
16 m = MQSample()
17 do
18 say "Connecting to queue manager: " m.qManager
19 qMgr = MQQueueManager(m.qManager)
20

21 openOptions = MQConstants.MQOO INPUT AS Q DEF | MQConstants.MQOO OUTPUT
22

23 say "Accessing queue: " m.qName
24 queue = qMgr.accessQueue(m.qName, openOptions)
25

26 msg = MQMessage()
27 msg.writeUTF("Hello, World!")
28

29 pmo = MQPutMessageOptions()
30

31 say "Sending a message..."
32 queue.put(msg, pmo)
33

34 rcvMessage = MQMessage()
35

36 gmo = MQGetMessageOptions()
37

38 say "...and getting the message back again"
39 queue.get(rcvMessage, gmo)
40

41 msgText = rcvMessage.readUTF()
42 say "The message is: " msgText
43

44 say "Closing the queue"

55

45 queue.close()
46

47 say "Disconnecting from the Queue Manager"
48 qMgr.disconnect()
49 say "Done!"
50 catch ex=MQException
51 say "A WebSphere MQ Error occured : Completion Code " ex.completionCode "Reason

Code " ex.reasonCode
52 catch ex2=java.io.IOException
53 say "An IOException occured whilst writing to the message buffer: " ex2
54 end

This sample connects to the Queue Manager (called rjtestqm) in bindings mode, as op-
posed to client mode. Bindings mode is only a connection possibility for client programs
that are running in the same OS image as the Queue Manager, on the server. Note that
the application connects (line 19), accesses a queue (line 23), puts a message (line 32),
gets it back (line 39) closes the queue (line 45) and disconnects (line 48) all without
checking returncodes: the exceptionhandler takes care of this, and all irregulaties will
be reported from the catch MQException block starting at line 50).
The main method does in this case not follow the canonical form, but has ’binary’

as an extra option. Option binary can be defined on the command line as an option to
the translator, as a program option, as a class option and as a method option. Here the
smallest scope is chosen. There is a good reason to make this method a binary method:
accessing a queue in MQ Series requires some options that are set using a mask of
binary flags - this works, in current NetRexx versions, only in binary mode, because the
operators have other semantics in nobinary mode.

Listing 20.2: MQ Message Reader
1 import com.ibm.mq.
2
3 class MessageReader
4 properties private
5

6 qManager = "rjtestqm";
7 qName = "TESTQUEUE1"
8

9 method main(args=String[]) static binary
10

11 m = MessageReader()
12 do
13 MQEnvironment.hostname = 'localhost'
14 MQEnvironment.port = int 1414
15 MQEnvironment.channel = 'CHANNEL1'
16

17 −− exit assignment
18 exits = TimeoutChannelExit()
19 MQEnvironment.channelReceiveExit = exits
20 MQEnvironment.channelSendExit = exits
21 MQEnvironment.channelSecurityExit = exits
22

23 say "Connecting to QM: " m.qManager
24 qMgr = MQQueueManager(m.qManager)
25

26 openOptions = MQConstants.MQOO INPUT AS Q DEF
27

28 say "Accessing Queue : " m.qName
29 queue = qMgr.accessQueue(m.qName, openOptions)
30

31 gmo = MQGetMessageOptions() −− essential here is that we have MQGMO WAIT;
otherwise we cannot timeout

32 gmo.Options = MQConstants.MQGMO WAIT | MQConstants.MQGMO FAIL IF QUIESCING |
MQConstants.MQGMO SYNCPOINT

33 gmo.WaitInterval = MQConstants.MQWI UNLIMITED
34

35 loop forever
36 rcvMessage = MQMessage()

56

37 queue.get(rcvMessage, gmo)
38 msgText = rcvMessage.readUTF()
39 say "Got a message; the message is: " msgText
40 say
41 end
42

43 catch ex=MQException
44 say "A WebSphere MQ Error occured : Completion Code " ex.completionCode "Reason

Code " ex.reasonCode
45 say "Closing the queue"
46 queue.close()
47 say "Disconnecting from the Queue Manager"
48 qMgr.disconnect()
49 say "Done!"
50 end

In contrast to the previous sample the MessageReader sample only has one import state-
ment. This is always hotly debated in project teams, one school likes the succinctness
of including only the top level import, and only goes deeper when there is ambiguity
detected; another school spells out the all imports to the bitter end.
The MessageReader sample connects to another queue, called TESTQUEUE1 (spec-

ified in line 7) but here we connect in client mode, as indicated by lines 13-15 which
specify anMQEnvironment. Other options are using anMQSERVER environment vari-
able or a Channel Definition Table.
This program is also uncommon in that it uses MQConstants.MQGMO WAIT as an op-

tion instead of being triggered as a process by a message on a trigger queue. Using this
option means that the program waits (stays active, not really busy polling but depending
on an OS event) until a new message arrives, which will be processed immediately.
In lines 18-21 a Channel Exit is specified. This exit is show in the following example.

Listing 20.3: MQ Java Channel Exit
1 import com.ibm.mq.
2 import java.nio.
3

4 class TimeoutChannelExit implements WMQSendExit, WMQReceiveExit, WMQSecurityExit
5

6 properties
7

8 tTask = WatchdogTimer
9 t = java.util.Timer
10 timeout = long
11 initialized = boolean
12

13 method TimeoutChannelExit()
14 say "TimeoutChannelExit Constructor Called"
15 t = java.util.Timer()
16 timeout = long 15000
17

18 method channelReceiveExit(channelExitParms=MQCXP, −
19 channelDefinition=MQCD, −
20 agentBuffer=ByteBuffer) returns ByteBuffer
21 do
22 this.tTask.cancel() −− cancel the timer task whenever a message is read
23 catch NullPointerException −− but catch the null pointer the first time
24 end
25 this.tTask = WatchdogTimer()
26 this.t.schedule(this.tTask,this.timeout)
27 return agentBuffer
28

29 method channelSecurityExit(channelExitParms=MQCXP, −
30 channelDefinition=MQCD, −
31 agentBuffer=ByteBuffer) returns ByteBuffer
32 return agentBuffer
33

