
NetRexx
Programming Guide

RexxLA

Version 3.05-GA of April 27, 2017

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-0-6

Publication Data

©Copyright The Rexx Language Association, 2011- 2017

All originalmaterial in this publication is published under theCreativeCommons - ShareAlike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-0-6

9 789081 909006

ISBN 978-90-819090-0-6

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

The NetRexx Programming Series i

Typographical conventions iii

Introduction v

1 Meet the Rexx Family 1

1.1 Once upon a Virtual Machine 1

1.2 Once upon another Virtual Machine 1

1.3 Features of NetRexx 2

2 Learning to program 3

2.1 Console Based Programs 3

2.2 Comments in programs 5

2.3 Strings 5

2.4 Clauses 6

2.5 When does a Clause End? 6

2.6 Long Lines 7

2.7 Loops 7

2.8 Special Variables 9

3 NetRexx Options 11

4 NetRexx as a Scripting Language 17

5 NetRexx as an Interpreted Language 19

6 NetRexx as a Compiled Language 21

6.1 Compiling from another program 21

6.2 Compiling from memory strings 22

7 Calling non-JVM programs 23

8 Using NetRexx classes from Java 27

III

9 Classes 29
9.1 Classes 29

9.2 Dependent Classes 30

9.3 Properties 30

9.4 Methods 30

9.5 Inheritance 30

9.6 Overriding Methods 30

9.7 Overriding Properties 30

10 Using Packages 31
10.1 The package statement 31

10.2 Translator performance consequences 31

10.3 Some NetRexx package history 31

10.4 CLASSPATH 32

11 Programming Patterns 33
11.1 Singleton 33

11.2 Observable and Events 34

11.3 Recursive Parse 34

11.4 More Observer/Observable 34

12 Incorporating Class Libraries 37
12.1 A Word About Java Generics 37

12.2 The Collection Classes 38

13 Input and Output 41
13.1 The File Class 41

13.2 Streams 41

13.3 Line mode I/O 41

13.4 Byte Oriented I/O 42

13.5 Data Oriented I/O 42

13.6 Object Oriented I/O using Serialization 42

13.7 The NIO Approach 42

14 Algorithms in NetRexx 43
14.1 Factorial 43

14.2 Fibonacci 44

15 Using Parse 47
15.1 Literal Parsing 47

15.2 Positional Parsing 48

15.3 Variable Templates 50

IV

16 Using Trace 51

16.1 Tracing Program Statements 51

16.2 Tracing Variables 52

16.3 Examples 52

16.4 Tracing Notes 55

17 Concurrency 57

17.1 Threads 57

18 User Interfaces 59

18.1 AWT 59

18.2 Web Applets using AWT 59

18.3 Swing 63

18.4 Web Frameworks 63

19 Network Programming 65

19.1 Using Uniform Resource Locators (URL) 65

19.2 TCP/IP Socket I/O 65

19.3 RMI: Remote Method Interface 65

20 Database Connectivity with JDBC 67

21 WebSphere MQ 71

22 MQTT 77

22.1 Pub/Sub with MQ Telemetry 77

23 Component Based Programming: Beans 81

24 Using the NetRexxA API 83

24.1 The NetRexxA constructor 84

24.2 The parse method 84

24.3 The getClassObject method 85

24.4 The exiting method 85

24.5 Interpreting programs contained in memory strings 85

25 Interfacing to Scripting Languages 89

25.1 Which JSR223 engines are on my system? 89

25.2 Selecting an engine 90

25.3 Evaluating a script 90

25.4 Bindings 91

V

25.5 Interpreted execution of NetRexx scripts from jrunscript 92

25.6 Using JavaScript from NetRexx programs 92

25.7 Using AppleScript on MacOSX 93

25.8 Execution of NetRexx scripts from ANT tasks 93

25.9 Integration of NetRexx scripting in applications 94

25.10 Interfacing between ooRexx and NetRexx using BSF4ooRexx 94

25.11 General jsr-223 Implementation Notes 94

26 NetRexxTools 97

26.1 Editor support 97

26.2 Java to Nrx (java2nrx) 98

27 Using Eclipse for NetRexx Development 101

27.1 Downloading Eclipse 101

27.2 Setting up the workspace 101

27.3 Shellshock 102

27.4 Installing SVN 102

27.5 Downloading the NetRexx project from the SVN repository 102

27.6 Setting up the builds 103

27.7 Using the NetRexx version of the NetRexx Ant task 103

27.8 Setting up the Eclipse NetRexx Editor Plugin (Optional) 104

28 Platform dependent issues 105

28.1 Mobile Platforms 105

28.2 IBM Mainframe: Using NetRexx programs in z/OS batch 106

29 Building the NetRexx translator 107

29.1 Repository 107

29.2 The buildfile 108

29.3 Testing 108

30 Translator inner workings 109

30.1 Translator source files 109

30.2 Method resolution 112

Index 113

VI

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide This guide is meant for an audience that has done some pro-
gramming and wants to start quickly. It starts with a quick
tour of the language, and a section on installing the NetRexx
translator and how to run it. It also contains help for trou-
bleshooting if anything in the installation does not work as
designed, and states current limits and restrictions of the
open source reference implementation.

Programming Guide The Programming Guide is the one manual that at the same
time teaches programming, shows lots of examples as they
occur in the real world, and explains about the internals of
the translator and how to interface with it.

Language Reference Referred to as the NRL, this is the formal definition for the
language, documenting its syntax and semantics, and pre-
scribing minimal functionality for language implementors. It
is the definitive answer to any question on the language, and
as such, is subject to approval of the NetRexx Architecture
Review Board on any release of the language (including its
NRL).

Pipelines Reference The Data Flow oriented companion to NetRexx, with its
CMS Pipes compatible syntax, is documented in this manual.
It discusses installing and running Pipes for NetRexx, and
has ample examples of defining your own stages in NetRexx.

i

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the con-

sole, are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing
1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� ��

�visibility

�

�
�modifier

�

�
�deprecated

�� �
�

�
�unused

�� �
�

iii

Introduction

The Programming Guide is the book that has the broadest scope of the publications in
the NetRexx Programming Series. Where the Language Reference and the Quick Begin-
nings need to be limited to a formal description and definition of the NetRexx language
for the former, and aQuick Tour and Installation instructions for the latter, this book has
no such limitations. It teaches programming, discusses computer language history and
comparative linguistics, and shows many examples on how to make NetRexx work with
diverse techologies as TCP/IP, Relational Database Management Systems, Messaging
and Queuing (MQ™) systems, J2EE Containers as JBOSS™ and IBM WebSphere Appli-
cation Server™, discusses various rich- and thin client Graphical User Interface Options,
and discusses ways to use NetRexx on various operating platforms. For many people,
the best way to learn is from examples instead of from specifications. For this reason this
book is rich in example code, all of which is part of the NetRexx distribution, and tested
and maintained. This has had its effect on the volume of this book, which means that
unlike the other publications in the series, it is probably not a good idea to print it out
in its entirety; its size will relegate it to being used electronically.

Terminology

The NetRexx Language Reference (NRL) is the source of the definitive truth about the
language. In this Programming Guide, terminology is sometimes used more loosely than
required for the more formal approach of the NRL. For example, there is a fine line dis-
tinguishing statement, instruction and clause, where the latter is a more Rexx-like con-
cept that is not often mentioned in relation to other languages (if they are not COBOL
or SQL). While we try not to be confusing, clause and statement will be interchangibly
used, as are instruction and keyword instruction.

Acknowledgements

As this book is a compendium of decades of Rexx and NetRexx knowledge, it stands
upon the shoulders of many of its predecessors, many of which are not available in print
anymore in their original form, or will never be upgraded or actualized; we are indebted
to many anonymous1 authors of IBM product documentation, and many others that we
do know, and will thank in the following. If anyone knows of a name notmentioned here
that should be, please be in touch. Dave Woodman, thank you for your contributions
to this guide. A big IOU goes out to Alan Sampson, who singlehandedly contributed

1because they are unacknowledged in the original publications

v

more than one hundred NetRexx programming examples. The Redbook authors (Peter
Heuchert, Frederik Haesbrouck, Norio Furukawa, Ueli Wahli, Kris Buelens, Bengt Hei-
jnesson, Dave Jones and Salvador Torres) have provided some important documents
that have shown, in an early stage, how almost everything on the JVM is better and eas-
ier done in NetRexx. Kermit Kiser also provided examples and did maintenance on the
translator. Bill Finlason provided the Eclipse instructions. If anyone feels their copyright
is violated, please do let us know, so we can properly attribute offending passages, or take
them out.2

2As the usage of all material in this publication is quoted for educational use, and consists of short fragments, a fair use clause
will apply in most jurisdictions.

vi

1

Meet the Rexx Family

1.1 Once upon a Virtual Machine

On the 22nd of March 1979, to be precise, Mike Cowlishaw of IBM had a vision of an
easier to use command processor for VM, and wrote down a specification over the fol-
lowing days. VM™ (now called z/VM) is the original Virtual Machine operating system,
stemming from an era in which time sharing was acknowledged to be the wave of the
future and when systems as CTSS (on the IBM 704) and TSS (on the IBM 360 Family of
computers) were early timesharing systems, that offered the user an illusion of having a
large machine for their exclusive use, but fell short of virtualising the entire hardware.
TheCP/CMS system changed this; CP virtualised the hardware completely andCMSwas
the OS running on CP. CMS knew a succession of command interpreters, called EXEC,
EXEC2 andRexx™ (originally REX - until it was found out, by the IBM legal department,
that a product of another vendor had a similar name) - the EXEC roots are the explana-
tion why some people refer to a NetRexx program as an “exec”. As a prime example of a
backronym, Rexx stands for “Restructured Extended Executor”. It can be defended that
Rexx came to be as a reaction on EXEC2, but it must be noted that both command inter-
preters shipped around the same time. From 1988 on Rexx was available on MVS/TSO
and other systems, like DOS, Amiga and various Unix systems. Rexx was branded the
official SAA procedures language and was implemented on all IBM’s Operating Systems;
most people got to know Rexx on OS/2. In the late eighties the Object-Oriented succes-
sor of Rexx, Object Rexx, was designed by Simon Nash and his colleagues in the IBM
Winchester laboratory. Rexx was thereafter known as Classic Rexx. Several open source
versions of Classic Rexx were made over the years, of which Regina is a good example.

1.2 Once upon another Virtual Machine

In 1995 Mike Cowlishaw ported Java™ to OS/2™ and soon after started with an experi-
ment to run Rexx on the JVM™. With Rexx generally considered the first of the general
purpose scripting languages, NetRexx™ is the first alternative language for the JVM. The
0.50 release, from April 1996, contained the NetRexx runtime classes and a translator
written in Rexx but tokenized and turned into an OS/2 executable. The 1.00 release
came available in January 1997 and contained a translator bootstrapped to NetRexx.
The Rexx string type that can also handle unlimited precision numerics is called Rexx
in Java and NetRexx. Where Classic Rexx was positioned as a system glue language
and application macro language, NetRexx is seen as the one language that does it all,
delivering system level programs or large applications.

1

Release 2.00 became available in August 2000 and was a major upgrade, in which in-
terpreted execution was added. Until that release, NetRexx only knew ahead of time
compilation (AOT).
Mike Cowlishaw took early retirement from IBM in March 2010. IBM announced the
transfer of NetRexx source code to the Rexx Language Association (RexxLA) on June 8,
2011, 14 years after the v1.0 release, and on the same day, it released the NetRexx source
code to RexxLA under the ICU open source license. RexxLA shortly after released this
as NetRexx 3.00 and has followed with updates.

1.3 Features of NetRexx

Ease of use The NetRexx language is easy to read and write because many instructions
are meaningful English words. Unlike some lower level programming languages
that use abbreviations, NetRexxinstructions are common words, such as say, ask,
if...then...else, do...end, and exit.

Free format There are few rules about NetRexx format. You need not start an instruc-
tion in a particular column, you can also skip spaces in a line or skip entire lines,
you can have an instruction span many lines or have multiple instructions on one
line, variables do not need to be pre-defined, and you can type instructions in up-
per, lower, or mixed case.

Convenient built-in functions NetRexx supplies built-in functions that perform vari-
ous processing, searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic calcula-
tions.

Easy to debug When a NetRexx exec contains an error, messages with meaningful ex-
planations are displayed on the screen. In addition, the trace instruction provides
a powerful debugging tool.

Interpreted The NetRexx language is an interpreted language. When a NetRexx exec
runs, the language processor directly interprets each language statement, or trans-
lates the program in JVM bytecode.

Extensive parsing capabilities NetRexx includes extensive parsing capabilities for char-
actermanipulation.This parsing capability allows you to set up a pattern to separate
characters, numbers, and mixed input.

Seamless use of JVM Class Libraries NetRexx can use any class, and class library for
the JVM (written in Java or other JVM languages) in a seamless manner, that is,
without the need for extra declarations or definitions in the source code.

2

2

Learning to program

2.1 Console Based Programs

Oneway that a computer can communicate with a user is to ask questions and then com-
pute results based on the answers typed in. In other words, the user has a conversation
with the computer. You can easily write a list of NetRexx instructions that will conduct a
conversation. We call such a list of instructions a program. The following listing shows a
sample NetRexx program. The sample program asks the user to give his name, and then
responds to him by name. For instance, if the user types in the name Joe, the reply Hello
Joe is displayed. Or else, if the user does not type anything in, the reply Hello stranger is
displayed. First, we shall discuss how it works; then you can try it out for yourself.

Listing 2.1: Hello Stranger
1 /* A conversation */
2 say "Hello! What's your name?"
3 who=ask
4 if who = '' then say "Hello stranger"
5 else say "Hello" who

Briefly, the various pieces of the sample program are:

/* ... */ A comment explaining what the program is about. Where Rexx programs
on several platforms must start with a comment, this is not a hard requirement for
NetRexx anymore. Still, it is a good idea to start every program with a comment
that explains what it does.

say An instruction to display Hello! What’ s your name? on the screen.
ask An instruction to read the response entered from the keyboard and put it into the

computer’s memory.
who The name given to the place in memory where the user’s response is put.
if An instruction that asks a question.
who = ” A test to determine if who is empty.
then A direction to execute the instruction that follows, if the tested condition is true.
say An instruction to display Hello stranger on the screen.
else An alternative direction to execute the instruction that follows, if the tested con-

dition is not true. Note that in NetRexx, else needs to be on a separate line.
say An instruction to display Hello, followed by whatever is in who on the screen.

The text of your program should be stored on a disk that you have access to with the
help of an editor program. On Windows, notepad or (notepad++), jEdit, X2 or SlickEdit
are suitable candidates. On Unix based systems, including MacOSX, vim or emacs are

3

plausible editors. If you are on z/VM or z/OS, XEDIT or ISPF/PDF are a given. More
about editing NetRexx code in chapter 26.1, Editor Support, on page 97.
When the text of the program is stored in a file, let’s say we called it hello.nrx, and you
installed NetRexx as indicated in the NetRexx QuickStart Guide, we can run it with

nrc -exec hello

and this will yield the result:

NetRexx portable processor, version NetRexx after3.01, build 1-20120406-1326
Copyright (c) RexxLA, 2011. All rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

If you do not want to see the version and copyright message every time, which would be
understandable, then start the program with:

nrc -exec -nologo hello

This is what happened when Fred tried it.

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?
Fred
Hello Fred

The ask instruction paused, waiting for a reply. Fred typed Fred on the command line
and, when he pressed the ENTER key, the ask instruction put the word Fred into the
place in the computer’s memory called “who”. The if instruction asked, is “who” equal to
nothing:

who = ’’

meaning, is the value of “who” (in this case, Fred) equal to nothing:

”Fred = ’’

This was not true; so, the instruction after then was not executed; but the instruction
after else, was.
But when Mike tried it, this happened:

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

Hello stranger
Processing of ’hello.nrx’ complete

Mike did not understand that he had to type in his name. Perhaps the program should
have made it clearer to him. Anyhow, he just pressed ENTER. The ask instruction put

4

” (nothing) into the place in the computer’s memory called “who”. The if instruction
asked, is:

who = ’’

meaning, is the value of “who” equal to nothing:

’’ = ’’

In this case, it was true. So, the instruction after then was executed; but the instruction
after else was not.

2.2 Comments in programs

When you write a program, remember that you will almost certainly want to read it
over later (before improving it, for example). Other readers of your program also need
to know what the program is for, what kind of input it can handle, what kind of output
it produces, and so on. You may also want to write remarks about individual instruc-
tions themselves. All these things, words that are to be read by humans but are not to be
interpreted, are called comments. To indicate which things are comments, use:

/* to mark the start of a comment
*/ to mark the end of a comment.

The /* causes the translator to stop compiling and interpreting; this starts again only
after a */ is found, which may be a few words or several lines later. For example,

/* This is a comment. */
say text /* This is on the same line as the instruction */
/* Comments may occupy more
than one line. */

NetRexx also has linemode comments - those turn a line at a time into a comment.They
are composed of two dashes (hyphens, in listings sometimes fused to a typographical em
dash - remember that in reality they are two n dashes.

-- this is a line comment

2.3 Strings

When the translator sees a quote (either ” or ’) it stops interpreting or compiling and just
goes along looking for the matching quote. The string of characters inside the quotes is
used just as it is. Examples of strings are:

’Hello’
”Final result: ”

If you want to use a quotation mark within a string you should use quotation marks of
the other kind to delimit the whole string.

5

”Don’t panic”
’He said, ”Bother”’

There is another way. Within a string, a pair of quotes (of the same kind as was used to
delimit the string) is interpreted as one of that kind.

’Don’’t panic’ (same as ”Don’t panic”)
”He said, ””Bother””” (same as ’He said, ”Bother”’)

2.4 Clauses

Your NetRexx program consists of a number of clauses. A clause can be:

1. A keyword instruction that tells the interpreter to do something; for example,

say ”the word”

In this case, the interpreter will display the word on the user’s screen.
2. An assignment; for example,

Message = ’Take care!’

3. A null clause, such as a completely blank line, or

;

4. A method call instruction which invokes a method from a class
’hiawatha’.left(2)

2.5 When does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to extend a
clause over many lines. The rules are:

. Usually, each clause occupies one line.

. If you want to put more than one clause on a line you must use a semicolon (;) to
separate the clauses.

. If you want a clause to span more than one line you must put a dash (hyphen) at
the end of the line to indicate that the clause continues on the next line. If a line
does not end in a dash, a semicolon is implied.

What will you see on the screen when this exec is run?

Listing 2.2: RAH Exec
1 /* Example: there are six clauses in this program */ say "Everybody cheer!"
2 say "2"; say "4" ; say "6" ; say "8" ; say "Who do we" -
3 "appreciate?"

6

2.6 Long Lines

Ever since the days of the punch card images are over, the lines in program sources have
become longer and longer, and with NetRexx being a free format language, there is no
real technical reason to limit line length. Still, for readability and for ease access to words
within a line, it is often indicated to keep lines relatively short and tidy. For this reason,
the continuation character ’-’ can be used. This also makes it possible to split long literal
strings over lines.

Listing 2.3: Long lines
1 say 'good' -
2 'night'

This example will concatenate ’good’ and ’night’ with a space inbetween.When you want
to avoid that, use the ’||’ concatenation operator.

Listing 2.4: Long lines with string concatenation without space
1 say 'good' -
2 ||'night'

2.7 Loops

We can go on and write clause after clause in a program source files, but some repetitive
actions in which only a small change occurs, are better handled by the loop statement.
Imagine an assignment to neatly print out a table of exchange rates for dollars and euros
for reference in a shop. We could of course make the following program:

Listing 2.5: Without a loop
1 say 1 'euro equals' 1 * 2.34 'dollars'
2 say 2 'euro equals' 2 * 2.34 'dollars'
3 say 3 'euro equals' 3 * 2.34 'dollars'
4 say 4 'euro equals' 4 * 2.34 'dollars'
5 say 5 'euro equals' 5 * 2.34 'dollars'
6 say 6 'euro equals' 6 * 2.34 'dollars'
7 say 7 'euro equals' 7 * 2.34 'dollars'
8 say 8 'euro equals' 8 * 2.34 'dollars'
9 say 9 'euro equals' 9 * 2.34 'dollars'

10 say 10 'euro equals' 10 * 2.34 'dollars'

This is valid, but imagine the alarming thought that the list is deemed a success and you
are tasked with making a new one, but now with values up to 100. That will be a lot of
typing.
The way to do this is using the loop3 statement.

Listing 2.6: With a loop
1 loop i=1 to 100
2 say i 'euro equals' i * 2.34 'dollars'
3 end

3Note that Classic Rexx uses do for this purpose. In recent Open Object Rexx versions loop can also be used.

7

Now the loop index variable i varies from 1 to 100, and the statements between loop and
end are repeated, giving the same list, but now from 1 to 100 dollars.
We can do more with the loop statement, it is extremely flexible. The following diagram
is a (simplified, because here we left out the catch and finally options) rundown of the
ways we can loop in a program.

FIGURE 1: Loop

loop

loop
�� ��

� label name

�

�
�protect term

�

�
�repetitor

�

�
�conditional

�

�
�

� instructionlist �
�

�end
�� �

repetitor

varc =
���expri �

�to exprt
�� �

�

�
�by exprt

�� �
�

�
�for exprf

�� �
�

�
�varo over

�� �termo

�for
�� �exprr

�forever
�� �

�

conditional

while
�� �exprw�

�until
�� �expru

�

A few examples of what we can do with this:
. Looping forever - better put, without deciding beforehand how many times

Listing 2.7: Loop Forever
1 loop forever
2 say 'another bonbon?'
3 x = ask
4 if x = 'enough already' then leave
5 end

The leave statement breaks the program out of the loop. This seems futile, but in
the chapter about I/O we will see how useful this is when reading files, of which we
generally do not know in advance how many lines we will read in the loop.. Looping for a fixed number of times without needing a loop index variable

8

Listing 2.8: Loop for a fixed number of times without loop index variable
1 loop for 10
2 in.read() /* skip 10 lines from the input file */
3 end

. Looping back into the value of the loop index variable

Listing 2.9: Loop Forever
1 loop i = 100 to 90 by -2
2 say i
3 end

This yields the following output:
===== Exec: test =====
100
98
96
94
92
90
Processing of ’test.nrx’ complete

2.8 Special Variables

Wehave seen that a variable is a place where some data, be it character date or numerical
data, can be held. There are some special variables, as shown in the following program.

