
Pipelines for NetRexx
QuickStart Guide
Ed Tomlinson Jeff Hennick René Jansen

Version 3.09-GA of September 30, 2020

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-3-7

Publication Data

©Copyright The Rexx Language Association, 2011- 2020

All originalmaterial in this publication is published under theCreativeCommons - ShareAlike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-3-7

9 789081 909037

ISBN 978-90-819090-3-7

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

The NetRexx Programming Series i

Typographical conventions iii

1 Introduction 1

2 The Pipeline Concept 2

2.1 What is a Pipeline? 2

2.2 Stage 2

2.3 Device Driver 3

3 Running pipelines 4

3.1 Configuration 4

3.2 From the NetRexx Workspace (nrws) with direct execution 5

3.3 From the command line with direct execution 5

3.4 Precompiled Pipelines 6

3.5 Compiled from an .njp file 6

3.6 Compiled from an .njp file with additional stage definitions in NetRexx 7

4 Example Session 8

5 Write your own Filters 12

6 More advanced Pipelines 14

7 Device Drivers 15

8 Record Selection 16

9 Filters 17

10 Other Stages 18

11 Multi-Stream Pipelines 19

12 Pipeline Stalls 21

II

13 How to use a pipe in a NetRexx program 23

14 Giving commands to the operating system 26

14.1 Built-ins 26

15 TCP/IP Networking using Pipes for NetRexx 27

16 Selecting from databases with Pipelines for NetRexx 29

17 The Pipes Runner 30

18 The Pipes Compiler 31

19 Built-in Stages 32

20 Appendix A 75

List of Figures 83

List of Tables 83

Index 87

Differences with CMS Pipelines 88

III

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

i

Quick Start Guide This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRexx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRexx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRexx QuickStart Guide The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetRexx.

ii

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the con-

sole, are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing
1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� ��

�visibility

�

�
�modifier

�

�
�deprecated

�� �
�

�
�unused

�� �
�

iii

iv

1

Introduction

APipeline, or Hartmann Pipeline12, is a concept that extends and improves pipes as they
are known from Unix and other operating systems. The name pipe indicates an inter-
process communication mechanism, as well as the programming paradigm it has intro-
duced. Compared to Unix pipes, Hartmann Pipelines offer multiple input- and output
streams, more complex pipe topologies, and a lot more.
Pipelines were first implemented on VM/CMS, one of IBM’s mainframe operating sys-
tems.This versionwas later adapted to run underMUSIC/SP and TSO/MVS (now z/OS)
and has been part of several product configurations. Pipelines are widely used by VM
users, in a symbiotic relationship with REXX, the interpreted language that also has its
origins on this platform.
Pipes for NetRexx is the implementation of Pipelines for the Java Virtual machine. It
is written in NetRexx and pipes and stages can be defined using this language. It can
run on every platform that has a JVM (Java Virtual Machine) installed. This portable
version of Pipelines was started by Ed Tomlinson in 1997 under the name of njPipes,
whenNetRexxwas still very new, andwas open sourced in 2011, soon after theNetRexx
translator itself.The included stages have always been open source. It was integrated into
the NetRexx translator in 2014 and first released with version 3.04.
In version 3.08, there are important improvements that enable pipelines to be run
from the command line, and from the NetRexx REPL program nrws, the NetRexx
Workspace. The pipes compiler has been renamed pipc, while the pipes runner compo-
nent keeps using the name pipe.

1//https://en.wikipedia.org/wiki/CMS_Pipelines
2This page used to be called Hartmann Pipeline, but was renamed to CMS Pipelines in 2016

1

//https://en.wikipedia.org/wiki/CMS_Pipelines

2

The Pipeline Concept

2.1 What is a Pipeline?

The pipeline terminology is a set of metaphores derived from plumbing. Fitting two or
more pipe segments together yields a pipeline. Water flows in one direction through the
pipeline.
There is a source, which could be a well or a water tower; water is pumped through
the pipe into the first segment, then through the other segments until it reaches a tap,
and most of it will end up in the sink. A pipeline can be increased in length with more
segments of pipe, and this illustrates the modular concept of the pipeline.
When we discuss pipelines in relation to computing we have the same basic structure,
but instead of water that passes through the pipeline, data is passed through a series of
programs (stages) that act as filters.
Data must come from some place and go to some place. Analogous to the well or the
water tower there are device drivers that act as a source of the data, where the tap or the
sink represents the place the data is going to, for example to some output device as your
terminal window or a file on disk, or a network destination.
Just as water, data in a pipeline flows in one direction, by convention from the left to the
right.

2.2 Stage

A program that runs in a pipeline is called a stage. A program can run in more than one
place in a pipeline - these occurrences function independent of each other.
The pipeline specification is processed by the pipeline compiler, and it must be contained
in a character string; on the commandline, it needs to be between quotes, while when
contained in a file, it needs to be between the delimiters of a NetRexx string. An solid
vertical bar | is used as stage separator, while other characters can be used as an option
when specifiying the local option for the pipe, after the pipe name.3

When looking a two adjacent segments in a pipeline, we call the left stage the producer
and the stage on the right the consumer, with the stage separator as the connector.

3In versions before Pipelines for NetRexx 3.08, the default was the exclamation mark (!), which use was discontinued in favour
of conformity with VM/CMS Pipelines.

2

2.3 Device Driver

A device driver reads from a device (for instance a file, the command prompt, a machine
console or a network connection) or writes to a device; in some cases it can both read
and write. An example of a device drivers are < and > ; these read and write data from
and to files.
A pipeline can take data from one input device and write it to a different device. Within
the pipeline, data can be modified in almost any way imaginable by the programmer.
The simplest process for the pipeline is to read data from the input side and copy it
unmodified to the output side. Chapter 7 on page 15 shows the currently supported
input- and output devices. The pipeline compiler connects these programs; it uses one
program for each device and connects them together.
The inherent characteristic of the pipeline is that any program can be connected to any
other program because each obtains data and sends data throug a device independent
standard interface. This becomes apparent when data can be in-line (specified or gen-
erated within the pipeline specification), come in (or be output) to devices like disk or
tape, or be handled through a network – all these formats can be processed by the same
stages.
The pipeline usually processes one record (or line) at a time. The pipeline reads a record
for the input, processes it and sends it to the output. It continues until the input source
is drained.

3

3

Running pipelines

There are a number of ways to specify and run a pipeline. A little setup is necessary.

3.1 Configuration

The required configuration is minimal. The NetRexxF.jar (java archive file) needs to
be on the classpath environment variable (NetRexxC.jar, which is smaller, will suffice
when there is a working javac compiler). Also, the current directory (.) needs to be on the
classpath. It is convenient to have aliases or shell scripts defined as abbreviations for the
invocation of the pipe, pipc (pipe compiler) and nrc (netrexx compiler) utility programs.
Aliases are preferable because some shell processors have idiosyncrasies in the treatment
of script arguments. With an alias we can be sure that every NetRexx program sees its
arguments the same way.

.bash_aliases:
alias pipc=”java org.netrexx.njpipes.pipes.compiler”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias nrc=”java org.netrexx.process.\nr{}C”

For Windows, the following works: file pipe.bat:

@java -cp ”%NETREXX_HOME%\lib\NetRexxF.jar;%CLASSPATH%” org.netrexx.njpipes.pipes.runner %*

For Windows, the following works: file pipc.bat:

@java -cp ”%NETREXX_HOME%\lib\NetRexxF.jar;%CLASSPATH%” org.netrexx.njpipes.pipes.compiler %*

Do note that the Windows .bat files assume that the NETREXX_HOME environment
variable is set correctly, that is, to the top of the path where NetRexx is installed. This
prepends the NetRexxF.jar file to an already existing CLASSPATH. For the development
of local classes (that is, all precompiled pipelines), a dot (’.’), needs to be on this CLASS-
PATH.

These aliases (or command scripts (in Windows it is called a batch file) enable you to do
the following:
To run a pipeline from the commandline, type:

1 pipe 'gen 100 | dup 999 | count words | console'

Remember to use double quotes on Windows shells. When the pipe alias or command
script is not on your path, you can also use:

4

1 java org.netrexx.njpipes.pipes.runner 'gen 100 | dup 999 | count words | console'

In both cases the answer should be 100000 - you have generated one hundred thousand
lines, but fortunately you did not print them, but only counted them. To see them all,
you can insert a | console | stage in between the dup and the count stage.
After we have verified the working of the command processors, we will discuss in the
next section which possibilities you have for running pipelines in day-to-day usage.

3.2 From the NetRexx Workspace (nrws) with direct execution

The first way is the most straightforward, and highly recognizable for users of CMS
Pipelines, as it mimics the way a pipe is run in the CMS 3270 interface. It also yields the
best response time, specially when the nrws.input file in your home directory preloads
the Pipes subsystem, as in this example:

-- preload the pipe machinery for good response on first pipe
pipe literal Pipelines processor loaded. | console

This is not magic: we do a Pipe execution (that displays: “Pipe processor loaded”) which
loads all necessary classes and leaves them in memory. We can then type this command
after the nrws> prompt.

FIGURE 1: Run in the NetRexx Workspace

1 pipe literal a man a plan a canal panama | reverse | console

Executed this way, the executed class image will not be written to disk.The timing option
is great for prototyping and performance work.

3.3 From the command line with direct execution

The only difference is that after the pipe command, the rest of the specification needs to
be quoted in the command shells of Linux, Windows and macOS. In CMS, the pipeline
specification can also be quoted - in this way, a pipeline can be entirely portable. Win-
dows needs double quotes, zVM/CMS does not need quotes, but if they are used they
need to be double quotes. macOS and Linux can use single or double quotes, in most
cases.

1 pipe "literal a man a plan a canal panama | reverse | console"

Executed this way, the executed class image again will not be written to disk.
5

FIGURE 2: Run from the OS command line

3.4 Precompiled Pipelines

In this mode, which uses the pipc command (for pipe compiler), a .class file will be
persisted to disk. This class can be run as many times as needed, without the overhead of
compilation. This also would be the right mode for pipes that take different arguments
when re-run. The pipe name needs to be specified, and will be the class name. When the
class name exists, it will be overwritten.

1 pipc "(test1) literal a man a plan a canal panama | reverse | console"

FIGURE 3: Precompile a Pipeline from the OS command line

This will yield a

test1.class

classfile, which can be executed by the java virtual machine.
The file test1.class can be run with the command4:

java test1

Be sure to leave out the .class suffix when invoking java.

3.5 Compiled from an .njp file

When compiled from a file, the pipe specificationmust not be quoted. Pipes can be spec-
ified in so-called /emphPortraitMode, which is the standard formore complex pipelines
as it is easier to read. An example is:

1 pipe (appendtest)
2

3 gen 100 |
4 append gen 50 |
5 rexx locate /0/ |
6 console

4or an appropriate shortcut in modern shells

6

3.6 Compiled from an .njp file with additional stage definitions in
NetRexx

An example (length1.njp) is:
1 pipe (lengthp) < output.lst | length1 | console
2

3 import org.netrexx.njpipes.pipes.
4 class length1 extends stage final
5 method run()
6 do
7 loop forever
8 line = rexx peekto()
9 l = line.length

10 output(l l.d2x line)
11 readto()
12 end
13 catch StageError
14 rc = rc()
15 end
16 exit(rc*(rc<>12))

In this example, the name of the generated pipe is lengthp, while the name of the custom
stage is length1. Be sure to invoke the right class, invoking length1 will have the JVM
complain about a non-existing main method. This class (lengthp) will be generated by
the command:

pipc length1

note that the .njp suffix is optional when invoking the pipes compiler. When run, it tries
to read the contents of the file length.nrx and will put out its lines, prepended by the line
length in decimal and hex - because that is what the (in NetRexx) specified homegrown
stage does.

7

4

Example Session

Imagine you have landed a job as programmer in an accounting firm, and on your first
day there is a question about backups; the backup process takes too long.There is an urgent
need to identify the files that are produced on this day. You knowhow to this, of course, it
is only some 20 lines of code; use the File() API, fill a collection class (you are thinking of
an ArrayList already), or a TreeMap to sort the File object on last modified date already,
call an instance of the Calender class, run a comparison - get that compiled and test it a
bit - an hour or so would be sufficient. Of course, you need to install the Java compiler,
because all machines have Java nowadays, but just not the compiler. But if you want to
really impress people, you should type in a command line and be done with it. For this
you can useNetRexx pipelines. Fortunately, you emailed theNetRexxF.jar to yourself so
you save it on themachine, and you’re in business right away; you add it to the classpath.
Your first pipeline command should just test the waters. For this chapter, we will use the

nrws

program. You send a command into the pipeline, and get its output:
1 pipe command ls -laFTl | console

FIGURE 4: example 1

The ls command with the flags is the unix way to get a directory listing - for Windows
8

we would use dir. In this case, we send the output into the pipeline, but as the last stage
(called a pipe ’sink’) occurs immediately after that, every line will be echoed on the con-
sole. A number of lines like these will be displayed on the console, as in example 1.
You see straight away that the relevant info is not in the first columns, and not in consec-
utive columns; we want to know the date (whether it is today or not) and not the time.
So we filter this out of every line with a specs stage, as in example 2.

1 pipe command ls -laFTl | specs 42-47 1 58-* 8 | console

FIGURE 5: example 2

We can easily sort this, with almost no programming:
1 pipe command ls -laFTl | specs 42-47 1 58-* 8 | sort | console

So what now comes out of the pipeline is sorted (see example 3). But this is a bit funny,
we would like to see chronological order of course, so we switch around some columns
with another specs stage:

1 pipe command ls -laFTl | specs 42-47 1 58-* 8 | specs 7-11 1 1-6 7 12-* 12 | sort |
console

which is very near to what we want (see example 4). Only thing to do now is to filter on
the date. We use the locate stage and hardcode the date for now. Let’s say it is the 2nd of
March, 2019:

1 pipe command ls -laFTl | specs 42-47 1 58-* 8 | specs 7-11 1 1-6
2 7 12-* 12 | locate /2019 Mar 2/ | sort | console

As example 5 shows, on that day there were only two files produced. Also, because this
is a short list now, you can see that Pipelines runs this pipe in 0.157 seconds, because we
switched on the time option in nrws. Normally, you would specify your pipeline in a file
and use portrait mode: commandtest.njp:

1 pipe (newfiles)

9

FIGURE 6: example 3

2 command ls -laFTl |
3 specs 42-47 1 58-* 8 |
4 specs 7-11 1 1-6 7 12-* 12 |
5 sort |
6 locate /2019 Mar 2/ |
7 console

The filename is different from the generated class file name, on purpose. You could, and
would, put different related pipelines in one file. Then we do a:

pipc commandtest && java newfiles

10

FIGURE 7: example 4

FIGURE 8: example 5

11

5

Write your own Filters

So we have seen in the previous example that it is not too hard to make a simple pipeline
out of things called ’device drivers’ (such as command, for OS commands, ’<’ for reading
files on disk, and literal, for inserting literal strings into a pipeline, filters, and sinks.
When a filter is not delivered in the standard set of stages, it is very easy to make one
yourself in the NetRexx language. The model for this closely follows the way it is done
with CMS Pipelines and Classic Rexx. Imagine, for the sake of argument (and a simple
example5), that you have an assignment to quickly reverse a string.

1 /* BAGVENDT REXX -- Reverse the contents of lines in the pipeline */
2 signal on error
3 do forever
4 'peekto data'
5 'output' reverse(data)
6 'readto'
7 end
8 error: exit RC*(RC<>12)

And you would need to remember to call your filetype REXX instead of EXEC. The
peekto reads the input but does not actually commit the read yet, so you can read it one
more time with knowledge about the contents. The output pushes its argument back
into the pipeline. The readto reads and commits the read so the line is really processed
and we can go to the next one.
In NetRexx, that would be about the same, but for some small changes incurred by the
object orientedmodel of NetRexx, which does not exist in Classic Rexx. Here peekto(),
readto() and output() aremethod calls on the stage object.Thiswill bemade address-
able by the import from org.netrexx.njpipes.pipes. (file: bagvendt.nrx)

1 import org.netrexx.njpipes.pipes.
2 class bagvendt extends stage
3 method run()
4 loop forever
5 line = Rexx peekto()
6 output(line.reverse())
7 readto()
8 catch StageError
9 rc = rc()

10 end
11 exit(rc*(rc<>12))

So that would look fairly familiar, and admittedly, a bit easier for us already well versed
in NetRexx. We can test this by building a pipeline and running the filter on its own
source:

pipe ”literal abcd | bagvendt | console”

5From the document CMS Pipelines Explained, by John P. Hartmann

12

If you have a CMS handy, that would be:

pipe literal abcd | bagvendt | console

on the first, Classic Rexx version of the filter - but the quoted version also works onCMS.

FIGURE 9: BAGVENDT under VM/CMS

FIGURE 10: bagvendt.nrx under NetRexx

13

6

More advanced Pipelines

Admittedly, the examples in the previous chapters could have been done withUnix pipes
or at least with incorporation of stream utilities like awk or sed.
To get a good idea of what can be done with Pipelines for NetRexx, look at the tasktest
pipe in the examples directory. It 6 implements the shell of a multitasking server - using
about eight stages. The file examples/tcptask.njp contains an example of this technique
being used.

1 --tasktest.njp
2

3 pipe (tasktest stall 2000 -gen)
4

5 literal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T |
6 dup 2 |
7 split | -- supply work for task stage
8

9 ptimer |
10 a: deal secondary ? -- send work to task stage requesting work
11 b: faninany |
12 elastic | -- buffer requests to so no deadlocks
13 ptimer |
14

15 a: |
16 copy | -- buffer work so no deadlocks
17 task 1 | -- worker task 1
18 b: ?
19

20 a: |
21 copy |
22 task 2 | -- worker tast 2...
23 b: ?
24

25 a: |
26 copy |
27 task 3 |
28 b:

Before discussing this example in-depth, we need to go into some more basic concepts.