34 method channelSendExit(channelExitParms=MQCXP, −
35 channelDefinition=MQCD, −

57

36 agentBuffer=ByteBuffer) returns ByteBuffer
37 return agentBuffer

Listing 20.4: WatchdogTimer
1 class WatchdogTimer extends TimerTask
2

3 method WatchdogTimer()
4 method run()
5 say 'WATCHDOG TIMER TIMEOUT: HPOpenView Alert Issued' Date()

MQ Series has traditional channel exits (programs that can look at the message contents
before the application gets to it). In the MQI Java environment there is something akin
to this functionality, but a Java channel exit for MQ Series has to be defined in the
application, as shown in the previous example. The function of this particular exit is to
implement aWatchdog timer - on a separate thread, as shown in the sample that follows
the sample channel exit. The timer threatens here to have issues a HP OpenView alert,
but that part has been left out.
This particular sample has been designed to do something that is normally a bit harder

to do: signal the operations department when something does NOT happen - here the
assumption is that there is a payment going over the queue at least once every 20minutes
- when that does not happen, an alert is issued. With every message that goes through,
the timer thread is reset, and only when it is allowed to time out, action is undertaken.

Listing 20.5: Publish/Subscribe
1 import com.ibm.mq.
2

3 class MQPubSubSample
4

5 properties inheritable
6 queueManagerName = String
7 syncPoint = Object()
8 props = Hashtable
9 topicString = String
10 topicObject = String
11 subscribers = Thread[]
12 subscriberCount = int
13

14 properties volatile inheritable
15 readySubscribers = int 0 −−must be defined volatile
16

17 method MQPubSubSample()
18 topicString = null
19 topicObject = System.getProperty("com.ibm.mq.pubSubSample.topicObject", "

TESTTOPIC")
20 queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.queueManagerName","

rjtestqm")
21 subscriberCount = Integer.getInteger("com.ibm.mq.pubSubSample.subscriberCount",

100).intValue()
22 this.props = Hashtable()
23 this.props.put("hostname", "127.0.0.1")
24 this.props.put("port", Integer(1414))
25 this.props.put("channel", "SYSTEM.DEF.SVRCONN")
26

27 method main(agr=String[]) static binary
28 sample = MQPubSubSample()
29 sample.launchSubscribers()
30

31 /∗
32 ∗ wait until all the subscriber threads have finished the subscription
33 ∗/
34 do protect sample.syncPoint
35 loop while sample.readySubscribers < sample.subscriberCount
36 do
37 sample.syncPoint.wait()

58

38 catch InterruptedException
39 end
40 end −− loop while sample
41 end −− do
42

43 sample.doPublish()
44

45 method launchSubscribers()
46 say "Launching the subscribers"
47 subscribers = Thread[subscriberCount]
48

49 threadNo = int 0
50 loop while threadNo < this.subscribers.length
51 this.subscribers[threadNo] = MQPubSubSample.Subscriber("Subscriber" threadNo)
52 this.subscribers[threadNo].start()
53 threadNo = threadNo + 1
54 end
55

56 method doPublish() signals IOException
57 say "method doPublish started"
58 destinationType = int CMQC.MQOT TOPIC
59 do
60 queueManager = MQQueueManager(this.queueManagerName, this.props)
61 messageForPut = MQMessage()
62 say "∗∗∗Publishing ∗∗∗"
63 messageForPut.writeString("Hello world!")
64 queueManager.put(destinationType, topicObject, messageForPut)
65 catch e=MQException
66 say "Exception while publishing " e
67 end
68

69 class MQPubSubSample.Subscriber binary dependent extends Thread
70

71 properties private
72 myName = String
73 openOptionsForGet = int CMQC.MQSO CREATE | CMQC.MQSO FAIL IF QUIESCING | CMQC.

MQSO MANAGED | CMQC.MQSO NON DURABLE
74

75 method Subscriber(subscriberName=String)
76 super(subscriberName)
77 myName = subscriberName
78

79 method run()
80 do
81 say myName " − ∗∗∗Subscribing∗∗∗"
82 queueManager = MQQueueManager(parent.queueManagerName, parent.props)
83 destinationForGet = queueManager.accessTopic(parent.topicString, parent.

topicObject, CMQC.MQTOPIC OPEN AS SUBSCRIPTION, openOptionsForGet)
84

85 do protect parent.syncpoint
86 parent.readySubscribers = parent.readySubscribers + 1
87 parent.syncPoint.notify()
88 end
89

90 mgmo = MQGetMessageOptions()
91 mgmo.options = CMQC.MQGMO WAIT
92 mgmo.waitInterval = 30000
93 say myName " − ∗∗∗Retrieving∗∗∗"
94 messageForGet = MQMessage()
95

96 do protect getClass()
97 destinationForGet.get(messageForGet, mgmo)
98 end
99

100 messageDataFromGet = String messageForGet.readLine()
101 say myName " − Got [" messageDataFromGet "]"
102

103 catch e=Exception
104 say myName " " e
105 e.printStackTrace()
106 end
107 parent.readySubscribers = parent.readySubscribers − 1

This sample shows the publish-subscribe interfaces that at some time have been added
to the product. This specific sample shows some Java thread complexity but is a good

59

example of doing publish/subscribe work in a multithreaded way, which is a natural fit
for this type of work.

60

21

MQTT

21.1 Pub/Sub with MQ Telemetry

Publish/subscribe (pub/sub) is a model that lends itself very well to a number of one
publisher, many subscriber type of applications; the tools to enter this technology have
never been as available as they are now. Also, MQTT is a small protocol that needs to
be taken seriously: Facebook has recently become one of the largest users.
Designed as a low-overhead on-the-wire protocol for brokers in the Internet-of-things

age, MQTT is an exciting new development in the Messaging and Queueing realm. It is
a good choice for any broker functionality, as the minimal message overhead is 2 bytes,
but the maximum messages size, in one of the more popular open source brokers is a
good 250MB, which give you a message size that is a lot higher than anything possible
in the early years ofMQ Series back in the nineties. It is now possible to do development
with an entry level, entirely open source suite, and scale up to commercial, clustered and
highly available implementations when needed, since the protocol has is supported by
the base IBMWebSphere MQ product and is an added deliverable in WSMQ 7.5, after
being available as an installable add-on for several years.
Here I will show how extremely straightforward it is to create a pub/sub application

using this technology. These examples use NetRexx, the Eclipse PAHO Java client li-
brary and the open source Mosquitto broker; all these components are completely free
and open source. I have installedMosquitto on myMacBook using the brew system(fn),
which makes it as much trouble as “sudo brew install mosquitto”. NetRexx is an excel-
lent language for these examples, as it is compact and avoids the C-inspired ceremony
of Java language syntax; if your project requires Java, you can just save the generated
Java source (using the new –keepasjava option).
Mosquitto(fn) is written by Roger Light as an open source equivalent of IBM’s rsmb