Listing 2.10: NetRexx Special Variables
1 /* NetRexx */
2 options replace format comments java symbols binary
3

4 class RCSpecialVariables
5

6 method RCSpecialVariables()
7 x = super.toString
8 y = this.toString
9 say '<super>'x'</super>'

10 say '<this>'y'</this>'
11 say '<class>'RCSpecialVariables.class'</class>'
12 say '<digits>'digits'</digits>'
13 say '<form>'form'</form>'
14 say '<[1, 2, 3].length>'
15 say [1, 2, 3].length
16 say '</[1, 2, 3].length>'
17 say '<null>'
18 say null
19 say '</null>'
20 say '<source>'source'</source>'
21 say '<sourceline>'sourceline'</sourceline>'
22 say '<trace>'trace'</trace>'
23 say '<version>'version'</version>'
24
25 say 'Type an answer:'
26 say '<ask>'ask'</ask>'
27
28 return
29

30 method main(args = String[]) public static
31

32 RCSpecialVariables()

9

33
34 return

this The special variables this and super refer to the current instance of the class and
its superclass - what this means will be explained in detail in the chapter Classes
on page 29, as is the case with the class variable.

digits The special variable digits shows the current setting for the number of decimal
digits - the current setting of numeric digits. The related variable form returns the
current setting of numeric form which is either scientific or engineering.

null The special variable null denotes the empty reference. It is there when a variable
has no value.

source The source and sourceline variables are a good way to show the sourcefile and
sourceline of a program, for example in an error message.

trace The trace variable returns the current trace setting, which can be one of the words
off var methods all results.

version The version variable returns the version of the NetRexx translator that was in
use at the time the clause we processed; in case of interpreted execution(see chapter
5 on 19, it returns the level of the current translator in use.

The result of executing this exec is as follows:

===== Exec: RCSpecialVariables =====
<super>RCSpecialVariables@4e99353f</super>
<this>RCSpecialVariables@4e99353f</this>
<class>class RCSpecialVariables</class>
<digits>9</digits>
<form>scientific</form>
<[1, 2, 3].length>
3
</[1, 2, 3].length>
<null>

</null>
<source>Java method RCSpecialVariables.nrx</source>
<sourceline>21</sourceline>
<trace>off</trace>
<version>NetRexx 3.02 27 Oct 2011</version>
Type an answer:
hello fifi
<ask>hello fifi</ask>

It might be useful to note here that these special variables are not fixed in the sense of
that they are not Reserved Variables. NetRexx does not have reserved variables and any
of these special variables can be used as an ordinary variable. However, when it is used
as an ordinary variable, there is no way to retrieve the special behavior.

10

3

NetRexx Options

There are a number of options for the translator, some of which can be specified on the
translator command line, and others also in the program source on the option state-
ment. In the following table, c stands for commandline only, s stands for source and b
stands for both. On the commandline, options are prefixed with a dash (“-”), while in
programsource they are not - there they are preceded by the option statement.

TABLE 1: Options

Option Meaning Place

arg words interpret; remaining words are arguments c
binary classes are binary classes b
classpath specify a classpath c
compile compile (default; -nocompile implies -keep) c
comments copy comments across to generated .java b
compact display error messages in compact form b
console display messages on console (default) c
crossref generate cross-reference listing b
decimal allow implicit decimal arithmetic b
diag show diagnostic messages b
ecj prefer the ecj compiler c
exec interpret with no argument words c
explicit local variables must be explicitly declared b
format format output file (pretty-print) b
java generate Java source code for this program b
javac prefer the javac compiler c
keep keep any completed .java file (as xxx.java.keep) c
keepasjava keep any completed .java file (as xxx.java) c
logo display logo (banner) after starting b
prompt prompt for new request after processing c
savelog save messages in NetRexxC.log c
replace replace .java file even if it exists b
sourcedir force output files to source directory b
strictargs empty argument lists must be specified as () b
strictassign assignment must be cost-free b
strictcase names must match in case b
strictimport all imports must be explicit b

Continued on next page
11

Table 1 – continued from previous page
strictmethods superclass methods are not compared to local methods for

best match
b

strictprops even local properties must be qualified b
strictsignal signals list must be explicit b
symbols include symbols table in generated .class files b
time display timings c
trace[n] trace stream [1 or 2], or 0 for NOTRACE b
utf8 source file is in UTF8 encoding b
verbose[n] verbosity of progress reports [0-5] b
warnexit0 exit with a zero returncode on warnings c

Options valid for the options statement and on the commandline

These are the options that can be used on the options statement:

binary All classes in this program will be binary classes. In binary classes, literals are
assigned binary (primitive) or native string types, rather than NetRexx types, and
native binary operations are used to implement operators where appropriate, as
described in “Binary values and operations”. In classes that are not binary, terms in
expressions are converted to the NetRexx string type, Rexx, before use by opera-
tors.

comments Comments from the NetRexx source program will be passed through to the
Java output file (which may be saved with a .java.keep or .java extension by using
the -keep and -keepasjava command options, respectively).

compact Requests that warnings and errormessages be displayed in compact form.This
format ismore easily parsed than the default format, and is intended for use by edit-
ing environments. Each error message is presented as a single line, prefixed with
the error token identification enclosed in square brackets. The error token iden-
tification comprises three words, with one blank separating the words. The words
are: the source file specification, the line number of the error token, the column in
which it starts, and its length. For example (all on one line):
[D:\test\test.nrx 3 8 5] Error: The external name
’class’ is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null (’\0’) character. Additional
words could be added to the error token identification later.

crossref Requests that cross-reference listings of variables be prepared, by class.
decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the

language processor will report operations that use (or, like normal string com-
parison, might use) decimal arithmetic as an error. This option is intended for
performance-critical programs where the overhead of inadvertent use of decimal
arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed.The
diag option word may also have side-effects.

12

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. This option is intended
to permit the enforcement of “house styles” (but note that the NetRexx compiler
always checks for variables which are referenced before their first assignment, and
warns of variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for im-
proved readability. Note that if this option is in effect, line numbers from the input
file will not be preserved (so run-time errors and exception trace-backs may show
incorrect line numbers).

java Requests that Java source code be produced by the translator. If nojava is specified,
no Java source code will be produced; this can be used to save a little time when
checking of a program is required without any compilation or Java code resulting.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

sourcedir Requests that all .class files be placed in the same directory as the source file
from which they are compiled. Other output files are already placed in that di-
rectory. Note that using this option will prevent the -run command option from
working unless the source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when
no arguments are supplied. Also, if strictargs is in effect, method arguments are
checked for usage – a warning is given if no reference to the argument is made in
the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of arguments
in method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical
to match).

strictimport Requires that all imported packages and classes be imported explicitly us-
ing import instructions. That is, if in effect, there will be no automatic imports,
except those related to the package instruction.

strictmethods Superclass methods are not compared to local methods for best match.
strictprops Requires that all properties, including those local to the current class, be

qualified in references. That is, if in effect, local properties cannot appear as simple
names but must be qualified by this. (or equivalent) or the class name (for static
properties).

strictsignal Requires that all checked exceptions signalled within a method but not
caught by a catch clause be listed in the signals phrase of the method instruction.

symbols Symbol table information (names of local variables, etc.) will be included in any
generated .class file.This option is provided to aid the production of classes that are
easy to analyse with tools that can understand the symbol table information. The
use of this option increases the size of .class files.

trace, traceX If given as -trace, -trace1, or -trace2, then trace instructions are accepted.
The trace output is directed according to the option word: -trace1 requests that
trace output is written to the standard output stream, -trace or -trace2 imply that
the output should be written to the standard error stream (the default).

13

utf8 If given, clauses following the options instruction are expected to be encoded us-
ing UTF-8, so all Unicode characters may be used in the source of the program.
In UTF-8 encoding, Unicode characters less than ’\u0080’ are represented using
one byte (whose most-significant bit is 0), characters in the range ’\u0080’ through
’\u07FF’ are encoded as two bytes, in the sequence of bits:
110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of the char-
acter, and characters in the range ’\u0800’ through ’\uFFFF’ are encoded as three
bytes, in the sequence of bits:
1110xxxx 10xxxxxx 10xxxxxx

where the sixteen digits shown as x are the sixteen bits of the character. If noutf8
is given, following clauses are assumed to comprise only Unicode characters in the
range ’\x00’ through ’\xFF’, with the more significant byte of the encoding of each
character being 0. Note: this option only has an effect as a compiler option, and
applies to all programs being compiled. If present on an options instruction, it is
checked and must match the compiler option (this allows processing with or with-
out utf8 to be enforced).

verbose, verboseX Sets the “noisiness” of the language processor.Thedigit Xmay be any
of the digits 0 through 5; if omitted, a value of 3 is used. The options -noverbose
and verbose0 both suppress all messages except errors and warnings

Options valid on the commandline

The translator also implements some additional option words, which control compila-
tion features. These cannot be used on the options instruction4, and are:

arg The -argwords option is used when interpreting programs, it indicates that after the
-arg statement, commandline arguments for ther interpreted program follow

classpath The -classpath option allows dynamic specification of the classpath used by
the NetRexxC compiler without having to depend on the CLASSPATH environ-
ment variable. (since: NetRexx 3.02) .

exec The -exec words option is used when interpreting programs. With this option, no
commandline arguments are possible.

ecj prefer the ecj compiler when available
keep keep the intermediate .java file for each program. It is kept in the same directory

as the NetRexx source file as xxx.java.keep, where xxx is the source file name. The
file will also be kept automatically if the javac compilation fails for any reason.

javac prefer the javac compiler when available
keepasjava keep the intermediate .java file for each program. It is kept in the same di-

rectory as the NetRexx source file as xxx.java, where xxx is the source file name.
Implies -replace. Note: use this option carefully in mixed-source projects where
you might have .java source files around.

nocompile do not compile (just translate). Use this option when you want to use a dif-
ferent Java compiler. The .java file for each program is kept in the same directory

4Although at the moment, there will be no indication of this

14

as the NetRexx source file, as the file xxx.java.keep (where xxx is the source file
name).

noconsole do not display compiler messages on the console (command display screen).
This is usually used with the savelog option.

savelog write compiler messages to the file NetRexxC.log, in the current directory. This
is often used with the noconsole option.

time display translation, javac or ecj compile, and total times (for the sum of all pro-
grams processed).

run run the resulting Java class as a stand-alone application, provided that the compi-
lation had no errors.

warnexit0 Exit the translator with returncode 0 even if warnings are issued. Useful with
build tools that would otherwise exit a build.

15

4

NetRexx as a Scripting Language

The term scripting is used here in the sense of using the programming language for
quickly composed programs that interact with some application or environment to per-
form a number of simple tasks.
You can use NetRexx as a simple scripting language without having knowledge of, or
using any of the features that is needed in a Java program that runs on the JVM - like
defining a class name, and having a main method that is static and expects an array of
String as its input.
Scripts can be written very fast. There is no overhead, such as defining a class, construc-
tors and methods, and the programs contain only the necessary instructions. In this
sense, a NetRexx script looks like an oo-version of a classic script, as the ceremonial as-
pects of defining class andmethod can be skipped.These will be automatically generated
in the Java language source that is being generated for a script.
The scripting feature can be used for test purposes. It is an easy and convenient way of
entering some statements and testing them. The scripting feature can also be used for
the start sequence of a NetRexx application.
Scripts can be interpreted or compiled - there is no rule that a script needs to be inter-
preted. In interpreted mode, the edit-compile-run cycle is shortened, in the sense that
there is no separate compilation step necessary and incremental editing and testing can
be done very efficiently. In both cases, interpreted or compiled, the NetRexx translator
adds the necessary overhead to enable the JVM to execute the resulting program.

The scripting facility and its automatic generation of a class statement can lead to one
surprising message when there is an error in the first part of the program: class x already
implied when the automatically generated class statement (using the program file name)
somehow clashes with the specified name that contains the error. When not in scripting
mode, this error message nearly always indicates an error that occurred before the first
class statement.

17

5

NetRexx as an Interpreted Language

In the JVM environment, compilation and interpretation are concepts that are not as
straightforward as in other environments; JVM code is interpreted on several levels.
When we are referring to interpreted NetRexx code, we indicate that there is no in-
termediate Java compilation step involved. A JVM .class file is always interpreted by the
JVM runtime; the NetRexx translator is able to execute programs without generating
either .java or .class files.
This enables a very quick edit-debug-run cycle, especially when combinedwith the com-
mand line feature that keeps the translator classes resident (the -prompt option), or one
of the IDE plugins for NetRexx.
For NetRexx to deliver this functionality, the translator has been designed to have an
analogous interpret facility for every code generation part.5

5This is the right order in which to explain this feature, because historically, the compiler was first (1996) and the interpretation
facility was added later (in 2000).

19

6

NetRexx as a Compiled Language

6.1 Compiling from another program

The translator may be called from a NetRexxor Java program directly, by invoking the
main method in the org.netrexx.process.NetRexxC class described as follows:

Listing 6.1: Invoking NetRexxC.main
1 method main(arg=Rexx, log=PrintWriter null) static returns int

The Rexx string passed to the method can be any combination of program names and
options (except -run), as described above. Program names may optionally be enclosed
in double-quote characters (and must be if the name includes any blanks in its specifi-
cation).
A sample NetRexxprogram that invokes the NetRexxcompiler to compile a program
called test is:

Listing 6.2: Compiletest
1 /* compiletest.nrx */
2 s='test -keep -verbose4 -utf8'
3 say org.netrexx.process.NetRexxC.main(s)

Alternatively, the compiler may be called using the method:

Listing 6.3: Calling with Array argument
1 method main2(arg=String[], log=PrintWriter null) static returns int

in which case each element of the arg array must contain either a name or an option
(except -run, as before). In this case, names must not be enclosed in double-quote char-
acters, and may contain blanks.
For bothmethods, the returned int valuewill be one of the return values described above,
and the second argument to the method is an optional PrintWriter stream. If the Print-
Writer stream is provided, translator messages will be written to that stream (in addition
to displaying them on the console, unless -noconsole is specified). It is the responsibility
of the caller to create the stream (autoflush is recommended) and to close it after calling
the compiler. The -savelog compiler option is ignored if a PrintWriter is provided (the
-savelog option normally creates a PrintWriter for the file NetRexxC.log).
Note: NetRexxC is thread-safe (the only static properties are constants), but it is not
known whether javac is thread-safe. Hence the invocation of multiple instances of Net-
RexxC on different threads should probably specify -nocompile, for safety.

21

6.2 Compiling from memory strings

Programs may also be compiled from memory strings by passing an array of strings
containing programs to the translator using these methods:

Listing 6.4: From Memory
1 method main(arg=Rexx, programarray=String[], log=PrintWriter null) static returns int
2 method main2(arg=String[], programarray=String[], log=PrintWriter null) static returns

int

Any programs passed as strings must be named in the arg parameter before any pro-
grams contained in files are named. For convenience when compiling a single program,
the program can be passed directly to the compiler as a String with this method:

Listing 6.5: With String argument
1 method main(arg=Rexx, programstring=String, logfile=PrintWriter null) constant returns

int

Here is an example of compiling a NetRexxprogram from a string in memory:

Listing 6.6: Example of compiling from String
1 import org.netrexx.process.NetRexxC
2 program = "say 'hello there via NetRexxC'"
3 NetRexxC.main("myprogram",program)

3.01Programs may also be interpreted directly from memory strings, as shown in 24.5 on
page 85.

22

7

Calling non-JVM programs

Although NetRexx currently misses the Address facility that Classic Rexx and Object
Rexx do have, it is easy to call non-JVM programs from a NetRexx program - not as
easy as calling a JVM class of course, but if the following recipe is observed, it will show
not to be a major problem. The following example is reusable for many cases.

Listing 7.1: Calling Non-JVM Programs
1 /* script\NonJava.nrx
2

3 This program starts an UNZIP program, redirect its output,
4 parses the output and shows the files stored in the zipfile */
5

6 parse arg unzip zipfile .
7

8 -- check the arguments - show usage comments
9 if zipfile = '' then do

10 say 'Usage: Process unzipcommand zipfile'
11 exit 2
12 end
13

14 do
15 say "Files stored in" zipfile
16 say "-".left(39,"-") "-".left(39,"-")
17 child = Runtime.getRuntime().exec(unzip ' -v' zipfile) -- program start
18

19 -- read input from child process
20 in = BufferedReader(InputStreamReader(child.getInputStream()))
21 line = in.readline
22

23 start = 0 -- listing of files are not available yet
24 count = 0
25 loop while line \= null
26 parse line sep program
27 if sep = '------' then start = \start
28 else
29 if start then do
30 count = count + 1
31 if count // 2 > 0 then say program.word(program.words).left(39) '\-'
32 else say program.word(program.words)
33 end
34 line = in.readline()
35 end
36

37 -- wait for exit of child process and check return code
38 child.waitFor()
39 if child.exitValue() \= 0 then
40 say 'UNZIP return code' child.exitValue()
41

42 catch IOException
43 say 'Sorry cannot find' unzip
44 catch e2=InterruptedException
45 e2.printStackTrace()
46 end

Just firing off a program is no big deal, but this example (in script style) shows how
easy it is to access the in- and output handles for the environment that executes the

23

program, which enables you to capture the output the non-jvm program produces and
do useful things with it.6 Line 17 starts the external command using the JVM Runtime
class in a process called child. In line 20 we create a BufferedReader from the child
processes’ output. This is called an InputStream but it might as well have been called an
OutputStream- everything regarding I/O is relative - but fortunately the designers of the
JVM took care of deciding this for you. In lines 25-35 we loop through the results and
show the files stored in the zipfile. Note that we do (line 14) have to catch (line 42) the
IOException that ensues if the runtime cannot find the unzip program, maybe because
it is not on the path or was not delivered with your operating system.
Starting from JVM 1.5 releases, there is a new way to accomplish the same goal, in a
cleaner manner and with the added bonus of being able to redirect streams, and use
environment variables. In this regard, the environment variable has made an important
comeback from having its calls deprecated, to easy to use support in the ProcessBuilder
class.

Listing 7.2: Use of ProcessBuilder
1 /**
2 * Class OSProcess implements ways to execute and get output from an OS Process
3 */
4 class OSProcess
5

6 properties indirect
7 pid = Process
8 returncode
9 commandList = ArrayList()

10 outList = ArrayList()
11

12 properties private
13 listeners = HashSet()
14 /**
15 * Default constructor
16 */
17 method OSProcess()
18 return
19

20 /*
21 * helper method that makes an ArrayList of out a Rexx string for use
22 * in the similarly named method that has an ArrayList as input
23 */
24 method outtrap(command_=Rexx) returns ArrayList
25 if command_ = '', command_ = null then return null
26 a = ArrayList()
27 loop until command_ = ''
28 parse command_ first command_
29 a.add(first.toString())
30 end
31 return this.outtrap(a)
32

33 /*
34 * helper method that makes an ArrayList of out a Rexx string for use
35 * in the similarly named method that has an ArrayList as input
36 */
37 method exec(command_=Rexx, wait=1)
38 if command_ = '', command_ = null then return
39 a = ArrayList()
40 loop until command_ = ''
41 parse command_ first command_
42 a.add(first.toString())
43 end
44 this.exec(a,wait)
45

46 /**

6This is akin to what one would do with queue on z/VM CMS and outtrap on z/OS TSO in Classic Rexx.

24

47 * Method outtrap starts an OS process from a command line in an ArrayList
48 * @param command is a List that has the command to be executed as elements
49 * @return List containing the output of the command
50 */
51 method outtrap(command_=ArrayList) returns ArrayList
52 this.commandList = command_
53 do
54 pb = ProcessBuilder(command_)
55 pb.redirectErrorStream(1)
56 this.pid = pb.start()
57 in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
58 line = Rexx in.readLine()
59 loop while line <> null
60 this.outList.add(line)
61 line = Rexx in.readLine()
62 end
63 pid.waitFor()
64 returncode = pid.exitValue()
65 return this.outList
66 catch iox=IOException
67 say iox.getMessage()
68 return ArrayList()
69 catch InterruptedException
70 say "interrupted"
71 return ArrayList()
72 end -- do
73

74 /**
75 * Method exec starts an OS process from a command line in an ArrayList
76 * @param then fires off outputEvent events to every registered listener
77 * @return void
78 */
79 method exec(command_=ArrayList,wait=1)
80 this.commandList = command_
81 do
82 pb = ProcessBuilder(command_)
83 pb.redirectErrorStream(1)
84 this.pid = pb.start()
85 if wait then do
86 in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
87 line = in.readLine()
88 loop while line <> null
89 line = in.readLine()
90 i = this.listeners.iterator()
91 loop while i.hasNext()
92 op = OutputEventListener i.next()
93 op.outputReceived(OutputLineEvent(this,line,this.pid))
94 end
95 end
96 pid.waitFor()
97 returncode = pid.exitValue()
98 end
99 catch iox=IOException

100 say iox.getMessage()
101 catch InterruptedException
102 say "interrupted"
103 end -- do
104
105

106 /**
107 * Method addOutputEventListener supports registering an event listener
108 * @param listener_ is a OutputEventListener
109 */
110 method addOutputEventListener(listener_=OutputEventListener)
111 this.listeners.add(listener_)
112

113 /**
114 * Method removeOutputEventListener supports de-registering an event listener
115 * @param listener_ is a OutputEventListener
116 */
117 method removeOutputEventListener(listener_=OutputEventListener)
118 this.listeners.remove(listener_)

25

In the above sample, we are using two different ways to obtain the output from a process
started by the JVM from our own program. The method outtrap waits until the invoked
process is finished and returns all output lines in an ArrayList. Its name is not entirely
coincidental with the similar TSO outtrap function.
Sometimes we cannot wait until the child process is finished, for example when it is a
long running process and we need to capture the output on a line-by-line basis to see
what is happening - in case of the example, this was done to capture the output as part
of a testsuite for a multithreaded file transfer application, which has a server resident
process that is not supposed to end, because one of its tasks is to poll a directory for
incoming files with a specific pattern in the file names. This is implemented using an
Event based pattern (as explained in 11.2 on page 34.