6using code from Melinda Varians ’Cramming for the Journeyman Plumber Exam’ paper

14

7

Device Drivers

Pipelines for NetRexx contains the following device drivers:

< read from a fle
> write to a file (which is overwritten if it exists)
» append to a file (which is created if it does not exist)
diskr read from a fle
diskw write to a file (which is overwritten if it exists)
diska append to a file (which is created if it does not exist)
diskslow read, create or append to a file
array manipulate arrays
arraya manipulate arrays
arrayr manipulate arrays
stem manipulate stems
stema manipulate stems
stemr manipulate stems
vector manipulate vectors
vectora manipulate vectors
vectorr manipulate vectors
var read or set a variable in a NetRexx program
zip compress a set of files (0 or more) into a zip archive
unzip decompress a set of files (0 or more) from a zip archive
listzip list a zip file directory
console read from, or write to a terminal (window)
hole destroy data
delay suspend stream
literal write the argument string
strliteral write the argument string
sqlselect select from any jdbc source
xrange write a character range

15

8

Record Selection

Various stages can select records and work on data in the pipeline. These are stages
called select, sort, specs, locate, etcetera. For a complete description we refer to the IBM
Pipelines documentation.
These are the main selection stages supported in Pipelines for NetRexx:

between selects records between labels
drop discard records from the beginning or the end of a file
find select lines
strfind select lines
frlabel select records from the first one with leading string
strfrlabel select records from the first one with leading string
inside select records between labels
locate select records between labels
nfind select lines using xedit nfind logic
strnfind select lines using xedit nfind logic
nlocate select lines without a string
notinside select records not between labels
outside select records not between labels
pick select records that satisfy a relation
take select records from the beginning or the end of a file
tolabel select records to the first one with leading string
strtolabel select records to the first one with leading string
unique discard or retain duplicate lines

16

9

Filters

buffer buffer records
chop truncate the record
join join records
pad expand short records
split split records relative to a target
change substitute contents of records
specs rearrange contents of records
xlate transliterate contents of records
copy copy records
count count lines, words and bytes
dup duplicate the object
reverse reverse contents of records
timestamp prefix date and time to records
append put output from device driver after data on the primary input
casei run selection stage in a case-insensitive manner
not run stages with output streams inverted
prefix Blocks its primary input and excutes stage supplied as an argument
zone run selection stage on subset of input record
elastic buffer sufficient records to prevent stall
fanin concatenate streams
faninany copy records from whichever input stream has one
gate pass records until stopped
juxtapose preface record with marker
overlay overlay data from input streams
command issue a command and write response to pipeline

17

10

Other Stages

query check version and level of Pipelines for NetRexx
– – insert comments into a pipeline
comment insert comments into a pipeline

18

11

Multi-Stream Pipelines

One of the defining differences with Unix pipes is the possibility to define multi-stream
pipelines. The selection stages from the previous chapter all have secondary streams.
What the selection parameters have discarded, seem to have discarded, is in reality not
gone. In fact, Pipelines for NetRexx throws very little away during execution.
The way to use the not-selected part of the data through these secondary streams is ex-
plained in this chapter; it is this capacity that constitutes the freedom to work with many
different streams in one pipeline; where Unix pipes are limited to not very much more
than stdin, stdout, stderr – Pipelines for NetRexx enables the user to define as many
streams as necessary to accomplish the task at hand in an efficient manner.
Let us look at a simple selection like the following:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | locate /oo/ |
2 console

foo

The string that makes it through the selection that is done by the locate is ’foo’ - it is the
only one that is captured by the /oo/ filter.
The rest of the words is not gone, however, and we can use these in further processing
by using the secondary stream that locate provides.
To prepare for this, we give the secondary stream a name by providing a label for it, we
call it, in absence of any creativity, rest7. Also, we send the selected output, foo into a
hole stage, where it disappears.

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 hole

As predicted, there is no output. To get to the rest of the words, unselected by locate, we
connect the secondare output stream to a new pipe, using the ’?’ (the default pipe-end
character) like this:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 hole ? rest: | console

The output is now:

bar
baz
frob
frobnitz
frobbotzim

7often, you will see it being called ’a:’

19

Instead of sending the original output into a black hole, we could have also gone further
with it, and, for example, reverse it:

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 reverse | console ? rest: | console

The output is now:

oof
bar
baz
frob
frobnitz
frobbotzim

Likewise, we can specify more filter stages in the second, attached pipeline, and bifurcate
the pipeline even further.

1 pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
2 reverse | console ? rest: | locate /botzim/ | console

The output is now:

oof
frobbotzim

It is good to define and implement secondary streams when you write your own stages.

20

12

Pipeline Stalls

With multistream pipelines a new problem sometimes rears its head - a Pipeline stall,
also called deadlock. This happens when stages wait for input that cannot be delivered,
in a way that ensures that it cannot be delivered.
Pipes for NetRexx detects deadlocks and outputs information to allow you to fix the
problem. Consider the following session:

1 pipe literal test | a: fanin | console | a:

FIGURE 11: Deadlock detection

We can see that there are three stages in the Running state. None have any return codes
set. The Flags tell us that all the stages are waiting for an output to complete.
The ’->’ showwhich stream is selected. From this we can see console_3 is trying to output
to fanin_2.Unfortunately fanin_2 iswaiting for output on stream0 to complete, it cannot
read the data waiting on in stream 1. Hence the stall.
The strings after Dumping and Monitored by are the autogenerated class names. When
you name your pipelines with precompiled pipes yourself, the names you have given
them will be displayed here.
When a stream has data being output, there is a boolean flag following the name of the
stage the stream is connected to. This tracks the peek state of the object. For an output

21

stream, true means the following stage has peeked at the value. With input streams, the
current stage has seen the value when its true.
When a stage is multithreaded, like elastic, you can get flags of 3 or 5. This means that
threads are waiting on output and read, or output and any. When using multithreaded
stages, only one thread should use output unless it is serialized using protected or syn-
cronized blocks.
When a stage has a pending sever or autocommit, flag bits are set too.

22

13

How to use a pipe in a NetRexx program

This shows how to use a pipe in a NetRexx program:
1 class testpipe
2

3 method testpipe(avar=Rexx)
4

5 F = Rexx 'abase'
6 T = Rexx 1
7

8 F[0]=5
9 F[1]=222

10 F[2]=3333
11 F[3]=1111
12 F[4]=55
13 F[5]=444
14

15 pipe (apipe stall 1000)
16 stem F | sort | prefix literal {avar} | console | stem T
17

18 loop i=1 to T[0]
19 say 'T['i']='T[i]
20 end
21

22 method main(a=String[]) static
23

24 testpipe(Rexx(a))

A couple of things can be seen in this example. First that it is simple to pass NetRexx
variables to pipes using stem. Also look at the phrase {avar}. It passes the NetRexx
variable’s value to the stage at runtime. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.
Another thing to note is that the pipe extraction program is fairly smart. It detects when
pipes takes several lines. As long as there are stages, or the current line ends with a stage-
sep or stageend character, or the next line starts with a stagesep or stageend character. It
gets added to the pipe.
The arg(), arg(rexx) or arg(null) methods get the arguments passed to a stage or pipe.
To get the complete rexx string of an argument use arg(). To get the nth word of a rexx
argument use arg(n). When using pipes in netrexx code you can use arg(’name’) to get
the named argument. If the class of the argument is not rexx use arg(null) to get the
object.
In .njp files you can use avar phrase actually just shorthand for arg(’avar’). The following
example shows what has to be done in a stage to access the rexx variables passed by VAR,
STEM and OVER. The real over stage is a bit more complete.

1 -- over.nrx
2 class over extends stage final
3

4 method run() public
5 a = getRexx(arg())
6 loop i over a

23

7 output(a[i])
8 catch StageError
9 rc = rc()

10 end
11

12 exit(rc*(rc<>12))

The getRexx method is passed the name of a string by the pipe. In the previous example
it would be passed A and would return an Object pointer to A in testpipe. If you wish to
replace a stream this can be done using connectors. For example look at the following
fragment:

-- examples\calltest.njp
pipe (callt1) literal test | calltest {} | console

1 import org.netrexx.njpipes.pipes.
2

3 class calltest extends stage final
4

5 method run() public
6

7 do
8 a = arg()
9

10 callpipe (cp1) gen {a} | *out0:
11

12 loop forever
13 line = peekto()
14 output(line)
15 readto()
16 end
17

18 catch StageError
19 rc = rc()
20 end
21

22 exit(rc*(rc<>12))

Running the callt1 pipe with an argument of 10 would pass the 10 to calltest via and
arg(). Then cp1’s gen stage would be passed ’a’ which is set to 10. Since gen generate
numbers in sequence, the console stage of callt1 would get the numbers from 1 to 10.
Now cp1 ends and calltest’s output stream is restored and calltest unblocks and reads the
the literal’s data ’test’ and passes it to console.
The use of only works when compiling from .njp files. It will not work from the com-
mand line. The njpipes compiler recognizes connectors as labels with the following
forms:

*in:
*inN:
*out:
*outN

When N is a whole number, the connector connects input or output stream N of the
stage with the connector. When the label *in or *out, the connector connects the stages’s
current input or output stream with the connector. This is used instead of *: due to the
way the compiler/preprocessor works. If you do not want the stage to wait for the called
pipe to complete you can use addpipe. Here is an example.

1 -- similar to examples\addtest.njp
2
3 a = 100

24

4 b = 'some text for literal'
5

6 addpipe (linktest) literal {b} | dup {a} | *in0:
7

8 loop forever
9 line = Rexx readto()

10 catch StageError
11 end

readto() will get ’some text for literal’ one hundred times.
A quick aside.When writing stages remember that njPipes moves objects through pipes.
Use ’value = peekto()’ instead of ’value = rexx peekto()’ when ever possible. Some of the
supplied stages pass objects with classes other than rexx and forcing rexxwill cause class-
CastExceptions. If a stage needs a rexx object try using the rexx stagemodifier to attempt
to convert the object. Feel free to expand this stage, but please send me the updated ver-
sion.
Serious stage writers will probably want to take a good look at the methods defined in
the NetRexx source package org.netrexx.process.njpipes.stages. There you will
find various methods for parsing ranges. You will also find the stub for the stageExit
compiler exit. It can be used to produce ’on the fly’ code at compile time. You can also
use it to change the topology of the unprocessed part of the pipe. The major use is to al-
low implementations of stages like prefix, append or zone. Its also used to produce better
performing stages, for an example see specs.The compiler also queries the rexxArg() and
stageArg() methods. If your stage expects objects of class Rexx as arguments rexxArg()
should return the number of variables expected. If your stage expects a stage for an ar-
gument, stageArg() should return the word position of the stage.

25

14

Giving commands to the operating system

The command stage is used to issue commands to the operating system and trap the output
to the pipeline. command can receive its input as parameters, or through the pipeline. So

1 pipe literal ls | command | sort | console

is equivalent to:
1 pipe command ls | sort | console

14.1 Built-ins

Some commands, like dir inWindows, do not have a separate executable file; there is no
dir.exe.This can be solved by having the command processor, cmd.exe start its built-in
command. The pipeline would be, for example:

1 pipe literal cmd /c dir | command | sort | console

26

15

TCP/IP Networking using Pipes for NetRexx

As the built-in stages all work ondata that is dispatched through the pipeline, irrespective
of which device driver is used, it is also convenient to do network programming using a
set of pipelines.
The tcplisten stage can be used as a network device driver, as in CMS, but limited to
specification of the port and a timeout value. Below an example of how to implement a
sample TCP/IP client/server application.

1 -- one shot tcpip server
2

3 pipe (tcpserv stall 60000 debug 0)
4 tcplisten 1958 timeout 15000 | tcpexample
5

6 -- one shot tcpip requestor
7

8 pipe (tcpreq stall 60000 debug 0)
9 random {} |

10 specs *-* 1 ,\n, next |
11 tcpclient deblock c localhost 1958 timeout 10000 linger 500 oneresponse |
12 rexx to console
13

14 -- a single tasking server
15

16 options binary
17 import org.netrexx.njpipes.pipes.
18 class tcpexample extends stage
19

20 method run() public
21

22 loop forever
23

24 peekto()
25

26 callpipe (tcplog stall 15000 debug 0)
27 *in0: |
28 take first 1 |
29 console |
30 f: fanin |
31 tcpdata timeout 10000 deblock C oneresponse |
32 elastic |
33 insert /\n/ after |
34 f:
35

36 catch StageError
37 rc = rc()
38 end
39

40 exit(rc*(rc<>12))

This example needs to be compiled with the pipes compiler, see TCP/IP Client/Server
compile, which yields the classes tcpserv and tcpreq, for the server and the requester
component.
Now we can start the generated pipelines each in their own shell window. As can be
seen in TCP/IP server, the class keeps waiting on connections on port 1958 - which is

27

FIGURE 12: TCP/IP Client/Server compile

arbitrary, but specified in the pipeline source.

FIGURE 13: TCP/IP server

In another window, we can start the TCP/IP requestor, which when given port 1958 as
argument, connects to the server, and displays a series of random numbers that is sent
to it.

FIGURE 14: TCP/IP requestor

Note that the stage tcpexample from the tcpserver pipeline is a custom stage that is written
in this tcpexample.njp file.

28

16

Selecting from databases with Pipelines for
NetRexx

Using the built-in sqlselect stage you can select data, using SQL, from any jdbc source
available.
An sqlselect.properties file is needed to define the jdbc parameters like the driver to
use, the url of the data source and other arguments, like a password and tracing options,
if needed.
The file looks like this:

jdbcdriver=org.sqlite.JDBC
url=jdbc:sqlite:flightroute-iata.sqb

This is all that is needed for an sqlite database containing flight data. A simple select *
can then be done with the following pipeline:

1 pipe literal * from FlightRoute where flight = 'KLM765' | sqlselect | console

This yields the following output:

FLIGHT--ROUTE--UPDATETIME--
KLM765 AUA-BON-AMS 1494132448

Note that from the command line, the quotes around the pipe specification and the literal
string in the SQL statement should be opposite, while when the pipeline is issued from
the Workspace for NetRexx, the pipeline does not have to be quoted, but the sql string
needs double quotes instead of the - for SQL statements- normal single quotes.

29

17

The Pipes Runner

The pipes compiler is used in both precompiled and directly executed pipelines. When
you directly execute a pipeline from the commandline or from the nrws NetRexx
workspace, the process is optimized to not persist generated NetRexx, Java and Class
files to disk before execution; the whole process runs from memory. The Pipes Runner
uses the Pipes Compiler for this purpose, and as suchmisses the options for persistence8.
The pipe command alias start the Pipes Runner, which is a command processor that can
execute a pipe from the command line in an OS shell, the OS being Windows, Linux or
macOS9.
A pipe can be run with options prepended within parentheses, like this:

1 pipe '(test1 sep ! stall 2000 debug 63) literal abcde ! console'

The following options are available:

pipename Specify the name of the generated class file. This can be useful for debug-
ging purposes but is not mandatory when running a pipe. An unnamed
pipe receives a generated unique name. This option needs to go first.

sep The default stage separator is the | (pipe) character; this can be overrid-
den with the sep option; a pipe called test1 which uses an exclamation
mark as separator character, needs the options (test1 sep !).

debug The debug option specifies a bitmask for debugging the execution of a
pipe; (debug 63), for example, generates a rather complete debugging
trail).

end The default pipe end character is the ’ ?’ (question mark), which can be
overridden here. Note that the backslash, which is an obvious pipe end
character for the z/VM 3270 interface, is not a good choice for Windows
and Unix shells.

stall Theduration in number of seconds of a pipe stall (or deadlock) detection
cycle.

8But specifying them will not generate an error
9this is a non-exhaustive list of operating systems

30

18

The Pipes Compiler

The purpose of precompiling a pipeline specification is to produce a .class file for the
JVM that can be run independently and on different machines; only the JVM and the
NetRexxC.jar or the NetRexxF.jar are required to run a precompiled pipe. A set of pre-
compiled pipes can be shipped as an application.
When precompiling pipes, there are options to save and view the generated NetRexx,
Java and JVM Class files. A precompiled pipe has the advantage that it can be executed
over and over in an application, without the need to compile it every time; the perfor-
mance savings are accumulative in this scenario.
The following options can be used on the pipc command, in addition to the ones specified
in the previous chapter for the Pipes Runner:

-gen Generate the NetRexx source file. The pipeline needs a name.
-keep Keep the Java source which is generated from the NetRexx source.

Example:
1 pipe (testpipe -gen -keep)

This will generate the NetRexx source as well as keep the java source.

31

19

Built-in Stages

This section describes the set of built-in stages, i.e. the ones that are delivered with the
downloadable open source package. These stages are directly executable from the Net-
RexxC.jar file or the NetRexxF.jar file (the latter contains a Java compiler for use on
JRE-only systems); also, the source of these stages is delivered in the NetRexx source
repository. This repository can be checked out at

git clone https://git.code.sf.net/p/netrexx/code netrexx-code

The source of the stages is in directory

netrexx-code/src/org/netrexx/njpipes/stages

32

Stages	Built	Into
NetRexx	Pipelines	3.09
&
CMS	Pipelines	V7R1
and	Their	Differences
How	to	Read	Syntax	Diagrams

Special	diagrams	(often	called	railroad	tracks)	are	used	to	show	the	syntax	of	external	interfaces.

To	read	a	syntax	diagram,	follow	the	path	of	the	line.	Read	from	left	to	right	andtop	to	bottom.