(real small message broker) example application, which is free but lacks source code.
It is a small broker application that nevertheless runs production sized workloads. As
MQTT, as opposed to the MQI or JMS API’s you use when developing a messaging
application, is an on-the-wire protocol (commercial messaging systems tend to have
their own, unpublished, on-the-wire protocols), we need an API to use it. This API
consists of a set of calls that do the formatting of the messages to the requirements of
the on-the-wire protocol for you. The messages themselves are just byte-arrays, which
gives you the ultimate freedom in designing their content. It is not unusual for connected
devices to encode their information in a few bits; on the other hand, there is no reason
not to use extreme verbosity in messages; as long as you send the .getBytes that your
String yields, MQTT will send it. When encoding information in a compact way, the

61

protocol design will really pay off, because the protocol overhead, in comparison with
http and other chatty protocols, is very low. A limited set of quality of service options
(qos) will indicate if you want send and pray, acknowledged delivery or acknowledged
one-time-only delivery.
The API library that was chosen for these examples is that from the Eclipse PAHO

project. This project, which is in its early stages, has C, Javascript and Java client li-
braries available. I chose the Java client because the JVM environment is where most
of the organizations that I work for will use it. The PAHO Java client library is donated
by IBM and written by Dave Locke; it is in active development. If you want to see how
the protocol moves in packets over the network, I can recommend Wireshark, which
does a good job of recognizing them (if you run on the standard port 1883) and showing
you the message types (like ACK) and their bytes.
After having put the NetRexx(.jar) and paho client jars on your classpath, you are

good to go. The first example here is the publisher – this is not a fragment, but the
complete code. For production code we might add some more checks, as enterprise
environments always are prone to suddenly run low on disk space and suffer missing
authorizations, but it works as it stands. Do note that you do not have to define amessage
topic in advance – just think of one any use it, at least if you are in your own environment.
With Mosquitto, there wasn’t anything to define in advance, and the running Publisher
(happily lifted from the Java example) in NetRexx was actually the first time I talked to
Mosquitto on my MacBook.

Listing 21.1: MQTT Publish Sample
1 import java.sql.Timestamp
2 import org.eclipse.paho.client.mqttv3.
3

4 class Publish implements MqttCallback
5

6 method Publish()
7 conOpt = MqttConnectOptions()
8 conOpt.setCleanSession(0)
9 tmpDir = System.getProperty("java.io.tmpdir")
10 dataStore = MqttDefaultFilePersistence(tmpDir)
11 clientId = MqttClient.generateClientId()
12 topicName = "/world"
13 payload = "hello".toString().getBytes()
14 qos = 2
15
16 do
17 broker = "localhost"
18 port = "1883"
19 brokerUrl = "tcp://"broker":"port
20 client = MqttClient(brokerUrl,clientId, dataStore)
21 client.setCallback(this)
22 catch e=mqttException
23 say e.getMessage()
24 e.printStackTrace()
25 end −− do
26

27 client.connect()
28 log("Connected to "brokerUrl" with client ID "client.getClientId())
29

30 −− Get an instance of the topic
31 topic = client.getTopic(topicName)
32

33 message = MqttMessage(payload)
34 message.setQos(qos)
35

36 −− Publish the message
37 time = Timestamp(System.currentTimeMillis()).toString()
38 log('Publishing at: 'time' to topic "'topicName'" with qos 'qos)
39 token = topic.publish(message)

62

40

41 −− Wait until the message has been delivered to the server
42 token.waitForCompletion()
43

44 −− Disconnect the client
45 client.disconnect()
46 log("Disconnected")
47
48

49 method log(line)
50 say line
51

52 method messageArrived(t=MqttTopic,m=MqttMessage)
53 log("Message Arrived: " t m)
54

55 method deliveryComplete(t=MqttDeliveryToken)
56 log("Delivery Complete: " t)
57

58 method connectionLost(t=Throwable)
59 log("Connection Lost:" t.getMessage())
60

61 method main(args=String[]) static
62 Publish()

Topics can have a hierarchical organization; this structure is put in by composing
trees of topics, which are strings separated by ‘/’. In this way, it is easy to compose
a /news/economics/today topic string that gives some structure to the publication. The
classification is entirely up to the designer.
Messaging in its original form is an asynchronous technology, and for this reason the

API offers a callback option, where the callback receives the results of your publish
action in an asynchronous way. The broker assigns a message id which you receive
back.
The second source fragment (and again, it is no fragment but the entire application

program) shows the subscriber.

Listing 21.2: MQTT Subscribe Sample
1 import java.sql.Timestamp
2 import org.eclipse.paho.client.mqttv3.
3

4 class Subscribe implements MqttCallback
5

6 properties
7 client = MqttClient
8 conOpt = MqttConnectOptions()
9 tmpDir = System.getProperty("java.io.tmpdir")
10 clientId = MqttClient.generateClientId()
11 topicName = "/world"
12 qos = 2
13

14 method Subscribe()
15 do
16 connectAndSubscribe()
17 catch mqx=MqttException
18 log(mqx.getMessage())
19 end
20 −− Block until Enter is pressed
21 log("Press <Enter> to exit");
22 do
23 System.in.read()
24 catch IOException
25 end
26

27 −− Disconnect the client
28 client.disconnect()
29 log("Disconnected")
30

31 method connectAndSubscribe() signals MqttSecurityException,MqttException,
MqttPersistenceException

63

32 conOpt.setCleanSession(1)
33 dataStore = MqttDefaultFilePersistence(tmpDir)
34 do
35 broker = "localhost"
36 port = "1883"
37 brokerUrl = "tcp://"broker":"port
38 client = MqttClient(brokerUrl,clientId, dataStore)
39 client.setCallback(this)
40 catch e=mqttException
41 say e.getMessage()
42 e.printStackTrace()
43 end −− do
44