Listing 7.3: Output Line Event
1 import java.util.EventObject
2 /**
3 * Class OutputLineEvent embodies the OutputLineEvent
4 */
5 class OutputLineEvent extends EventObject
6

7 properties indirect
8 pid = Process
9 line

10 /**
11 * Default constructor
12 */
13 method OutputLineEvent(ob=Object,line_, pid_=Process)
14 super(ob)
15 this.line = line_
16 this.pid = pid_
17 return

Listing 7.4: Output Event Listener
1 import java.util.EventListener
2 /**
3 * Interface OutputEventListener specifies the one mandatory method for this interface
4 */
5 class OutputEventListener interface implements EventListener
6

7 method outputReceived(ob=OutputLineEvent)

The call would look something like this:

Listing 7.5: Example of calling the OSProcess class - registering an eventhandler
1 os = OSProcess()
2 os.addOutputEventListener(this)
3 os.exec(command)

The class must extend OutputEvenListener, and implement this method:

Listing 7.6: Example of implementing the listener method
1 method outputReceived(ob=OutputLineEvent)
2 this.counter = this.counter+1
3 say this.counter ob.getPid() ob.getLine()

26

8

Using NetRexx classes from Java

If you are a Java programmer, using a NetRexx class from Java is just as easy as using
a Java class from NetRexx. NetRexx compiles to Java classes that can be used by Java
programs. You should import the netrexx.lang package to be able to use the short class
name for the Rexx (NetRexx string and numerics) class.
A NetRexx method without a returns keyword can return nothing, which is the void
type in Java, or a Rexx string. NetRexx is case independent7; Java is case dependent.
NetRexx generates the Java code with the case used in the class and method instruc-
tions. For example, if you named your class Spider in the NetRexx source file, the re-
sulting Java class file is Spider.class. The public class name in your source program must
match the NetRexx source file name. For example, if your source file is SPIDER.NRX,
and your class is Spider, NetRexx generates a warning and changes the class name to
SPIDER to match the file name. A Java program using the class name Spider would not
find the generated class, because its name is SPIDER.class - if the compile succeeded,
which is not guaranteed in case of casing mismatches. If you have problems, compile
your NetRexx program with the options -keepasjava -format. You then can look at the
generated java file for the correct spelling style and method parameters.

7With the default of options nostrictcase in effect.

27

9

Classes

Somewhere in the nineties Object Orientation became one of the mainstream ways
to organize computer programs, and support for this was added to programming lan-
guages. C became C++ with a preprocessor that generates C8 that is not entirely unlike
the NetRexx translator produces Java. Java in itself is syntax-wise a cleaned up version
of C++, but in essence an entirely different language. Its inventor and architect, James
Gosling, has stated on various occasions that he was planning a fully different syntax for
what finally became Java - but that Sun management more or less forced him to use a
C++ derived syntax, because C++ compilers was what SUN did well at the time. With
Brendan Eich having to base JavaScript qua naming and syntax on Java, the circle that
brought the world terse, curly braces based notations, is complete.
For an audience of Rexx programmers, the usual OO presentation goes into the advan-
tages of the paradigm. Today, that is not really necessary, and OO is a given; it slightly
deviates from earlier notation as result of trying to put data and procedure into Objects,
but it is no great deal, and this NetRexx Programmer’s Guide does not need a special
section on the benefits of the OO paradigm. It is assumed that with a few examples ev-
eryone should be able to get it; some old programmers might resist but there is really no
use in fighting the mainstream. Consequently, this section discusses the way to do this
in NetRexx; the way NetRexx does it is for a very large part formed by the way the JVM
dictates it, adapted to Rexx notational style and conventions.
Where traditional Rexx would say:

l=left(ourstring,1)

the OO-versions of Rexx would say:

l=ourstring.left(1)

As often the case, the hard part is in the notational ommission that OO has as its char-
acteristic: the instance pointer is no part of the function call and has moved to the left
(in what now is called amethod. The weight has shifted from the operation to the object
it is called on.

9.1 Classes

Classes represent a blueprint, ’cookie cutter’ approach in creating objects that do useful
things. A class is defined in a file by the same name (exceptions here for dependent
classes). So a class called Cookie is defined in a file called Cookie.nrx. Its real, which

8Cfront

29

means its most specific name, including its package specification, is not given by the
file name but by the combination of the class=file + the name given on the package
statement.This enables one to put classes in different packages without having to change
the file names.

9.2 Dependent Classes

Dependent Classes are theNetRexxway to implement Javaminor classes.There is no in-
line definition possible, and dependent classes need their own class definition, but can be
defined in the same source file as the classes they depend on.The notational advantage of
’nested’ class definition, like customary in (for example) Java Swing programs is absent.
What is present, is the way dependent classes can seamlessly access properties of their
parent classes.

9.3 Properties

The properties statement enables us to define variables that are global to the class defi-
nition, and as such can be used by all methods of the class.

A properties statement needs at least one visibility or modifier keyword. When this is
left out, a variable called “properties” is defined, which is not an error, but (most of the
times) not what was intended.

Because the properties of a class can be externally visible (depending on visibility they
need to have a type. When the type is omitted in the definition, they are of type Rexx.
So-called indirect properties, defined with the properties indirect modifier, give rise
to automated generation of getter and setter methods for use in Java Beans.

9.4 Methods

9.5 Inheritance

9.6 Overriding Methods

9.7 Overriding Properties

30

10

Using Packages

Any non-toy, non-trivial program needs to be in a package. Only examples in program-
ming books (present company included) have programs without package statements.
The reason for this is that there is a fairly large chance that youwill give something a name
that is already used by someone else for something else.Things are not their names9, and
the same names are given to wildly dissimilar things. The package construct is the JVM’s
approach to introducing namespaces into the total set of programs that programmers
make. Different people will probable write somemethod that is called listDifferences
sometime.With all my software in a package called com.frob.nitz and yours in a pack-
age called com.frob.otzim, there is no danger of our programs calling the wrong class
and listing the wrong differences.
It is imperative to understand this chapter before continuing - it is a mechanical nuts-
and-bolts issue but an essential one at that.

10.1 The package statement

The final words about the NetRexx package statement is in the NetRexx Language Ref-
erence, but the final statement about the package mechanism is in the JVM documenta-
tion.

10.2 Translator performance consequences

Because the NetRexx translator has to scan all packages that it can see (meaning a recur-
sive scan of the directories below its own level in the directory tree, and on its classpath,
it is often advisable (and certainly if . (a dot, representing the current directory) is part of
the classpath) to do development in a subdirectory, instead of, for example, the top level
home directory. If a large number of packages and classes are visible to the translator,
compile times will be negatively impacted.

10.3 Some NetRexx package history

All IBM versions of NetRexx had the translator in a package called

COM.ibm.netrexx.process

9Willard Van Orman Quine, Word and Object, MIT Press, 1960, ISBN 0-262-67001-1

31

The official, SUN ordained convention for package names was, to prepend the reversed
domain name of the vendor to the package name, while uppercasing the top level do-
main. NetRexx, being one of the first programs to make use of packages, followed this
convention, that was quickly dropped by SUNafterwards, probably because someone ex-
perienced what trouble it could cause with version management software that adapted
to case-sensitive and case-insensitive file systems. For NetRexx, which had started out
keenly observing the rules, this insight came late, and it is a sober fact that as a result
some needlessly profane language was uttered on occasion by some in some projects that
suffered the consequences of this. With the first RexxLA release of NetRexx in 2011, the
package name was changed to org.netrexx, while the runtime package name was kept
as netrexx.lang, also because some major other languages follow this convention.

10.4 CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indi-
cate a search path for Java classes. The Java Virtual Machine and the NetRexx transla-
tor rely on the CLASSPATH value to find directories, zip files, and jar files which may
contain Java classes. The procedure for setting the CLASSPATH environment variable
depends on your operating system (and there may be more than one way).
. For Linux and Unix (BASH, Korn, or Bourne shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH. Changes for re-boot or opening of a newwindow should be placed in your /etc/pro-

file, .login, or .profile file, as appropriate.. For Linux and Unix (C shell), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

Changes for re-boot or opening of a new window should be placed in your .cshrc
file. If you are unsure of how to do this, check the documentation you have for
installing the Java toolkit.. For Windows operating systems, it is best to set the system wide environment,
which is accessible using the Control Panel (a search for “environment” offsets the
many attempts to relocate the exact dialog in successive Windows Control Panel
versions somewhat).

32

11

Programming Patterns

Much has been made of patterns as aggregations of higher level embodiments of pro-
gramming solutions. It has been observed10 that of a number of the C++ oriented pat-
terns in Design Patterns11, some owe their existence to complications in the C++ lan-
guage and are not readily reproducible in a Java Patterns or Ruby Patterns book. The
same goes for NetRexx- in this chapter we would like to present a number of Java pat-
terns usable in NetRexx, and a number of patterns that are unique to NetRexx.

11.1 Singleton

Sometimes we only want one instance of a class, and we want every user of the class to
refer to that same instance. In this case, we need to adapt the class construction mecha-
nism to make sure this happens. There are different ways to implement this, one way is
shown below.

Listing 11.1: Singleton
1 class TheGatherer
2

3 properties static
4 instance = TheGatherer
5

6 method getInstance() returns TheGatherer static protect
7 if TheGatherer.instance <> null then
8 do
9 return TheGatherer.instance

10 end
11 else
12 do
13 TheGatherer.instance = TheGatherer()
14 return TheGatherer.instance
15 end
16

17 /**
18 * private constructor enforces singleton
19 */
20 method TheGatherer() private signals ClassNotFoundException

The way that has been chosen here is to make the constructor private, so no other class
can use it. We need an alternative method to make the first and only instance of this
class, and this is the getInstance() method. This checks if a static property instance
is null, in which case the private constructor is run and its return value put in instance.
Every subsequent call to getInstance() sees the value of the static variable instance
being not null, and returns that value, which now refers to the single instance. There are

10This observation from a Java patterns book.
11Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Profes-

sional; 1994

33

several ways to enhance thismethod, but this is a simple way and it fits the bill. For added
security, override the methods for class serialization.
There is a common naming pattern for Singletons, which is the prepend the name of the
class with The, as in the above example.

11.2 Observable and Events

The observer pattern can also be referred to asCallback, and the Java Event class delivers
support for it. It is very usable if some result needs to be available for a set of callers, where
the set is 0 to many. It works as follows: (see a simple implementation in section 7.4 on
page 26) An object, maintains a list of its dependents, called observers, and notifies them
automatically of any state changes, usually by calling one of their methods. It is mainly
used to implement distributed event handling systems.TheObserver pattern is also a key
part in the familiarModelViewController (MVC) architectural pattern. In the JVM, this
object needs to implement the methods of the Listener interface; this interface specifies
the addListener and RemoveListener methods; it keeps a collection in which references
to the added listener objects are maintained. The listening is done to subclassed Java
Event classes. The event specifies the method to be called when ’firing off ’ and event.
This means that this method is called on every listener.
One of the larger benefits: it decouples the observer from the subject.The subject doesn’t
need to know anything special about its observers. Instead, the subject simply allows
observers to subscribe. When the subject generates an event, it simply passes it to each
of its observers. Another benefit is that event consuming classes don’t have to wait until
a process is finished, and can consume events as they come in. The OSProcess class on
page 26) uses an event approach to consume output lines from a subprocess - in the
version that puts the output in an ArrayList needs to wait for the subprocess to end, but
the event driven version can monitor a long running process and analyze output lines
whenever they are received.

11.3 Recursive Parse

This is a pattern unique to Rexx, by virtue of Rexx having the Parse statement. It also
works in NetRexx.

11.4 More Observer/Observable

Java has special support for theObserver/Observable pattern in the form of theObserver
class and theObservable interface. In the following snippet one can see theObserver class
in working.
The class is the same singleton as shown above, and starts several threads which need to
be observed.
Listing 11.2: Observer

1 class TheGatherer implements Observer

34

The Observable threads need to implement the Observable interface, and to be able to
be started as a thread, Runnable. This is how we start it; its definition follows.

Listing 11.3: Observable: starting Observable Threads
1 method TheGatherer() private signals ClassNotFoundException
2 logger_.info("TheGatherer: start")
3 t1 = TransactionStatusMonitor(Rexx 10000)
4 t1.addObserver(this)
5 Thread(t1).start()
6 logger_.info("TheGatherer: started thread TransactionStatusMonitor")

We instantiate the Observable class as t1, and add the instance of our Observer class,
TheGatherer, to it as Observer. After we have done this, we start it by instantiating a
Thread object with it and calling the start method, which, by virtue of it implementing
the Runnable interface, starts its run method.
Note that the TransactionStatusMonitor extends a class called Monitor, which in turn,
implements the Observable interface. The reason for this is, we run several monitoring
threads, and they all behave in the same way.

Listing 11.4: The Monitor Superclass
1 import java.util.Observable
2 class Monitor extends Observable
3

4 properties public
5 logger_ = Logger.getLogger(Monitor.class.getName())
6 sleeptime
7

8 properties static
9 da = TheDataAccess null

10

11 method Monitor()
12 this.da = TheDataAccess.getInstance()

Listing 11.5: an Observable Thread
1 class TransactionStatusMonitor implements Runnable extends Monitor
2

3 method TransactionStatusMonitor(s) signals ClassNotFoundException
4 this.sleeptime = s
5

6 method run()
7 do
8 loop forever
9 pi = this.da.idealq1()

10 if pi.getID().length() < 5 then
11 do
12 nop
13 end
14 else do
15 pi.setIdType('ideal')
16 ibidp = this.da.getIBPostIDStatuses(pi)
17 setChanged()
18 notifyObservers(ibidp.getStatusDelta())
19 end
20

21 Thread.currentThread().sleep(this.sleeptime) -- sleep for sleeptime seconds
22 end
23 catch InterruptedException
24 parse source s
25 say "thread interrupted:" s
26 end

In lines 17 an 18 the magic happens: the setChanged() method sets the status of this
35

instance as updated, and the notifyObservers()method calls for all the registeredOb-
servers their update() methods; this has the following signature:

Listing 11.6: the update() method
1 method update(o=Observable,obj=Object) protect
2 cl = o.getClass().getName()

The update()method receives an Object.The .getClass.getName call is for illustrative
purposes and can be used to decide how to treat the received update object.

36

12

Incorporating Class Libraries

12.1 A Word About Java Generics

Many classes in Java are expressed as generics. It is important to note that the generic
is a compile time only java type enforcement mechanism, and therefore does not affect
NetRexx.
A generic class has, underlying it, a class that accepts one or more objects as parameters
- taking as an example the ArrayList class, the Java documentation shows that this has
a class signature of public class ArrayList<E> with one of the constructors being
ArrayList() and, for example, a method add(E e). If the Arraylist is instantiated in
Java as follows:-

ArrayList<String> stringList = new ArrayList<String>();

then the Java compiler will note that the ArrayList is instantiated with a <String> object
- andwill enforce String usage everywhere else that the <E> is used in the class documen-
tation - in this case the type add(E e).
Thus

stringList.add(”Item”);

will be permitted by the compiler, since a string is being added. In contrast,

stringList.add(new Integer(7));

will fail since a string is not being added.
Remembering that the ArrayListdeals directlywith objects the following shortNetRexx
program will correctly use ArrayList without worrying about the ”complication” of
generics.

Listing 12.1: ArrayList Example
1 a1 = ArrayList() -- An ArrayList just deals with Objects
2

3 a1.add("Eric") -- so we give it some Rexx objects
4 a1.add("Erica")
5 num = 0
6 a1.add(num)
7

8 say "There are" a1.size "elements in the list" -- and show they are present
9

10 /* Now, to retrieve them */
11

12 loop item over a1
13 say item
14 end

37

If one does not need generics, then it could be asked why they have been implemented at
all - the answer is that they prevent many Java run-time errors resulting from a failure to
cast the object used to the correct type. When programming in NetRexx the use of the
”universal” Rexx class means that this is rarely an issue. When retrieving objects from a
generic class used from within Java one must remember to use the correct type, cast or
the binary option just as would be expected when using a Java object in any other way.

12.2 The Collection Classes

The Java collections framework (JCF) is a set of classes and interfaces that implement
commonly reusable collection data structures. The JCF provides both interfaces that de-
fine various collections and classes that implement them. Collection implementations
in pre-JDK 1.2 versions of the Java platform included few data structure classes, but did
not contain a collections framework. The standard methods for grouping Java objects
were via the array, the Vector, and the Hashtable classes, which were not easy to extend,
and did not implement a standard member interface. The collections framework was
designed and developed primarily by Joshua Bloch, and was introduced in JDK 1.2.
Almost all collections in Java are derived from the java.util.Collection interface.
Collection defines the basic parts of all collections. The interface states the add() and
remove() methods for adding to and removing from a collection respectively. Also
required is the toArray() method, which converts the collection into a simple ar-
ray of all the elements in the collection. Finally, the contains() method checks if
a specified element is in the collection. The Collection interface is a subinterface of
java.util.Iterable, so any Collection is iterable (using an iterator for a loop over the
contents). All collections have an iterator that goes through all of the elements in the
collection.
The Collection framework is one of the aspects of where NetRexx relegates to Java for
its implementation. Where ooRexx has had its collection classes in the language def-
inition from day one, in NetRexx they are not part of the language; most of the data
related support is in the indexed strings feature. This, in turn, makes use of the Dictio-
narymechanism already implemented in the earliest versions of Java; NetRexx language
design was long complete when JDK 1.2 came out.
ThePre-JavaGeneric classes JFChad, in order to be generic, an interface inwhich objects
could be added in as a java.lang.Object, but on return, that object needed to be typecast
to the right type.Using collection classes did entail a good deal of casting return values, as
type Rexxwas not part of the set of types that collections had native support for.Modern
NetRexx versions3.02 have builtin support for using type Rexx in collection classes12, so
these can be added to and retrieved from collection classes without further ado.
TheNetRexx native Rexx datatype contains a Java Hashtable which is part of the Collec-
tions Framework.New classes, constructors andmethods have been added to implement
the JavaMap interface and allow better interoperation with Java. Some of the new collec-
tions supportmethods include isindexed() to check if aMap currently exists, size() to
determine the count of map entries and buildmap(sequence1,sequence2) to construct
Rexx maps from arrays or Java Lists. Other classes and methods are documented in the

12In actuality, the needed interfaces, like Comparable and Comparator are now provided in the Rexx type

38

Java CollectionsMap interface Javadocs. ”isindexed()” returns 0 if no indexed values ex-
ist and 1 if there is at least one indexed value in a Rexx object. To build a new indexed
Rexxmapwith the buildmapmethod you can do this: Rexx(default).buildMap(keys,
values) where keys and values are any arrays or Java collections framework Lists and
default is the default value for the Rexx variable (using the standard Rexx constructors).
All elements are converted to strings before being added to the indexed Rexx variable
which is returned. Null can be passed for one of the keys or values parameters to default
to a 1-n integer sequence matching the other parameter but if both parameters are pro-
vided they must have the same length. Note that arrays do not need to be string arrays
and that primitive arrays such as int[] are also accepted.

Collection is a Java generic. Any collection can be written to store any class. For ex-
ample, Collection<String> can hold strings, and the elements from the collection can
be used as strings without any casting required. NetRexx 3.02 added loop over sup-
port in NetRexx programs for collection classes; this has been implemented without
the need for Java generics. This makes it impossible to use the generics mechanism to
constrain collection class membership to a specified type. This, however, can be easier
accomplished by subclassing the collection class and overriding its constructors.

39

13

Input and Output

A conscious design decision was to leave I/O operations out of the language, and to
wholly depend on the JVM functionality for this. This turned out to be a good decision,
as JVM I/O has been enhanced and changed over the years; also, the various environ-
ments in which NetRexx can be used as a programming language, are not limited to file
I/O, but have various implementations to interact with the outside world. A NetRexx
program that employs Flash technology has different method calls to make than a pro-
gram that uses ISPF for user interaction.
This does not preclude us to implement file I/O in a way that is reminiscent of Classic
Rexx, and in fact this has been done, and the futuremight see some standarization in this
respect. The contrib part of the NetRexx source code repository has various examples of
how this is done. In the remaining part, however, we are discussing how to use standard
JVM libraries to accomplish I/O.

13.1 The File Class

13.2 Streams

13.3 Line mode I/O

13.3.1 Line mode I/O using BufferedReader and PrintWriter

13.3.2 Line mode I/O using BufferedReader and FileOutputStream

Listing 13.1: Buffered I?O
1 /* linecomment.nrx -- convert appropriate block comments to line comments */
2

3 /* This is a sample file input and output program, showing how to open,
4 check, and process text files, and handle exceptions.
5 Note the use of the Reader and Writer classes, which convert your
6 local computer's 'code page' (character encoding) to Unicode during
7 reading and back again during writing. */
8

9 parse arg fin fout . -- get the arguments: input and output files
10 if fout='' then do
11 say '# Please specify both input and output files'
12 exit 1
13 end
14

15 /* Open and check the files */
16 do
17 infile=File(fin)
18 instream=FileInputStream(infile)

41

19 inhandle=BufferedReader(InputStreamReader(instream))
20 outfile=File(fout)
21 if outfile.getAbsolutePath=infile.getAbsolutePath then do
22 say '# Input file cannot be used as the output file'
23 exit 1
24 end
25 outstream=FileOutputStream(outfile)
26 outhandle=OutputStreamWriter(outstream)
27 say 'Processing' infile'...'
28 catch e=IOException
29 say '# error opening file' e.getMessage
30 end
31

32 linesep=System.getProperty('line.separator') -- be platform-neutral
33

34 /* The main processing loop */
35 loop linenum=1 by 1
36 line=Rexx inhandle.readLine -- get next line [as Rexx string]
37 if line=null then leave linenum -- normal end of file
38

39 parse line pre '/*' mid '*/' post -- process the line
40 if pre\='' then
41 if mid\='' then
42 if post=='' then
43 line=pre'--'mid
44

45 if linenum>1 then outhandle.write(linesep, 0, linesep.length)
46 outhandle.write(line, 0, line.length)
47 catch e=IOException
48 say '# error reading or writing file' e.getMessage
49 catch RuntimeException
50 say '# processing ended'
51 finally do -- close files
52 if inhandle\=null then inhandle.close
53 if outhandle\=null then outhandle.close
54 catch IOException
55 -- ignore errors during close
56 end
57 end linenum
58

59 say linenum-1 'lines written'

13.4 Byte Oriented I/O

13.5 Data Oriented I/O

13.6 Object Oriented I/O using Serialization

13.7 The NIO Approach

42

14

Algorithms in NetRexx

14.1 Factorial

A factorial is the product of an integer and all the integers below it; the mathemati-
cal symbol used is ! (the exclamation mark). For example 4! is equal to 24 (because
4*3*2*1=24). The following program illustrates a recursive (a method calling itself) and
an iterative approach to calculating factorials.