The	▶▶---	symbol	indicates	the	beginning	of	the	syntax	diagram.
The	---▶	symbol,	at	the	end	of	a	line,	indicates	that	the	syntax	diagram	is	continued	on	the	next	line.
The	▶---	symbol,	at	the	beginning	of	a	line,	indicates	that	the	syntax	diagram	is	continued	from	the	previous	line.
The	---▶◄	symbol	indicates	the	end	of	the	syntax	diagram.

Within	the	syntax	diagram,	items	on	the	line	are	required,	items	below	the	line	are	optional,	and	items	above	the	line	are	defaults.

Pipelines	Builtin	Stages

Show	Stages	Implemented	in:	

NetRexx	Pipelines:	 					CMS	Pipelines:	

Show	All	Details:	 	(Double	click	on	a	row	to	turn	it	on/off.)

Highlight	NetRexx	Only	/	CMS	Only:	

>	
diskw
filew	
3.09

Replace	or	Create	a	File

delegates	to	diskw.

>>	
diska
filea	
3.09

Append	to	or	Create	a	File

delegates	to	diska.

>>mdsk Append	to	or	Create	a	CMS	File	on	a	Mode

Not	implemented	in	Netrexx	Pipelines.

>>mvs Append	to	a	Physical	Sequential	Data	Set

Not	implemented	in	Netrexx	Pipelines.

>>oe Append	to	or	Create	an	OpenExtensions	Text	File

Not	implemented	in	Netrexx	Pipelines.

>>sfs Append	to	or	Create	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

>>sfsslow Append	to	or	Create	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

>mdsk Replace	or	Create	a	CMS	File	on	a	Mode

Not	implemented	in	Netrexx	Pipelines.

▶▶-->--string--▶◄

▶▶-->>--string--▶◄	

>mvs Rewrite	a	Physical	Sequential	Data	Set	or	a	Member	of	a	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

>oe Replace	or	Create	an	OpenExtensions	Text	File

Not	implemented	in	Netrexx	Pipelines.

>sfs Replace	or	Create	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

<	
diskr
disk
file
filer	
3.09

Read	a	File

Implemented	as	in	CMS;	delegates	to	diskr.

<mdsk Read	a	CMS	File	from	a	Mode

Not	implemented	in	Netrexx	Pipelines.

<mys Read	a	Physical	Sequential	Data	Set	or	a	Member	of	a	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

<oe Read	an	OpenExtensions	Text	File

Not	implemented	in	Netrexx	Pipelines.

<sfs Read	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

<sfsslow Read	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

--	
comment	
3.09

Comment	Stage,	No	Operation

delegates	to	comment.
Not	in	CMS	Pipelines;
This	is	a	STAGE,	not	a	programming	comment.	It	must	have	a	SPACE	after	--.
It	must	have	either	a	stageEnd	or	pipeEnd.
If	used	before	a	driver	stage,	it	must	have	a	pipeEnd.

3277bfra Convert	a	3270	Buffer	Address	Between	Representations

Not	implemented	in	Netrexx	Pipelines.

3277enc Write	the	3277	6-bit	Encoding	Vector

Not	implemented	in	Netrexx	Pipelines.

64decode Decode	MIME	Base-64	Format

Not	implemented	in	Netrexx	Pipelines.

64encode Encode	to	MIME	Base-64	Format

Not	implemented	in	Netrexx	Pipelines.

?	
help

Display	Help	for	Pipelines

Not	implemented	in	Netrexx	Pipelines.

▶▶--<--string--▶◄

▶▶--+-	--	----+--+--------+-------▶◄
					+-COMMENT-+		+-string-+

NetRexx

abbreviation	
abbreviatio
abbreviati
abbreviat
abbrevi
abbrev

Select	Records	that	Contain	an	Abbreviation	of	a	Word	in	the	First	Positions

(1)	ABBREViation	must	be	ABBREV	in	CMS
(2)	ANYcase	must	be	ANYCASE	in	CMS

acigroup Write	ACI	Group	for	Users

Not	implemented	in	Netrexx	Pipelines.

addrdw Prefix	Record	Descriptor	Word	to	Records

Not	implemented	in	Netrexx	Pipelines.

adrspace Manage	Address	Spaces

Not	implemented	in	Netrexx	Pipelines.

aftfst Write	Information	about	Open	Files

Not	implemented	in	Netrexx	Pipelines.

aggrc Compute	Aggregate	Return	Code

all Select	Lines	Containing	Strings	(or	Not)

Not	implemented	in	Netrexx	Pipelines.

alserv Manage	the	Virtual	Machine's	Access	List

Not	implemented	in	Netrexx	Pipelines.

apldecode Process	Graphic	Escape	Sequences,	Old	APL	language

Not	implemented	in	Netrexx	Pipelines.

aplencode Generate	Graphic	Escape	Sequences,	Old	APL	language

Not	implemented	in	Netrexx	Pipelines.

append Put	Output	from	a	Device	Driver	after	Data	on	the	Primary	Input	Stream

array Read	or	Write	an	Array

Pipes	for	NetRexx

arraya Read	or	Write	an	Array

Pipes	for	NetRexx

arrayr Read	or	Write	an	Array

Pipes	for	NetRexx

arrayw Read	or	Write	an	Array

Pipes	for	NetRexx

▶▶--ABBREViation-(1)-+---------------------------------+--▶◄
																						+-word-+------------------------+-+
																													+-number-+-------------+-+
																																						+-ANYcase-(2)-+
																																						+-CASEANY-----+
																																						+-CASEIGNORE--+
																																						+-IGNORECASE--+
																																						+-CASELESS----+	

▶▶--AGGRC--▶◄

▶▶--APPEND--string------▶◄

asatomc Convert	ASA	Carriage	Control	to	CCW	Operation	Codes.	Old	printer	control

Not	implemented	in	Netrexx	Pipelines.

asmcont Join	Multiline	Assembler	Statements

Not	implemented	in	Netrexx	Pipelines.

asmfind Select	Statements	from	an	Assembler	File	as	XEDIT	Find

Not	implemented	in	Netrexx	Pipelines.

asmnfind Select	Statements	from	an	Assembler	File	as	XEDIT	NFind

Not	implemented	in	Netrexx	Pipelines.

asmxpnd Expand	Joined	Assembler	Statements

Not	implemented	in	Netrexx	Pipelines.

beat Mark	when	Records	Do	not	Arrive	within	Interval

Not	implemented	in	Netrexx	Pipelines.

between	
3.09

Select	Records	Between	Labels

block Block	to	an	External	Format

Not	implemented	in	Netrexx	Pipelines.

browse Display	Data	on	a	3270	Terminal

Not	implemented	in	Netrexx	Pipelines.

buffer Buffer	Records

c14to38 Combine	Overstruck	Characters	to	Single	Code	Point.	Old	printer.
casei Run	Selection	Stage	in	Case	Insensitive	Manner

(1)	CMS	Pipelines	only.

▶▶--BETWEEN--|	case	|-+-delimitedString1-+-+-number-----------+---▶◄
																							+-Xhexstring1------+	+-delimitedString2-+
																							+-Hhexstring1------+	+-Xhexstring2------+
																							+-Bbinstring1------+	+-Hhexstring2------+
																																												+-Bbinstring2------+

case:
|--+-------------+--|
			+-ANYcase-----+
			+-CASEANY-----+
			+-CASEIGNORE--+
			+-IGNORECASE--+
			+-CASELESS----+	

▶▶--BUFFER--+-----------------------------+--------▶◄
													+-number--+-----------------+-+
																							+-delimitedString-+	

▶▶--CASEI--+---------------------+----+---------+-----▶
												+-ZONE--|inputRange	|-+(1)	+-REVERSE-+(1)

▶--stage-+--------+--▶◄
										+-string-+	

change Substitute	Contents	of	Records

changeregex	
changerege
changereg
changere
changer	
3.09

Substitute	Contents	of	Records	using	Java	Regular	Expressions

Uses	the	Java	RegEx	classes	and	its	dialect	of	RegEx.	See	Java's	Pattern	class	and	replaceFirst	and
replaceAll	methods	of	String	for	full	documentation.
(1)	First	delimitedString	is	a	Java	RegEx	expresion	for	what	is	to	be	replaced.
(2)	Second	delimitedString	is	the	replacement	string.	It	may	contain	elements	from	the	first	one.

chop	
truncate
truncat
trunca
trunc

Truncate	the	Record

cipher Encrypt	and	Decrypt	Using	a	Block	Cipher

Not	implemented	in	Netrexx	Pipelines.

ckddeblock Deblock	Track	Data	Record

Not	implemented	in	Netrexx	Pipelines.

▶▶--CHANGE--+-------------+--+-----------------+------->
													+-ANYcase-----+		+-inputRange------+
													+-CASEANY-----+		|				⬐-------+				|
													+-CASEIGNORE--+		+-(--+-range-+--)-+
													+-IGNORECASE--+
													+-CASELESS----+

 ▶--+-|	changeString	|-----------------+--+-----------+----▶◄
					+-delimitedString--delimitedString-+		+-numorstar-+

changeString:
|--delimiter--string--delimiter--string--delimiter---|

																																																										+-ONE-+
▶▶--CHANGERegex--delimitedString-(1)-delimitedString-(2)-+-----+--▶◄
																																																										+-ALL-+		

NetRexx

																			+--80----------------+
▶▶--+--CHOP----+--+--------------------+--▶◄
					+-TRUNCate-+		+-snumber------------|
																			+--|	stringtarget	|--+
stringtarget:
	|-+-------------+-+------------------------+-+-----+-|	target	|-|
			+-ANYcase-----+	|													+-BEFORE-+	|	+-NOT-+
			+-CASEANY-----+	+-+---------+-+--------+-+
			+-CASEIGNORE--+			+-snumber-+	+-AFTER--+
			+-IGNORECASE--+
			+-CASELESS----+

target:
	|--+--xrange-----------------------+--|
				+--+-STRing--+--delimitedString-+
							+--ANYof--+	

cmd	
command

Issue	OS	Commands,	Write	Response	to	Pipeline

input	stream	0	is	for	commands
input	stream	1	is	stdin
output	stream	0	is	stdout
output	stream	1	is	the	return	code
output	stream	2	is	stderr

cms Issue	CMS	Commands,	Write	Response	to	Pipeline	'
collate Collate	Streams

Not	implemented	in	Netrexx	Pipelines.

combine Combine	Data	from	a	Run	of	Records

(1)	Only	for	use	with	secondary	input	streams.	Only	options	from	this	column	usable	with	any	secondary	input
streams.	
(This	is	poorly	documented	in	CMS	Pipelines.	This	is	a	best	guess	of	their	intentions.)
(2)	Not	usable	with	STOP	and	secondary	streams.

command	
cmd

Issue	OS	Commands,	Write	Response	to	Pipeline

input	stream	0	is	for	commands
input	stream	1	is	stdin
output	stream	0	is	stdout
output	stream	1	is	the	return	code
output	stream	2	is	stderr

comment	
--	
3.09

Comment	stage

Not	in	CMS	Pipelines;
This	is	a	STAGE,	not	a	programming	comment.	It	must	have	a	SPACE	after	--.
It	must	have	either	a	stageEnd	or	pipeEnd.
If	ended	with	a	stageEnd,	it	passes	records	through	on	primary	input	to	output	streams.
If	ended	with	a	pipeEnd,	it	does	NOT	pass	records	through.
If	used	before	a	driver	stage,	it	must	have	a	pipeEnd.

▶▶--+-CMD-----+--+----------+-------------▶◄
					+-COMMAND-+		+--string--+	

▶▶--COMBINE--+------------------------+--+-Or----------+--▶◄
														|	+-1-----------------+		|		+-aNd---------+
														+-+-------------------+--+		+-AND---------+
														|	+-number------------+		|		+-eXclusiveor-+
														|	+-*-----------------+		|		+-EXClusiveor-+
														|	+-KEYLENgth--number-+		|		+-FIRST-(2)---+
														|										+-ALLEOF-(1)+	|		+-LAST-(2)----+
														+-STOP-(1)-+											+-+
																									+-ANYEOF-(1)+	

▶▶--+-COMMAND-+--+----------+-------------▶◄
					+-CMD-----+		+--string--+

▶▶--+--COMMENT--+--+----------+-----▶◄
					+	--	-------+		+--string--+

NetRexx

compare Compare	Primary	and	Secondary	Streams,	Write	the	Result

(1)	-1	=	Primary	is	shorter/less,	0	=	equal,	1	=	Secondary	is	shorter/less
(2)	0	=	equal,	1	=	not	equal
(3)	Primary	is	LESS/shorter	(or	MORE/longer)	than	secondary
(4)	DStrings	can	use	any	of	the	following	escapes	(or	the	lowercase)	for	the	unequal	situation:

\C	(count)	for	the	record	number,
\B	(byte)	for	column	number
\P	(primary)	for	the	primary	stream	record
\S	(secondary)	for	the	secondary	stream	record
\L	(Least)	for	the	stream	number	that	is	shorter,	-1	if	equal
\M	(Most)	for	the	stream	number	that	is	longer,	-1	if	equal

(5)	Equal	or	not,	this	DString	precedes	any	of	the	others.
(6)	This	is	NetRexx	Pipelines	only,	not	included	in	CMS
(7)	In	reporting	\P	&	\S,	control	charactors,	except	new	line,	\n,	are	transliterated	to	[blob,	219.d2c()]
(8)	Without	ECHO,	this	stops	and	reports	at	first	non-compare.	With	ECHO,	each	primary	input	is	reported;	after
first	non-compare	primary	input	stream	records	continue	to	be	read	and	reported,	but	no	testing	is	done.
(9)	Options	work	in	any	order
Input	streams:

0:	Data	1
1:	Data	2

Output	streams:
0:	Result	(single	record,	possibly	multiple	lines)
1:	Last	primary	record	read	at	first	no	match,	or	end	of	stream
2:	Last	secondary	record	read	at	first	no	match,	or	end	of	stream

configure Set	and	Query	CMS	Pipelines	Confguration	Variables

Not	implemented	in	Netrexx	Pipelines.

console	
consol
conso
cons
cons
terminal
termina
termin
termi
term

Read	or	Write	the	Terminal	in	Line	Mode

(1)	CMS	Pipelines	Only.

copy Copy	Records,	Allowing	for	a	One	Record	Delay

														+-TRINARY-+		(1)																			+-PAD	SPACE-+
▶▶--COMPARE--+---------+--------------------+---+-----------+--+------+--▶◄
														+-BINARY--+		(2)															|			+-PAD-xorc--+		+-ECHO-+
														|																														|
														|	⬐-------------------------+		|
														+--ANY	delimitedString------+--+			(4)	(5)
														+--EQUAL	delimitedString----+						(4)
														+--LESS	delimitedString-----+		(3)	(4)
														+--MORE	delimitedString-----+		(3)	(4)
														+--NOTEQUAL	delimitedString-+						(4)	

NetRexx

▶▶--+-CONSole--+--+----------------------+--+--------------------+--▶◄
					+-TERMinal-+		+-EOF--delimitedString-+		+-DIRECT-(1)---------+
																			+-NOEOF----------------+		+-ASYNchronously-(1)-+
																																													+-DARK-(1)-----------+

▶▶--COPY---------▶◄

count Count	Lines,	Blank-delimited	Words,	and	Bytes

cp Issue	CP	Commands,	Write	Response	to	Pipeline

Not	implemented	in	Netrexx	Pipelines.

crc Compute	Cyclic	Redundancy	Code

Not	implemented	in	Netrexx	Pipelines.

dam Pass	Records	Once	Primed

dateconvert	
dateconver
dateconve
dateconv	
3.09

Convert	Date	Formats

														⬐--------------------+
		▶▶--COUNT--+-+-+-CHARACTErs-+-+-+------▶◄
																|	+-CHARS------+	|
																|	+-BYTES------+	|
																+-WORDS----------+
																+-+-LINES---+----+
																|	+-RECORDS-+				|
																+-MINline--------+
																+-MAXline--------+			

▶▶--DAM-------------▶◄

(1):	SPACE	is	optional	here.
(2)	Not	implemented	in	NetRexx	Pipelines	at	this	time;	mainly	mainframe	useful	only.
(3):	NetRexx	Pipelines	uses	IRange	which	gives	a	superset	of	range	options.
(4):	NetRexx	Pipelines	only.	What	time	to	assume	if	blank	time	on	input.
(5):	NetRexx	Pipelines	only.