45 this.client.connect()
46 log("Connected to "brokerUrl" with client ID "client.getClientId())
47

48 −− Subscribe to the topic
49 log('Subscribing to topic "'topicName'" qos 'qos)
50 this.client.subscribe(topicName, qos)
51

52 method log(line)
53 say line
54

55 method messageArrived(t=MqttTopic,m=MqttMessage)
56 log("Message Arrived: " t m)
57

58 method deliveryComplete(t=MqttDeliveryToken)
59 log("Delivery Complete: " t)
60

61 method connectionLost(t=Throwable)
62 do
63 connectAndSubscribe()
64 catch mqx=MqttException
65 log(mqx.getMessage())
66 end
67

68 method main(args=String[]) static
69 Subscribe()

In the home setup, there is a Raspberry PI running the client while a server in the
attic runs the Mosquitto broker. On the Raspberry, which runs Debian wheezy with the
soft-float ABI that, at the moment of writin, is still necessary for the Oracle ARM Java
implementation; everything done in NetRexx runs unchanged; I just move the classes to
it using scp. The broker on the laptop takes care of the scenario in which I suddenly can
do some development while not connected to the net, like when I have some moments
to reflect on the code in the IKEA restaurant while my spouse runs the serious shopping
business.
Security is outside of the scope of this introduction which shows you the sourcecode

of a simple pub/sub application, but in Mosquitto the traffic can be secured using SSL
certificates and userid/password combinations; also, the access to topics can be limited.
In terms of availability, the Mosquitto configuration file offers an opportunity to send
all messages for a defined set of topics to another connected broker, which might be in a
different part of the world, or your home, to enable a redundant setup. While the broker
does not offer the queue – transmission queue - channel setup with retrying channels
that MQ does, the client API has some facilities to locally save the messages and retry
if the communication was lost. Also, the last-will-and-testament facility is something
that traditional MQ does not have.

64

22

Component Based Programming: Beans

JavaBeans is the name for the Java component model. It consists of two conventions,
for the naming of getter and setter methods for properties, and the event mechanism
for sending and receiving events. NetRexx adds support for the automatic generation
of getter and setter methods, throught the properties indirect option on the properties
statement.

65

23

Using the NetRexxA API

As described elsewhere, the simplest way to use the NetRexx interpreter is to use the
command interface (NetRexxC)with the -exec or -arg flags. There is a also amore direct
way to use the interpreter when calling it from another NetRexx (or Java) program, as
described here. This way is called the NetRexxA Application Programming Interface
(API).
TheNetRexxA class is in the same package as the translator (that is, org.netrexx.process),
and comprises a constructor and two methods. To interpret a NetRexx program (or, in
general, call arbitrarymethods on interpreted classes), the following steps are necessary:
1. Construct the interpreter object by invoking the constructor NetRexxA(). At this

point, the environment’s classpath is inspected and known compiled packages and
extensions are identified.

2. Decide on the program(s) which are to be interpreted, and invoke the NetRexxA
parse method to parse the programs. This parsing carries out syntax and other
static checks on the programs specified, and prepares them for interpretation. A
stub class is created and loaded for each class parsed, which allows access to the
classes through the JVM reflection mechanisms.

3. At this point, the classes in the programs are ready for use. To invoke a method
on one, or construct an instance of a class, or array, etc., the Java reflection API
(in java.lang and java.lang.reflect) is used in the usual way, working on the Class
objects created by the interpreter. To locate these Class objects, the API’s getClas-
sObject method must be used.

Once step 2 has been completed, any combination or repetition of using the classes
is allowed. At any time (provided that all methods invoked in step 3 have returned) a
new or edited set of source files can be parsed as described in step 2, and after that, the
new set of class objects can be located and used. Note that operation is undefined if any
attempt is made to use a class object that was located before the most recent call to the
parse method.
Here’s a simple example, a program that invokes the main method of the hello.nrx pro-
gram’s class:

Listing 23.1: Try the NetRexxA interface
1 options binary
2 import org.netrexx.process.NetRexxA
3

4 interpreter=NetRexxA() −− make interpreter
5

6 files=['hello.nrx'] −− a file to interpret
7 flags=['nocrossref', 'verbose0'] −− flags, for example

67

8 interpreter.parse(files, flags) −− parse the file(s), using the flags
9

10 helloClass=interpreter.getClassObject(null, 'hello') −− find the hello Class
11

12 −− find the 'main' method; it takes an array of Strings as its argument
13 classes=[interpreter.getClassObject('java.lang', 'String', 1)]
14 mainMethod=helloClass.getMethod('main', classes)
15

16 −− now invoke it, with a null instance (it is static) and an empty String array
17 values=[Object String[0]]
18

19 loop for 10 −− let's call it ten times, for fun...
20 mainMethod.invoke(null, values)
21 end

Compiling and running (or interpreting!) this example program will illustrate some
important points, especially if a trace all instruction is added near the top. First, the
performance of the interpreter (or indeed the compiler) is dominated by JVM and
other start-up costs; constructing the interpreter is expensive as the classpath has to be
searched for duplicate classes, etc. Similarly, the first call to the parse method is slow
because of the time taken to load, verify, and JIT-compile the classes that comprise the
interpreter. After that point, however, only newly-referenced classes require loading,
and execution will be very much faster.
The remainder of this section describes the constructor and the two methods of the
NetRexxA class in more detail.

23.1 The NetRexxA constructor

Listing 23.2: Constructor
1 NetRexxA()

This constructor takes no arguments and builds an interpeter object. This process in-
cludes checking the classpath and other libraries known to the JVM and identifying
classes and packages which are available.
23.2 The parse method

Listing 23.3: parse
1 parse(files=String[], flags=String[]) returns boolean

The parse method takes two arrays of Strings. The first array contains a list of one or
more file specifications, one in each element of the array; these specify the files that are
to be parsed and made ready for interpretation.
The second array is a list of zero or more option words; these may be any option words
understood by the interpreter (but excluding those known only to the NetRexxC com-
mand interface, such as time). 8 The parsemethod prefixes the nojava flag automatically,
to prevent .java files being created inadvertently. In the example, nocrossref is supplied
to stop a cross-reference file being written, and verbose0 is added to prevent the logo
and other progress displays appearing.
The parsemethod returns a boolean value; this will be 1 (true) if the parsing completed
without errors, or 0 (false) otherwise. Normally a program using the API should test this

8Note that the option words are not prefixed with a -.