Listing 14.1: Factorial
1 /* NetRexx */
2

3 options replace format comments java symbols nobinary
4

5 numeric digits 64 -- switch to exponential format when numbers become larger than 64
digits

6

7 say 'Input a number: \-'
8 say
9 do

10 n_ = long ask -- Gets the number, must be an integer
11

12 say n_'! =' factorial(n_) '(using iteration)'
13 say n_'! =' factorial(n_, 'r') '(using recursion)'
14

15 catch ex = Exception
16 ex.printStackTrace
17 end
18
19 return
20

21 method factorial(n_ = long, fmethod = 'I') public static returns Rexx signals
IllegalArgumentException

22

23 if n_ < 0 then -
24 signal IllegalArgumentException('Sorry, but' n_ 'is not a positive integer')
25

26 select
27 when fmethod.upper = 'R' then -
28 fact = factorialRecursive(n_)
29 otherwise -
30 fact = factorialIterative(n_)
31 end
32

33 return fact
34

35 method factorialIterative(n_ = long) private static returns Rexx
36

37 fact = 1
38 loop i_ = 1 to n_
39 fact = fact * i_
40 end i_
41

42 return fact
43

44 method factorialRecursive(n_ = long) private static returns Rexx
45

43

46 if n_ > 1 then -
47 fact = n_ * factorialRecursive(n_ - 1)
48 else -
49 fact = 1
50

51 return fact

Executing this program yields the following result:

===== Exec: RCFactorial =====
Input a number:
42
42! = 1405006117752879898543142606244511569936384000000000 (using iteration)
42! = 1405006117752879898543142606244511569936384000000000 (using recursion)

As you can see, fortunately, both approaches come to the same conclusion about the
results. In the above program, both approaches are a bit intermingled; for more clarity
about how to use recursion, have a look at this:

Listing 14.2: Factorial Recursive
1 class Factorial
2 numeric digits 64
3

4 method main(args=String[]) static
5 say factorial_(42)
6

7 method factorial_(number) static
8 if number = 0 then return 1
9 else return number * factorial_(number-1)

In this program we can clearly see that the factorial_ method, that takes an argument
number (which is of type Rexx if we do not specify it to be another type), calls itself in
themethod body.Thismeans that at runtime, another copy of it is run, with as argument
number that the first invocation returns (the result of 42*41), and so on.
In general, a recursive algorithm is considered more elegant, while an iterative approach
has a better runtime performance. Some language environments are optimized for re-
cursion, which means that their processors can spot a recursive algorithm and optimize
it by not making many useless copies of the code. Some day in the near future the JVM
will be such an environment. Also, for some problems, for example the processing of
tree structures, using a recursive algorithm seems much more natural, while an iterative
algorithm seems complicated or forced.

14.2 Fibonacci

Listing 14.3: Fibonacci
1 /* NetRexx */
2 options replace format comments java symbols
3

4 numeric digits 210000 /*prepare for some big ones. */
5 parse arg x y . /*allow a single number or range.*/
6 if x == '' then do /*no input? Then assume -30-->+30*/
7 x = -30
8 y = -x
9 end

10

11 if y == '' then y = x /*if only one number, show fib(n)*/

44

12 loop k = x to y /*process each Fibonacci request.*/
13 q = fib(k)
14 w = q.length /*if wider than 25 bytes, tell it*/
15 say 'Fibonacci' k"="q
16 if w > 25 then say 'Fibonacci' k "has a length of" w
17 end k
18 exit
19

20 /*-------------------------------------FIB subroutine (non-recursive)---*/
21 method fib(arg) private static
22 parse arg n
23 na = n.abs
24

25 if na < 2 then return na /*handle special cases. */
26 a = 0
27 b = 1
28

29 loop j = 2 to na
30 s = a + b
31 a = b
32 b = s
33 end j
34

35 if n > 0 | na // 2 == 1 then return s /*if positive or odd negative... */
36 else return -s /*return a negative Fib number. */

45

15

Using Parse

The Parse statement is one of the stalwarts of the Rexx family of languages, and allows
one to easily split a string into parts without needing to resort to more traditional tech-
niques of string processing.
The syntax of a parse statement is

parse term template

where term is a string or a previously initialised variable.The template is a list of instruc-
tions describing how to split the string.

15.1 Literal Parsing

Themost commonuse of parse is to split a string up into parts separatedwith a delimiter
- whilst the most common delimiter is a simple space any string may be used:-

Listing 15.1: Simple Parse Example
1 log = "2014/05/15 21:35:47.012 - error in {{[findit]}}"
2 parse log year "/" month "/" day hour ":" minute ":" second "." msecond "-" text
3 say "On day" day "of month" month "at about" hour":"minute "we got" text
4 parse text "{{[" name "]}}"
5 say name

Here log is composed of a datestamp separated from a message by a hyphen. The dates-
tamp is composed of a date separated from a time by a space - within the date the year
month and day are delimited by a slash and within the date the hour, minute and second
fields by a colon. The millisecond field is separated from the seconds by a decimal point.
The first parse divides these using the relevant delimiter - where there is no delimiter
then a space is used.
The term is the variable log and the template is

year ”/” month ”/” day hour ”:” minute ”:” second ”.” msecond ”-” text

This first template may be read as the following sequence of actions

1. Assign the contents of log to the variable year until a / is encountered (2014)
2. Following the / assign month with the sting found up until another / (05)
3. Place the contents following the / until a space into the variable day (15)
4. Following the space, assign the value found up until the : into the hour variable

(21)
5. Repeat for the variable minute (35)

47

6. Assign the second value up until the .
7. Take the value for msecond until a delimiter of - is seen
8. Assign the remainder to variable text

The second parse statement shows how the delimiters can be more complex - the
template is

”{{[” name ”]}}”

and extracts the value between {{[and]}} to the variable (name)
Running the above example will produce the following output:-

At about 21:35 we got error in {{[findit]}}
findit

As another example, consider

Listing 15.2: Parse Word-Split Example
1 quote = "Now is the winter of our discontent"
2 loop forever
3 parse quote word quote
4 say word
5 if quote = "" then leave
6 end

This will take the first word from quote, and assign the remainder back into quote, print
the word taken and repeat until the variable quote is the empty string. The output from
this will be

Now
is
the
winter
of
our
discontent

15.1.1 The Placeholder (dummy) Variable

Thefirst example assigns values to several variables that are not used - this is unnecessary
and can be avoided by the use of a placeholder variable which is the . character.
If this is done, the first parse statement becomes

parse log . ”/” month ”/” day hour ”:” minute ”:” . ”.” . ”-” text

The output will remain the same.

15.2 Positional Parsing

Whilst the majority of parsing can be done using a fixed literal delimiter, the parse in-
struction also allows parsing based on positional patterns. This is achieved with the use

48

of numerical values in the template - the values may also take a prefix of +, - or =

no prefix or = indicates that the number is an absolute column value in the string be-
ing parsed

+ indicates a relative position that starts from the specified position after the position
where the last match occurred

- indicates a relative position that starts from the specified position before the lastmatch

These points are best illustrated by example

Listing 15.3: Positional Parsing
1 quote = "Now is the winter of our discontent"
2 tens = " 11111111112222222222333333"
3 units = "12345678901234567890123456789012345"
4
5 say quote
6 say tens
7 say units
8
9 parse quote 10 str1 20 -8 str2 +6 str3

10 -- str1 starts at column 10 and is 10 chars long
11 say str1 "("str1.length")"
12 -- str2 steps back 8 chars and is 6 chars long
13 say str2 "("str2.length")"
14 -- str3 is the remainder of the string (as should be expected)
15 say str3

Running this gives the following

Now is the winter of our discontent
11111111112222222222333333

12345678901234567890123456789012345
e winter o (10)
winter (6)
of our discontent

Both literal and positional parsing can be combined. Keen-eyed readers will have
noted that the output from the first example contained an extra space before the word
error

At about 21:35 we got error in {{[findit]}}
Extra space here ^^

This is the result of assigning the remainder of the string to the variable text - leading
blanks are normally removed except in this special case.
One can use a positional pattern to eliminate this extra space:-

Listing 15.4: Combined Parsing
1 log = "2014/05/15 21:35:47.012 - error in {{[findit]}}"
2 parse log . "/" month "/" day hour ":" minute ":" . "." . "-" +2 text
3 say "On day" day "of month" month "at about" hour":"minute "we got" text
4 parse text "{{[" name "]}}"
5 say name

Note that the relative positional pattern used here is +2 - 0 is the position of the last
match which is the hyphen, +1 is the position of the following space and thus +2 is the
start of the target string.

49

15.3 Variable Templates

Variables may be used as the pattern in the templates in order to accommodate the
occasions when the pattern may need to be specified at runtime. An illustration of this
is the following evolution of the first example that will correctly parse dates specified in
two distinct ways

Listing 15.5: Variables in Patterns
1 log = ""
2 log[1] = "2014/05/15 21:35:47.012 - error in {{[findit]}}"
3 log[2] = "2014-05-15 21:35:47.012 - error in {{[findit]}}"
4

5 loop i = 1 to 2
6 dtsep = log[i].substr(5,1)
7 parse log[i] . (dtsep) month (dtsep) day hour ":" minute ":" . "." . "-" +2 text
8 say "On day" day "of month" month "at about" hour":"minute "we got" text
9 end

Note that he date separator dtsep is determined and then used in the parse pattern by
enclosing it in parentheses, thus (dtsep). The output of this program is

On day 15 of month 05 at about 21:35 we got error in {{[findit]}}
On day 15 of month 05 at about 21:35 we got error in {{[findit]}}

It can be seen that the date was successfully parsed in both cases.
It is important to note that any pattern specified by a variablewill be assumed to be literal
unless it has a +, - or = prefix. Should one wish to use positional patterns then the prefix
must be used.

Listing 15.6: Variables in Positional Patterns
1 message = "this is a message that contains the number 10- just there, see?"
2 pat = "10"
3 parse message part1 5 (pat) part2
4 say "literal:" part1 part2
5 parse message part1 5 =(pat) part2
6 say "positional:" part1 part2

When run this illustrates the difference between the two parse statements

literal: this - just there, see?
positional: this message that contains the number 10- just there, see?

50

16

Using Trace

The trace command is the inbuilt debugging facility of the Rexx family, and, asmight be
expected from its name, allows one to trace the execution of your program. It is possible
to trace both program statements and the state of variables within your code.
(Trace) is a compile-time option, and should be disabled once debugging as been com-
pleted.
The syntax of the trace command is

trace traceitem

where traceitem defines the behaviour of the trace command. Only one traceitem
may be given, and only one of the program statement tracing options will be in use at
any time. Variable tracing options, however, are additive and such statementsmay appear
multiple times.
All trace output is headed by three hyphens followed by the source file name, as follows

--- TerribleExample.nrx

16.1 Tracing Program Statements

The traceoptions that affect the tracing of program statements are

all will display all statements as they are executed. Each line in the trace output will be
prefixed with *=* or a *-* should output span subsequent lines.
The trace all statement can be placed anywhere in the program source.

methods will show the each method as it is invoked, along with any parameters to it.
The trace output for method traces is prefixed by a *=* for the method call itself
and a >a> indicating the assignment of a value to a method parameter. No other
program statements will be traced.
The trace methods statement should be placed before the first method is defined
in a class.

results acts as though the trace all statement had been given, and, if placed before any
method will also act as though trace methods was also specified.
In addition to the all and methods tracing implied by results the following will
also take place
Properties will have their assignments shown. These will be identified by >p>
Local variables will also be traced, with assignments identified by >v>
Expressions will have their evaluations shown if not shown for as a part of properties

or local variable trace output. Such evaluations are indicated by »>

51

off trace off disables tracing. No further tracing output will take place.

16.2 Tracing Variables

The all-or-nothing tracing offered by, for instance trace results can lead to a deluge
of trace information in many cases.
In these instances one may more finely control which variables one wishes to monitor
using the trace var statement. The syntax of the trace var statement is

trace var var1 [var2...]

or

trace var -var1 [-var2...]

where the first form adds variables to the list that should be watched, and the second
removes them. The forms may be mixed to add some variables and remove others si-
multaneously, as here:-

trace var var1 -var2 var3 -var4 -var5

to monitor var1 and var3 and remove var2, var5 and var5 from the list of watched
variables.
Multiple trace var statements may be used, as mentioned above.
It is not an error to specify a variable name that does not exist.
Each variable can appear only once in a trace statement.
A variable name may that of any type - including arrays (without the []).
Program tracing options never alter the list of watched variables. If tracing has previ-
ously been turned off then variable tracing may be resumed simply with a trace var
statement.

16.3 Examples

16.3.1 Program Trace

Trace All

Running the program below

Listing 16.1: Trace Example 1
1 trace all
2

3 class traceExample
4

5 properties
6 aIs
7 bIs
8

9 method traceExample(a, b)
10 aIs = a

52

11 bIs = b
12

13 method times
14 retturn aIs * bIs
15

16 method main($cmdin1=String[]) static
17 arg=Rexx($cmdin1)
18 te = traceExample(2, 3)
19 fred = te.times
20 say fred

gives trace output of

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c”
17 *=* arg=Rexx($cmdin1)
18 *=* te = traceExample(2, 3)
9 *=* method traceExample(a, b)
>a> a ”2”
>a> b ”3”

10 *=* aIs = a
11 *=* bIs = b
12 *-*
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs
20 *=* say fred

This output may be read thus

— traceExample.nrx Identification of the programbeing traced.This is the tracing
context.

16 *=* method main($cmdin1=String[) static] The first line that is actually executed
is line 16.

>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c” Variable $cmdin1 is assigned a string
value from the java virtual machine.

17 *=* arg=Rexx($cmdin1) Line 17 is executed next...
18 *=* te = traceExample(2, 3) followed by line 18
9 *=* method traceExample(a, b) Line 18 is a method call to a method on line 9...

>a> a ”2” which assigns a value of 2 to parameter a
>a> b ”3” and a value of 3 to parameter b

10 *=* aIs = a the following lines document only code execution
11 *=* bIs = b
12 *-*
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs
20 *=* say fred

53

Trace Methods

Replacing the trace all from line 1 with trace results gives trace output of

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@8094cc7”
9 *=* method traceExample(a, b)
>a> a ”2”
>a> b ”3”

13 *=* method times

As should be expected, this is a subset of the output provided when using trace all.

Trace Results

Replacing the trace all from line 1 with trace results would give

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c”
17 *=* arg=Rexx($cmdin1)

>>> ”[Ljava.lang.String;@72ebbf5c”
>v> arg ””

18 *=* te = traceExample(2, 3)
>>> ”2”
>>> ”3”

9 *=* method traceExample(a, b)
>a> a ”2”
>a> b ”3”

10 *=* aIs = a
>p> aIs ”2”

11 *=* bIs = b
12 *-*
11 >p> bIs ”3”
18 >v> te ”traceExample@53606bf5”
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs

>>> ”6”
19 >v> fred ”6”
20 *=* say fred

>>> ”6”

Here is can be seen that more information is available. Noticeably, the values of assign-
ments are given. For instance

Line 17 now has an entry of >v> arg ”” showing that hte value of the variable arg was
set to the empty string

54

Line 18 now has the values of the specified parameters evaluated (>>> ”2” and >>» ”3”)
Lines 10 and 11 show that valueswere assigned to parameters (>p> aIs ”2” and>p> bIs ”3”)
Line 18 then shows the assignment of the instantiated class to variable te
Line 14 shows the evaluation of the multiplication (>>> ”6”), which is assigned to vari-

able fred in line 19 (>v> fred ”6”) on line 19.
Finally we see the evaluation of variable fred on line 20.

16.3.2 Variable Tracing

Consider the following example:-

Listing 16.2: Trace Example 2
1 a = "a"
2 b = "b"
3 c = 1
4 d = 2
5 e = 3
6

7 trace var a b c d e f y
8 z = a || b
9 y = c + d

10 f = y + 2
11 e = f
12

13 trace var -a -c -d -e
14 y = y * 2
15 a = y
16 e = a

Running this will produce the output below

--- variableTraceExample.nrx
9 *=* y = c + d
>v> y ”3”

10 *=* f = y + 2
>v> f ”5”

11 *=* e = f
>v> e ”5”

14 *=* y = y * 2
>v> y ”6”

It can be seen that only the lines that contain watched variables are traced. This the vari-
able assignments on lines 9, 10 and 11 are displayed, since the variables being watched
from line 7 to line 12 are a, b, c, d, e, f and y.
Following this, however only the assignment to variable y is shown, since the variables a,
b ,c d and e are removed from the list with the command trace var -a -c -d -e.

16.4 Tracing Notes

One further prefix may be encountered in the trace outout +++ which signifies an error.
Whenever tracing transfers to a different source file, a new tracing context, identified
by the — prefix is output.

55

Tracing is expensive, andmay dramatically impact the run-time performance of the pro-
gram being traced. Judicious use may therefore be warranted.

56

17

Concurrency

17.1 Threads

Threads are a built-in multitasking feature of the JVM. Where earlier JVM implemen-
tations sometime ran on so-called Green Threads, which is a library that implements
thread support for OS’ses that do not have this facility (an early version of Java was called
GreenTalk for this reason), modern versions all use native OS thread support.
A new thread is created when we create an instance of the Thread class. We cannot tell a
thread which method to run, because threads are not references to methods. Instead we
use the Runnable interface to create an object that contains the run method:
Every thread begins its concurrent life by executing the run method. The run method
does not have any parameters, does not return a value, and is not allowed to signal any
exceptions. Any class that implements the Runnable interface can serve as a target of
a new thread. An object of a class that implements the Runnable interface is used as a
parameter for the thread constructor.
Threads can be given a name that is visible when listing the threads in your system. It is
good practice to name every thread, because if something goes wrong you can see which
threads are still running. Additionally, threads are grouped by thread groups. If you do
not supply a thread group, the new thread is added to the thread group of the currently
executing thread. The threads of a group and their subgroups can be destroyed, stopped,
resumed, or suspended by using the ThreadGroup object.
The next two samples are used in the following programs that illustrate thread usage.

Listing 17.1: Thread sample 1
1 /* thread/ThrdTst1.nrx */
2

3 h1 = Hello1('This is thread 1')
4 h2 = Hello1('This is thread 2')
5

6 Thread(h1,'Thread Test Thread 1').start()
7 Thread(h2,'Thread Test Thread 2').start()
8

9 class Hello1 implements Runnable
10 Properties inheritable
11 message = String
12

13 method Hello1(s = String)
14 message = s
15

16 method run()
17 loop for 50
18 say message
19 end

57

Listing 17.2: Thread sample 2
1 /* thread/ThrdTst2.nrx */
2

3 h1 = Hello2('This is thread 1')
4 h2 = Hello2('This is thread 2')
5

6 h1.start()
7 h2.start()
8

9 class Hello2 extends Thread
10 Properties inheritable
11 message = String
12

13 method Hello2(s = String)
14 super('Thread Test - Message' s)
15 message = s
16

17 method run()
18 loop for 50
19 say message
20 do
21 sleep(10)
22 catch InterruptedException
23 end
24 end

Thesecond class, Hello2, does not implement the Runnable interface, but subclasses it, so
it inherits its methods.This is a valid approach, and it is up to the developer to choose an
implementation andworry about the semantics of an inherited thread interface. A newly
created thread remains idle until the start method is invoked. The thread then wakes up
and executes the run method of its target object. The start method can be called only
once. The thread continues running until the run method completes or the stop method
of the thread is called.

58

18

User Interfaces

18.1 AWT

18.2 Web Applets using AWT

Web applets can be written one of two styles:
. Lean and mean, where binary arithmetic is used, and only core Java classes (such

as java.lang.String) are used. This is recommended for optimizing webpages which
may be accessed by people using a slow internet connection. Several examples using
this style are included in the NetRexx package like the two listed below.

Listing 18.1: Nervous Texxt
1 /* NervousText applet in NetRexx: Test of text animation.
2 Algorithms, names, etc. are directly from the Java version by
3 Daniel Wyszynski and kwalrath, 1995
4 */
5 options binary
6

7 class NervousTexxt extends Applet implements Runnable
8

9 separated = char[]
10 s = String
11 killme = Thread
12 threadSuspended = boolean 0
13

14 method init
15 resize(300,50)
16 setFont(Font("TimesRoman", Font.BOLD, 30))
17 s = getParameter("text")
18 if s = null then s = "NetRexx"
19

20 separated = char[s.length]
21 s.getChars(0, s.length, separated,0)
22

23 method start
24 if killme \= null then return
25 killme = Thread(this)
26 killme.start
27

28 method stop
29 killme = null
30

31 method run
32 loop while killme \= null
33 Thread.sleep(100)
34 this.repaint
35 catch InterruptedException
36 end
37 killme = null
38

39 method paint(g=Graphics)
40 loop i=0 to s.length-1

59

41 x_coord = int Math.random*10+15*i
42 y_coord = int Math.random*10+36
43 g.drawChars(separated, i, 1, x_coord, y_coord)
44 end
45

46 method mouseDown(evt=Event, x=int, y=int) returns boolean
47 if threadSuspended then killme.resume
48 else killme.suspend
49 threadSuspended = \threadSuspended
50 return 1

Listing 18.2: ArchText
1 /* ArchText applet: multi-coloured text on a white background */
2 /* Mike Cowlishaw April 1996, December 1996 */
3 options binary
4

5 class ArchText extends Applet implements Runnable
6

7 text ="NetRexx" /* default text */
8 tick =0 /* display counter */
9 timer =Thread null /* timer thread */

10 shadow=Image /* shadow image */
11 draw =Graphics /* where we can draw */
12

13 method init
14 s=getParameter("text") /* get any provided text */
15 if s\=null then text=s
16 shadow=createImage(getSize.width, getSize.height) /* image */
17 draw=shadow.getGraphics
18 draw.setColor(Color.white) /* background */
19 draw.fillRect(0, 0, getSize.width, getSize.height) /* .. */
20 draw.setFont(Font("TimesRoman", Font.BOLD, 30)) /* font */
21

22 method start
23 if timer=null then timer=Thread(this) /* new thread */
24 timer.setPriority(Thread.MAX_PRIORITY) /* time matters */
25 timer.start /* start the thread */
26

27 method stop
28 if timer=null then return /* have no thread */
29 timer.stop /* else stop it */
30 timer=null /* .. and discard */
31

32 method run /* this runs as thread */
33 loop while timer\=null
34 tick=tick+1 /* next update */
35 hue=((tick+133)//191)/191
36 draw.setColor(Color.getHSBColor(hue, 1, 0.7))
37 draw.drawString(text, 0, 30)
38 this.repaint /* .. and redraw */
39 Thread.sleep(119) /* wait awhile */
40 catch InterruptedException
41 end
42 timer=null /* discard */
43

44 method update(g=Graphics) /* override Applet's update */
45 paint(g) /* method to avoid flicker */
46

47 method paint(g=Graphics)
48 g.drawImage(shadow, 0, 0, null)

. Full-function, where decimal arithmetic is used, and advantage is taken of the full
power of the NetRexx runtime Rexx class.
An example using this style is the below WordClock.nrx.