Use	current	local	date	time.
Any	Inputrange	is	ignored.
Any	output	format	can	be	used.
PREFACE	Write	the	date	record	before	passing	the	input	to	the	output.

deal Pass	Input	Records	to	Output	Streams	Round	Robin

(1)	Not	yet	in	NetRexx	Pipelines
(2)	Not	CMS
Since	Java	dispatches	the	stage	threads,	DEAL	may	not	see	a	sever	immediately,	as	the	severing	thread	can
get	multitasked.	This	can	make	options	like	'ANYEOF'	work	in	unexpected	ways.

deblock Deblock	External	Data	Formats

CMS	has	many	more	mainframe	centric	formats	that	NetRexx	Pipelines	does	not	process.
(1)	Not	CMS	Pipelines

▶▶--DATECONVert--+-----------------+---------▶
																		+--inputRange-(3)-+

				+-SHOrtdate	ISOdate------------------+	+-WINDOW	-50----------+
 ▶-+------------------------------------+-+---------------------+--▶
				|																			+-ISOdate----------+	+-WINDOW-signednumber-+
				+-|	Inputformat	|-+-+------------------+	+-BASEYEAR-yearnumber-+
				|					+-PREFACE-+	|	+-|	Outputformat	|-+
				+-NOW-+-(5)-----+-+
										+-APPEND--+

																				+--MIDNIGHT--(4)-+
 ▶--+-----------+--+----------------+-----------▶◄
					+--TIMEOUT--+		+--NOON--(4)-----+

Inputformat,						Outputformat:
SHOrtdate					}			mm/dd/yy	hh:mm:ss.uuuuuu
USA_SHORT					}
REXX_DATE_U			}

FULldate						}			mm/dd/yyyyyyy	hh:mm:ss.uuuuuu
USA											}

ISO_SHORT									yy-mm-dd	hh:mm:ss.uuuuuu
ISOdate											yyyyyyy-mm-dd	hh:mm:ss.uuuuuu
DB2_SHORT									yy-mm-dd-hh.mm.ss.uuuuuu
DB2															yyyyyyy-mm-dd-hh.mm.ss.uuuuuu
VMDATE		(2)
NORMAL												dd	mmm	yyyyyyy	hh:mm:ss.uuuuuu
CSL_SHORT					}			yy/mm/dd	hh:mm:ss.uuuuuu
REXX_DATE_O			}
CSL															yyyyyyy/mm/dd	hh:mm:ss.uuuuuu
PIPE_SHORT								yymmddhhmmssuuuuuu
PIPE										}			yyyymmddhhmmssuuuuuu
REXX_DATE_S			}
EURSHORT										dd.mm.yy	hh:mm:ss.uuuuuu
EUR															dd.mm.yyyyyyy	hh:mm:ss.uuuuuu
JULIAN_SHORT						yy.ddd	hh:mm:ss.uuuuuu
JULIAN												yyyyyyy.ddd	hh:mm:ss.uuuuuu
TOD_ABSOLUTE	}		(2)
TODABS							}		(2)
SCIENTIFIC_ABSOLUTE	}		(2)
SCIABS														}		(2)
POSIX													ssssssss
TOD_RELATIVE	}		(2)
TODREL							}		(2)
SCIENTIFIC_RELATIVE	}		(2)
SCIREL														}		(2)
MET		(2)

The	following	can	be	REXX_DATE_x,	REXXx,	or	Rx
REXX_DATE_B		(2)
REXX_DATE_C		(2)
REXX_DATE_D							ddd	hh:mm:ss.uuuuuu
REXX_DATE_E							dd/mm/yy	hh:mm:ss.uuuuuu
REXX_DATE_E_LONG		dd/mm/yyyyyyy	hh:mm:ss.uuuuuu
REXX_DATE_J							yyddd	hh:mm:ss.uuuuuu
REXX_DATE_J_LONG		yyyyddd	hh:mm:ss.uuuuuu
REXX_DATE_M							mmmmmmmmm	(output	only)
REXX_DATE_N_SHORT	dd	mmm	yy	hh:mm:ss.uuuuuu
REXX_DATE_N							dd	mmm	yyyy	hh:mm:ss.uuuuuu
REXX_DATE_W							wwwwwwwww	(output	only)

											+-STOP--ALLEOF--------------------+
▶▶--DEAL--+---------------------------------+--------▶◄
											+-STOP--+-ALLEOF-(2)+-------------+
											|							+-ANYEOF----+													|
											|							+-number----+													|
											+-SECONDARY--+-----------+--------+
											|												+-RELEASE---+								|
											|												+-LATCH-(1)-+								|
											+-KEY--inputRange--+-------+------+
											|																		+-STRIP-+						|
											+-STREAMid--inputRange--+-------+-+
																																			+-STRIP-+		

																								+-80------+
														+--FIXED--+-number--+--+-------------+------------+
														|																						+--PAD--xorc--+	(1)								|
▶▶--DEBLOCK--+---+-▶◄
														+-+-C-----------------------+-+-----------+-+-----+
																+-J-----------------------+	+-TERMINATE-+	+-EOF-+
																+-CRLF--------------------+
																+-LINEND	xorc-------------+
																+-STRING--delimitedString-+

delay Suspend	Stream

Not	implemented	in	Netrexx	Pipelines.

devinfo Write	Device	Information

Not	implemented	in	Netrexx	Pipelines.

dfsort Interface	to	DFSORT/CMS

Not	implemented	in	Netrexx	Pipelines.

diage4 Submit	Diagnose	E4	Requests

Not	implemented	in	Netrexx	Pipelines.

dict	
hash

Read	or	Write	a	Dictionary

Pipes	for	NetRexx	only.

dicta	
hasha

Read	or	Write	a	Dictionary

Pipes	for	NetRexx	only.

dictr	
hashr

Read	or	Write	a	Dictionary

Pipes	for	NetRexx	only.

dictw	
hashw

Read	or	Write	a	Dictionary

Pipes	for	NetRexx	only.

digest Compute	a	Message	Digest

Not	implemented	in	Netrexx	Pipelines.

disk	
diskr
<
file
filer

Read	a	File

As	in	CMS,	equivalent	to	diskr	(Pipes	for	NetRexx	Only)	or	<.

diska	
>>
filea

Append	to	or	Create	a	File

diskback	
fileback

Read	a	File	Backwards

Not	implemented	in	Netrexx	Pipelines.

diskfast	
filefast

Read,	Create,	or	Append	to	a	File

Not	implemented	in	Netrexx	Pipelines.

diskid Map	CMS	Reserved	Minidisk

Not	implemented	in	Netrexx	Pipelines.

diskr	
disk
<
file
filer

Read	a	File

As	in	CMS,	equivalent	to	diskr	(Pipes	for	NetRexx	Only)	or	<.

diskrandom	
filerandom

Random	Access	a	File

Not	implemented	in	Netrexx	Pipelines.

▶▶--DISK--string--▶◄
NetRexx

▶▶--DISKA--string--▶◄
NetRexx

▶▶--DISKR--string--▶◄
NetRexx

diskslow	
fileslow

Read,	Create,	or	Append	to	a	File

Not	implemented	in	Netrexx	Pipelines.

diskupdate	
fileupdate

Replace	Records	in	a	File

Not	implemented	in	Netrexx	Pipelines.

diskw	
filew
>

Replace	or	Create	a	File

drop Discard	Records	from	the	Beginning	or	the	End	of	the	File

(1)	CMS:	must	be	positive.	
NetRexx	Pipelines:	negative	reverses	FIRST/LAST,	so	DROP	FIRST	-3	is	the	same	as	DROP	LAST	3.

duplicate	
duplicat
duplica
duplic
dupli
dupl
dup

Copy	Records

(1)	CMS	is	DUPlicat	due	to	8-character	name	limitation

elastic Buffer	Sufficient	Records	to	Prevent	Stall

eofback Run	an	Output	Device	Driver	and	Propagate	End-of-?le	Backwards

Not	implemented	in	Netrexx	Pipelines.

escape Insert	Escape	Characters	in	the	Record

Not	implemented	in	Netrexx	Pipelines.

fanin Concatenate	Streams

faninany Copy	Records	from	Whichever	Input	Stream	Has	One

fanintwo Pass	Records	to	Primary	Output	Stream
fanout Copy	Records	from	the	Primary	Input	Stream	to	All	Output	Streams

(1)	CMS	only

fanouttwo Copy	Records	from	the	Primary	Input	Stream	to	Both	Output	Streams

▶▶-->--string--▶◄

											+-FIRST-+		+-1----------+
▶▶--DROP--+-------+--+------------+--+-------+-------▶◄
											+-LAST--+		+-snumber-(1)+		+-BYTES-+
																						+-*----------+	

																+-1------+
▶▶--DUPlicate--+--------+---------▶◄
																+-number-+
																+-*------+
																+-	-1----+	

▶▶--ELASTIC----------▶◄

▶▶--FANIN--+-------------+-------▶◄
												|	⬐--------+	|
												+----stream-+-+

▶▶--FANINANY----------▶◄

													+-STOP--ALLEOF-----------+
▶▶--FANOUT--+------------------------+--------▶◄
													+-STOP--+-ANYEOF-------+-+
																					+-ALLOF--(1)---+
																					+-number-------+

fbaread Read	Blocks	from	a	Fixed	Block	Architecture	Drive

Not	implemented	in	Netrexx	Pipelines.

fbawrite Write	Blocks	to	a	Fixed	Block	Architecture	Drive

Not	implemented	in	Netrexx	Pipelines.

fblock Block	Data,	Spanning	Input	Records

file	
filer
disk
diskr

Read	a	File

filea	
diska
>>

Append	to	or	Create	a	File

fileback	
diskback

Read	a	CMS	file	backwards

Not	implemented	in	Netrexx	Pipelines.

filedescriptor Read	or	Write	an	OpenExtensions	File	that	Is	Already	Open

Not	implemented	in	Netrexx	Pipelines.

filefast	
diskfast

Read	or	write	a	CMS	file

Not	implemented	in	Netrexx	Pipelines.

filer	
file
disk
diskr
<

Read	a	File

filerandom	
diskrandom

Read	specific	records	from	a	CMS	file

fileslow	
diskslow

Read,	Create,	or	Append	to	a	File

Not	implemented	in	Netrexx	Pipelines.

filetoken Read	or	Write	an	SFS	File	That	is	Already	Open

Not	implemented	in	Netrexx	Pipelines.

fileupdate	
diskupdate

Change	records	in	a	CMS	file

filew	
diskw
>

Replace	or	Create	a	File

fillup Pass	Records	To	Output	Streams

Not	implemented	in	Netrexx	Pipelines.

filterpack Manage	Filter	Packages

Not	implemented	in	Netrexx	Pipelines.

find Select	Lines	by	XEDIT	Find	Logic

fitting Source	or	Sink	for	Copipe	Data

Not	implemented	in	Netrexx	Pipelines.

▶▶--FBLOCK--number--+--------+-----------------▶◄
																					+--xorc--+

▶▶--FILE--string--▶◄
NetRexx

▶▶--FILEA--string--▶◄

▶▶--FILER--string--▶◄
NetRexx

▶▶--FILEW--string--▶◄
NetRexx

▶▶-----FIND--+----------+----------▶◄
														+--string--+

fmtfst Format	a	File	Status	Table	(FST)	Entry

Not	implemented	in	Netrexx	Pipelines.

frlabel	
fromlabel

Select	Records	from	the	First	One	with	Leading	String

fromlabel	
frlabel

Select	Records	from	the	First	One	with	Leading	String

frtarget Select	Records	from	the	First	One	Selected	by	Argument	Stage

fullscrq Write	3270	Device	Characteristics

Not	implemented	in	Netrexx	Pipelines.

fullscrs Format	3270	Device	Characteristics

Not	implemented	in	Netrexx	Pipelines.

gate Pass	Records	Until	Stopped

gather Copy	Records	From	Input	Streams

Not	implemented	in	Netrexx	Pipelines.

getfiles	
getfiles
getfile
getfil
getfi
getf
get

Read	Files

getovers Write	the	Contents	of	Objects

Input	stream	0	should	contain	rexx	objects.	The	getovers	stage	will	output	the	index	and	contents	of	the	stem	on
stream	0.	If	output	stream	1	is	connected,	the	root	is	placed	there.	Any	severed	streams	will	cause	then	stage	to
exit.	Passing	a	non	rexx	object	will	cause	the	stage	to	exit	with	return	code	13.
Pipes	for	NetRexx	only.

getstems Write	the	Contents	of	Members	of	Stems

Input	stream	0	should	contain	rexx	objects	containing	stems.	The	getstems	stage	will	output	the	contents	of	the
stem	on	stream	0.	If	output	stream	1	is	connected,	the	root	is	placed	there.	Any	severed	streams	will	cause	then
stage	to	exit.	Passing	a	non	rexx	stem	object	will	cause	the	stage	to	exit	with	return	code	13.
Pipes	for	NetRexx	only.

▶▶-----FRLABEL--+---------+---------▶◄
																	+--string-+

▶▶-----FROMLABEL--+---------+------▶◄
																			+--string-+

▶▶--+--FRTARGET----+--stage--+------------+-------▶◄
					+--FROMTARGet--+									+--operands--+

▶▶--GATE--+----------+-----------▶◄
											+--STRICT--+

▶▶--GETfiles---------------------▶◄

grep	
regex	
3.09

Select	Lines	by	a	Regular	Expresion

NetRexx	Pipelines	only.
Records	matching	the	RegEx	are	put	out	on	primary	output.
Records	not	matching	are	put	out	on	secondary,	if	connected,	or	discarded.
.
(1)	Regex_string	is	a	Java	RegEx	expresion.	Null	string	passes	all	records.
(2)	Records	are	prefaced	with	records	number,	10	characters,	right	justified.
(3)	Number	of	records	put	out	after	a	matching	record.
(4)	Number	of	records	put	out	before	and	after	a	matching	record.
(5)	Inserted	before	a	group	of	"before	records"	or	the	found	record	with	"after	records."
(6)	Send	all	matching	records	(no	numbers)	to	tertiary	output	stream,	if	connected.
(7)	Only	a	count	of	matches	is	put	out	on	the	primary	output	stream.	(Other	options	probably	should	not	be	used
with	this.)

hash	
dict

Read	or	Write	a	Dictionary

Pipes	for	NetRexx	only.

hasha	
dicta

Read	or	Write	a	Dictionary

hashr	
dictr

Read	or	Write	a	Dictionary

hashw	
dictw

Read	or	Write	a	Dictionary

help	
?

Display	Help	for	Pipelines

Not	implemented	in	Netrexx	Pipelines.

hfs Read	or	Append	File	in	the	Hierarchical	File	System

Not	implemented	in	Netrexx	Pipelines.

hfsdirectory Read	Contents	of	a	Directory	in	a	Hierarchical	File	System

Not	implemented	in	Netrexx	Pipelines.

hfsquery Write	Information	Obtained	from	OpenExtensions	into	the	Pipeline

Not	implemented	in	Netrexx	Pipelines.

▶▶--+--GREP---+--+--------------------------+--regex_Dstring-(1)---▶◄
					+--REGEX--+		+-(--|	options_string	|--)-+

options_string:
			⬐-----------------------------------+
|--+-+--------------------------------+-+--|
					+-Numbers------------------------+	(2)
					+-Before-+-1------+--------------+	(3)
					|								+-number-+														|
					+-After-+-1------+---------------+	(3)
					|							+-number-+															|
					+-Context-+-1------+-------------+	(4)
					|									+-number-+													|
					+-NOSeparator--------------------+	(5)
					+-Separator-+-/--/------------+--+	(5)
					|											+-delimitedString-+		|
					+-Tertiary-----------------------+	(6)
					+-COUnt--------------------------+	(7)

NetRexx

hfsreplace Replace	the	Contents	of	a	File	in	the	Hierarchical	File	System

Not	implemented	in	Netrexx	Pipelines.

hfsstate Obtain	Information	about	Files	in	the	Hierarchical	File	System

Not	implemented	in	Netrexx	Pipelines.

hfsxecute Issue	OpenExtensions	Requests

Not	implemented	in	Netrexx	Pipelines.

hlasm Interface	to	High	Level	Assembler

Not	implemented	in	Netrexx	Pipelines.

hlasmerr Extract	Assembler	Error	Messages	from	the	SYSADATA	File

Not	implemented	in	Netrexx	Pipelines.

hole Destroy	Data

hostbyaddr	
3.09

Resolve	IP	Address	into	Domain	and	Host	Name

(1)	Optional	parameter	not	present	in	VM/CMS	version
INCLUDEIP	-	Also	include	the	IP	address	along	with	the	hostname.
Output:	<hostname>/<ip	address>
Example:	dns.google/8.8.8.8
Known	issues:	The	underlying	Java	method	getByName/getHostName	does	not	appear	to	handle	IPv6
addresses	in	any	known	and	consistent	manner.	Could	be	related	to	a	host	configuration	issue	but	googling
shows	odd	and	inconsistent	results	for	getting	around	this.

hostbyname	
3.09

Resolve	a	Domain	Name	into	an	IP	Address

(1)	Optional	parameter	not	present	in	CMS	Pipelines
Arguments:	INCLUDENAME	-	Also	include	the	name	of	the	host	on	output.
Output:	<hostname>/<ip	address>	
Example:	dns.google/8.8.8.8

hostid	
3.09

Write	TCP/IP	Default	IP	Address

(1)	The	USERid	option	available	under	CMS	Pipelines	is	not	applicable	and	is	ignored	in	NetRexx	Pipelines

hostname	
3.09

Write	TCP/IP	Host	Name

(1)	Optional	parameter	not	present	in	VM/CMS	version
(2)	The	USERid	option	available	under	CMS	is	not	applicable	and	is	ignored	in	NetRexx	Pipelines
Arguments:	INCLUDEIP	-	include	the	IP	address	of	the	system	in	the	response	in	the	form	<hostname>/<ip
address>

▶▶--HOLE----------▶◄

▶▶-------HOSTBYADDR	--------------+---------------+-------▶◄
																																			+--INCLUDEIP----+		(1)

▶▶--HOSTBYNAME	--------------+---------------+--------▶◄
																														+--INCLUDENAME--+		(1)

▶▶--HOSTID----+--------------------+----------------▶◄
															+--USERid--word-(1)--+

▶▶--HOSTNAME--+-----------------+--+--------------------+---▶◄
															+--INCLUDEIP--(1)-+		+--USERid--word-(2)--+

httpsplit Split	HTTP	Data	Stream

Not	implemented	in	Netrexx	Pipelines.

iebcopy Process	IEBCOPY	Data	Format

Not	implemented	in	Netrexx	Pipelines.

if Process	Records	Conditionally

Not	implemented	in	Netrexx	Pipelines.

immcmd Write	the	Argument	String	from	Immediate	Commands

Not	implemented	in	Netrexx	Pipelines.

insert Insert	String	in	Records

insert	a	string	into	a	record	before	or	after	the	record	content.	Will	be	much	more	efficient	than	specs	especially
if	the	input	is	a	Byte[]

inside Select	Records	between	Labels

instore Load	the	File	into	a	storage	Buffer

Not	implemented	in	Netrexx	Pipelines.

ip2socka Build	sockaddr_in	Structure

Not	implemented	in	Netrexx	Pipelines.

ispf Access	ISPF	Tables

Not	implemented	in	Netrexx	Pipelines.

jeremy Write	Pipeline	Status	to	the	Pipeline

Not	implemented	in	Netrexx	Pipelines.

join Join	Records

																														+-BEFORE-+
▶▶--INSERT--delimitedString--+--------+---+-------------+---▶▶
																														+-AFTER--+			+-inputRange--+

▶▶--INSIDE--+-------------+--delimitedString--+-number----------+--▶◄
													+-ANYcase-----+																			+-delimitedString-+
													+-CASEANY-----+
													+-CASEIGNORE--+
													+-IGNORECASE--+
													+-CASELESS----+

																				+-1-----------------+
▶▶--JOIN-+-------+-+-------------------+--▶
										+-COUNT-+	+-number------------+
																				+-*-----------------+
																				+-KEYLENgth--number-+

 ▶--+-------------------------------+-+--------+---▶◄
					+-delimitedString-+-----------+-+	+-number-+
																							+-TERMinate-+

joincont Join	Continuation	Lines

juxtapose Preface	Record	with	Marker

ldrtbls Resolve	a	Name	from	the	CMS	Loader	Tables

Not	implemented	in	Netrexx	Pipelines.

listcat Obtain	Data	Set	Names

Not	implemented	in	Netrexx	Pipelines.

listdsi Obtain	Information	about	Data	Sets

Not	implemented	in	Netrexx	Pipelines.

listispf Read	Directory	of	a	Partitioned	Data	Set	into	the	Pipeline

Not	implemented	in	Netrexx	Pipelines.

listpds Read	Directory	of	a	Partitioned	Data	Set	into	the	Pipeline

Not	implemented	in	Netrexx	Pipelines.

listzip List	the	Files	in	a	Zipped	File

literal Write	the	Argument	String

locate Select	Lines	that	Contain	a	String

(1)	Not	in	NetRexx	Pipelines,	yet.