68

result an take appropriate action; it will not be possible to interpret a program or class
whose parsing failed with an error.
23.3 The getClassObject method

Listing 23.4: getClassObject
1 getClassObject(package=String, name=String [,dimension=int]) returns Class

This method lets you obtain a Class object (an object of type java.lang.Class) repre-
senting a class (or array) known to the interpreter, including those newly parsed by a
parse instruction.
The first argument, package, specifies the package name (for example, com.ibm.math).
For a class which is not in a package, null should be used (not the empty string, ”).
The second argument, name, specifies the class name (for example, BigDecimal). For
a minor (inner) class, this may have more than one part, separated by dots.
The third, optional, argument, specifies the number of dimensions of the requested
class object. If greater than zero, the returned class object will describe an array with
the specified number of dimensions. This argument defaults to the value 0.
An example of using the dimension argument is shown abovewhere the java.lang.String[]
array Class object is requested.
Once a Class object has been retrieved from the interpreter it may be used with the Java
reflection API as usual. The Class objects returned are only valid until the parse method
is next invoked.
23.4 The exiting method

Syntax:

Listing 23.5: exiting
1 exiting() returns boolean

If this method returns true, an interpreted program has invoked the NetRexx “exit” in-
struction to shut down the interpreter. If more programs need to be interpreted, a new
instance of the interpreter will need to be created with the NetRexxA() constructor.

23.5 Interpreting programs contained in memory strings

RexxLA’s NetRexx 3.01 release adds some extensions to the NetRexxA API to support
interpreting programs from memory strings. The first extension adds an optional array
of strings containing programs to the standard parse API. It is mainly useful to IDE
developers. It also serves as the basis to support two other extensions documented below.

Listing 23.6: parse program in memory buffer
1 method parse(filestrings=String[], programstrings=String[], flagstrings=String[],

logfile=PrintWriter null, outfile=PrintStream System.out) returns boolean

Parses a set of files, under specified flags:. filestrings is a list of program names,. programstrings is a list of program strings9,
9Note that program strings which are not named in the name list are ignored.

69

. flagstrings is a list of flags,. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),
This method returns 1 if no error
The second extension is a new easy to use method to parse and interpret a program

contained in a string.

Listing 23.7: parse program in string
1 method interpret(programname=String, programstring=String, argstring=String "",

flagstring=String "", logfile=PrintWriter null, outfile=PrintStream System.out)
returns boolean

A convenience method to interpret a single NetRexx program in a string:. programname is the program name,. programstring is the program string,. argstring is the argument string (optional),. flagstring is the translator flags string (optional),. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),
This method returns 1 if no parse error. The default flag is -verbose0
Here is a simple example using the interpret method:

Listing 23.8: interpret from string
1 import org.netrexx.process.
2 netrexxapi=NetRexxA()
3 myprog="say 'argument string is' arg"
4 netrexxapi.interpret("myprog",myprog,"a passed argument")

The third extension is a slightly more complex “eval” method that allows a program to
call a static method in a program string and receive an object back.

Listing 23.9: eval
1 method eval(programname=String, programstring=String, methodname=String, argstring=

String "", flagstring=String "", logfile=PrintWriter null, outfile=PrintStream
System.out) returns Object

A convenience method to interpret a method from a NetRexx program in a string and
return an object:. programname is the program name,. programstring is the program string,. methodname is the method name to call - the method must accept a String array like
main methods,. argstring is the argument string (optional),. flagstring is the translator flags string (optional),. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),

This method returns an object if no error. The default flag is -verbose0
Here is a simple example using the eval method:

70

Listing 23.10: eval example
1 import org.netrexx.process.
2 netrexxapi=NetRexxA()
3 termpgmstring='method term(sa=String[]) static returns rexx;i=Rexx(sa);return 1/i'
4 say netrexxapi.eval("termpgm",termpgmstring,"term",99)

71

24

Interfacing to Open Object Rexx

24.1 BSF4ooRexx

73

25

NetRexx Tools

25.1 Editor support

This chapter lists editors that have plugin support for NetRexx, ranging from syntax
coloring to full IDE support (specified), and Rexx friendly editors, that are extensible
using Rexx as a macro language (which can be the first step to provide NetRexx editing
support).

25.1.1 JVM - All Platforms

JEdit Full support for NetRexx source code editing, to be found at http:
//www.jedit.org.

NetRexxDE A revisions with additions of the NetRexx plugin for jEdit, mov-
ing to a full IDE for NetRexx. http://kenai.com/projects/
netrexx-misc

Eclipse Eclipse has a NetRexx plugin that provides a complete IDE environ-
ment for the development of NetRexx programs (in alpha release)
by Bill Fenlason. The project is situated at SourceForge (http://
eclipsenetrexx.sourceforge.net/). Chapter 26 on page 77 dis-
cusses the setup of Eclipse to build the translator itself; and has in-
structions for the setup of the NetRexx plugin.

25.1.2 Linux

Emacs netrexx-mode.el (in the NetRexx package in the tools directory) runs on
GNU Emacs, which is installed by default on most Linux developer distri-
butions.

vim vi with extensions

25.1.3 MS Windows

Emacs netrexx-mode.el (in the NetRexx package in the tools directory) runs
on GNU Emacs for Windows. http://www.gnu.org/software/emacs/
windows/faq.html.

vim vi with extensions

75

http://www.jedit.org
http://www.jedit.org
http://kenai.com/projects/netrexx-misc
http://kenai.com/projects/netrexx-misc
http://eclipsenetrexx.sourceforge.net/
http://eclipsenetrexx.sourceforge.net/
http://www.gnu.org/software/emacs/windows/faq.html
http://www.gnu.org/software/emacs/windows/faq.html

25.1.4 MacOSX

Aquamacs A version of Emacs that is integrated with the MacOSX Aqua look and
feel. (http://www.aquamacs.org). NetRexx mode is included in the
NetRexx package in the tools directory.