Listing 18.3: WordClock
1 /* WordClock -- an applet that shows the time in English. */
2 /* */

60

3 /* Parameters: */
4 /* */
5 /* face -- the font face to use */
6 /* size -- the font size to use */
7 /* */
8 /* -- */
9 /* Based on the ancient QTIME.REXX, and typical Java applets. */

10

11 class WordClock extends Applet implements Runnable
12

13 timer=Thread null /* the timer thread */
14 offsetx; offsety /* text position */
15 now /* current time */
16

17 method init
18 /* Get parameters from the <applet> markup */
19 face=getParameter("face") /* font face */
20 if face=null then face="TimesRoman"
21 size=getParameter("size")
22 if size=null then size="20" /* font size */
23

24 setFont(Font(face, Font.BOLD, size))
25 resize(size*20, size*2) /* set window size */
26 offsetx=size/2 /* and where text will start */
27 offsety=size*3/2 /* note Y is from top */
28 parse Date() . . . now . /* initial time is fourth word */
29

30 method start
31 if timer=null then timer=Thread(this) /* new thread */
32 timer.setPriority(Thread.MAX_PRIORITY) /* time matters */
33 timer.start /* start the thread */
34

35 method stop
36 if timer\=null then do /* have thread */
37 timer.stop /* .. so stop it */
38 timer=null /* .. and discard */
39 end
40

41 method run
42 /* Use the Java Date class to get the time */
43 loop while timer\=null
44 parse Date() . . . now . /* time is fourth word */
45 this.repaint /* redisplay */
46 parse now ':' ':'secs /* where in minute */
47 wait=30-secs /* calculate delay in seconds */
48 if wait<=0 then wait=wait+60
49 /* say 'secs, wait:' secs wait */
50 Thread.sleep(1000*wait) /* wait for milliseconds */
51 catch InterruptedException
52 say 'Interrupted...'
53 end
54 timer=null /* done */
55

56 method paint(g=Graphics)
57 g.drawString(wordtime(now), offsetx, offsety) /* show it */
58

59 /* WORDTIME -- a cut-down version of QTIME.REXX
60 Arg1 is the time string (hh:mm:ss)
61 Returns the time in english, as a Rexx string
62 */
63 method wordtime(arg) static returns Rexx
64 /* Extract the hours, minutes, and seconds from the time. */
65 parse arg hour':'min':'sec
66 if sec>29 then min=min+1 /* round up minutes */
67

68 /* Nearness phrases - this time using an array */
69 near=Rexx[5] /* five items */
70 near[0]='' /* exact */
71 near[1]=' just gone'; near[2]=' just after' /* after */
72 near[3]=' nearly'; near[4]=' almost' /* before */
73

74 mod=min//5 /* where we are in 5 minute bracket */
75 out="It's"near[mod] /* start building the result */

61

76 if min>32 then hour=hour+1 /* we are TO the hour... */
77 min=min+2 /* shift minutes to straddle a 5-minute point */
78

79 /* Now special-case the result for Noon and Midnight hours */
80 if hour//12=0 & min//60<=4 then do
81 if hour=12 then return out 'Noon.'
82 return 'Midnight.'
83 end
84

85 min=min-(min//5) /* find nearest 5 mins */
86 if hour>12
87 then hour=hour-12 /* get rid of 24-hour clock */
88 else
89 if hour=0 then hour=12 /* .. and allow for midnight */
90

91 /* Determine the phrase to use for each 5-minute segment */
92 select
93 when min=0 then nop /* add "o'clock" later */
94 when min=60 then min=0 /* ditto */
95 when min= 5 then out=out 'five past'
96 when min=10 then out=out 'ten past'
97 when min=15 then out=out 'a quarter past'
98 when min=20 then out=out 'twenty past'
99 when min=25 then out=out 'twenty-five past'

100 when min=30 then out=out 'half past'
101 when min=35 then out=out 'twenty-five to'
102 when min=40 then out=out 'twenty to'
103 when min=45 then out=out 'a quarter to'
104 when min=50 then out=out 'ten to'
105 when min=55 then out=out 'five to'
106 end
107

108 numbers='one two three four five six'- /* continuation */
109 'seven eight nine ten eleven twelve '
110 out=out numbers.word(hour) /* add the hour number */
111 if min=0 then out=out "o'clock" /* .. and o'clock if exact */
112

113 return out'.' /* return the final result */
114

115 /* Mike Cowlishaw, December 1979 - January 1985. */
116 /* NetRexx version March 1996; applet April 1996. */

If you write applets which use the NetRexx runtime (or any other Java classes that might
not be on the client browser), the rest of this section may help in setting up your Web
server.
A good way of setting up an HTTP (Web) server for this is to keep all your applets in
one subdirectory. You can then make the NetRexx runtime classes (that is, the classes
in the package known to the Java Virtual Machine as netrexx.lang) available to all the
applets by unzipping NetRexxR.jar into a subdirectory netrexx/lang below your applets
directory.
For example, if the root of your server data tree is

D:\mydata

you might put your applets into

D:\mydata\applets

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the directory

D:\mydata\applets\netrexx\lang

The same principle is applied if you have any other non-core Java packages that you want
tomake available to your applets: the classes in a package called iris.sort.quicksortswould

62

go in a subdirectory below applets called iris/sort/quicksorts, for example.
Note that since Java 1.1 or later it is possible to use the classes direct from the Net-
RexxR.jar file.

18.3 Swing

Swing is themost commonly used name for the second attempt from the SUN engineers
to provide a graphical user interface library for the JVM. With AWT also acknowledged
by SUN to be a quick attempt that was made just before release of the first Java package,
it became clear that it was rather taxing on system resources without compensation by a
pretty look. A case in point is the event mechanism, that indiscriminately sends around
mouse and keyboard events even when nobody is listening to them. The architecture for
Swing prescribes registering for events before they are produced, and tries to have the
drawing done by the Java graphics engine instead of leaning heavily on the operating
system’s native GUI functionality. The user interface widgets that are produced by Java
are called ’light’ and their looks can be changed by applying different skins, called ’look-
and-feel’ (LAF) libraries.
In the firstmonths of its existence Swing gathered quite a bad reputation because it made
the Java 1.2 releases that contained it very slow in starting up programs that used the li-
brary. Consequently, much was invested in performance studies by SUN engineers and
these problems were solved. One of the things that came out is that dividing the libraries
in a great many classes, done for performance reasons, worked counterproductive. All
these problems were solved over the years, and developments in hardware and multi-
threading took care of the rest, and nowadays Swing is a valid way of producing a rich
client user interface.
For esthetical reasons, it is best to research a bit in the third party look-and-feel libraries
that can be obtained. Swing can be made to look beautiful, but it takes some care and
the defaults are not helping.

18.3.1 Creating NetRexx Swing interfaces with NetBeans

18.4 Web Frameworks

18.4.1 JSF

63

19

Network Programming

19.1 Using Uniform Resource Locators (URL)

19.2 TCP/IP Socket I/O

19.3 RMI: Remote Method Interface

65

20

Database Connectivity with JDBC

For interfacing with Relational DatabaseManagement Systems (RDBMS)NetRexx uses
the Java Data Base Connectivity (JDBC) model. This means that all important database
systems, for which a JDBC driver has been made available, can be used from your
NetRexx program. This is a large bonus when we compare this to the other open source
scripting languages, that have been made go by with specific, nonstandard solutions
and special drivers. In contrast, NetRexx programs can be made compatible with most
database systems that use standard SQL, and, with some planning and care, can switch
database implementations at will.

Listing 20.1: A JDBC Query example
1 /* jdbc\JdbcQry.nrx
2

3 This NetRexx program demonstrate DB2 query using the JDBC API.
4 Usage: Java JdbcQry [<DB-URL>] [<userprefix>] */
5

6 import java.sql.
7

8 parse arg url prefix -- process arguments
9 if url = '' then

10 url = 'jdbc:db2:sample'
11 else do -- check for correct URL
12 parse url p1 ':' p2 ':' rest
13 if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do
14 say 'Usage: java JdbcQry [<DB-URL>] [<userprefix>]'
15 exit 8
16 end
17 end
18 if prefix = '' then prefix = 'userid'
19

20 do -- loading DB2 support
21 say 'Loading DB2 driver classes...'
22 Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
23 -- Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()
24 catch e1 = Exception
25 say 'The DB2 driver classes could not be found and loaded !'
26 say 'Exception (' e1 ') caught : \n' e1.getMessage()
27 exit 1
28 end -- end : loading DB2 support
29

30 do -- connecting to DB2 host
31 say 'Connecting to:' url
32 jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password')
33 catch e2 = SQLException
34 say 'SQLException(s) caught while connecting !'
35 loop while (e2 \= null)
36 say 'SQLState:' e2.getSQLState()
37 say 'Message: ' e2.getMessage()
38 say 'Vendor: ' e2.getErrorCode()
39 say
40 e2 = e2.getNextException()
41 end
42 exit 1
43 end -- end : connecting to DB2 host
44

67

45 do -- get list of departments with the managers
46 say 'Creating query...'
47 query = 'SELECT deptno, deptname, lastname, firstnme' -
48 'FROM' prefix'.DEPARTMENT dep,' prefix'.EMPLOYEE emp'-
49 'WHERE dep.mgrno=emp.empno ORDER BY dep.deptno'
50 stmt = Statement jdbcCon.createStatement()
51 say 'Executing query:'
52 loop i=0 to (query.length()-1)%75
53 say ' ' query.substr(i*75+1,75)
54 end
55 rs = ResultSet stmt.executeQuery(query)
56 say 'Results:'
57 loop row=0 while rs.next()
58 say rs.getString('deptno') rs.getString('deptname') -
59 'is directed by' rs.getString('lastname') rs.getString('firstnme')
60 end
61 rs.close() -- close the ResultSet
62 stmt.close() -- close the Statement
63 jdbcCon.close() -- close the Connection
64 say 'Retrieved' row 'departments.'
65 catch e3 = SQLException
66 say 'SQLException(s) caught !'
67 loop while (e3 \= null)
68 say 'SQLState:' e3.getSQLState()
69 say 'Message: ' e3.getMessage()
70 say 'Vendor: ' e3.getErrorCode()
71 say
72 e3 = e3.getNextException()
73 end
74 end -- end: get list of departments

The first peculiarity of JDBC is the way the driver class is loaded. When most classes are
’pulled in’ by the translator, a JDBC driver traditionally is loaded through the reflection
API. This happens in line 22 with the Class.forName call. This implies that the library
containing this class must be on the classpath.

In previous versions of JDBC, to obtain a connection, one first had to initialize the JDBC
driver by calling the method Class.forName. Any JDBC 4.0 drivers that are found on the
class path are automatically loaded. (However, onemust manually load any drivers prior
to JDBC 4.0 with the method Class.forName.)

In line 32 of the example we connect to the database using a url and a userid/password
combination. This is an easy way to do and test, but for most serious applications we
do not want plaintext userids and passwords in the sourcecode, so most of the time we
would store the connection info in a file that we store in encrypted form, or we use
facilities of J2EE containers that can provide data sources that take care of this, while
at the same time decoupling your application source from the infrastructure that it will
run on.
In line 47 the query is composed by filling in variables in a Rexx string and making
a Statement out of it, in line 50. In line 55, the Statement is executed, which yields
a ResultSet. This has a cursor that moves forward with each next call. The next call
returns true as longs as there are rows from the resultset to return.
The ResultSet interface implements getter methods for all JDBC Types. In the above
example, all returned results are of type String.

68

Listing 20.2: A JDBC Update example
1 /* jdbc\JdbcUpd.nrx
2

3 This NetRexx program demonstrate DB2 update using the JDBC API.
4 Usage: Java JdbcUpd [<DB-URL>] [<userprefix>] [U] */
5

6 import java.sql.
7

8 parse arg url prefix lowup -- process arguments
9 if url = '' then

10 url = 'jdbc:db2:sample'
11 else do -- check for correct URL
12 parse url p1 ':' p2 ':' rest
13 if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do
14 say 'Usage: java JdbcUpd [<DB-URL>] [<userprefix>] [U]'
15 exit 8
16 end
17 end
18 if prefix = '' then prefix = 'userid'
19 if lowup \= 'U' then lowup = 'L'
20

21 do -- loading DB2 support
22 say 'Loading DB2 driver classes...'
23 Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
24 -- Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()
25 catch e1 = Exception
26 say 'The DB2 driver classes could not be found and loaded !'
27 say 'Exception (' e1 ') caught : \n' e1.getMessage()
28 exit 1
29 end -- end : loading DB2 support
30

31 do -- connecting to DB2 host
32 say 'Connecting to:' url
33 jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password')
34 catch e2 = SQLException
35 say 'SQLException(s) caught while connecting !'
36 loop while (e2 \= null)
37 say 'SQLState:' e2.getSQLState()
38 say 'Message: ' e2.getMessage()
39 say 'Vendor: ' e2.getErrorCode()
40 say
41 e2 = e2.getNextException()
42 end
43 exit 1
44 end -- end : connecting to DB2 host
45

46 do -- retrieve employee, update firstname
47

48 say 'Preparing update...' -- prepare UPDATE
49 updateQ = 'UPDATE' prefix'.EMPLOYEE SET firstnme = ? WHERE empno = ?'
50 updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)
51 say 'Creating query...' -- create SELECT
52 query = 'SELECT firstnme, lastname, empno FROM' prefix'.EMPLOYEE'
53 stmt = Statement jdbcCon.createStatement()
54 rs = ResultSet stmt.executeQuery(query) -- execute select
55

56 loop row=0 while rs.next() -- loop employees
57 firstname = String rs.getString('firstnme')
58 if lowup = 'U' then firstname = firstname.toUpperCase()
59 else do
60 dChar = firstname.charAt(0)
61 firstname = dChar || firstname.substring(1).toLowerCase()
62 end
63 updateStmt.setString(1, firstname) -- parms for update
64 updateStmt.setString(2, rs.getString('empno'))
65 say 'Updating' rs.getString('lastname') firstname ': \0'
66 say updateStmt.executeUpdate() 'row(s) updated' -- execute update
67 end
68

69 rs.close() -- close the ResultSet
70 stmt.close() -- close the Statement
71 updateStmt.close() -- close the PreparedStatement

69

72 jdbcCon.close() -- close the Connection
73 say 'Updated' row 'employees.'
74 catch e3 = SQLException
75 say 'SQLException(s) caught !'
76 loop while (e3 \= null)
77 say 'SQLState:' e3.getSQLState()
78 say 'Message: ' e3.getMessage()
79 say 'Vendor: ' e3.getErrorCode()
80 say
81 e3 = e3.getNextException()
82 end
83 end -- end: empoyees

For database updates, we connect using the driver in the same way (line 23) and
now prepare the statement used for the database update (line 50). In this example,
we loop through the cursor of a select statement and update the row in line 66. The
executeUpdatemethod of PreparedStatement returns the number of updated rows as
an indication of success.
From JDBC 2.0 on, cursors are updateable (and scrollable, so they can move back and
forth), so we would not have to go through this effort - but it is a valid example of an
update statement.

70

21

WebSphere MQ

WebSphere MQ (also and maybe better known as MQ Series) is IBM’s messaging and
queingmiddleware, and is in use at a great many financial institutions and other compa-
nies. It has, fromaprogramming point of view, twoAPI’s: JMS (JavaMessaging Services),
a generic messaging API for the Java world, and MQI, which is older and proprietary to
IBM’s product. The below examples show the MQI; other examples might show JMS
applications.
This is the sample Java application for MQI, translated (and a lot shorter) to NetRexx.

Listing 21.1: MQ Sample
1 import com.ibm.mq.MQException
2 import com.ibm.mq.MQGetMessageOptions
3 import com.ibm.mq.MQMessage
4 import com.ibm.mq.MQPutMessageOptions
5 import com.ibm.mq.MQQueue
6 import com.ibm.mq.MQQueueManager
7 import com.ibm.mq.constants.MQConstants
8

9 class MQSample
10 properties private
11

12 qManager = "rjtestqm";
13 qName = "SYSTEM.DEFAULT.LOCAL.QUEUE"
14

15 method main(args=String[]) static binary
16 m = MQSample()
17 do
18 say "Connecting to queue manager: " m.qManager
19 qMgr = MQQueueManager(m.qManager)
20

21 openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF | MQConstants.MQOO_OUTPUT
22

23 say "Accessing queue: " m.qName
24 queue = qMgr.accessQueue(m.qName, openOptions)
25

26 msg = MQMessage()
27 msg.writeUTF("Hello, World!")
28

29 pmo = MQPutMessageOptions()
30

31 say "Sending a message..."
32 queue.put(msg, pmo)
33

34 rcvMessage = MQMessage()
35

36 gmo = MQGetMessageOptions()
37

38 say "...and getting the message back again"
39 queue.get(rcvMessage, gmo)
40

41 msgText = rcvMessage.readUTF()
42 say "The message is: " msgText
43

44 say "Closing the queue"
45 queue.close()
46

71

47 say "Disconnecting from the Queue Manager"
48 qMgr.disconnect()
49 say "Done!"
50 catch ex=MQException
51 say "A WebSphere MQ Error occured : Completion Code " ex.completionCode "Reason

Code " ex.reasonCode
52 catch ex2=java.io.IOException
53 say "An IOException occured whilst writing to the message buffer: " ex2
54 end

This sample connects to the Queue Manager (called rjtestqm) in bindings mode, as op-
posed to client mode. Bindings mode is only a connection possibility for client programs
that are running in the same OS image as the Queue Manager, on the server. Note that
the application connects (line 19), accesses a queue (line 23), puts a message (line 32),
gets it back (line 39) closes the queue (line 45) and disconnects (line 48) all without
checking returncodes: the exceptionhandler takes care of this, and all irregulaties will be
reported from the catch MQException block starting at line 50).
The main method does in this case not follow the canonical form, but has ’binary’ as
an extra option. Option binary can be defined on the command line as an option to
the translator, as a program option, as a class option and as a method option. Here the
smallest scope is chosen. There is a good reason to make this method a binary method:
accessing a queue in MQ Series requires some options that are set using a mask of bi-
nary flags - this works, in current NetRexx versions, only in binary mode, because the
operators have other semantics in nobinary mode.

Listing 21.2: MQ Message Reader
1 import com.ibm.mq.
2

3 class MessageReader
4 properties private
5

6 qManager = "rjtestqm";
7 qName = "TESTQUEUE1"
8

9 method main(args=String[]) static binary
10

11 m = MessageReader()
12 do
13 MQEnvironment.hostname = 'localhost'
14 MQEnvironment.port = int 1414
15 MQEnvironment.channel = 'CHANNEL1'
16

17 -- exit assignment
18 exits = TimeoutChannelExit()
19 MQEnvironment.channelReceiveExit = exits
20 MQEnvironment.channelSendExit = exits
21 MQEnvironment.channelSecurityExit = exits
22

23 say "Connecting to QM: " m.qManager
24 qMgr = MQQueueManager(m.qManager)
25

26 openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF
27

28 say "Accessing Queue : " m.qName
29 queue = qMgr.accessQueue(m.qName, openOptions)
30

31 gmo = MQGetMessageOptions() -- essential here is that we have MQGMO_WAIT;
otherwise we cannot timeout

32 gmo.Options = MQConstants.MQGMO_WAIT | MQConstants.MQGMO_FAIL_IF_QUIESCING |
MQConstants.MQGMO_SYNCPOINT

33 gmo.WaitInterval = MQConstants.MQWI_UNLIMITED
34

35 loop forever
36 rcvMessage = MQMessage()

72

37 queue.get(rcvMessage, gmo)
38 msgText = rcvMessage.readUTF()
39 say "Got a message; the message is: " msgText
40 say
41 end
42

43 catch ex=MQException
44 say "A WebSphere MQ Error occured : Completion Code " ex.completionCode "Reason

Code " ex.reasonCode
45 say "Closing the queue"
46 queue.close()
47 say "Disconnecting from the Queue Manager"
48 qMgr.disconnect()
49 say "Done!"
50 end

In contrast to the previous sample the MessageReader sample only has one import state-
ment. This is always hotly debated in project teams, one school likes the succinctness of
including only the top level import, and only goes deeper when there is ambiguity de-
tected; another school spells out the all imports to the bitter end.
The MessageReader sample connects to another queue, called TESTQUEUE1 (specified
in line 7) but here we connect in client mode, as indicated by lines 13-15 which specify
an MQEnvironment. Other options are using an MQSERVER environment variable or
a Channel Definition Table.
This program is also uncommon in that it uses MQConstants.MQGMO_WAIT as an option
instead of being triggered as a process by amessage on a trigger queue. Using this option
means that the program waits (stays active, not really busy polling but depending on an
OS event) until a new message arrives, which will be processed immediately.
In lines 18-21 a Channel Exit is specified. This exit is show in the following example.