																																						+-TRAILING----------+
▶▶--JOINCONT--+------------+-+-----+-+-------------------+-+-------+--▶
															+-ANYCase----+	+-NOT-+	+-RANGE--inputRange-+	+-DELAY-+
															+-CASEANY----+									+-LEADING-----------+
															+-CASEIGNORE-+
															+-IGNORECASE-+
															+-CASELESS---+

 ▶-+-------+-delimitedString--+------+--+-----------------+----▶◄
				+-ANYof-+																		+-KEEP-+		+-delimitedString-+

▶▶--JUXTAPOSe----+-------+--------------▶◄
																		+-COUNT-+

▶▶---LISTZIP----zipFileName------▶◄
NetRexx

▶▶---LITERAL---+--------+----------▶◄
																+-string-+

▶▶--LOCATE-+-------------+-+-----------+--+-------------+-+-------+--▶
												+-ANYCase-----+	+-MIXED-(1)-+		+-inputRanges-+	+-ANYof-+
												+-CASEANY-----+	+-ONEs--(1)-+
												+-CASEIGNORE--+	+-ZEROs-(1)-+
												+-IGNORECASE--+
												+-CASELESS----+

 ▶-+-----------------+---▶◄
				+-delimitedString-+

lookup Find	Records	in	a	Reference	Using	a	Key	Field

in	stream	0	are	detail	records
in	stream	1	are	master	records
in	stream	2	adds	to	masters
in	stream	3	delete	from	masters

out	stream	0	are	matched	records
out	stream	1	are	unmatched	detail	records
out	stream	2	are	unmatched	or	counted	master	records
out	stream	3	deleted	masters
out	stream	4	duplicate	masters
out	stream	5	unmatched	master	deletes

lookup	does	not	consider	an	unconnected	output	stream	an	error.	It	does	proprogate	EOFs	from	output	streams.

▶▶--LOOKUP--+-------+--+---------+--+---------+--+--------+-▶
													+-COUNT-+		+-ANYCASE-+		+-AUTOADD-+		+-BEFORE-+

 ▶-+---------+--+----------+--+-----------+--+------------+--------▶
				+-KEYONLY-+		+-SETCOUNT-+		+-INCREMENT-+		+-TRACKCOUNT-+

 ▶----------------------------+-------------------------+----------▶
																															+-inputRange-+------------+
																																												+-inputRange-+

 ▶--+---------------------------+---------------------------▶◄
					+-DETAIL	MASTER-------------+
					+-DETAIL	ALLMASTER	PAIRWISE-+
					+-DETAIL	ALLMASTER----------+
					+-DETAIL--------------------+
					+-MASTER	DETAIL-------------+
					+-MASTER--------------------+
					+-ALLMASTER	DETAIL	PAIRWISE-+
					+-ALLMASTER	DETAIL----------+
					+-ALLMASTER-----------------+

NetRexx

lookup Find	Records	in	a	Reference	Using	a	Key	Field

in	stream	0	are	detail	records
in	stream	1	are	master	records
in	stream	2	adds	to	masters
in	stream	3	delete	from	masters

out	stream	0	are	matched	records
out	stream	1	are	unmatched	detail	records
out	stream	2	are	unmatched	or	counted	master	records
out	stream	3	deleted	masters
out	stream	4	duplicate	masters
out	stream	5	unmatched	master	deletes

lookup	does	not	consider	an	unconnected	output	stream	an	error.	It	does	proprogate	EOFs	from	output	streams.

maclib Generate	a	Macro	Library	from	Stacked	Members	in	a	COPY	File

Not	implemented	in	Netrexx	Pipelines.

mapmdisk Map	Minidisks	Into	Data	spaces

Not	implemented	in	Netrexx	Pipelines.

mctoasa Convert	CCW	Operation	Codes	to	ASA	Carriage	Control

Not	implemented	in	Netrexx	Pipelines.

mdiskblk Read	or	Write	Minidisk	Blocks

Not	implemented	in	Netrexx	Pipelines.

mdskrandom Random	Access	a	CMS	File	on	a	Mode

Not	implemented	in	Netrexx	Pipelines.

mdskslow Read,	Append	to,	or	Create	a	CMS	File	on	a	Mode

Not	implemented	in	Netrexx	Pipelines.

mdskupdate Replace	Records	in	a	File	on	a	Mode

Not	implemented	in	Netrexx	Pipelines.

▶▶--LOOKUP--+-------+-+-----------------+-+-----------+--▶
													+-COUNT-+	+-MAXcount-number-+	+-INCREMENT-+

																																		+-NOPAD----+
	 ▶--+----------+-+------------+-+----------+-+---------+--▶
						+-SETCOUNT-+	+-TRACKCOUnt-+	+-PAD-xorc-+	+-ANYcase-+

	 ▶--+--------------------+-+---------+-+--------+--▶
						+-AUTOADD-+--------+-+	+-KEYONLY-+	+-STRICT-+
						|									+-BEFORE-+	|
						+-CEILING------------+
						+-FLOOR--------------+

 	▶--+---------------------------+--▶
						+-inputRange-+------------+-+
																			+-inputRange-+

					+-DETAIL	MASTER-------------+
 ▶--+---------------------------+---------------------------▶◄
					+-DETAIL	ALLMASTER	PAIRWISE-+
					+-DETAIL	ALLMASTER----------+
					+-DETAIL--------------------+
					+-MASTER	DETAIL-------------+
					+-MASTER--------------------+
					+-ALLMASTER	DETAIL	PAIRWISE-+
					+-ALLMASTER	DETAIL----------+
					+-ALLMASTER-----------------+

CMS

members Extract	Members	from	a	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

merge Merge	Streams

Not	implemented	in	Netrexx	Pipelines.

mqsc Issue	Commands	to	a	WebSphere	MQ	Queue	Manager

Not	implemented	in	Netrexx	Pipelines.

nfind	
notfind

Select	Lines	by	XEDIT	NFind	Logic

ninside	
notinside	
3.09

Select	Records	Not	between	Labels

nlocate	
notlocate

Select	Lines	that	Do	Not	Contain	a	String

(1)	Not	in	NetRexx	Pipelines,	yet.

noEofBack Pass	Records	and	Ignore	End-of-file	on	Output

nop No	Operation

Pipes	for	NetRexx	only.

not Run	Stage	with	Output	Streams	Inverted

notfind	
nfind

Select	Lines	by	XEDIT	NFind	Logic

▶▶---+-NFIND---+--+----------+----------▶◄
						+-NOTFIND-+		+--string--+

▶▶-+-NINSIDE----+-+------------+-delimitedString-+-number----------+--▶◄
				+-NOTINSIDE--+	+-ANYcase----+																	+-delimitedString-+
																			+-CASEANY----+
																			+-IGNORECASE-+
																			+-CASEIGNORE-+
																			+-CASELESS---+

▶▶-+-NLOCATE---+-+-------------+--+-----------+--+-------------+-----▶
				+-NOTLOCATE-+	+-ANYCase-----+		+-MIXED-(1)-+		+-inputRanges-+
																		+-CASEANY-----+		+-ONEs--(1)-+
																		+-CASEIGNORE--+		+-ZEROs-(1)-+
																		+-IGNORECASE--+
																		+-CASELESS----+

▶-+-------+-+-----------------+-▶◄
		+-ANYof-+	+-delimitedString-+

▶▶--NOEOFBACK---------▶◄

▶▶--NOP---------▶◄
NetRexx

▶▶--NOT--stage--+------------+-------▶◄
																	+--operands--+	

▶▶---+-NOTFIND-+--+----------+---------▶◄
						+-NFIND---+		+--string--+

notinside	
ninside

Select	Records	Not	between	Labels

notlocate	
nlocate

Select	Lines	that	Do	Not	Contain	a	String

(1)	Not	in	NetRexx	Pipelines,	yet.

nucext Call	a	Nucleus	Extension

Not	implemented	in	Netrexx	Pipelines.

optcdj Generate	Table	Reference	Character	(TRC)

Not	implemented	in	Netrexx	Pipelines.

outside Select	Records	Not	between	Labels

outstore Unload	a	File	from	a	storage	Buffer

Not	implemented	in	Netrexx	Pipelines.

over Write	the	Values	of	Stems

Obsolete.	Now	use	varover.	over	is	now	an	alias	for	overlay..

overlay	
overla
overl
over

Overlay	Data	from	Input	Streams

HOLD	keeps	the	last	record	from	each	stream,	except	primary,	and	uses	it	if	the	stream	ends.
TRANSPARENT	means	that	character	can	be	different	from	the	PAD	character.	
If	omitted,	it	is	the	same	as	PAD	character.
dstream	can	be	used	instead	of	a	non-primary	stream.
(1)	NetRexx	Pipelines	only
(2)	same	as	highest	(+1)	stream;	implies	HOLD

▶▶-+-NOTINSIDE--+-+------------+-delimitedString-+-number----------+--▶◄
				+-NINSIDE----+	+-ANYcase----+																	+-delimitedString-+
																			+-CASEANY----+
																			+-IGNORECASE-+
																			+-CASEIGNORE-+
																			+-CASELESS---+

▶▶-+-NOTLOCATE-+-+-------------+--+-----------+--+-------------+-----▶
				+-NLOCATE---+	+-ANYCase-----+		+-MIXED-(1)-+		+-inputRanges-+
																		+-CASEANY-----+		+-ONEs--(1)-+
																		+-CASEIGNORE--+		+-ZEROs-(1)-+
																		+-IGNORECASE--+
																		+-CASELESS----+

▶-+-------+-+-----------------+-▶◄
		+-ANYof-+	+-delimitedString-+

▶▶--OUTSIDE-+------------+-delimitedString-+-number----------+--▶◄
													+-ANYcase----+																	+-delimitedString-+
													+-CASEANY----+
													+-CASEIGNORE-+
													+-IGNORECASE-+
													+-CASELESS---+

																	+-NOHOLD-(1)-+	+-PAD-(1)+	+-BLANK----+
▶▶--OVERlay-----+------------+-+--------+-+----------+-----▶
																	+-HOLD-(1)---+												+-xorc-----+
																																											+-SPACE-(1)+

 ▶--+--------------------------+-+-------------------------------+--▶◄
					+-TRANSparent-+-xorc--+-(1)+	+-STRING--delimitedString-(1)(2)+
																			+-BLANK-+
																			+-SPACE-+

NetRexx

overlay Overlay	Data	from	Input	Streams

overstr Process	Overstruck	Lines

Not	implemented	in	Netrexx	Pipelines.

pack Pack	Records	as	Done	by	XEDIT	and	COPYFILE

Not	implemented	in	Netrexx	Pipelines.

pad Expand	Short	Records

parcel Parcel	Input	Stream	Into	Records

Not	implemented	in	Netrexx	Pipelines.

parse	
3.09

Rearrange	Contents	of	Records

Records	are	parsed	via	the	parse_template_delimited_string.
Variables	are	named	$n,	where	n	is	1	to	9.
The	values	of	the	variables	are	put	into	the	output_template_delimited_string	replacing	$n.
For	a	literal	$n	that	won't	be	changed,	use	$$n.
NetRexx	Pipelines	only.
.
Example:	
		parse	/	2	$1	+1/	/The	second	letter	is	"$1".	$$1	won't	be	changed./

pause Signal	a	Pause	Event

Not	implemented	in	Netrexx	Pipelines.

pdsdirect Write	Directory	Information	from	a	CMS	Simulated	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

													+-BLANK-+
▶▶--OVERlay-+-------+----------▶◄
													+-xorc--+	

CMS

								+-Right-+																																	+-BLANK-+
▶▶-PAD-+-------+--+-------------------+--number--+-------+--▶◄
								+-Left--+		+-+--------+-MODULO-+										+-xorc--+
																					+-number-+	

▶▶--PARSE--parse_template_Dstring---output_template_Dstring--▶◄
NetRexx

pick Select	Lines	that	Satisfy	a	Relation

(1)	Can	be	before	PAD/NOPAD.	Depreciated.
(2)	The	backslash	(\)	may	need	to	be	escaped,	doubled,	in	some	systems	shells.

pick Select	Lines	that	Satisfy	a	Relation

										+-NOPAD----+
▶▶--PICK-+----------+-+------------+--▶
										+-PAD-xorc-+	+-ANYcase-(1)+
																							+-CASEANY----+
																							+-CASEIGNORE-+
																							+-CASELESS---+
																							+-IGNORECASE-+

 ▶--+------------+-+-==--+-+-----------------+-▶◄
					+-inputRange-+	+-^==-+	+-inputRange------+
																				+-<<--+	+-delimitedString-+
																				+-<<=-+
																				+->>--+
																				+->>=-+
																				+-\==-+(2)
																				+-/==-+
																				+-=---+
																				+-^=--+
																				+-<---+
																				+-<=--+
																				+->---+
																				+->=--+
																				+-\=--+(2)
																				+-/=--+

NetRexx

												+-NOPAD-----+
▶▶--PICK---+-----------+--+------------+----▶
												+-PAD--xorc-+		+-ANYcase----+
																											+-CASEANY----+
																											+-CASEIGNORE-+
																											+-CASELESS---+
																											+-IGNORECASE-+

 ▶--+--+---------------------+---|	List	|-+--▶◄
					|		+-+-FROM-+--+-------+-+												|
					|		|	+-TO---+		+-AFTER-+	|												|
					|		+-WHILE---------------+												|
					+-|	Fromto	|--------------------------+

	Fromto:
	|--FROM--+-------+--|	List	|--+-TO-+-------+--|	List	|-+--|
										+-AFTER-+												|				+-AFTER-+											|
																															+-COUNT--number----------+

	List:
	|--+-------------------+--|	Test	|--|
				+-|	List	|--+-AND-+-+
																+-OR--+

	Test:
	|--|	RangeString	|--+--|	NonEqualOp	|--|	RangeString	|--+--|
																					+--|	EqualOp	|----|	CommaList	|-----+

	CommaList:
				⬐---,---------------+
	|-----|	RangeString	|--+--|

	RangeString:
	|--+-inputRange-------+--|
				+-delimitedString--+
				+-number+----------+

	Character	Operators::
		==	^==	\==	/==	<<	<<=	>>	>>=	IN	NOTIN

	Numeric	Operators:
		=	^=	<	<=	>	>=	

CMS

pickparse	
3.09

Select	Lines	that	Satisfy	Relations	using	Rexx	Parse

Records	are	parsed	via	the	parse_delimited_string.
Variables	are	named	$n,	where	n	is	1	to	9.
The	values	of	the	variables	are	put	into	the	logic_delimited_string	replacing	$n	and	evaluated.	If	TRUE,	the
record	is	put	out	on	the	stream	numbered	by	the	dstring's	position.
The	stream	for	a	Dstring	of	ELSE	is	used	if	no	previous	logic	Dstring	is	TRUE.
If	there	is	no	specific	ELSE,	there	is	an	implied	one	at	the	end;	if	that	stream	is	not	connected,	the	record	is
discarded.
If	ONE	then	the	record	is	put	out	on,	at	most,	one	stream:	the	first	one	matched.
If	ALL	then	the	record	is	put	out	on	all	streams	matched.
If	SINGLE	then	the	records	are	all	put	out	on	the	primary	output	stream.
The	parse_delimited_string	and	logic_delimited_string(s)	follow	normal	NetRexx	rules.
(1)	Implied	ELSE	after	last	specified	dstring.
(2)	Up	to	10	logic_Dstrings	may	be	specified	to	go	to	up	to	11	ouput	streams	(including	an	implied	ELSE).
Not	implemented	in	CMS	Pipelines.

Pickparse	permits	selecting	records	by	a	NetRexx	logical	expression,	using	parts	of	the	record	selected	by	a	Rexx
PARSE	template.