Emacs netrexx-mode.el (in the NetRexx package) runs on GNU Emacs for
MacOSX. http://www.gnu.org/software/emacs.

Vim Vi with extensions

25.2 Java to Nrx (java2nrx)

When working on a piece of Java code, or an example written in the language, some-
times it would be good if we could see the source in NetRexx to make it more readable.
This is exactly what java2nrx by Marc Remes does. It has a Java 1.5 parser and an
Abstract Syntax Tree that delivers a translation to NetRexx, to the extend of what is
currently supported under NetRexx.
At themoment it is to be found at http://kenai.org/NetRexx/contrib/java2nrx
It is started by the java2nrx.sh script; for convenience, place java2nrx.sh and

java2nrx.jar in the same directory. NetRexxC and java must be available on the path.
Usage: Alternatively:

FIGURE 2: Java2nrx 1

java2nrx

java -jar java2nrx.jar
�� �
infile.java �

�out.nrx

�

FIGURE 3: Java2nrx 2

java2nrx

java2nrx.sh/.bat
�� �
�

� -nrc
�� �
�

�-stdout
�� �
�-run
�� �
�options other NetRexxC options

�

�

filename.java

-nrc runs NetRexxC compiler on output nrx file
-stdout prints NetRexx file on stdout
-run runs generated translated NetRexx output file

76

http://www.aquamacs.org
http://www.gnu.org/software/emacs
http://kenai.org/NetRexx/contrib/java2nrx

26

Using Eclipse for NetRexx Development

This is a guide for first time Eclipse users to set up a NetRexx development project.
It is not a beginners guide to Eclipse, but is intended to explain how to download the
NetRexx compiler source from SVN to be able to modify and build it using Eclipse10.
It is detailed and hopefully foolproof for someone who has never used Eclipse. It as-

sumes aWindows user, but if you are a Linux or Mac user, you will no doubt understand
what to do.
This guide is for Eclipse 4.2 (Juno), written August, 2012. NewEclipse releases occur

every 4 months, so there may be differences depending on what the current version is.

26.1 Downloading Eclipse

There are many different preconfigured versions of Eclipse. As you become more ex-
perienced with it you may wish to use a different distribution, but the one specified here
makes some things simple. It does contain some things that you may never use.
1. Make a new folder for the project. Name it appropriately (e.g. EclipseNetRexx)
2. Browse to eclipse.org, and click on “Download”.
3. Download the version namedECLIPSE IDE FOR JAVA DEVELOPERS for your

your operating system.
4. The download is about 150 MB.
5. Unzip the downloaded file into your project folder.

26.2 Setting up the workspace

There are different strategies for managing Eclipse workspaces. Eclipse defaults to
putting the workspace in yourWindows documents folder - probably not what you want
to do. The following is perhaps the most simple way.
1. Open the project folder. It will now contain a folder named eclipse.
2. Add a new folder named “workspace” in the project folder to go along with the

eclipse folder.
3. Open the eclipse folder, and create a shortcut to eclipse.exe.
4. Move the shortcut to the desktop and rename it to something like “Eclipse Net-

Rexx”.
5. Close the project folder, and double click the shortcut to start Eclipse.
10If you have questions or comments, feel free to contact Bill Fenlason at billfen@hvc.rr.com.

77

6. The “Select a workspace” dialog comes up - don’t use the default.
7. Browse to the workspace folder that you just created and select it.
8. Click (check) the “Use this as the default” box, and click OK.

26.3 Shellshock

If you have never used Eclipse, it can be a bit overwhelming. It is rather complicated,
and has endless options, etc. In addition there are at least a thousand different plugins.
You will be greeted by a Welcome screen - you may find it interesting or boring. Exit

from it via tback to the welcome screen from: Main Menu -> Help -> Welcome.

26.4 Installing SVN

This version of Eclipse comes with CVS and Git support built in, but the SVN support
must be installed.
1. Click on Main Menu -> Help -> Eclipse MarketPlace.
2. Type SVN in the search box and hit Enter.
3. Locate Subversive - it will probably be the first entry - and click the Install button.
4. Click Next, I Accept the License and Finish. The SVN plugin will be downloaded.
5. Click Yes to restart Eclipse.
6. The SVN “Install connectors” dialog will start.
7. Select the SVN Kit 1.75.
8. Click Next, Accept the License, Finish, OK to unsigned content, and Yes to restart

Eclipse.

26.5 Downloading the NetRexx project from the SVN repository

The SVN repository contains the NetRexx compiler/translator, documentation, exam-
ples, etc. These instructions assume you want only the compiler project.
1. TheNetRexx SVN repository name is: https://svn.kenai.com/svn/netrexx~netrexxc-repo
2. Copy it (for pasting) from above, or get it from the kenai or netrexx.org site.
3. You do not need a period at the end.
4. Click on Main Menu -> File -> New -> Other -> SVN -> Project from SVN, then

Next or double click.
5. Select Create a New Repository location, click Next
6. Paste (or type if you must) the repository name into the URL field and click Next
7. The Checkout from SVN - Select Resource dialog will come up. Click Browse
8. Double click on “netrexxc”, and then single click on “trunk” to select it. Click OK
9. Now click Finish in the checkout dialog to bring up the “Checkout As” dialog
10. Leave the selection at the default of “Checkout ... using the New ProjectWizard”,

and Finish
11. The New Project dialog comes up - double click on Java and then Java Project (or

use Next)

78

https://svn.kenai.com/svn/netrexx~netrexxc-repo

12. The New Java Project dialog comes up. Enter a project name, perhaps something
like NetRexx301.

13. Click Finish, and the project is downloaded. It will show up in the Package Ex-
plorer on the left.

26.6 Setting up the builds

Ant support is built into Eclipse, but it must be configured to be able to access the
bootstrap NetRexx compiler.
1. Double click on the build.xml file name in the package explorer. Note that its icon

is an ant.
2. The build file will open in an editor window.
3. Right click in the window to bring up a context menu, and select Run As -> 2 Ant

Build
4. Do NOT select 1 Ant Build.
5. The Ant configuration dialog comes up - it will show you all the targets, etc.
6. Click on the Classpath tab, and then click on User Entries.
7. Now click on Add External Jars to bring up the Jar Selection dialog.
8. Navigate to the lib folder in the project folder. Make sure you are not in the build

folder.
9. Double click on NetRexxC.jar to select it.
10. Click on the Refresh tab, and check the Refresh resources on completion box.
11. Click Run to build the distribution. The messages will appear in the console listing

below.
12. The java doc step may fail.
13. Close the build.xml file (X on the tab).
You can configure the ant build by using the configuration dialog in Run As -> 2 Ant
Build. You may want to check “compile” and “jars” to run those steps. Use Apply to
save the configuration.
There are two different builds. The second build.xml file is in the project -> tools ->

ant-task folder. Open it up and repeat the above steps for that build.xml file. Each build
file has its own ant configuration, and once set selecting Run As -> 1 Ant Build will run
it. Or just hit F11.