Listing 21.3: MQ Java Channel Exit
1 import com.ibm.mq.
2 import java.nio.
3

4 class TimeoutChannelExit implements WMQSendExit, WMQReceiveExit, WMQSecurityExit
5

6 properties
7

8 tTask = WatchdogTimer
9 t = java.util.Timer

10 timeout = long
11 initialized = boolean
12

13 method TimeoutChannelExit()
14 say "TimeoutChannelExit Constructor Called"
15 t = java.util.Timer()
16 timeout = long 15000
17

18 method channelReceiveExit(channelExitParms=MQCXP, -
19 channelDefinition=MQCD, -
20 agentBuffer=ByteBuffer) returns ByteBuffer
21 do
22 this.tTask.cancel() -- cancel the timer task whenever a message is read
23 catch NullPointerException -- but catch the null pointer the first time
24 end
25 this.tTask = WatchdogTimer()
26 this.t.schedule(this.tTask,this.timeout)
27 return agentBuffer
28

29 method channelSecurityExit(channelExitParms=MQCXP, -
30 channelDefinition=MQCD, -
31 agentBuffer=ByteBuffer) returns ByteBuffer
32 return agentBuffer

73

33

34 method channelSendExit(channelExitParms=MQCXP, -
35 channelDefinition=MQCD, -
36 agentBuffer=ByteBuffer) returns ByteBuffer
37 return agentBuffer

Listing 21.4: WatchdogTimer
1 class WatchdogTimer extends TimerTask
2

3 method WatchdogTimer()
4 method run()
5 say 'WATCHDOG TIMER TIMEOUT: HPOpenView Alert Issued' Date()

MQ Series has traditional channel exits (programs that can look at the message contents
before the application gets to it). In the MQI Java environment there is something akin
to this functionality, but a Java channel exit for MQ Series has to be defined in the ap-
plication, as shown in the previous example. The function of this particular exit is to
implement aWatchdog timer - on a separate thread, as shown in the sample that follows
the sample channel exit. The timer threatens here to have issues a HP OpenView alert,
but that part has been left out.
This particular sample has been designed to do something that is normally a bit harder
to do: signal the operations department when something does NOT happen - here the
assumption is that there is a payment going over the queue at least once every 20minutes
- when that does not happen, an alert is issued. With every message that goes through,
the timer thread is reset, and only when it is allowed to time out, action is undertaken.

Listing 21.5: Publish/Subscribe
1 import com.ibm.mq.
2

3 class MQPubSubSample
4

5 properties inheritable
6 queueManagerName = String
7 syncPoint = Object()
8 props = Hashtable
9 topicString = String

10 topicObject = String
11 subscribers = Thread[]
12 subscriberCount = int
13

14 properties volatile inheritable
15 readySubscribers = int 0 --must be defined volatile
16

17 method MQPubSubSample()
18 topicString = null
19 topicObject = System.getProperty("com.ibm.mq.pubSubSample.topicObject", "

TESTTOPIC")
20 queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.queueManagerName","

rjtestqm")
21 subscriberCount = Integer.getInteger("com.ibm.mq.pubSubSample.subscriberCount",

100).intValue()
22 this.props = Hashtable()
23 this.props.put("hostname", "127.0.0.1")
24 this.props.put("port", Integer(1414))
25 this.props.put("channel", "SYSTEM.DEF.SVRCONN")
26

27 method main(agr=String[]) static binary
28 sample = MQPubSubSample()
29 sample.launchSubscribers()
30

31 /*
32 * wait until all the subscriber threads have finished the subscription

74

33 */
34 do protect sample.syncPoint
35 loop while sample.readySubscribers < sample.subscriberCount
36 do
37 sample.syncPoint.wait()
38 catch InterruptedException
39 end
40 end -- loop while sample
41 end -- do
42

43 sample.doPublish()
44

45 method launchSubscribers()
46 say "Launching the subscribers"
47 subscribers = Thread[subscriberCount]
48

49 threadNo = int 0
50 loop while threadNo < this.subscribers.length
51 this.subscribers[threadNo] = MQPubSubSample.Subscriber("Subscriber" threadNo)
52 this.subscribers[threadNo].start()
53 threadNo = threadNo + 1
54 end
55

56 method doPublish() signals IOException
57 say "method doPublish started"
58 destinationType = int CMQC.MQOT_TOPIC
59 do
60 queueManager = MQQueueManager(this.queueManagerName, this.props)
61 messageForPut = MQMessage()
62 say "***Publishing ***"
63 messageForPut.writeString("Hello world!")
64 queueManager.put(destinationType, topicObject, messageForPut)
65 catch e=MQException
66 say "Exception while publishing " e
67 end
68

69 class MQPubSubSample.Subscriber binary dependent extends Thread
70

71 properties private
72 myName = String
73 openOptionsForGet = int CMQC.MQSO_CREATE | CMQC.MQSO_FAIL_IF_QUIESCING | CMQC.

MQSO_MANAGED | CMQC.MQSO_NON_DURABLE
74

75 method Subscriber(subscriberName=String)
76 super(subscriberName)
77 myName = subscriberName
78

79 method run()
80 do
81 say myName " - ***Subscribing***"
82 queueManager = MQQueueManager(parent.queueManagerName, parent.props)
83 destinationForGet = queueManager.accessTopic(parent.topicString, parent.

topicObject, CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, openOptionsForGet)
84

85 do protect parent.syncpoint
86 parent.readySubscribers = parent.readySubscribers + 1
87 parent.syncPoint.notify()
88 end
89

90 mgmo = MQGetMessageOptions()
91 mgmo.options = CMQC.MQGMO_WAIT
92 mgmo.waitInterval = 30000
93 say myName " - ***Retrieving***"
94 messageForGet = MQMessage()
95

96 do protect getClass()
97 destinationForGet.get(messageForGet, mgmo)
98 end
99

100 messageDataFromGet = String messageForGet.readLine()
101 say myName " - Got [" messageDataFromGet "]"
102

103 catch e=Exception

75

104 say myName " " e
105 e.printStackTrace()
106 end
107 parent.readySubscribers = parent.readySubscribers - 1

This sample shows the publish-subscribe interfaces that at some time have been added
to the product. This specific sample shows some Java thread complexity but is a good
example of doing publish/subscribe work in a multithreaded way, which is a natural fit
for this type of work.

76

22

MQTT

22.1 Pub/Sub with MQ Telemetry

Publish/subscribe (pub/sub) is a model that lends itself very well to a number of one
publisher, many subscriber type of applications; the tools to enter this technology have
never been as available as they are now. Also, MQTT is a small protocol that needs to be
taken seriously: Facebook has recently become one of the largest users.
Designed as a low-overhead on-the-wire protocol for brokers in the Internet-of-things
age, MQTT is an exciting new development in the Messaging and Queueing realm. It is
a good choice for any broker functionality, as the minimal message overhead is 2 bytes,
but the maximum messages size, in one of the more popular open source brokers is a
good 250MB, which give you a message size that is a lot higher than anything possible
in the early years of MQ Series back in the nineties. It is now possible to do development
with an entry level, entirely open source suite, and scale up to commercial, clustered and
highly available implementations when needed, since the protocol has is supported by
the base IBM WebSphere MQ product and is an added deliverable in WSMQ 7.5, after
being available as an installable add-on for several years.
Here I will show how extremely straightforward it is to create a pub/sub application
using this technology.These examples use NetRexx, the Eclipse PAHO Java client library
and the open source Mosquitto broker; all these components are completely free and
open source. I have installed Mosquitto on my MacBook using the brew system(fn),
whichmakes it as much trouble as “sudo brew install mosquitto”. NetRexx is an excellent
language for these examples, as it is compact and avoids the C-inspired ceremony of Java
language syntax; if your project requires Java, you can just save the generated Java source
(using the new –keepasjava option).
Mosquitto(fn) is written by Roger Light as an open source equivalent of IBM’s rsmb (real
small message broker) example application, which is free but lacks source code. It is a
small broker application that nevertheless runs production sized workloads. As MQTT,
as opposed to the MQI or JMS API’s you use when developing a messaging application,
is an on-the-wire protocol (commercial messaging systems tend to have their own, un-
published, on-the-wire protocols), we need an API to use it. This API consists of a set
of calls that do the formatting of the messages to the requirements of the on-the-wire
protocol for you. The messages themselves are just byte-arrays, which gives you the ul-
timate freedom in designing their content. It is not unusual for connected devices to
encode their information in a few bits; on the other hand, there is no reason not to use
extreme verbosity in messages; as long as you send the .getBytes that your String yields,
MQTT will send it. When encoding information in a compact way, the protocol design

77

will really pay off, because the protocol overhead, in comparison with http and other
chatty protocols, is very low. A limited set of quality of service options (qos) will indi-
cate if you want send and pray, acknowledged delivery or acknowledged one-time-only
delivery.
The API library that was chosen for these examples is that from the Eclipse PAHO
project. This project, which is in its early stages, has C, Javascript and Java client libraries
available. I chose the Java client because the JVM environment is where most of the or-
ganizations that I work for will use it. The PAHO Java client library is donated by IBM
and written by Dave Locke; it is in active development. If you want to see how the proto-
col moves in packets over the network, I can recommend Wireshark, which does a good
job of recognizing them (if you run on the standard port 1883) and showing you the
message types (like ACK) and their bytes.
After having put the NetRexx(.jar) and paho client jars on your classpath, you are good
to go. The first example here is the publisher – this is not a fragment, but the complete
code. For production code we might add some more checks, as enterprise environments
always are prone to suddenly run lowondisk space and suffermissing authorizations, but
it works as it stands. Do note that you do not have to define a message topic in advance –
just think of one any use it, at least if you are in your own environment. With Mosquitto,
there wasn’t anything to define in advance, and the running Publisher (happily lifted
from the Java example) in NetRexx was actually the first time I talked to Mosquitto on
my MacBook.

Listing 22.1: MQTT Publish Sample
1 import java.sql.Timestamp
2 import org.eclipse.paho.client.mqttv3.
3

4 class Publish implements MqttCallback
5

6 method Publish()
7 conOpt = MqttConnectOptions()
8 conOpt.setCleanSession(0)
9 tmpDir = System.getProperty("java.io.tmpdir")

10 dataStore = MqttDefaultFilePersistence(tmpDir)
11 clientId = MqttClient.generateClientId()
12 topicName = "/world"
13 payload = "hello".toString().getBytes()
14 qos = 2
15

16 do
17 broker = "localhost"
18 port = "1883"
19 brokerUrl = "tcp://"broker":"port
20 client = MqttClient(brokerUrl,clientId, dataStore)
21 client.setCallback(this)
22 catch e=mqttException
23 say e.getMessage()
24 e.printStackTrace()
25 end -- do
26

27 client.connect()
28 log("Connected to "brokerUrl" with client ID "client.getClientId())
29

30 -- Get an instance of the topic
31 topic = client.getTopic(topicName)
32

33 message = MqttMessage(payload)
34 message.setQos(qos)
35

36 -- Publish the message
37 time = Timestamp(System.currentTimeMillis()).toString()

78

38 log('Publishing at: 'time' to topic "'topicName'" with qos 'qos)
39 token = topic.publish(message)
40

41 -- Wait until the message has been delivered to the server
42 token.waitForCompletion()
43

44 -- Disconnect the client
45 client.disconnect()
46 log("Disconnected")
47
48

49 method log(line)
50 say line
51

52 method messageArrived(t=String,m=MqttMessage)
53 log("Message Arrived: " t m)
54

55 method deliveryComplete(t=IMqttDeliveryToken)
56 log("Delivery Complete: " t)
57

58 method connectionLost(t=Throwable)
59 log("Connection Lost:" t.getMessage())
60

61 method main(args=String[]) static
62 Publish()

Topics can have a hierarchical organization; this structure is put in by composing trees
of topics, which are strings separated by ‘/’. In this way, it is easy to compose a /news/eco-
nomics/today topic string that gives some structure to the publication. The classification
is entirely up to the designer.
Messaging in its original form is an asynchronous technology, and for this reason theAPI
offers a callback option, where the callback receives the results of your publish action in
an asynchronous way. The broker assigns a message id which you receive back.
The second source fragment (and again, it is no fragment but the entire application pro-
gram) shows the subscriber.

Listing 22.2: MQTT Subscribe Sample
1 import java.sql.Timestamp
2 import org.eclipse.paho.client.mqttv3.
3

4 class Subscribe implements MqttCallback
5

6 properties private
7 client = MqttClient
8 conOpt = MqttConnectOptions()
9 tmpDir = System.getProperty("java.io.tmpdir")

10 clientId = MqttClient.generateClientId()
11 topicName = "/world"
12 qos = 2
13

14 method Subscribe()
15 do
16 connectAndSubscribe()
17 catch mqx=MqttException
18 log(mqx.getMessage())
19 end
20 -- Block until Enter is pressed
21 log("Press <Enter> to exit");
22 do
23 System.in.read()
24 catch IOException
25 end
26

27 -- Disconnect the client
28 client.disconnect()
29 log("Disconnected")

79

30

31 method connectAndSubscribe() signals MqttSecurityException,MqttException
32 conOpt.setCleanSession(1)
33 dataStore = MqttDefaultFilePersistence(tmpDir)
34 do
35 broker = "localhost"
36 port = "1883"
37 brokerUrl = "tcp://"broker":"port
38 client = MqttClient(brokerUrl,clientId, dataStore)
39 client.setCallback(this)
40 catch e=mqttException
41 say e.getMessage()
42 e.printStackTrace()
43 end -- do
44

45 this.client.connect()
46 log("Connected to "brokerUrl" with client ID "client.getClientId())
47

48 -- Subscribe to the topic
49 log('Subscribing to topic "'topicName'" qos 'qos)
50 this.client.subscribe(topicName, qos)
51

52 method log(line)
53 say line
54

55 method messageArrived(t=String,m=MqttMessage)
56 log("Message Arrived: " t m)
57

58 method deliveryComplete(t=IMqttDeliveryToken)
59 log("Delivery Complete: " t)
60

61 method connectionLost(t=Throwable)
62 do
63 connectAndSubscribe()
64 catch mqx=MqttException
65 log(mqx.getMessage())
66 end
67

68 method main(args=String[]) static
69 Subscribe()

In the home setup, there is a Raspberry PI running the client while a server in the at-
tic runs the Mosquitto broker. On the Raspberry, which runs Debian wheezy with the
soft-float ABI that, at the moment of writin, is still necessary for the Oracle ARM Java
implementation; everything done in NetRexx runs unchanged; I just move the classes to
it using scp. The broker on the laptop takes care of the scenario in which I suddenly can
do some development while not connected to the net, like when I have some moments
to reflect on the code in the IKEA restaurant while my spouse runs the serious shopping
business.
Security is outside of the scope of this introduction which shows you the sourcecode
of a simple pub/sub application, but in Mosquitto the traffic can be secured using SSL
certificates and userid/password combinations; also, the access to topics can be limited.
In terms of availability, the Mosquitto configuration file offers an opportunity to send all
messages for a defined set of topics to another connected broker, which might be in a
different part of the world, or your home, to enable a redundant setup. While the broker
does not offer the queue – transmission queue - channel setup with retrying channels
that MQ does, the client API has some facilities to locally save the messages and retry if
the communication was lost. Also, the last-will-and-testament facility is something that
traditional MQ does not have.

80

23

Component Based Programming: Beans

JavaBeans is the name for the Java component model. It consists of two conventions,
for the naming of getter and setter methods for properties, and the event mechanism
for sending and receiving events. NetRexxadds support for the automatic generation
of getter and setter methods, throught the properties indirect option on the properties
statement.

81

24

Using the NetRexxA API

As described elsewhere, the simplest way to use the NetRexx interpreter is to use the
command interface (NetRexxC) with the -exec or -arg flags. There is a also a more di-
rect way to use the interpreter when calling it from another NetRexx (or Java) program,
as described here. This way is called the NetRexxA Application Programming Interface
(API).
TheNetRexxA class is in the same package as the translator (that is, org.netrexx.process),
and comprises a constructor and two methods. To interpret a NetRexx program (or, in
general, call arbitrary methods on interpreted classes), the following steps are necessary:

1. Construct the interpreter object by invoking the constructor NetRexxA(). At this
point, the environment’s classpath is inspected and known compiled packages and
extensions are identified.

2. Decide on the program(s) which are to be interpreted, and invoke the NetRexxA
parsemethod to parse the programs.This parsing carries out syntax and other static
checks on the programs specified, and prepares them for interpretation. A stub
class is created and loaded for each class parsed, which allows access to the classes
through the JVM reflection mechanisms.

3. At this point, the classes in the programs are ready for use. To invoke a method
on one, or construct an instance of a class, or array, etc., the Java reflection API (in
java.lang and java.lang.reflect) is used in the usual way, working on theClass objects
created by the interpreter. To locate these Class objects, the API’s getClassObject
method must be used.

Once step 2 has been completed, any combination or repetition of using the classes is
allowed. At any time (provided that all methods invoked in step 3 have returned) a new
or edited set of source files can be parsed as described in step 2, and after that, the new
set of class objects can be located and used. Note that operation is undefined if any at-
tempt is made to use a class object that was located before the most recent call to the
parse method.
Here’s a simple example, a program that invokes the main method of the hello.nrx pro-
gram’s class:

Listing 24.1: Try the NetRexxA interface
1 options binary
2 import org.netrexx.process.NetRexxA
3

4 interpreter=NetRexxA() -- make interpreter
5

6 files=['hello.nrx'] -- a file to interpret
7 flags=['nocrossref', 'verbose0'] -- flags, for example
8 interpreter.parse(files, flags) -- parse the file(s), using the flags
9

83

10 helloClass=interpreter.getClassObject(null, 'hello') -- find the hello Class
11

12 -- find the 'main' method; it takes an array of Strings as its argument
13 classes=[interpreter.getClassObject('java.lang', 'String', 1)]
14 mainMethod=helloClass.getMethod('main', classes)
15

16 -- now invoke it, with a null instance (it is static) and an empty String array
17 values=[Object String[0]]
18

19 loop for 10 -- let's call it ten times, for fun...
20 mainMethod.invoke(null, values)
21 end

Compiling and running (or interpreting!) this example program will illustrate some im-
portant points, especially if a trace all instruction is added near the top. First, the perfor-
mance of the interpreter (or indeed the compiler) is dominated by JVM and other start-
up costs; constructing the interpreter is expensive as the classpath has to be searched
for duplicate classes, etc. Similarly, the first call to the parse method is slow because of
the time taken to load, verify, and JIT-compile the classes that comprise the interpreter.
After that point, however, only newly-referenced classes require loading, and execution
will be very much faster.
The remainder of this section describes the constructor and the twomethods of the Net-
RexxA class in more detail.

24.1 The NetRexxA constructor

Listing 24.2: Constructor
1 NetRexxA()

This constructor takes no arguments and builds an interpeter object. This process in-
cludes checking the classpath and other libraries known to the JVM and identifying
classes and packages which are available.

24.2 The parse method

Listing 24.3: parse
1 parse(files=String[], flags=String[]) returns boolean

The parse method takes two arrays of Strings. The first array contains a list of one or
more file specifications, one in each element of the array; these specify the files that are
to be parsed and made ready for interpretation.
The second array is a list of zero or more option words; these may be any option words
understood by the interpreter (but excluding those known only to the NetRexxC com-
mand interface, such as time). 13 Theparsemethod prefixes the nojava flag automatically,
to prevent .java files being created inadvertently. In the example, nocrossref is supplied
to stop a cross-reference file being written, and verbose0 is added to prevent the logo and
other progress displays appearing.
The parse method returns a boolean value; this will be 1 (true) if the parsing completed
without errors, or 0 (false) otherwise. Normally a program using the API should test this

13Note that the option words are not prefixed with a -.

84

result an take appropriate action; it will not be possible to interpret a program or class
whose parsing failed with an error.

24.3 The getClassObject method

Listing 24.4: getClassObject
1 getClassObject(package=String, name=String [,dimension=int]) returns Class

This method lets you obtain a Class object (an object of type java.lang.Class) represent-
ing a class (or array) known to the interpreter, including those newly parsed by a parse
instruction.
The first argument, package, specifies the package name (for example, com.ibm.math).
For a class which is not in a package, null should be used (not the empty string, ”).
The second argument, name, specifies the class name (for example, BigDecimal). For a
minor (inner) class, this may have more than one part, separated by dots.
The third, optional, argument, specifies the number of dimensions of the requested class
object. If greater than zero, the returned class object will describe an array with the spec-
ified number of dimensions. This argument defaults to the value 0.
An example of using the dimension argument is shown abovewhere the java.lang.String[]
array Class object is requested.
Once a Class object has been retrieved from the interpreter it may be used with the Java
reflection API as usual. The Class objects returned are only valid until the parse method
is next invoked.

24.4 The exiting method

Syntax:

Listing 24.5: exiting
1 exiting() returns boolean

If this method returns true, an interpreted program has invoked the NetRexx “exit” in-
struction to shut down the interpreter. If more programs need to be interpreted, a new
instance of the interpreter will need to be created with the NetRexxA() constructor.

24.5 Interpreting programs contained in memory strings

3.01 Programs can be interpreted directly from memory strings. The first extension adds an
optional array of strings containing programs to the standard parse API. It is mainly
useful to IDE developers. It also serves as the basis to support two other extensions doc-
umented below.

Listing 24.6: parse program in memory buffer
1 method parse(filestrings=String[], programstrings=String[], flagstrings=String[],

logfile=PrintWriter null, outfile=PrintStream System.out) returns boolean

Parses a set of files, under specified flags:
85

. filestrings is a list of program names,. programstrings is a list of program strings14,. flagstrings is a list of flags,. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),

This method returns 1 if no error
The second extension is a new easy to use method to parse and interpret a program
contained in a string.

Listing 24.7: parse program in string
1 method interpret(programname=String, programstring=String, argstring=String "",

flagstring=String "", logfile=PrintWriter null, outfile=PrintStream System.out)
returns boolean

A convenience method to interpret a single NetRexx program in a string:
. programname is the program name,. programstring is the program string,. argstring is the argument string (optional),. flagstring is the translator flags string (optional),. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),

This method returns 1 if no parse error. The default flag is -verbose0
Here is a simple example using the interpret method:

Listing 24.8: interpret from string
1 import org.netrexx.process.
2 netrexxapi=NetRexxA()
3 myprog="say 'argument string is' arg"
4 netrexxapi.interpret("myprog",myprog,"a passed argument")

The third extension is a slightly more complex “eval” method that allows a program to
call a static method in a program string and receive an object back.