A	simple	example	has	two	delimited	strings,	a	Rexx	template	and	a	logical	expression:

pickparse	/	.	.	$3	.	50	$5	+5	/	/	$3	<	$5	/

The	parse	template	selects	the	3rd	word,	and	the	5	characters	starting	in	column	50.	the	variable	names	are	a	dollar
sign	and	a	digit.	Then	those	variables	can	be	used	in	the	logic	expression.	When	run,	and	records	matching	the
logic	expression	are	written	to	the	primary	output	stream,	others	to	the	secondary.	If	either	stream	is	not	connected,
the	corresponding	records	are	discarded.

There	can	be	multiple	logic	expressions,	each	in	its	own	delimited	string.	Parenthetical	expressions	may	be	used.
Records	are	matched	to	each	in	turn.	Any	records	matching	are	written	to	that	output	stream,	if	connected.

With	the	option	ONE,	the	default,	each	record	is	written	to	one	output	stream:	the	first	one	it	matches.	With	the
option	ALL,	the	matching	goes	on	and	a	record	could	be	written	to	multiple	output	streams.

There	is	an	implicit	or	explicit	ELSE	as	the	last	logic	expression.	Records	that	have	not	matched	any	of	the	previous
expressions	match	this	and	are	written	or	discarded	depending	on	if	the	stream	is	connected	or	not.

The	parse	template	can	define	up	to	9	separate	zones,	$1	to	$9.	The	variables	$_n	are	also	available	for	the	logic
expressions;	they	are	the	values	from	the	previous	record.	Initially	these	are	"".

There	can	be	up	to	10	output	streams	defined,	and	up	to	9	logic	expressions	plus	ELSE.

pipcmd Issue	Pipeline	Commands

Not	implemented	in	Netrexx	Pipelines.

pipestop Terminate	Stages	Waiting	for	an	External	Event

Not	implemented	in	Netrexx	Pipelines.

polish Reverse	Polish	Expression	Parser

Not	implemented	in	Netrexx	Pipelines.

predselect Control	Destructive	Test	of	Records

Not	implemented	in	Netrexx	Pipelines.

preface Put	Output	from	a	Device	Driver	before	Data	on	the	Primary	Input	Stream

Not	implemented	in	Netrexx	Pipelines.

																+--ONE----------------+																	⬐--(2)-----------------+
▶▶--PICKPARSE--+---------------------+--parse_Dstring-----+-----------------+--+--▶◄
																+--ALL--+----------+--+																				+--logic_Dstring--+
																								+--SINGLE--+																								+--ELSE-(1)-------+

NetRexx

prefix Stop	and	Run	a	Stage	First,	Before	Continuing

Blocks	its	primary	input	and	excutes	stage	supplied	as	an	argument.	The	output	from	this	stage	are	put	to	the
primary	output	stream.	When	its	compete	the	primary	input	is	shorted.
Not	implemented	in	CMS	Pipelines.

printmc Print	Lines

Not	implemented	in	Netrexx	Pipelines.

punch Punch	Cards

Not	implemented	in	Netrexx	Pipelines.

qpdecode Decode	to	Quoted-printable	Format

Not	implemented	in	Netrexx	Pipelines.

qpencode Encode	to	Quoted-printable	Format

Not	implemented	in	Netrexx	Pipelines.

qsam Read	or	Write	Physical	Sequential	Data	Set	through	a	DCB

Not	implemented	in	Netrexx	Pipelines.

query Obtain	Information	From	Pipelines

(1)	Not	CMS
(2)	Not	NetRexx	Pipelines

random	
3.09

Generate	Pseudorandom	Numbers

NetRexx	Pipelines	will	be	a	different	sequence	than	CMS	gives	with	the	same	seed.

reader Read	from	a	Virtual	Card	Reader

Not	implemented	in	Netrexx	Pipelines.

readpds Read	Members	from	a	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

▶▶--PREFIX---string--------------▶◄
NetRexx

												+-VERSION------+
▶▶--Query--+--------------+-----------▶◄
												+-LEVEL--------+
												+-SOURCE-(1)---+
												+-MSGLEVEL-(2)-+
												+-MSGLIST-(2)--+	

▶▶--RANDOM--+----------------------------------+----▶◄
													|	+-*----------+		+-*------------+	|
													+-+-max_number-+--+--------------+-+
																															+-seed_snumber-+

regex	
grep	
3.09

Select	Lines	by	a	Regular	Expresion

NetRexx	Pipelines	only.
Records	matching	the	RegEx	are	put	out	on	primary	output.
Records	not	matching	are	put	out	on	secondary,	if	connected,	or	discarded.
.
(1)	Regex_string	is	a	Java	RegEx	expresion.	Null	string	passes	all	records.
(2)	Records	are	prefaced	with	records	number,	10	characters,	right	justified.
(3)	Number	of	records	put	out	after	a	matching	record.
(4)	Number	of	records	put	out	before	and	after	a	matching	record.
(5)	Inserted	before	a	group	of	"before	records"	or	the	found	record	with	"after	records."
(6)	Send	all	matching	records	(no	numbers)	to	tertiary	output	stream,	if	connected.
(7)	Only	a	count	of	matches	is	put	out	on	the	primary	output	stream.	(Other	options	probably	should	not	be	used
with	this.)

retab Replace	Runs	of	Blanks	with	Tabulate	Characters

Not	implemented	in	Netrexx	Pipelines.

reverse Reverse	Contents	of	Records

rexx Run	a	REXX	Program	to	Process	Data

Not	implemented	in	Netrexx	Pipelines.

rexxvars Retrieve	Variables	from	a	REXX	or	CLIST	Variable	Pool

Not	implemented	in	Netrexx	Pipelines.

runpipe Issue	Pipelines,	Intercepting	Messages

Not	implemented	in	Netrexx	Pipelines.

scm Align	REXX	Comments

Not	implemented	in	Netrexx	Pipelines.

sec2greg Convert	Seconds	Since	Epoch	to	Gregorian	Timestamp

Not	implemented	in	Netrexx	Pipelines.

▶▶--+--REGEX--+--+--------------------------+--regex_Dstring-(1)---▶◄
					+--GREP---+		+-(--|	options_string	|--)-+

options_string:
			⬐-----------------------------------+
|--+-+--------------------------------+-+--|
					+-Numbers------------------------+	(2)
					+-Before-+-1------+--------------+	(3)
					|								+-number-+														|
					+-After-+-1------+---------------+	(3)
					|							+-number-+															|
					+-Context-+-1------+-------------+	(4)
					|									+-number-+													|
					+-NOSeparator--------------------+	(5)
					+-Separator-+-/--/------------+--+	(5)
					|											+-delimitedString-+		|
					+-Tertiary-----------------------+	(6)
					+-COUnt--------------------------+	(7)

NetRexx

▶▶--REVERSE--------------------▶◄	

serialize Convert	Objects	to	a	Single	Text	String

{class}	if	class	is	specified	deserialize	input	to	objects	of	this	type	otherwise	serialize	input	objects.
Pipes	for	NetRexx	only.
For	some	reason	readObject	does	not	like	more	than	one	object	network	in	its	stream.	Block	multiple	objects.
see	examples/sertest.njp

sfsback Read	an	SFS	File	Backwards

Not	implemented	in	Netrexx	Pipelines.

sfsdirectory List	Files	in	an	SFS	Directory

Not	implemented	in	Netrexx	Pipelines.

sfsrandom Random	Access	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

sfsupdate Replace	Records	in	an	SFS	File

Not	implemented	in	Netrexx	Pipelines.

snake	
3.09

Build	Multicolumn	Page	Layout

(1)	NetRexx	Pipelines	only.	Appears	first,	last,	and	between	pages.	
Avoid	\	as	escape	terms	maybe	added	in	the	future.	\n	for	newline	is	OK.	
Your	system	may	require	\\n	.

socka2ip Format	sockaddr_in	Structure

Not	implemented	in	Netrexx	Pipelines.

sort Order	Records

(1)	May	come	before	inputRange,	for	backwards	compatability.
(2)	Requires	that	you	implement	another	sortClass	with	a	name	begining	with	'sort'
(3)	Suppresses	error	message	if	only	one	record	to	sort	for	Rexx	objects.
Uses	sortClass	class	as	Interface	Class	for	Generic	Sort	Objects
and	sortRexx	class	to	Sort	Rexx	Text	Objects

limited	information	available

NetRexx

▶▶--SNAKE--number_cols--+--+--▶◄
																										+--number_rows--+-----------------------------+--+
																																										+--page_seperator_DString-(1)-+

▶▶--SORT--+-----------------------------+--+------------+--▶
											|			+-REXX-----+		+-10000-+			|		+-inputRange-+
											+-(-+----------+--+-------+-)-+
															+-class-(2)+		+-size--+

					+-Ascending-(1)-+
 ▶--+---------------+--+-------------+--▶◄
					+-Descending-(1)+		+-SINGLEOK-(3)+

NetRexx

sort Order	Records

space	
3.09

Space	Words	Like	REXX

(0)	The	order	is	the	reverse	of	CHANGE!
(1)	the	replacement	char/string
(2)	the	char/chars	that	will	be	stripped	and	replaced
(3)	NetRexx	Pipelines	only,	not	CMS.	The	dstring	is	treated	as	a	single	unit	for	stripping	or	replacing

spec	
specs

Rearrange	Contents	of	Records

																						+-NOPAD----+
▶▶--SORT-+--------+--+----------+--+---------+---▶
										+-COUNT--+		+-PAD-xorc-+		+-ANYcase-+
										+-UNIQue-+

					+-Ascending------------------------------------+
 ▶--+--+---▶◄
					+-Descending-----------------------------------+
					|	+---+		|
					|	|												+-Ascending--+															|		|
					+-v-inputRange-+------------+--+----------+-+--+
																				+-Descending-+		+-NOPAD----+
																																				+-PAD-xorc-+

CMS

																																(1)
											+-1------+	+-BLANK----------------------+
▶▶--SPACE-+--------+-+----------------------------+--▶
											+-number-+	+-xorc-----------------------+
																						+-+--------+-delimitedString-+
																								+-STRing-+

										(2)
					+-BLANK-------------------------+
▶---+-------------------------------+-▶◄
					+-xorc--------------------------+
					|	+-ANYof-----+																	|
					+-+-----------+-delimitedString-+
							+-ALLof-(3)-+

												+-STOP--ALLEOF----+	(3)
▶▶--SPECs--+-----------------+---------▶
												+-STOP-+-ANYEOF-+-+	(3)
												+-n------+			(3)

					⬐---------------------------------------+
 ▶--+--+-|	Group	|-------------------------+-+---▶◄
								+-READ------------------------------+	(5)
								+-READSTOP--------------------------+
								+-WRITE-----------------------------+
								+-SELECT-+-streamnum-+--------------+
								|								+-streamid--+														|	(3)
								|								+-FIRST-----+														|
								|								+-SECOND----+														|
								+-PAD--+-char----+------------------+
								|						+-hexchar-+																		|
								|						+-BLANK---+																		|
								|						+-SPACE---+																		|
								+-+-WORDSEParator---+--+--char---+--+	(3)
										+-WS-------------	+		+-hexchar-+				(3)
										+-FIELDSEparator-	+		+-BLANK---+				(3)
										+-FS-------------	+		+-SPACE---+				(3)

Group:
	|--|	Input	|--|	Conversion	|--|	Output	|--|	Alignment	|--|

Input:
	|--+-Words-(1)-wnumberrange----------------------+-------|
				+-Fields-(1)-fnumberrange---------------------+	(3)
				+-cnumberrange--------------------------------+
				+-delimitedString-----------------------------+
				+-Xhexstring----------------------------------+
				+-Hhexstring----------------------------------+
				+-Bbinstring----------------------------------+
				|												+-FROM--1-------+	+-BY--1-----+		|
				+-+-RECNO--+-+---------------+-+-----------+--+
				|	+-NUMBER-+	+-FROM--fromnum-+	+-BY--bynum-+		|
				+-TODclock------------------------------------+

(1)	Blanks	are	optional	in	this	position.
(2)	Blanks	are	not	allowed	here.
(3)	CMS	only.	Not	yet	implemented	in	NetRexx	Pipelines
(4)	NetRexx	Pipelines	only.	Not	yet	implemented	in	CMS
(5)	READ	is	giving	the	same	output	as	READSTOP	when	the	streams	are	different	length.
[6]	This	senses	if	it	is	the	first	stage,	but	comment	stages	will	fool	it	into	not	producing	any	output.

spill Spill	Long	Lines	at	Word	Boundaries

Not	implemented	in	Netrexx	Pipelines.

split Split	Records	Relative	to	a	Target

Conversion:
	|-+-------+--+--------------------+------|
			+-STRIP-+		+-B2C----------------+
														+-B2D----------------+	(4)
														+-B2X----------------+	(4)
														+-C2B----------------+
														+-C2D----------------+
														+-C2F----------------+	(3)
														+-C2I----------------+	(3)
														+-C2P-+------------+-+	(3)
														|					+-(2)(scale)-+	|	(3)
														+-C2V----------------+	(3)
														+-C2X----------------+
														+-D2C----------------+
														+-D2X----------------+	(4)
														+-F2C----------------+	(3)
														+-I2C----------------+	(3)
														+-P2C-+------------+-+	(3)
														|					+-(2)(scale)-+	|	(3)
														+-V2C----------------+	(3)
														+-X2B----------------+	(4)
														+-X2C----------------+
														+-X2D----------------+	(4)
														+-f2t----------------+
														+-LOWER--------------+	(4)
														+-UPPER--------------+	(4)
														+-STRING-------------+	(4)

Output:
	|--+-Next-+-------+-------+--|
				|						+-(2).n-+							|
				+-NEXTWord-+-+-------+-+
				+-NWord----+	+-(2).n-+	|
				+-columnrange---------+

Alignment:
	|--+--------+--|
				+-Left---+
				+-Center-+
				+-Centre-+
				+-Right--+

Ranges	(cnumberrange,	fnumberrange	(3),	wnumberrange):
	|--+-snumber-+--(2)--+-------------------------+--|
				+---*-----+							+--.-----(2)----number----+
																						+-	-	-+--(2)--+-snumber-+-+
																						+--;--+							+---*-----+

▶▶--SPLIT--+-------------+--+-------------------+-------▶
												+-ANYcase-----+		+--MINimum--number--+
												+-CASEANY-----+
												+-CASEIGNORE--+
												+-IGNORECASE--+
												+-CASELESS----+

					+-AT---------------------+											+-BLANK-----------------+
 ▶--+------------------------+--+-----+--+-----------------------+--▶◄
					+--+---------+--+-BEFORE-+		+-NOT-+		+-|	target	|-+--------+-+
								+-snumber-+		+-AFTER--+																								+-number-+

target:
			|--+--xrange--------------------------+--|
						+--+--STRing--+---delimitedString--+
									+--ANYof---+	

sql	
3.09

Interface	to	SQL

uses	jdbc	to	select	from	any	jdbc	enabled	dbms
properties	file	(sqlselect.properties	default)	is	read	from	the	secondary	input	stream	to	find	jdbcdriver	name,	url,
user,	pass
sample	properties	file:

#JDBC	driver	name	
#Tue	Feb	03	23:29:43	GMT+01:00	1998	
jdbcdriver=com.imaginary.sql.msql.MsqlDriver	
url=jdbc:msql://localhost:1114/TESTDB	
#	the	following	are	not	needed	for	some	DBMS,	ex:	SQLite	
user=db_user_name	
pass=password_for_db

if	this	file	is	not	found	default	(compiled	in)	values	are	used
(1)	when	using	a	sql	select	*	(all	columns)	from	the	commandline,	quote	the	query	as	in	
java	pipes.compiler	(query)	"sql	select	*	from	dept	|	console"
(2)	the	netrexx/jdbc	combination	is	extremely	case	sensitive	for	column	and	table	names
(3)	this	sql_select_string	executed,	then	statements	are	read	from	the	primary	input	stream.	
this	is	optional	in	NetRexx	Pipelines	only.
(4)	CMS	does	not	use	the	stream	input
(5)	NetRexx	Pipelines	only
(6)	CMS	Pipelines	is	implyed	HEADERS	only.
(7)	A	Qword	is	an	optionally	quoted	word.	If	it	contains	spaces,	it	must	be	quoted.
(8)	EXPERIMENTAL	Subject	to	change.	DBMS	is	the	kind	of	database,	e.g.	SQLite.	DB_name	is	the	file	name.
These	are	used	in	place	of	URL	and	JDBCDRIVER.	SQLite	is	the	only	one	tested	as	of	8/15/20.
(9)	the	SQLSELECT	stage	uses	HEADERS	as	the	default.
(10)	USER	&	PASS	are	needed	for	some	DBMSs	and	not	others,	ex.	SQLite.
(11)	the	count	or	other	output	from	non-select	statements	goes	to	the	secondary	output	stream	if	connected,	or	is
discarded.	Otherwise	it	goes	to	the	primary.

Priority	order	for	URL,	JDBCDRIVER	and	DBMS,	DB_NAME	(first	one	found	rules):
1.	 option	in	the	SQL	command	string
2.	 from	secondary	input	stream
3.	 from	"sql.properties"	file	or	from	file	specified	by	PROPERTIES	option
4.	 Builtin

sqlcodes Write	the	last	11	SQL	Codes	Received

Not	implemented	in	Netrexx	Pipelines.