26.7 Using the NetRexx version of the NetRexx Ant task

The above process uses the standard NetRexx Ant task, not the new one. To use the new
one:
1. Main Menu -> Window -> Preferences -> Ant -> Runtime.
2. Open up and select Ant Home Entries. Then click on Add External Jars
3. Navigate to the lib folder in the project and select ant-netrexx.jar
4. The jar will appear at the bottom of the list.
5. Use the UP button to move it up (ahead) of the apache ant version, click OK

79

26.8 Setting up the Eclipse NetRexx Editor Plugin (Optional)

The NetRexx Editor plugin provides syntax coloring and error checking for nrx files,
as well as one click compiling and translating.
1. Click on Main Menu -> Help -> Eclipse MarketPlace.
2. Type NetRexx in the search box and hit enter.
3. Click the Install button next to the Eclipse NetRexx package.
4. Click Next, Accept the License, Finish, OK to unsigned content, and Yes to restart

Eclipse.
5. Click Main Menu -> Window -> Preferences -> NetRexx Editor to explore it

80

27

Platform dependent issues

27.1 Mobile Platforms

AndroidTMis a version of Linux and friendly to NetRexx programs. Indeed, with Net-
Rexx performing so much better than the closest competition (jRuby, jython) on these
devices, there might be a bright future for NetRexx in these environments.
However, there are some drawbacks, caused by the security architecture put in place.

Free, unfethered programming like one can do on a desktopmachine is a rare occurrence
on these devices, and to get programs running on them requires some knowledge of the
security architecture that has been put in place for mobile operating systems.
While Apple development still employs a closed model that allows programming

only by buying a license with accompanying certificates, and vetting by the App Store
employees, and an assumption you will program in Objective-C, Android allows pro-
gramming but not as straightforward as we know it. To make simple command-line
NetRexx programs, both device types need to be rooted to allow optimal access. An-
droid allows the installation of applications without vetting by third parties, but dictates
a programming model that incurs some overhead - which is a drawback for the occa-
sional scripter.

27.1.1 Android

The security model of Android is based on least needed privilege and is implemented
by assigning each application a different userid, so that applications on the same device
(be it a phone or a tablet) cannot get to each others data. The consequence of this is that
simple NetRexx programming and scripting

27.1.2 Apple IOS

Nonewithstanding the current policy of Apple to only allow Objective-C as a program-
ming language on the iPhone and iPad, NetRexx on IOS works fine. This is what one
should do to make it work:
1. Jailbreak11 the device. This is necessary until a more sensible setup is used. I used

Spirit; it synchs the phone with the hack and then Cydia is installed, an application
that does package management the Debian way

2. Choose the ”developer profile” on Cydia when asked. This applies a filter to the
packages shown (or rather it doesn’t) - but you need to do it in order to see the

11Note that jailbreaking an iPhone is against your eula (well - Apple’s eula) and might be illegal in some jurisdictions.

81

prerequisites
3. OpenTerminal will help you to do command line operations on the phone itself
4. The prerequisites are a Java VM (JamVM installs a VM and ClassPath, the open

Java implementation) and Jikes, the Java compiler written in C and compiled to the
native instruction set of the phone, which is ARM - most processors implementing
this have Jazelle, a specials instructionset to accelerate Java bytecode. However,
this feature is seldom used.

The phone can also be logged on to using ssh from your desktop. Do not forget to change
the password for the ’root’ user and the ’mobile’ user, as instructed in the Cydia package.
When this is done, NetRexxC.jar can be copied to the phone. I did this using ’scp

NetRexxC.jar mobile@10.0.0.76:’ (use the password you just set for this userid) (and
because my router assigned 10.0.0.76 to the phone today). I crafted a small ’nrc’ script
that does a translate and then a Java compile using jikes (and I actually wrote this on the
phone using an application called ’iEdit’ - nano, vim and other editors are also available
but I found the keyboard scheme to type in ctrl-characters a bit tedious - you type a ’ball’
character and then the desired ctrl char, while shifting the virtual keyboard through
different modes):
nrc:

java -cp ~/NetRexxC.jar COM.ibm.netrexx.process.NetRexxC $*

Nowwe can do a compile of the customary hello.nrx with ’./nrc -keep -nocompile hello’
(notice that this is all in the home directory of the ’mobile’ user, just like the jar that I
just copied. The resulting hello.java.keep can then be mv’ed to hello.java and compiled
with ’jikes hello.java’. This produces a class that can be run with ’java -cp NetRexxC.jar
hello’

27.2 IBMMainframe: Using NetRexx programs in z/OS batch

Traditionally the mainframe was a batch oriented environment, and much of the work-
load that counts still executes in this way. To be able to use NetRexx with Job Control
Language (JCL) in batch address spaces, accessing traditional datasets and interacting
with the console when needed, we need to know a bit more. This will be explained in
these paragraphs.
A standard component of z/OS since version 1.8 or so is jzos, which acts as glue be-

tween the unix-like abstractions the JVMworks with and the time tested way of working
on z/OS, with its SAM and VSAM datasets, its Partitioned Data Set (PDS) file orga-
nization, the ICF Catalogs and console address space; all of which in existence long
before Java reared its head in our IT environments.
The manuals will teach you that there are several ways to interact with HFS/OMVS

resources in JCL, but the alternatives to jzos have so many drawbacks that it is the only
sensible way to run NetRexx programs in the batch environment.