Listing 24.9: eval
1 method eval(programname=String, programstring=String, methodname=String, argstring=

String "", flagstring=String "", logfile=PrintWriter null, outfile=PrintStream
System.out) returns Object

A convenience method to interpret a method from a NetRexx program in a string and
return an object:
. programname is the program name,. programstring is the program string,. methodname is the method name to call - the method must accept a String array

like main methods,. argstring is the argument string (optional),. flagstring is the translator flags string (optional),
14Note that program strings which are not named in the name list are ignored.

86

. logfile is a PrintWriter for parse output messages (optional),. outfile is a PrintStream for console output messages (optional),

This method returns an object if no error. The default flag is -verbose0
Here is a simple example using the eval method:

Listing 24.10: eval example
1 import org.netrexx.process.
2 netrexxapi=NetRexxA()
3 termpgmstring='method term(sa=String[]) static returns rexx;i=Rexx(sa);return 1/i'
4 say netrexxapi.eval("termpgm",termpgmstring,"term",99)

87

25

Interfacing to Scripting Languages

NetRexx contains standardized Java Scripting support, and the NetRexxC.jar file is a 3.03self-contained JSR223 scripting engine. This facility opens up a number of possibili-
ties to interface in a standardized manner with several scripting languages and other
infrastructure, and offers an easy way for including interpreted NetRexx code in JVM
applications. JSR223 is a standard for interacting with scripting languages that consists
of:

1. A mechanism to find out for which scripting languages support is available
2. A way to choose one of them
3. An eval() call to dynamically specify and execute a program
4. A bindings mechanism to bind variable names to values, to exchange objects with

scripts
5. Optionally, a way to execute methods, functions or routines from larger programs
6. Optionally, a way to keep already compiled scripts around for repeated execution

(with associated higher performance)

The JSR223 specification15 details the calls that are available in the javax.scripting
package. To use the JSR223 interface, Java 6 or higher is required. The JAR file specifica-
tion defines a service as a well-known set of interfaces and (usually) abstract classes. A
service provider is a specific implementation of such a service. For scripting, the service
consists of javax.script.ScriptEngineFactory. All classes that implement this inter-
face are service providers. Service providers identify themselves by placing a so-called
provider-configuration file in META-INF/services. Its filename corresponds to the fully
qualifiednameof the service class, which is javax.script.ScriptEngineFactory. Each
line of this file contains the fully qualified name of a service provider.The factory class of
theNetRexx connector is org.netrexx.jsr223.NetRexxScriptEngineFactory. So the
file META-INF/services/javax.script.ScriptEngineFactory contains one line with
exactly this class name.

25.1 Which JSR223 engines are on my system?

The number of JSR223 engines available varies per JVM implementation. The following
code can be used to list these.

Listing 25.1: Enumerate the JSR223 Engines on a JVM
1 import javax.script.ScriptEngine
2 import javax.script.ScriptEngineFactory

15http://www.jcp.org/en/jsr/detail?id=223

89

http://www.jcp.org/en/jsr/detail?id=223

3 import javax.script.ScriptEngineManager
4

5 method main(args=String[]) static
6 manager = ScriptEngineManager()
7 factories = manager.getEngineFactories()
8 it=factories.iterator()
9 loop while it.hasNext()

10 factory=ScriptEngineFactory it.next()
11 f=ScriptEngine factory.getScriptEngine()
12 say "className = " f.getClass.getName
13 engineName = factory.getEngineName()
14 engineVersion = factory.getEngineVersion()
15 langName = factory.getLanguageName()
16 langVersion = factory.getLanguageVersion()
17 say "engineName = " engineName engineVersion langName langVersion
18 say
19 end

For example, the Java 8 SE version by Oracle on MacOSX delivers out of the box:
1 className = org.netrexx.jsr223.NetRexxScriptEngine
2 engineName = NetRexx Script Engine V1.0.0 NetRexx 3.05
3

4 className = jdk.nashorn.api.scripting.NashornScriptEngine
5 engineName = Oracle Nashorn 1.8.0_31 ECMAScript ECMA - 262 Edition 5.1

As one can see, the name of the engine, the language and its release are standard features
for this query.TheNetRexxC.jar file on the classpath adds theNetRexx implementation.
There can be any number of additional jar archives on the classpath to deliver engines
for different JSR223 implementations for different languages.

25.2 Selecting an engine

When developing a program one is probably interested in using a specific implementa-
tion, and it is possible to request the loading of a specific JSR223 engine by name.

Listing 25.2: Choosing an engine
1 import javax.script.
2

3 manager = ScriptEngineManager()
4 nrEngine = manager.getEngineByName("NetRexx")

The language engine can be selected by its short name, so there is no need to specify the
longer name or its version.

25.3 Evaluating a script

This example shows how to do a simple thing that illustrates the value of being able to
do this from other environments: calculating some number with numeric precision set
to some value that other languages cannot handle.

Listing 25.3: Evaluating a script
1 /* simple script invocation */
2 nrEngine.eval('numeric digits 17; say 111111111 * 111111111')

90

The output from this script would be:

12345678987654321

25.4 Bindings

Bindings are name-value pairs whose keys are strings - they can be of Rexx type. Their
behavior is defined through the javax.script.Bindings interface.As for ScriptContext,
a basic implementation is provided called SimpleBindings. Although bindings be-
long to script contexts, ScriptEngine provides createBindings(), which returns an
uninitialized binding. Another method, getBindings(), exists to return the bindings
of a certain scope. There are at least two scopes, ScriptContext.GLOBAL_SCOPE and
ScriptContext.ENGINE_SCOPE. They represent key-value pairs that are either visible to
all instances of a script engine that have been created by the same ScriptengineManager,
or visible only during the lifetime of a certain script engine instance. The following pro-
gram illustrates the use of bindings to store a value, 42, into the binding called answer
and then using its retrieved value in the evaluation of the statement ’say “the answer
is” answer ’.The next action uses the handle one for a value of 1, and uses its retrieved
value to add it to the value previously contained in the binding answer.

Listing 25.4: Object Bindings
1 import javax.script.
2

3 nrEngine = ScriptEngineManager().getEngineByName("NetRexx")
4

5 /* simple script invocation */
6 nrEngine.eval('numeric digits 17; say 111111111 * 111111111')
7

8 /* script invocation with bindings */
9 answer = 42

10 nrEngine.put("answer", answer)
11 nrEngine.eval('say ''the answer is ''answer')
12
13 one = 1
14 nrEngine.put("onemore",one)
15 nrEngine.eval('say ''one more is ''answer+onemore')

Note that in line two, the invocation is shortened a bit by getting rid of the intermediate
manager object for instantiation of the language interface. Also note that in line 10, we
chose, for illustration purposes, to store the one object into the bindings structure using
a different name, onemore. This shows that the string used as identifier for the object is
just a handle to it, and nothing more. This would yield:

1 12345678987654321
2 the answer is 42
3 one more is 43

Thedifferent possibilities and language combinationswill be discussed in the paragraphs
below.

91

25.4.1 Obtaining a returncode

The variable binding used for the return code from the NetRexx program is called
returnobject. This program illustrates its use:

Listing 25.5: Obtaining a returncode
1 import javax.script.
2

3 nrEngine = ScriptEngineManager().getEngineByName("NetRexx")
4

5 /* check returncode */
6 say nrEngine.eval('NetRexxScriptEngine.instance.put("returnobject", "99")')

1 99

25.5 Interpreted execution of NetRexx scripts from jrunscript

Another way of calling any NetRexx program, for interpretation, is to use the standard
jrunscript executable that is included in Java 1.6 and beyond. For example, in the exam-
ples/rosettacode directory, one could specify:

jrunscript -l netrexx -cp $CLASSPATH -f RCSortingHeapsort.nrx

The -l option instructs the jrunscript handler to choose NetRexx as its standard scripting
language. ForNetRexx to be eligible as a scripting language,NetRexxC.jarmust be on the
jrunscript classpath, which is a separate classpath from the standard one. In this setup,
evenNetRexx programs with a filename that is not valid as a classname, can be executed
as an interpreted script.

25.6 Using JavaScript from NetRexx programs

JavaScript support is built in from Java 1.6 onwards, and using it does not require placing
another library on the classpath. Using JavaScript from NetRexx can have benefits, for
example when using types native to JavaScript, like the JSON data interchange format.

Listing 25.6: Run JavaScript
1 import javax.script.
2

3 jsEngine = ScriptEngineManager().getEngineByName("JavaScript")
4

5 jsEngine.eval('var foo = {};')
6 jsEngine.eval('foo.foundation = "RexxLA";')
7 jsEngine.eval('foo.model = "open";')
8 jsEngine.eval('foo.week = 42;')
9 jsEngine.eval('foo.transport = "car";')

10 jsEngine.eval('foo.month = 7;')
11

12 jsEngine.eval('bar = JSON.stringify(foo);')
13

14 jsonString = jsEngine.get('bar')
15 say jsonString

which yields the following result:
92

1 {”foundation”:”RexxLA”,”model”:”open”,”week”:42,”transport”:”car”,”month
”:7}

25.7 Using AppleScript on MacOSX

On MacOSX you can run an AppleScript using NetRexx.

Listing 25.7: Run AppleScript
1 import javax.script.
2

3 appleEngine = ScriptEngineManager().getEngineByName("AppleScript")
4 context = appleEngine.getContext()
5 bindings = context.getBindings(ScriptContext.ENGINE_SCOPE)
6 bindings.put("javax_script_function", "getName")
7 bindings.put(ScriptEngine.ARGV, 'Stranger')
8

9 appleScript = 'on getName(default_) \n'-
10 'tell application "Finder" \n'-
11 'display dialog "What is your name?" default answer default_ with icon note \n'

-
12 'set myName to the text returned of the result \n'-
13 'delay 0.5 \n'-
14 'display dialog "Hi there, " & myName & "! Welcome to AppleScript!" with icon

note \n'-
15 'end tell\n'-
16 'return myName\n'-
17 'end getName'
18

19 result = appleEngine.eval(appleScript,context)
20 say result

The AppleScript interpreter expects end-of-line characters at the end of every line, so
make sure to include them in your script. The above script shows it is fairly straightfor-
ward to put a dialog box with a question on the screen. The example shows how to give
an argument (ARGV) to a method, and how to put the method name in the bindings
object in order to return the result upon evaluation.

25.8 Execution of NetRexx scripts from ANT tasks

The jsr223 engine enables us to execute NetRexx scripts from the ant16 building tool
using the <script> tag. This was already possible using the BSF library, where NetRexx
was one of the originally supported languages, but has become more straightforward
with jsr223 scripting.

Listing 25.8: Run a NetRexx script in Ant
1 <project name="MyProject" basedir=".">
2 <description>
3 demonstration of ant jsr223 netrexx scripting
4 </description>
5

6 <property name="divider" value="81" />
7 <script language="netrexx" manager="javax">
8 say "100/"divider '= ' 100/divider
9 </script>

10 </project>

16http://ant.apache.org

93

http://ant.apache.org

Note that properties can be set in other parts of the ant xml file and used in the ant script.
This script yields the following output:

1 Buildfile: /Users/rvjansen/netrexx-3.05/documentation/pg/antscript.xml
2 [script] 100/81 = 1.2345679
3

4 BUILD SUCCESSFUL
5 Total time: 0 seconds

The task may use the BSF scripting manager or the JSR 223 manager that is included
in JDK6 and higher. This is controlled by the manager attribute. The JSR 223 scripting
manager is indicated by ”javax”, as shown on line 7.
All items (tasks, targets, etc) of the running project are accessible from the script, using
either their name or id attributes (as long as their names are considered valid Java identi-
fiers, that is).This is controlled by the ”setbeans” attribute of the task.The name ”project”
is a pre-defined reference to the Project, which can be used instead of the project name.
The name ”self ” is a pre-defined reference to the actual <script>-Task instance. From
these objects you have access to the Ant Java API.
A classpath for execution of the script can be set using the classpath attribute. A script
contained in a separate file can be executed using the src attribute.

25.9 Integration of NetRexx scripting in applications

Several applications offer a facility to script functionality using the javax.scripting inter-
face, akin to the way applications use the RexxSAA interface for this purpose.

25.10 Interfacing between ooRexx and NetRexx using BSF4ooRexx

BSF is a system for language interaction that originated in a research project at IBM,
and predates JSR223 (and certainly its implementation in Java 6) for a number of years.
BSF 2.x has its own interface, while modern BSF versions are an implementation of the
JSR223 interfaces. BSF4ooRexx enables a bidirectional interface between ooRexx and
Java, and enables one to use the large class library support for Java in ooRexx programs,
but likewise the execution of ooRexx code from Java (including NetRexx) programs.
BSF4ooRexx contains some special support for JVM programs written in NetRexx.

25.11 General jsr-223 Implementation Notes

This section describes some notes pertaining to specific jsr223 for NetRexx design and
implementation decisions.

. All engine scope bindings are passed to the script as variables - note that bind-
ing names containing periods have the periods changed to underscores to be legal
variable names.

94

. The NetRexx script engine is reused unless the script returned via an ”exit” state-
ment and the bindings are persistent which means that scripts will see the bindings
(Objects) created by previous scripts. Arguments are passed both as the normal arg string and as the array binding
javax.script.argv i.e. script variable javax_script_argv.. Scripts are executed via the NetRexxAAPI for interpreting a program from a string
so they are not written to files.. The current version of the engine has no other optimization and only support for
bare minimum JSR223 features (No compilable, invokeable, preparse or caching or
user profiles or console, etc.).. When running as an Ant Script task, properties whose names contain periods are
not passed to the bindings andmust be accessed via project.getProperty(’some.name’)
Theworkaround is to define a localAnt property as a global first and the scriptengine
will overlay the global value with the local value in the bindings map. When running as anAnt Script task, properties can be set via project.setProperty(’some.name’,
’some value’). Script parms can be passed in an ”arg” binding. Parse flags can be passed with a
”netrexxflags” binding or inAntwith the usual ”ant.netrexx.verbose”, etc properties.. Ant scripts can use the nested classpath facility - It is automatically added to the
classpath that NetRexx scans. Likewise any path segments from a thread context
URLclassloader are added.. The engine will run programs (ie that have a main class) as well as scripts but bind-
ings cannot then be auto added to the program namespace so programs have to
load bindings like this: NetRexxScriptEngine.getObject(”objectname”)

95

26

NetRexxTools

26.1 Editor support

This chapter lists editors that have plugin support for NetRexx, ranging from syntax
coloring to full IDE support (specified), and Rexx friendly editors, that are extensible
using Rexx as a macro language (which can be the first step to provide NetRexx editing
support).

26.1.1 JVM - All Platforms

JEdit Full support for NetRexx source code editing, to be found at http:
//www.jedit.org.

NetRexxDE A revisions with additions of the NetRexx plugin for jEdit, moving to
a full IDE for NetRexx. http://kenai.com/projects/netrexx-misc

Eclipse Eclipse has a NetRexx plugin that provides a complete IDE envi-
ronment for the development of NetRexx programs (in alpha re-
lease) by Bill Fenlason. The project is situated at SourceForge (http:
//eclipsenetrexx.sourceforge.net/). Chapter 27 on page 101 dis-
cusses the setup of Eclipse to build the translator itself; and has instruc-
tions for the setup of the NetRexx plugin.

26.1.2 Linux

Emacs netrexx-mode.el (in the NetRexx package in the tools directory) runs on
GNU Emacs, which is installed by default on most Linux developer distri-
butions.

vim vi with extensions

26.1.3 MS Windows

Emacs netrexx-mode.el (in the NetRexx package in the tools directory) runs
on GNU Emacs for Windows. http://www.gnu.org/software/emacs/
windows/faq.html.

vim vi with extensions

97

http://www.jedit.org
http://www.jedit.org
http://kenai.com/projects/netrexx-misc
http://eclipsenetrexx.sourceforge.net/
http://eclipsenetrexx.sourceforge.net/
http://www.gnu.org/software/emacs/windows/faq.html
http://www.gnu.org/software/emacs/windows/faq.html

26.1.4 MacOSX

Aquamacs A version of Emacs that is integrated with the MacOSX Aqua look and
feel. (http://www.aquamacs.org). NetRexx mode is included in the
NetRexx package in the tools directory.

Emacs netrexx-mode.el (in the NetRexx package) runs on GNU Emacs for
MacOSX. http://www.gnu.org/software/emacs.

Vim Vi with extensions

26.2 Java to Nrx (java2nrx)

Whenworking on a piece of Java code, or an example written in the language, sometimes
it would be good if we could see the source in NetRexxto make it more readable. This
is exactly what java2nrx by Marc Remes does. It has a Java 1.5 parser and an Abstract
Syntax Tree that delivers a translation to NetRexx, to the extend of what is currently
supported under NetRexx.
At the moment it is to be found at http://kenai.org/NetRexx/contrib/java2nrx
It is started by the java2nrx.sh script; for convenience, place java2nrx.sh and java2nrx.jar
in the same directory. NetRexxC and java must be available on the path.
Usage: Alternatively:

FIGURE 2: Java2nrx 1

java2nrx

java -jar java2nrx.jar
�� �infile.java �

�out.nrx

�

FIGURE 3: Java2nrx 2

java2nrx

java2nrx.sh/.bat
�� ��

� -nrc
�� ��

�-stdout
�� ��-run
�� ��options other NetRexxC options

�

�

filename.java

-nrc runs NetRexxC compiler on output nrx file
-stdout prints NetRexx file on stdout

98

http://www.aquamacs.org
http://www.gnu.org/software/emacs
http://kenai.org/NetRexx/contrib/java2nrx

-run runs generated translated NetRexx output file

99

27

Using Eclipse for NetRexx Development

This is a guide for first time Eclipse users to set up a NetRexx development project. It is
not a beginners guide to Eclipse, but is intended to explain how to download theNetRexx
compiler source from SVN to be able to modify and build it using Eclipse17.
It is detailed and hopefully foolproof for someonewho has never used Eclipse. It assumes
a Windows user, but if you are a Linux or Mac user, you will no doubt understand what
to do.
This guide is for Eclipse 4.2 (Juno), written August, 2012. New Eclipse releases occur
every 4 months, so there may be differences depending on what the current version is.

27.1 Downloading Eclipse

There are many different preconfigured versions of Eclipse. As you become more expe-
rienced with it you may wish to use a different distribution, but the one specified here
makes some things simple. It does contain some things that you may never use.

1. Make a new folder for the project. Name it appropriately (e.g. EclipseNetRexx)
2. Browse to eclipse.org, and click on “Download”.
3. Download the version namedECLIPSE IDE FOR JAVA DEVELOPERS for your

your operating system.
4. The download is about 150 MB.
5. Unzip the downloaded file into your project folder.

27.2 Setting up the workspace

There are different strategies for managing Eclipse workspaces. Eclipse defaults to
putting the workspace in your Windows documents folder - probably not what you
want to do. The following is perhaps the most simple way.

1. Open the project folder. It will now contain a folder named eclipse.
2. Add a new folder named “workspace” in the project folder to go along with the

eclipse folder.
3. Open the eclipse folder, and create a shortcut to eclipse.exe.
4. Move the shortcut to the desktop and rename it to something like “Eclipse Net-

Rexx”.
17If you have questions or comments, feel free to contact Bill Fenlason at billfen@hvc.rr.com.

101

5. Close the project folder, and double click the shortcut to start Eclipse.
6. The “Select a workspace” dialog comes up - don’t use the default.
7. Browse to the workspace folder that you just created and select it.
8. Click (check) the “Use this as the default” box, and click OK.

27.3 Shellshock

If you have never used Eclipse, it can be a bit overwhelming. It is rather complicated, and
has endless options, etc. In addition there are at least a thousand different plugins.
You will be greeted by a Welcome screen - you may find it interesting or boring. Exit
from it via tback to the welcome screen from: Main Menu -> Help -> Welcome.

27.4 Installing SVN

This version of Eclipse comes with CVS and Git support built in, but the SVN support
must be installed.

1. Click on Main Menu -> Help -> Eclipse MarketPlace.
2. Type SVN in the search box and hit Enter.
3. Locate Subversive - it will probably be the first entry - and click the Install button.
4. Click Next, I Accept the License and Finish. The SVN plugin will be downloaded.
5. Click Yes to restart Eclipse.
6. The SVN “Install connectors” dialog will start.
7. Select the SVN Kit 1.75.
8. Click Next, Accept the License, Finish, OK to unsigned content, and Yes to restart

Eclipse.

27.5 Downloading the NetRexx project from the SVN repository

The SVN repository contains the NetRexx compiler/translator, documentation, exam-
ples, etc. These instructions assume you want only the compiler project.

1. TheNetRexx SVNrepository name is: https://svn.kenai.com/svn/netrexx~netrexxc-repo
2. Copy it (for pasting) from above, or get it from the kenai or netrexx.org site.
3. You do not need a period at the end.
4. Click on Main Menu -> File -> New -> Other -> SVN -> Project from SVN, then

Next or double click.
5. Select Create a New Repository location, click Next
6. Paste (or type if you must) the repository name into the URL field and click Next
7. The Checkout from SVN - Select Resource dialog will come up. Click Browse
8. Double click on “netrexxc”, and then single click on “trunk” to select it. Click OK
9. Now click Finish in the checkout dialog to bring up the “Checkout As” dialog

102

https://svn.kenai.com/svn/netrexx~netrexxc-repo

10. Leave the selection at the default of “Checkout ... using the New ProjectWizard”,
and Finish

11. The New Project dialog comes up - double click on Java and then Java Project (or
use Next)

12. The New Java Project dialog comes up. Enter a project name, perhaps something
like NetRexx301.

13. Click Finish, and the project is downloaded. It will show up in the Package Explorer
on the left.

27.6 Setting up the builds

Ant support is built into Eclipse, but it must be configured to be able to access the boot-
strap NetRexx compiler.

1. Double click on the build.xml file name in the package explorer. Note that its icon
is an ant.

2. The build file will open in an editor window.
3. Right click in the window to bring up a context menu, and select Run As -> 2 Ant

Build
4. Do NOT select 1 Ant Build.
5. The Ant configuration dialog comes up - it will show you all the targets, etc.
6. Click on the Classpath tab, and then click on User Entries.
7. Now click on Add External Jars to bring up the Jar Selection dialog.
8. Navigate to the lib folder in the project folder. Make sure you are not in the build

folder.
9. Double click on NetRexxC.jar to select it.