																																																											+-;-+
▶▶--SQL--+-----------------+--+-------------------------+-+---+--▶◄
										+-(-|	options	|-)-+		+-sql_statement_string-(3)+

options:
			⬐--+
	|---+--+-+-|
					|												+-/sqlselect.properties/-+						|
					+-PROPERTIES-+-filename_Qword-(7)-----+-(5)+-+
					|	+-HEADERS---+																												|
					+-+											+-(5)(6)---------------------+
					|	+-NOHEADERS-+																												|
					+-COUNT2SECondary-(5)(11)------------------+
					+-URL-Qword-(5)(7)-------------------------+
					+-JDBCDRIVER-Qword-(5)(7)------------------+
					+-DBMS-Qword-(5)(7)(8)---------------------+
					+-DB_NAME-Qword-(5)(7)(8)------------------+
					+-USER-Qword-(5)(7)(8)(10)-----------------+
					+-PASS-Qword-(5)(7)(8)(10)-----------------+

sqlselect Query	a	Database	and	Format	Result

(1)	when	using	a	sqlselect	*	(all	columns)	from	the	commandline,	quote	the	query	as	in	java	pipes.compiler
(query)	"sqlselect	*	from	dept	|	console"
(2)	the	netrexx/jdbc	combination	is	extremely	case	sensitive	for	column	and	table	names
(3)	if	no	sql_select_string	is	specified,	it	is	read	from	the	primary	input	stream.	
this	is	optional	in	NetRexx	Pipelines	only.	CMS	does	not	use	the	stream	input.
(4)	a	maximum	of	only	one	record	is	ever	read	from	the	primary	input	stream.
(5)	NetRexx	Pipelines	only
(6)	CMS	Pipelines	is	implied	HEADERS	only.
(7)	A	Qword	is	an	optionally	quoted	word.	If	it	contains	spaces,	it	must	be	quoted.
(8)	EXPERIMENTAL	Subject	to	change.	DBMS	is	the	kind	of	database,	e.g.	SQLite.	DB_name	is	the	file	name.
These	are	used	in	place	of	URL	and	JDBCDRIVER.	SQLite	is	the	only	one	tested	as	of	8/15/20.
(9)	the	SQL	stage	uses	NOHEADERS	as	the	default.
(10)	USER	&	PASS	are	needed	for	some	DBMSs	and	not	others,	ex.	SQLite.
Priority	order	for	URL,	JDBCDRIVER,	DBMS,	DB_NAME,	USER,	&	PASS	(first	one	found	rules):
1.	 option	in	the	SQL	command	string
2.	 from	secondary	input	stream
3.	 from	"sqlselect.properties"	file	or	from	file	specified	by	PROPERTIES	option
4.	 Builtin

stack Read	or	Write	the	Program	Stack

Not	implemented	in	Netrexx	Pipelines.

starmon Write	Records	from	the	*MONITOR	System	Service

Not	implemented	in	Netrexx	Pipelines.

starmsg Write	Lines	from	a	CP	System	Service

Not	implemented	in	Netrexx	Pipelines.

starsys Write	Lines	from	a	Two-way	CP	System	Service

Not	implemented	in	Netrexx	Pipelines.

state Provide	Information	about	CMS	Files

Not	implemented	in	Netrexx	Pipelines.

state Verify	that	Data	Set	Exists

Not	implemented	in	Netrexx	Pipelines.

statew Provide	Information	about	Writable	CMS	Files

Not	implemented	in	Netrexx	Pipelines.

▶▶--SQLSELECT--+-----------------+--▶
																+-(-|	options	|-)-+

				+-SELECT-+																																					+-;-+
 ▶-+--------+-+---------------------------------+-+---+--▶◄
															+-sql_select_statement_string-(3)-+

options:
			⬐---+
	|---+---+-+-|
					|												+-/sqlselect.properties/-+						|
					+-PROPERTIES-+-filename_Qword-(7)-----+-(5)+-+
					|	+-NOHEADERS-+																												|
					+-+											+-(5)(6)---------------------+
					|	+-HEADERS---+																												|
					+-URL-Qword-(5)(7)-------------------------+
					+-JDBCDRIVER-Qword-(5)(7)------------------+
					+-DBMS-Qword-(5)(7)(8)---------------------+
					+-DB_NAME-Qword-(5)(7)(8)------------------+
					+-USER-Qword-(5)(7)(8)(10)-----------------+
					+-PASS-Qword-(5)(7)(8)(10)-----------------+

stem Retrieve	or	Set	Variables	in	a	REXX	or	CLIST	Variable	Pool

stem Retrieve	or	Set	Variables	in	a	REXX	or	CLIST	Variable	Pool

stfle Store	Facilities	List

Not	implemented	in	Netrexx	Pipelines.

storage Read	or	Write	Virtual	Machine	Storage

Not	implemented	in	Netrexx	Pipelines.

strasmfind Select	Statements	from	an	Assembler	File	as	XEDIT	Find

Not	implemented	in	Netrexx	Pipelines.

strasmnfind Select	Statements	from	an	Assembler	File	as	XEDIT	NFind

Not	implemented	in	Netrexx	Pipelines.

strfind Select	Lines	by	XEDIT	Find	Logic

Not	implemented	in	Netrexx	Pipelines.

strfrlabel	
strfrlabe
strfrlab
strfrlab

Select	Records	from	the	First	One	with	Leading	String

strfromlabel	
strfrlabel
strfrlabe
strfrlab

Select	Records	from	the	First	One	with	Leading	String

▶▶--STEM--stem---------------▶◄
NetRexx

▶▶--STEM--stem--+----------+-+--------+-+----------+-▶
																	+-PRODUCER-+	+-number-+	+-NOMSG233-+
																	+-MAIN-----+
				+-SYMBOLIC-+
 ▶-+----------+-+--------------+-----▶◄
				+-DIRECT---+	+-APPEND-------+
																	+-FROM--number-+

CMS

▶▶----STRFIND--+------------+--delimitedString----------▶◄
																+-ANYcase----+
																+-CASEANY----+
																+-IGNORECASE-+
																+-CASEIGNORE-+
																+-CASELESS---+	

					+--STRFROMLABEL--+																+-INCLUSIVe-+
▶▶--+--STRFRLABel----+-+------------+-+-----------+-delimitedString--▶◄
																								+-ANYcase----+	+-EXCLUSIVe-+
																								+-CASEANY----+
																								+-IGNORECASE-+
																								+-CASEIGNORE-+
																								+-CASELESS---+

					+--STRFROMLABEL--+																+-INCLUSIVe-+
▶▶--+--STRFRLABel----+-+------------+-+-----------+-delimitedString--▶◄
																								+-ANYcase----+	+-EXCLUSIVe-+
																								+-CASEANY----+
																								+-IGNORECASE-+
																								+-CASEIGNORE-+
																								+-CASELESS---+

strip Remove	Leading	or	Trailing	Characters

(1)	Not	implemented	in	Netrexx	Pipelines.

strliteral Write	the	Argument	String

strnfind Select	Lines	by	XEDIT	NFind	Logic

strtolabel	
strtolabe
strtolab

Select	Records	to	the	First	One	with	Leading	String

structure Manage	Structure	Defnitions

Not	implemented	in	Netrexx	Pipelines.

strwhilelable	
strwhilelabl
strwhilelab
strwhilela
strwhilel
strwhile	
3.09

Select	Run	of	Records	with	Leading	String

																														+-BOTH-----+
		▶▶--STRIP--+------------+--+----------+--+-----+--▶
														+--|	case	|--+		+-LEADING--+		+-TO--+
																														+-TRAILING-+		+-NOT-+

						+-BLANK----------------------+
		▶--+----------------------------+--▶◄
						+--|	target	|--+----------+--+
																					+--number--+	(1)

		case:
		|--+--------------+--|
					+--ANYCase-----+
					+--CASEANY-----+
					+--CASEIGNORE--+
					+--IGNORECASE--+
					+--CASELESS----+

		target:
		|--+--xrange-------------------------+--|
					+--+--STRing--+--delimitedString--+
								+--ANYof---+

▶▶--STRLITeral--+------------------------------+-+-----------------+--▶◄
																	|	+-PREFACE-+																		|	+-delimitedString-+
																	+-+---------+--+-------------+-+
																	|	+-APPEND--+		+-CONDitional-+	|
																	+-IFEMPTY----------------------+

▶▶--STRNFIND--+------------+--delimitedString----------▶◄
															+-ANYcase----+
															+-CASEANY----+
															+-IGNORECASE-+
															+-CASEIGNORE-+
															+-CASELESS---+

																																	+-INCLUSIVe-+
▶▶--STRTOLABel--+------------+--+-----------+--delimitedString-------▶◄
																	+-ANYcase----+		+-EXCLUSIVe-+
																	+-CASEANY----+
																	+-IGNORECASE-+
																	+-CASEIGNORE-+
																	+-CASELESS---+

																																				+-INCLUSIVe-+
▶▶--STRWHILElabel--+------------+--+-----------+-delimitedString--▶◄
																				+-ANYcase----+		+-EXCLUSIVe-+
																				+-CASEANY----+
																				+-IGNORECASE-+
																				+-CASEIGNORE-+
																				+-CASELESS---+

stsi Store	System	Information

Not	implemented	in	Netrexx	Pipelines.

subcom Issue	Commands	to	a	Subcommand	Environment

Not	implemented	in	Netrexx	Pipelines.

substring Write	substring	of	record

Not	implemented	in	Netrexx	Pipelines.

synchronise	
synchronize

Synchronise	Records	on	Multiple	Streams

Not	implemented	in	Netrexx	Pipelines.

synchronize	
synchronise

Synchronise	Records	on	Multiple	Streams

Not	implemented	in	Netrexx	Pipelines.

sysdsn Test	whether	Data	Set	Exists

Not	implemented	in	Netrexx	Pipelines.

sysout Write	System	Output	Data	Set

Not	implemented	in	Netrexx	Pipelines.

sysvar Write	System	Variables	to	the	Pipeline

Not	implemented	in	Netrexx	Pipelines.

take Select	Records	from	the	Beginning	or	End	of	the	File

(1)	CMS	must	be	BYTES
(2)	Not	CMS;	NetRexx	Pipelines:	minus	reverses	first/last

tape Read	or	Write	Tapes

Not	implemented	in	Netrexx	Pipelines.

tcpchsum Compute	One's	complement	Checksum	of	a	Message

Not	implemented	in	Netrexx	Pipelines.

tcpclient Connect	to	a	TCP/IP	Server	and	Exchange	Data

Simple	tcpclient	implementation.	The	options	implemented	are	similar	to	the	CMS	definition.
linger	-	wait	a	bit	before	terminating	the	last	read	(units	SECONDS)
timeout	-	wait	this	long	before	timing	reads	out	(units	MS)
deblock	-	If	deblock	is	omitted	a	copy	stage	is	used.
group	-	similar	to	CMS.	A	delimited	string	containing	a	stage	is	expected.	You	can	use	a	run	of	stages,	but	its
is	dangerous	since	you	to	know	the	stage	sep	character	being	used...
greeting	-	expect	a	greeting	message	and	discard	it
nodelay	-	use	the	nodelay	option
keepalive	-	enable	keep	alive	socket	option
oneresponse	-	synchronize	cmds/replys

											+-FIRST-+		+-1----------+
▶▶--TAKE--+-------+--+------------+--+----------+--------------▶◄
											+-LAST--+		+-number-----+		+-BYTEs(1)-+
																						+-snumber(2)-+
																						+-*----------+

tcpdata Read	from	and	Write	to	a	TCP/IP	Socket

Simple	tcpdata	implementation.
linger	-	wait	a	bit	before	terminating	the	last	read	(units	SECONDS)
timeout	-	wait	this	long	before	timing	reads	out	(units	MS)
deblock	-	If	deblock	is	omitted	a	copy	stage	is	used.
group	-	similar	to	cms.	A	delimited	string	containing	a	stage	is	expected.	You	can	use	a	run	of	stages,	but	its
is	dangerous	since	you	need	to	know	the	stage	sep	character	being	used...
nodelay	-	use	the	nodelay	option
oneresponse	-	synchronize	requests/replies

tcplisten Listen	on	a	TCP	Port

Simple	tcplisten	implementation.	You	can	only	supply	the	port	and	a	timeout	value,	which	is	ignored	unless
tcplisten's	output	stream	has	been	severed,	in	which	case	tcplisten	terminates.
If	input	stream	0	is	connected,	tcplisten	does	a	peekto	before	calling	the	accept	method.	The	object	is	consumed
after	the	output	of	the	socket	object	returns.

terminal	
termina
termina
termin
termi
term
console
consol
conso
cons
cons

Read	or	Write	the	Terminal	in	Line	Mode

(1)	CMS	Pipelines	Only.

threeway Split	record	three	ways

Not	implemented	in	Netrexx	Pipelines.

timestamp Prefix	the	Date	and	Time	to	Records

(1)	In	CMS	Pipelines,	the	delimited	string	is	required.	In	NetRexx	Pipelines,	it	defaults	to	//	if	no	second	string.

tokenise	
tokenize

Tokenise	Records

(1)	In	CMS	Pipelines,	the	first	delimited	string	is	required.	In	NetRexx	Pipelines,	it	defaults	to	//	if	no	second
string.

tolabel	
tolabe
tolab

Select	Records	to	the	First	One	with	Leading	String

totarget Select	Records	to	the	First	One	Selected	by	Argument	Stage

▶▶--+-TERMinal-+--+----------------------+--+--------------------+--▶◄
					+-CONSole--+		+-EOF--delimitedString-+		+-DIRECT-(1)---------+
																			+-NOEOF----------------+		+-ASYNchronously-(1)-+
																																													+-DARK-(1)-----------+

																								(1)										(2)
▶▶--TIMEstamp--+--+--------------------------+--+-------▶◄
																|		|		+-8------+														|		|
																|		+--+-number-+--+--------+--+		|
																|																	+-number-+					|
																+-SHOrtdate----------------------+		(3/09/46	23:59:59)
																+-ISOdate------------------------+		(1946-03-09	23:59:59)
																+-FULLdate-----------------------+		(3/09/1946	23:59:59)
																+-STAndard-----------------------+		(19460309235959)
																+-STRing--delimitedString--(3)---+

▶▶--+-TOKENISE-+--+---------------------+--+-----------------+--▶◄
					+-TOKENIZE-+		+-delimitedString-(1)-+		+-delimitedString-+

▶▶--TOLABel--+----------+----------▶◄
														+--string--+

▶▶--TOTARGET----stage--+------------+-------▶◄
																								+--operands--+

trackblock Build	Track	Record

Not	implemented	in	Netrexx	Pipelines.

trackdeblock Deblock	Track

Not	implemented	in	Netrexx	Pipelines.

trackread Read	Full	Tracks	from	ECKD	Device

Not	implemented	in	Netrexx	Pipelines.

tracksquish Squish	Tracks

Not	implemented	in	Netrexx	Pipelines.

trackverify Verify	Track	Format

Not	implemented	in	Netrexx	Pipelines.

trackwrite Write	Full	Tracks	to	ECKD	Device

Not	implemented	in	Netrexx	Pipelines.

trackxpand Unsquish	Tracks

Not	implemented	in	Netrexx	Pipelines.

translate	
translat
translate
transl
trans
xlate

Transliterate	Contents	of	Records

trfread Read	a	Trace	File

Not	implemented	in	Netrexx	Pipelines.

▶▶--+--TRANSlate--+-+------------------------+-+-------------------+--▶
					+--XLATE------+	+--inputRange------------+	+-|	default-table	|-+
																					|		⬐------------------+		|
																					+--+-(--inputRange--)-+--+

						⬐----------------------+
 ▶--+-+------------------+--+-------▶◄
								+--xrange--xrange--+

default-table:
			|--+--UPper--------------------------+-------|
						+--LOWer--------------------------+
						+--INput--------------------------+
			{		+--OUTput-------------------------+		}
			{		+--+--TO----+--+------------+--n--+		}
			{					+--FROM--+		+--CODEPAGE--+								}
			{																																							}
			{	Not	yet	in	Pipes	for	NetRexx										}	

truncate	
truncat
trunca
trunc
chop

Truncate	the	Record

tso Issue	TSO	Commands,	Write	Response	to	Pipeline

Not	implemented	in	Netrexx	Pipelines.

udp Read	and	Write	an	UDP	Port

Not	implemented	in	Netrexx	Pipelines.

unique	
uniqu
uniq

Discard	or	Retain	Duplicate	Lines

unpack Unpack	a	Packed	File

Not	implemented	in	Netrexx	Pipelines.

untab Replace	Tabulate	Characters	with	Blanks

Not	implemented	in	Netrexx	Pipelines.
update Apply	an	Update	File

Not	implemented	in	Netrexx	Pipelines.

urldeblock Process	Universal	Resource	Locator

Not	implemented	in	Netrexx	Pipelines.