82

28

Translator inner workings

83

28.1 Method resolution

Until version 3.01 of the NetRexx translator a slightly different way of method reso-
lution was used. The chances that this will ever impact your program are very small,
but for the sake of history preservation (and to clarify the process that is used) the way
in which the translator looks up and decides to find methods in the inheritance tree are
documented here.

84

Index

Class, 51, 53, 68, 69

Options, 56

Properties, 41, 42

Rexx, 33, 45

SELECT, 53

arg, 15–17, 34, 35, 45, 51, 52

binary, 9, 43, 44, 55, 56, 58, 59, 67

catch, 17–19, 33, 42–45, 51–53, 56–59,

62–64

class, 9, 18–20, 34, 41–45, 55–59, 62, 63

constant, 16

dependent, 59

digits, 9, 33, 34

do, 17–19, 33, 34, 42, 45, 46, 51–53,

55–59, 62–64

else, 3, 17, 34, 35, 44, 46, 51–53

end, 7–9, 17–19, 33–35, 41–46, 51–53, 56,

57, 59, 62–64

exit, 17, 35, 51, 53, 56

extends, 19, 42–45, 58, 59

for, 8, 17, 41, 42, 51–53, 67, 68

forever, 8, 56

form, 9

if, 3, 8, 17, 33–35, 43–46, 51–53

implements, 20, 41, 43–45, 57, 62, 63

import, 16, 19, 20, 51, 52, 55–58, 62,

63, 67, 70, 71

indirect, 18, 19

inheritable, 41, 42, 58

interface, 20

interpret, 67, 70

leave, 8

loop, 7, 8, 17–19, 33–35, 41–45, 51–53,

56, 58, 59, 68

method, 9, 15, 16, 18–20, 33–35, 41–45,

55–59, 62–64, 68–70

nop, 46

numeric, 33, 34

options, 9, 33, 34, 43, 44, 59, 67

otherwise, 33, 56

package, 69

parent, 59

parse, 17, 34, 35, 45, 51, 52, 68, 69

private, 18, 33, 35, 55, 56, 59

properties, 18, 19, 55–59, 63

protect, 58, 59

public, 9, 33

queue, 55–57

return, 9, 17, 18, 20, 33–35, 43, 44, 46,

57, 58

returns, 15, 16, 18, 33, 44, 45, 57, 58,

68–70

say, iii, 3, 6–9, 15, 17–20, 33–35, 41,

42, 45, 51–53, 55–59, 62–64, 71

select, 33, 46, 53

signal, 33

signals, 33, 59, 63

sourceline, 9

static, 9, 15, 16, 33–35, 45, 55, 56, 58,

63, 64, 68

super, 9, 20, 42, 59

then, 3, 8, 17, 33–35, 43–46, 51–53

this, 9, 18–20, 43–45, 57–59, 62, 64

to, 7, 9, 33–35, 44, 51–53, 63, 64, 67

trace, 9

until, 63

upper, 33

volatile, 58

when, 33, 46

while, 17–19, 43–45, 51–53, 58, 59

applets for the Web, writing, 43

application programming interface, for

interpreting, 67

ArchText example, 43

binary arithmetic, used for Web applets,

43

capturing translator output, 15

compiling,from another program, 15

completion codes, from translator, 15

constructor, in NetRexxA API, 68

exiting method, in NetRexxA API, 69

getClassObject method, in NetRexxA API, 69

HTTP server setup, 46

interpreting,API, 67

interpreting,using the NetRexxA API, 67

interpreting/API example, 67

NervousTexxt example, 43

85

NetRexxA, API, 67

NetRexxA, class, 67

NetRexxA/constructor, 68

parse method, in NetRexxA API, 68

PrintWriter stream for capturing

translator output, 15

ref /API/application programming

interface, 67

return codes, from translator, 15

runtime/web server setup, 46

Web applets, writing, 43

Web server setup, 46

WordClock example, 44

86

9 789081 909006

ISBN 978-90-819090-0-6

87

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	Meet the Rexx Family
	Once upon a Virtual Machine
	Once upon another Virtual Machine
	Features of NetRexx

	Learning to program
	Console Based Programs
	Comments in programs
	Strings
	Clauses
	When does a Clause End?
	Long Lines
	Loops
	Special Variables

	NetRexx as a Scripting Language
	NetRexx as an Interpreted Language
	NetRexx as a Compiled Language
	Compiling from another program
	Compiling from memory strings

	Calling non-JVM programs
	Using NetRexx classes from Java
	Classes
	Classes
	Dependent Classes
	Properties
	Methods
	Inheritance
	Overriding Methods
	Overriding Properties

	Using Packages
	The package statement
	Translator performance consequences
	Some NetRexx package history
	CLASSPATH

	Programming Patterns
	Events
	Recursive Parse
	Observer

	Incorporating Class Libraries
	The Collection Classes

	Input and Output
	The File Class
	Streams
	Line mode I/O
	Byte Oriented I/O
	Data Oriented I/O
	Object Oriented I/O using Serialization
	The NIO Approach

	Algorithms in NetRexx
	Factorial
	Fibonacci

	Using Parse
	Using Trace
	Concurrency
	Threads

	User Interfaces
	AWT
	Web Applets using AWT
	Swing
	Web Frameworks

	Network Programming
	Using Uniform Resource Locators (URL)
	TCP/IP Socket I/O
	RMI: Remote Method Interface

	Database Connectivity with JDBC
	WebSphere MQ
	MQTT
	Pub/Sub with MQ Telemetry

	Component Based Programming: Beans
	Using the NetRexxA API
	The NetRexxA constructor
	The parse method
	The getClassObject method
	The exiting method
	Interpreting programs contained in memory strings

	Interfacing to Open Object Rexx
	BSF4ooRexx

	NetRexx Tools
	Editor support
	Java to Nrx (java2nrx)

	Using Eclipse for NetRexx Development
	Downloading Eclipse
	Setting up the workspace
	Shellshock
	Installing SVN
	Downloading the NetRexx project from the SVN repository
	Setting up the builds
	Using the NetRexx version of the NetRexx Ant task
	Setting up the Eclipse NetRexx Editor Plugin (Optional)

	Platform dependent issues
	Mobile Platforms
	IBM Mainframe: Using NetRexx programs in z/OS batch

	Translator inner workings
	Method resolution

	Index