10. Click on the Refresh tab, and check the Refresh resources on completion box.
11. Click Run to build the distribution. The messages will appear in the console listing

below.
12. The java doc step may fail.
13. Close the build.xml file (X on the tab).

You can configure the ant build by using the configuration dialog in Run As -> 2 Ant
Build. You may want to check “compile” and “jars” to run those steps. Use Apply to save
the configuration.
There are two different builds. The second build.xml file is in the project -> tools -> ant-
task folder. Open it up and repeat the above steps for that build.xml file. Each build file
has its own ant configuration, and once set selecting Run As -> 1 Ant Build will run it.
Or just hit F11.

27.7 Using the NetRexx version of the NetRexx Ant task

The above process uses the standard NetRexx Ant task, not the new one. To use the new
one:

103

1. Main Menu -> Window -> Preferences -> Ant -> Runtime.
2. Open up and select Ant Home Entries. Then click on Add External Jars
3. Navigate to the lib folder in the project and select ant-netrexx.jar
4. The jar will appear at the bottom of the list.
5. Use the UP button to move it up (ahead) of the apache ant version, click OK

27.8 Setting up the Eclipse NetRexx Editor Plugin (Optional)

The NetRexx Editor plugin provides syntax coloring and error checking for nrx files, as
well as one click compiling and translating.

1. Click on Main Menu -> Help -> Eclipse MarketPlace.
2. Type NetRexx in the search box and hit enter.
3. Click the Install button next to the Eclipse NetRexx package.
4. Click Next, Accept the License, Finish, OK to unsigned content, and Yes to restart

Eclipse.
5. Click Main Menu -> Window -> Preferences -> NetRexx Editor to explore it

104

28

Platform dependent issues

28.1 Mobile Platforms

Android™is a version of Linux and friendly toNetRexx programs. Indeed, withNetRexx
performing somuch better than the closest competition (jRuby, jython) on these devices,
there might be a bright future for NetRexx in these environments.
However, there are some drawbacks, caused by the security architecture put in place.
Free, unfettered programming like one can do on a desktopmachine is a rare occurrence
on these devices, and to get programs running on them requires some knowledge of the
security architecture that has been put in place for mobile operating systems.
While Apple development still employs a closedmodel that allows programming only by
buying a license with accompanying certificates, and vetting by the App Store employ-
ees, and an assumption you will program in Objective-C, Android allows programming
but not as straightforward as we know it. To make simple command-line NetRexx pro-
grams, both device types need to be rooted to allow optimal access. Android allows the
installation of applications without vetting by third parties, but dictates a programming
model that incurs some overhead - which is a drawback for the occasional scripter.

28.1.1 Android

The security model of Android is based on least needed privilege and is implemented by
assigning each application a different userid, so that applications on the same device (be
it a phone or a tablet) cannot get to each others data. The consequence of this is that
simple NetRexx programming and scripting

28.1.2 Apple IOS

Nonewithstanding the current intention of Apple to only allow Objective-C as a pro-
gramming language on the iPhone and iPad, NetRexx on IOS works fine. This is what
one should do to make it work:

1. Jailbreak18 the device. This is necessary until a more sensible setup is used. I used
Spirit; it synchs the phone with the hack and then Cydia is installed, an application
that does package management the Debian way

2. Choose the ”developer profile” on Cydia when asked. This applies a filter to the
packages shown (or rather it doesn’t) - but you need to do it in order to see the

18Note that jailbreaking an iPhone is against your eula (well - Apple’s eula) and might be illegal in some jurisdictions.

105

prerequisites
3. OpenTerminal will help you to do command line operations on the phone itself
4. The prerequisites are a Java VM (JamVM installs a VM and ClassPath, the open

Java implementation) and Jikes, the Java compiler written in C and compiled to the
native instruction set of the phone, which is ARM - most processors implementing
this have Jazelle, a specials instructionset to accelerate Java bytecode. However, this
feature is seldom used.

The phone can also be logged on to using ssh from your desktop. Do not forget to change
the password for the ’root’ user and the ’mobile’ user, as instructed in the Cydia package.
When this is done, NetRexxC.jar can be copied to the phone. I did this using ’scp Net-
RexxC.jarmobile@10.0.0.76:’ (use the password you just set for this userid) (and because
my router assigned 10.0.0.76 to the phone today). I crafted a small ’nrc’ script that does
a translate and then a Java compile using jikes (and I actually wrote this on the phone
using an application called ’iEdit’ - nano, vim and other editors are also available but I
found the keyboard scheme to type in ctrl-characters a bit tedious - you type a ’ball’ char-
acter and then the desired ctrl char, while shifting the virtual keyboard through different
modes):
nrc:

java -cp ~/NetRexxC.jar COM.ibm.netrexx.process.NetRexxC $*

Now we can do a compile of the customary hello.nrx with ’./nrc -keep -nocompile hello’
(notice that this is all in the home directory of the ’mobile’ user, just like the jar that I just
copied. The resulting hello.java.keep can then be mv’ed to hello.java and compiled with
’jikes hello.java’. This produces a class that can be run with ’java -cp NetRexxC.jar hello’

28.2 IBM Mainframe: Using NetRexx programs in z/OS batch

Traditionally the mainframe was a batch oriented environment, and much of the work-
load that counts still executes in this way. To be able to use NetRexxwith Job Control
Language (JCL) in batch address spaces, accessing traditional datasets and interacting
with the console when needed, we need to know a bit more. This will be explained in
these paragraphs.
A standard component of z/OS since version 1.8 or so is jzos, which acts as glue between
the unix-like abstractions the JVM works with and the time tested way of working on
z/OS, with its SAM and VSAM datasets, its Partitioned Data Set (PDS) file organization,
the ICF Catalogs and console address space; all of which in existence long before Java
reared its head in our IT environments.
The manuals will teach you that there are several ways to interact with HFS/OMVS re-
sources in JCL, but the alternatives to jzos have so many drawbacks that it is the only
sensible way to run NetRexx programs in the batch environment.

106

29

Building the NetRexx translator

It is easy to build the NetRexx translator from source. Prerequisites are:

1. A Java Virtual Machine
2. A Subversion client

NetRexx can be built on all platforms that it runs on. NetRexx has been bootstrapped
in 1996 and consequently has been used to compile itself. Every checkout of the source
code contains the ’bootstrap’ compiler, which is the previous release version. Only the
official release branches contain the same release of the compiler - to prove that it still
could compile itself on release.Theoretically, it is possible to break things by introducing
changes that make it impossible for the compiler to compile itself - it is our job that these
changes are not released to a wider audience, but rolled back in time. In Subversion,
that is one of the easiest things to do: just delete your working copy and issue a svn up
command - and you have travelled back in time to where things still did work.

29.1 Repository

The NetRexx source code repository is hosted at
https://svn.kenai.com/svn/netrexx~netrexxc-repo. To get the code on your sys-
tem, you should register at the Kenai project https://kenai.com/projects/netrexx
and check the repository out using Subversion. For this version management package
are many graphical user interfaces, but what is shown here, is the command line ver-
sion. Choose a suitable place as working directory - you can later move it around as you
please.

svn co https://svn.kenai.com/svn/netrexx~netrexxc-repo .

The space and the dot at the end are meaningful.

Note: This will checkout the whole repository to your local system; including previous
versions, experimental branches andpersonal sandboxes of other developers. If youwant
to checkout a little less, then you can use:

svn co https://svn.kenai.com/svn/netrexx~netrexxc-repo/netrexxc/trunk .

In the trunk directory the most current version of the source code, including that of the
documentation, is to be found.

107

https://svn.kenai.com/svn/netrexx~netrexxc-repo
https://kenai.com/projects/netrexx

29.2 The buildfile

Theofficial buildfile is called build.xml and the ant utility is used for building NetRexx
from source. This file contains a number of tasks. To build the translator, make sure that
netrexx/netrexxc/trunk is the current directory, and issue the command:

java -jar ant/ant-launcher.jar compile

followed by

java -jar ant/ant-launcher.jar jars

This will build the compiler from source and create a build directory in the current di-
rectory. In build/lib the NetRexxC and NetRexxR jars are put by the archiving process
that is started by the jar task. These new jars can be used immediately, by having them
(NetRexxC will suffice) on the classpath.

29.3 Testing

Currently, there are two locations that contain the tests.Thefirst is the org.netrexx.process.diag
package, which currently is being integrated into the trunk/test directory. This direc-
tory contains, in addition to the traditional “diag” tests that have been modified to run
under jUnit, some of the tests for the newer functionality.These tests are accessible using
a make process that uses makefile as its build build file. The command

make test

will compile and run the tests; jUnit will report on progress and results.

108

30

Translator inner workings

This chapter includes all documentation on the inner workings of the translator that is
available. Its purpose is to assist with debugging serious problems or ease the introduc-
tion to the toolset for programmers who want to help the open source effort forwards.

30.1 Translator source files

Thetranslator source is part of the package org.netrexx.process.The runtime support,
including the Rexx type, is in the package netrexx.lang.

The source files in table 3 all correspond to a specific NetRexx clause, all created by Rx-
Parser, and all implementing RxClauseParser. Each is responsible for syntax checking,
semantic processing, and code generation for the corresponding clause. RxClass and
RxMethod are the critical classes. RxNop is the simplest. Method-term instructions are
currently handled in RxParser but should have a separate class in this list.

109

TABLE 2: Translator source files

NetRexxC.nrx The ’main program’

nrc.prp Error messages (becomes NetRexxC.properties resource bundle)

RxArray.nrx Parsed array reference

RxClasser.nrx The class ’factory’; finds classes and packages, loads classes, finds fields in pack-
ages, etc.

RxClassImage.nrx Loads and parses a .class file (from zip or directory byte stream)

RxClassInfo.nrx Known information about a class

RxClassPool.nrx Collection of known classes (maintained by RxClasser)

RxClause.nrx The tokens and object corresponding to a clause

RxClauseParser.nrx Interface: all clause objects implement this

RxClauser.nrx Tokenizer (lexical analysis/parse)

RxCode.nrx Represents encoded piece of program (e.g., an expression or clause). Holds
information about the source of the code, and the code itself (currently only
Java source code). At present, RxCode is only used for terms and expressions;
clauses will probably evolve to use RxCode objects too.

RxConvert.nrx Holds the cost and type of a conversion

RxConverter.nrx Determines and costs a conversion/coercion, and effects a particular conver-
sion

RxError.nrx Handle an Error (see also RxQuit and RxWarn)

RxException.nrx Represents a Java exception

RxExprParser.nrx Parse and generate RxCode for an expression

RxField.nrx Represents a field (property or method)

RxFixup.nrx Changes the sourcefile attribute in a .class file to point to Foo.nrx constant in-
stead of Foo.java

RxFlag.nrx Represents option flags

RxLanguage.nrx Language version and date, and major change list

RxLevel.nrx Represents a level of semantic nesting. 0=class, 1=method, 2 is method body
(do groups, etc.)

RxMessage.nrx Displays/queues an error or warning message. (Offspring of RxError, RxQuit,
RxWarn)

RxPackageInfo.nrx Describes a known package

RxParser.nrx NetRexx-specific program/clause parser

RxProgram.nrx Represents a compilation unit (==Program)

RxQuit.nrx Handles severe errors (see also RxError, RxWarn)

RxSignature.nrx Represents a type

RxStreamer.nrx Handles input and output streams (files), including formatting of output Java
source

RxTermParser.nrx Parses terms in expressions

RxToken.nrx Represents a lexical token (see RxClauser)

RxTracer.nrx Generates code for tracing of various types

RxTranslator.nrx ’top-level’ controller for parsing and compilation.
110

TABLE 3: Translator source files -2

RxVariable.nrx Represents a local or class variable, and its cross-reference list

RxVarpool.nrx Collection of known RxVariables

RxWarn.nrx Handles Warnings

RxChunk.nrx A chunk of Java sourcecode, destined for the output file (planned to be replaced by
RxCode objects, long term)

TABLE 4: Translator source files -3

RxAssign.nrx handles all assignment clauses

RxCatch.nrx
RxClass.nrx
RxDo.nrx
RxElse.nrx
RxEnd.nrx
RxExit.nrx
RxFinally.nrx
RxIf.nrx
RxImport.nrx
RxIterate.nrx
RxLeave.nrx
RxLoop.nrx
RxMethod.nrx
RxNop.nrx
RxNumeric.nrx
RxOptions.nrx
RxOtherwise.nrx
RxPackage.nrx
RxParse.nrx
RxProperties.nrx
RxReturn.nrx
RxSay.nrx
RxSelect.nrx
RxSignal.nrx
RxThen.nrx
RxTrace.nrx
RxWhen.nrx

111

30.2 Method resolution

Until version 3.01 of theNetRexx translator a slightly different way ofmethod resolution
was used. The chances that this will ever impact your program are very small, but for the
sake of history preservation (and to clarify the process that is used) the way in which the
translator looks up and decides to find methods in the inheritance tree are documented
here.

112

Index

Class, 67, 69, 85
Options, 72
Properties, 57, 58
Rexx, 24, 25, 35, 42, 43, 53, 61
arg, 21–23, 41, 44, 45, 53, 61, 67, 69
binary, 9, 59, 60, 71, 72, 74, 75, 83
catch, 23, 25, 35, 42, 43, 58–61, 67–70, 72,

73, 75, 78–80
class, 9, 24, 26, 33–35, 44, 52, 57–61,

71–75, 78, 79
constant, 22
dependent, 75
digits, 9, 43, 44
do, 23, 25, 33, 35, 41–44, 58, 61, 62, 67,

69, 71–73, 75, 78–80
else, 3, 23, 33, 35, 44, 45, 60, 62, 67, 69
end, 7–9, 23–25, 33, 35, 37, 41–45, 48, 50,

57–62, 67–70, 72, 73, 75, 76, 78–80, 84,
90

exit, 23, 41, 42, 45, 67, 69
extends, 26, 35, 58–61, 74, 75
finally, 42
for, 9, 57, 58, 84
forever, 8, 35, 48, 72
form, 9
if, 3, 8, 23–25, 33, 35, 41–45, 48, 59–62,

67, 69
implements, 26, 34, 35, 57, 59–61, 73, 78,

79
import, 22, 26, 35, 67, 69, 71–74, 78, 79,

83, 86, 87, 89–93
indirect, 24, 26
inheritable, 57, 58, 74
interface, 26
interpret, 86
leave, 8, 42, 48
loop, 7–9, 23–25, 35, 37, 42–45, 48, 50,

57–61, 67–70, 72, 75, 84, 90
method, 9, 21, 22, 24–26, 33, 35, 36, 43–45,

52, 53, 57–61, 71–75, 78–80, 85, 86, 90
nop, 35, 62
numeric, 43, 44
options, 9, 43, 44, 59, 60, 75, 83
otherwise, 43
over, 37
package, 85

parent, 75, 76
parse, 23, 24, 35, 41, 42, 44, 45, 47–50,

61, 67, 69, 83–85
private, 24, 33, 35, 43, 45, 71, 72, 75, 79
properties, 24, 26, 33, 35, 52, 71–75, 79
protect, 33, 36, 75
public, 9, 35, 43
queue, 71–73
return, 9, 24–26, 33, 43–45, 59, 60, 62, 73,

74
returns, 21, 22, 24, 25, 33, 43, 60, 61, 73,

74, 84–86
say, iii, 3, 6–9, 21, 23, 25, 26, 35, 37,

41–45, 47–50, 53, 57, 58, 61, 67–75,
78–80, 87, 90, 92, 93

select, 43, 62
signal, 43
signals, 33, 35, 43, 75, 80
sourceline, 9
static, 9, 21, 22, 33, 35, 43–45, 53, 61,

71, 72, 74, 79, 80, 90
super, 9, 26, 58, 75
then, 3, 8, 23–25, 33, 35, 41–45, 48, 59–62,

67, 69
this, 9, 24–26, 35, 59–61, 73–75, 78, 80
to, 7, 9, 43, 45, 50, 59, 68
trace, 9, 52, 55
until, 24
upper, 43
volatile, 74
when, 43, 62
while, 23, 25, 59–61, 67–70, 75, 90

applets for the Web, writing, 59
application programming interface, for

interpreting, 83
ArchText example, 59
arg words option, 14

binary arithmetic, used for Web applets, 59
binary option, 12

capturing translator output, 21
classpath option, 14
comments option, 12
compact option, 12
compiling,from another program, 21

113

completion codes, from translator, 21
constructor, in NetRexxA API, 84
crossref option, 12

decimal option, 12
diag option, 12

exec option, 14
exiting method, in NetRexxA API, 85
explicit option, 12

flag, binary, 12
flag, nocompile, 14
flag, noconsole, 15
flag, run, 15
flag, savelog, 15
flag, time, 15
flag,arg words, 14
flag,classpath, 14
flag,comments, 12
flag,compact, 12
flag,crossref, 12
flag,decimal, 12
flag,diag, 12
flag,exec, 14
flag,explicit, 12
flag,format, 13
flag,java, 13
flag,keep, 14
flag,keepasjava, 14
flag,logo, 13
flag,sourcedir, 13
flag,strictargs, 13
flag,strictassign, 13
flag,strictcase, 13
flag,strictimport, 13
flag,strictmethods, 13
flag,strictprops, 13
flag,strictsignal, 13
flag,symbols, 13
flag,trace, traceX, 13
flag,utf8, 13
flag,verbose, verboseX, 14
flag,warnexit0, 15
format option, 13

getClassObject method, in NetRexxA API, 85

HTTP server setup, 62

interpreting,API, 83
interpreting,using the NetRexxA API, 83
interpreting/API example, 83

java option, 13
javac option, 14

keep option, 14
keepasjava option, 14

logo option, 13

NervousTexxt example, 59

NetRexxA, API, 83
NetRexxA, class, 83
NetRexxA/constructor, 84
nocompile option, 14
noconsole option, 15

option, binary, 12
option, nocompile, 14
option, noconsole, 15
option, run, 15
option, savelog, 15
option, time, 15
option,arg words, 14
option,classpath, 14
option,comments, 12
option,compact, 12
option,crossref, 12
option,decimal, 12
option,diag, 12
option,exec, 14
option,explicit, 12
option,format, 13
option,java, 13
option,keep, 14
option,keepasjava, 14
option,logo, 13
option,sourcedir, 13
option,strictargs, 13
option,strictassign, 13
option,strictcase, 13
option,strictimport, 13
option,strictmethods, 13
option,strictprops, 13
option,strictsignal, 13
option,symbols, 13
option,trace, traceX, 13
option,utf8, 13
option,verbose, verboseX, 14
option,warnexit0, 15

parse method, in NetRexxA API, 84
PrintWriter stream for capturing translator

output, 21

ref /API/application programming interface,
83

return codes, from translator, 21
run option, 15
runtime/web server setup, 62

savelog option, 15
sourcedir option, 13
strictargs option, 13
strictassign option, 13
strictcase option, 13
strictimport option, 13
strictmethods option, 13
strictprops option, 13
strictsignal option, 13
symbols option, 13

114

time option, 15
trace, traceX option, 13

utf8 option, 13

verbose, verboseX option, 14

warnexit0 option, 15
Web applets, writing, 59
Web server setup, 62
WordClock example, 60

115

9 789081 909006

ISBN 978-90-819090-0-6

116

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	Meet the Rexx Family
	Once upon a Virtual Machine
	Once upon another Virtual Machine
	Features of NetRexx

	Learning to program
	Console Based Programs
	Comments in programs
	Strings
	Clauses
	When does a Clause End?
	Long Lines
	Loops
	Special Variables

	NetRexx Options
	NetRexx as a Scripting Language
	NetRexx as an Interpreted Language
	NetRexx as a Compiled Language
	Compiling from another program
	Compiling from memory strings

	Calling non-JVM programs
	Using NetRexx classes from Java
	Classes
	Classes
	Dependent Classes
	Properties
	Methods
	Inheritance
	Overriding Methods
	Overriding Properties

	Using Packages
	The package statement
	Translator performance consequences
	Some NetRexx package history
	CLASSPATH

	Programming Patterns
	Singleton
	Observable and Events
	Recursive Parse
	More Observer/Observable

	Incorporating Class Libraries
	A Word About Java Generics
	The Collection Classes

	Input and Output
	The File Class
	Streams
	Line mode I/O
	Byte Oriented I/O
	Data Oriented I/O
	Object Oriented I/O using Serialization
	The NIO Approach

	Algorithms in NetRexx
	Factorial
	Fibonacci

	Using Parse
	Literal Parsing
	Positional Parsing
	Variable Templates

	Using Trace
	Tracing Program Statements
	Tracing Variables
	Examples
	Tracing Notes

	Concurrency
	Threads

	User Interfaces
	AWT
	Web Applets using AWT
	Swing
	Web Frameworks

	Network Programming
	Using Uniform Resource Locators (URL)
	TCP/IP Socket I/O
	RMI: Remote Method Interface

	Database Connectivity with JDBC
	WebSphere MQ
	MQTT
	Pub/Sub with MQ Telemetry

	Component Based Programming: Beans
	Using the NetRexxA API
	The NetRexxA constructor
	The parse method
	The getClassObject method
	The exiting method
	Interpreting programs contained in memory strings

	Interfacing to Scripting Languages
	Which JSR223 engines are on my system?
	Selecting an engine
	Evaluating a script
	Bindings
	Interpreted execution of NetRexx scripts from jrunscript
	Using JavaScript from NetRexx programs
	Using AppleScript on MacOSX
	Execution of NetRexx scripts from ANT tasks
	Integration of NetRexx scripting in applications
	Interfacing between ooRexx and NetRexx using BSF4ooRexx
	General jsr-223 Implementation Notes

	NetRexxTools
	Editor support
	Java to Nrx (java2nrx)

	Using Eclipse for NetRexx Development
	Downloading Eclipse
	Setting up the workspace
	Shellshock
	Installing SVN
	Downloading the NetRexx project from the SVN repository
	Setting up the builds
	Using the NetRexx version of the NetRexx Ant task
	Setting up the Eclipse NetRexx Editor Plugin (Optional)

	Platform dependent issues
	Mobile Platforms
	IBM Mainframe: Using NetRexx programs in z/OS batch

	Building the NetRexx translator
	Repository
	The buildfile
	Testing

	Translator inner workings
	Translator source files
	Method resolution

	Index