																			+--80----------------+
▶▶--+-TRUNCate-+--+--------------------+--▶◄
					+-CHOP-----+		+-snumber------------|
																			+--|	stringtarget	|--+
stringtarget:
	|--+-------------+--+---------------------------+-+-----+--|	target	|--|
				+-ANYcase-----+		|		+-BEFORE-+															|	+-NOT-+
				+-CASEANY-----+		+--+---------+--+--------+--+
				+-CASEIGNORE--+					+-snumber-+		+-AFTER--+
				+-IGNORECASE--+
				+-CASELESS----+
target:
	|--+--xrange-----------------------+--|
				+--+-STRing--+--delimitedString-+
							+--ANYof--+	

																										+--NOPAD------+
▶▶--UNIQue--+---------+--+-------------+--+-------------+-------▶
													+--COUNT--+		+--PAD--xorc--+		+-ANYcase-----+
																																											+-CASEANY-----+
																																											+-CASEIGNORE--+
																																											+-IGNORECASE--+
																																											+-CASELESS----+

																												+--LAST------+
 ▶--+-------------------+--+------------+----------------------▶◄
					+--|	uniqueRanges	|-+		+--SINGLEs---+
																												+--FIRST-----+
																												+--MULTiple--+
																												+--PAIRwise--+

uniqueRanges:
			|--+--inputRange------------------------------+--|
						|					⬐------------------------------+					|
						+--(--+-inputRange--+-------------+--+--)--+
																										+--NOPAD------+
																										+--PAD--xorc--+

uro Write	Unit	Record	Output

Not	implemented	in	Netrexx	Pipelines.

utf Convert	between	UTF-8,	UTF-16,	and	UTF-32

Not	implemented	in	Netrexx	Pipelines.

var Retrieve	or	Set	a	Variable	in	a	REXX	or	CLIST	Variable	Pool

Pipes	for	NetRexx:	this	can	only	read	vars

vardrop Drop	Variables	in	a	REXX	Variable	Pool

Not	implemented	in	Netrexx	Pipelines.

varfetch Fetch	Variables	in	a	REXX	or	CLIST	Variable	Pool

Not	implemented	in	Netrexx	Pipelines.

varload Set	Variables	in	a	REXX	or	CLIST	Variable	Pool

Not	implemented	in	Netrexx	Pipelines.

varover	
3.09

Write	the	Values	of	Stems

NetRexx	Pipelines	only;	not	CMS	Pipelines

varset Set	Variables	in	a	REXX	or	CLIST	Variable	Pool

Not	implemented	in	Netrexx	Pipelines.

vchar Recode	Characters	to	Different	Length

Not	implemented	in	Netrexx	Pipelines.

vector Read	or	Write	an	Array	of	Vectors

Pipes	for	NetRexx	only.

vectora Add	to	an	Array	of	Vectors

Pipes	for	NetRexx	only.

vectorr Read	From	an	Array	of	Vectors

Pipes	for	NetRexx	only.

vectorw Write	to	an	Array	of	Vectors

Pipes	for	NetRexx	only.

verify	
3.09

Verify	that	Record	Contains	only	Specified	Characters

(1)	NetRexx	Pipelines	only
(1)	Examples:	A-Z	0-9	c-g	a4-ba;	16-bit	Unicode	characters	or	hex	numbers
(1)	Any	number	greater	than	zero,	any	order,	of	delimitdStrings	and	character-ranges	are	allowed.

▶▶--VAR--variable-------------▶◄

▶▶--VAROVER--varName---▶◄
NetRexx

																																											⬐--------------------+	(1)
▶▶--VERIFY--+------------+-+------------+-+-+-delimitedString-+-+--▶◄
													+-ANYCASE----+	+-inputRange-+			+-character-range-+	(1)
													+-CASEANY----+
													+-CASEIGNORE-+
													+-IGNORECASE-+
													+-CASELESS---+

vmc Write	VMCF	Reply

Not	implemented	in	Netrexx	Pipelines.

vmcdata Receive,	Reply,	or	Reject	a	Send	or	Send/receive	Request

Not	implemented	in	Netrexx	Pipelines.

vmclient Send	VMCF	Requests

Not	implemented	in	Netrexx	Pipelines.

vmclisten Listen	for	VMCF	Requests

Not	implemented	in	Netrexx	Pipelines.

waitdev Wait	for	an	Interrupt	from	a	Device

Not	implemented	in	Netrexx	Pipelines.

warp Pipeline	Wormhole

Not	implemented	in	Netrexx	Pipelines.

warplist List	Wormholes

Not	implemented	in	Netrexx	Pipelines.

whilelabel	
3.09

Select	Run	of	Records	with	Leading	String

wildcard Select	Records	Matching	a	Pattern

Not	implemented	in	Netrexx	Pipelines.

writepds Store	Members	into	a	Partitioned	Data	Set

Not	implemented	in	Netrexx	Pipelines.

xab Read	or	Write	External	Attribute	Buffers

Not	implemented	in	Netrexx	Pipelines.

xedit Read	or	Write	a	File	in	the	XEDIT	Ring

Not	implemented	in	Netrexx	Pipelines.

▶▶--WHILELABEL-+---------+---▶◄
																+-string--+

xlate	
translate
translat
transla
transl
trans

Transliterate	Contents	of	Records

xmsg Issue	XEDIT	Messages

Not	implemented	in	Netrexx	Pipelines.

xpndhi Expand	Highlighting	to	Space	between	Words

Not	implemented	in	Netrexx	Pipelines.

xrange	
3.09

Write	a	Range	of	Characters

NetRexx	uses	UTF-16	(ASCII)	and	CMS	uses	EBCDIC

zone Run	Selection	Stage	on	Subset	of	Input	Record

▶▶--+--XLATE------+--+------------------------+-+-------------------+-▶
					+--TRANSlate--+		+--inputRange------------+	+-|	default-table	|-+
																						|		⬐------------------+		|
																						+--+-(--inputRange--)-+--+

						⬐-----------------------+
 ▶--+--+------------------+--+-------▶◄
								+--xrange--xrange--+

default-table:
			|--+--UPper--------------------------+-------|
						+--LOWer--------------------------+
						+--INput--------------------------+
			{		+--OUTput-------------------------+		}
			{		+--+--TO----+--+------------+--n--+		}
			{					+--FROM--+		+--CODEPAGE--+								}
			{																																							}
			{	Not	yet	in	Pipes	for	NetRexx										}

▶▶--XRANGE--+------------+------▶◄
													+-xrange-----�
													+-xorc--xorc-+

▶▶--ZONE--+--+--▶
											+--+--WORDSEParator---+---+--char-----+--+
														+--WS--------------+			+--hexchar--+
														+--FIELDSEparator--+			+--BLANK----+
														+--FS--------------+			+--SPACE----+

 ▶-+--Words----wNumberRange---+------▶
				+--Fields----fNumberRange--+
				+--cNumberRange------------+

 ▶--+---------+---+-----------+--stage--+------------+---▶◄
					+--CASEI--+			+--REVERSE--+									+--operands--+	

20

Appendix A

.50 - Released May 30, 1999
- Fixed a stall occurring when interrupted threads, with the interrupt
caught by ThreadPool, were reused.

- Fixed a thread safety problem in ELASTIC
- Improved the timeout options in TCPDATA and TCPCLIENT, they also
byte[] instead of strings. This was done since converting to and
from strings sometimes scrambles binary data (more research on
encodings...)

- Changed DELBLOCK it now handles byte[] to help keep tcpdata and
tcpclient efficient. The EOF option was broken, its fixed now.

- Changed DISKR, DISKW and DISKA to handle byte[] when using streams.
- Added INSERT which handles byte[]. This should be used instead of
SPECS to add LF or CR .

- Changes SERIALIZE to use byte[].
0.49 - Released May 21, 1999

- compiled with 1.2.1 and NetRexx 1.148
- Added preliminary support added to .njp compiler for files containing
java source! See the (some what messy) java samples in vectort1.njp,
overtest.njp and addtest4.njp

- Added code to generate a dummy .nrx file containing the public class
in a .java file. This allows NetRexx to compile class that depend on
the java source.

- Modified sort to accept arguements in the same order as CMS
- Fixed rc logic in drop stage
- Fixed shortcut code for {n} where n is numeric.

0.48 - Released May 16, 1999
- Fixed a (nasty) bug involving reusing pipe objects.
- Added the reuse() method to the stage class. To use it override
it in your stage. It was added so there was a foolproof way to
reset a stage when its pipe object is reused. (doSetup is intended
for use with dynamic arguements in call or added pipes)

- Added the cont option and defaulted it to comma.
- fixed return code logic in some stages and in selectInput/Output
- Added the Emsg methods
- Added arguement debug option (128)
- There are no more final methods
- Much improved error reporting from stages via new Emsg method

0.47 - Released Jan 3, 1999

75

- recompiled with 1.1.7A and netrexx 1.148
- UNIQUE repaired?
- Added stages to acess java objects easily
VECTOR, VECTORR, VECTORW, VECTORA for java.util.vector
ARRAY, ARRAYR, ARRAYW, ARRAYA for Object[]
HASH, HASHR, HASHW, HASHA for java.util.Hashtable
DICT, DICTR, DICTW, DICTA for java.util.Dictionary
The hash stages mostly map directly to DICT stages. The exception
is HASHW which uses the clear() method of Hashtable.

- Modified LITERAL to be able to put any object into a pipe
- Modified pipe package to store arguements in a hashtable instead of
a rexx stem - arguements can now be of any class. Use the arg(null)
method to get an object arguement.

0.46a - Released Oct 14, 1998
- recompiled with 1.1.7
- TCPLISTEN now supports an input stream to be used to pace accepts

0.46 - Released Sept 20, 1998
- COMMAND, CHANGE, FILE, LOCATE, DROP, LOOKUP, TCPCLIENT, TCPLISTEN

SQLSELECT, CONSOLE, TCPDATA, NOEOFBACK improved.
- Jeff improved the testing process with the addition of the COMPARE

stage, he also upgraded many of the tests.
- Added the buildtests pipe, it builds a test script to be run with:

test > output < console.data
- Unexpected exceptions should no longer hang pipes

0.45 - Released Sept 9, 1998
* Recompile all your stages. To fix a commit problem I had to

change the _stage interface class...
- tcpclient restart problems with oneresp active fixed.
- commit now returns the current return code of the pipe.
- fixed minor errors in tcpclient and diska.

0.44 - Released Sept 8, 1998
* a recompile of pipes using STEM is required
- smart DISK, FILE and STEM stages now exist.
- Made to and from synonoms for in and out in REXX and STRING stages.
- Added stream option to DISKR and DISKW to read raw streams.
- Added DISKSLOW and SERIALIZE stages.
- Now DISK, DISKR, DISKW, DISKA and DISKSLOW have FILE synonyms.
- Deadlock detection improvements.
- TCPDATA & TCPCLIENT optimized once again.
- selectAnyInput could deadlock - fixed.
- interrupting a pipe now kills it - use this with care (ie. kill -9)
- Pseudo methods njpRC() and njpObject() are reconized by the pipes

compiler and return the pipe’s RC or object respectivily.
0.43 - Released August 30, 1998

- Fixed deadlock dection to see commit deadlocks.
- Added rest of code to handle improved StageError logic.
- Added stage templates (template*.nrx) in the njpipes directory.

76

- Added a debug flag (64) to trace all StageError rasied by the
stage class.

0.42 - Not released
* A recompile of pipes using TCPCLIENT, TCPDATA is required.
* A recompile of pipes using REXX, STRING, ZONE, CASEI is recommended.
- Updated the comments in _stage to reflect the possible StageError

and return codes that can be issued.
- Added the DEBLOCK stage and reworked TCPDATA, TCPCLIENT & GATE.
- Improved eofReport processing and added a new option ’either’ that

will trigger a StageError when any stream, input or output, severs.
- Fixed variable subsitution so multiple variables passed to a stage

will work.
- Added the ability to pass thru arguements to callpipe and addpipe.
- Fixed a problem with some StageExits requiring stage_reset methods.
- Added a function to utils to help assign smarter name to classes

generated by StageExits.
- Added counter method to stage. use to count external waits so

deadlock/stall detection is not fooled.
0.41 - Released August 23, 1998

* removed OBJ2REXX, OBJ2STRING stages, use REXX and STRING stage
modifiers.

* pipes using TCPDATA, TCPCLIENT & LOOKUP should be recompiled
- exhanced REXX stage modifier via an object2rexx improvement in

pipes/utils.nrx
- optimized ThreadPool startup times. No setName and only use

setPriority when its required.
- made it possible to optimized stage startup time when arguements

are static. See TCPDATA, TCPCLIENT & LOOKUP
- faq.txt enhanced

0.40 - Released August 14, 1998
* All pipes MUST be recompiled. Old pipe class files will stall.
- OBJ2REXX is depreciated and will be removed, use the REXX stage.
- added REXX and STRING stages to convert objects entering and leaving

a stage to rexx or string. Inorder to avoid nasty class conflicts,
REXX and STRING are implemented in _rexx and _string. The compler
adds the ’_’ when necessary (any stage can use this feature).

- fixed an intermitant stall in callpipe (was completing too fast :-)
- fixed a stall occuring between shortStreams and COMMAND
- optimized pipe startup time in pipe.class and via the compiler.
- optimized rc, commit, deadlock, threadpool code

0.39 - Released August 9, 1998
- WAIT_COMMIT and WAIT_ANY are now used in the call/addpipe logic
- callpipe was not notifiing its pipe when ending leading to an

very intermitant hang.
0.38 - Released August 3, 1998

* All your stages must be recompiled. Recompile your pipes to
exploit the pipe & thread pool performance improvements.

77

- fixed and optimized commit logic.
- implement a pool for pipes to decrease overhead.
- implement a pool for threads to decrease overhead.
- compiler fix to proprogate return codes from stageExits (thanks Jeff).
- signal StageError(’... in all stageExits modified to
signal StageError(13,’Error - ’pInfo’ - ...

- UNIQUE stage added by Jeff. It exploits stageExit.
- COMMAND stage was not starting its threads correctly.
- SORTs in different pipes could corrupt each other. Thanks René‚

0.37 - Released July 25, 1998
* A recompile of pipes using SORT is required
- added NOEOFBACK, TOTARGET and FRTARGET.
- removed a protected method from dump(), added arg() to the dump
- upgraded SORT, sortRexx to exploit IRange and stageExit, optimized
use, and factored the sort algorithm out of sort/sortRexx.

- multiple sort stages no longer try to share static variables...
- the compiler just uses the stage name (not args) when naming stages

0.36 - Released July 19, 1998
* A recompile of ALL pipes with stages using IRANGE is required.
(CHANGE, DEAL, JOINCONT, LOCATE, LOOKUP, PICK, XLATE & ZONE)

* pipes using NFIND, NLOCATE, STRNFIND or SORT also need to be
recompiled

- Added BuildIRangeExit and other methods to an updated IRange
class. Using ’zone range stage ...’ will be faster than
’stage range ...’ when the range consists of n.c or n-c (s).

- NFIND, NLOCATE, STRNFIND implemented via stageExit and NOT
- Fixed bugs in, JUXTAPOSE, FIND, STRFIND, SORT, COMMAND, CHANGE
- The compiler was not calling stageExit in the correct order when
several calls were needed to build the stage. (zone w1 nfind..)

0.35 - Released July 16, 1998
- Jeff Hennick pointed out a bugglet that effected LOOKUP, ZONE and

PICK that could occur with complex ranges, I found another bug in
strliteral

- Jeff Hennick updated this doc with information on IRange and DString
0.35 - Released July 15, 1998

* A recompile of ALL pipes using ZONE, TCPCLIENT, TCPDATA, PREFIX
and APPEND is required.

- prefix and append can now be labeled, tcpclient and tcpdata
now use a stage, instead of a pipe, to group data.

- added compiler support for negitive stream numbers. This is
intended to be used by stageExit. See append, prefix, tcpdata
and tcpclient.

- Redefined rexxArg() and stageArg() to simplify the compiler.
- selection stages are no longer defined as final.
- SelectInput(0) and selectOutput(0) are always called by the

stage implementation so they can be overridden...
- Reimplemented ZONE using stageExit, added CASEI using the same

78

technique. In theory NOT could be done the same way but, to
avoid some recursion problems NOT is staying in the compiler.

- StageExit modified to allow it to pass back another stage to
call. see ZONE, CASEI and NOT.

0.34 - Released July 11, 1998
- minor reportEOF(any) logic fix
- improved command stage, threads used to process stdout and stderr.
added zone, pad, lookup, pick, upgraded juxtapose, fixed bugs in
specs & buffer.

- added pad option to setIRange method
0.33 - Released July 5, 1998

- added rexxArg() and stageArg() methods to utils.nrx for use by the
$ compiler to query stages about what they expect their arguments to

contain. This allowed the compiler to be simplified.
$ - locate now handles null arguments correctly. literals now include

leading blanks. Thanks for pointing out the problem René.
- René Jansen contributed the timestamp stage.
- logic modified to stop output() from getting an EOF when the output
object has been peeked. The peek status is also displayed by the
dump() method and hense by deadlocks.

- minor specs bug fixes (next.n and nextw.n output specs now work)
- modified the compiler to invoke stageExit(rexx,rexx) method. This
allows stages to generate code and/or change the pipe topology. See
specs, append, prefix, change and xnop, in the stages directory.

- modified StageError in preparation for usage changes.
- removed the Range class - Jeff’s code is better and anything that
could be done with Range can be done using stageExit.

- Jeff fixed bugs in change and join and added:
fblock joincont notinside outside
inside

0.32 - Released June 20, 1998
Jeff updated these stages adding a few new ones too:
abbrev between split locate
nlocate strnfind strfind nfind
find chop

- minor docuementation updates
- the Range class is depreciated and will be removed. Use the
replacements Jeff created (see pipes\utils.nrx and stages\).

0.31 - Released June 17, 1998
- modified count, drop, take and deal to handle non rexx objects
when possible

0.31 - Released June 16, 1998
- improved eofReport(ANY) logic to trigger when waiting on output
and a different output stream severs.

- factored the source for utils.class out of stages so there is
a class to add (probably static) shared methods for all stages

- fixed a deadlock that occured between shortStreams and exit

79

(severInput)
- Jeff Hennick updated many stages to work at CMS or near CMS levels.
append deal join strfrlabel xlate
buffer drop literal strliteral
change fanin locate strtolabel
console fanout split take
count frlabel strfind tokenize
All of Jeff’s changes are GNUed. See CopyLeft.txt in the njpipes
directory.

0.30 - Released May 24, 1998
- fixed logic in core classes to post all pending severs and not

clear them too early either, this corrects a problem seen on
Multiprocessor machines.

0.29 - www page update (docuemention) May 20
- deadlock section updated
- installation verification example corrected!

0.29 - Released May 17, 1998
- added obj2rexx stage, tolabel stage courtesy of Chuck Moore.
- enhanced change to support a single range
- Added setJITCache(Hashtable) method to pipes. This can be used

to build a global object cache in programs calling pipes. The name
of the Hasttable is passed to pipe/callpipe/addpipe via a cache
parameter.

- Added support for reportEof options. This support is not too
well tested - some good testcases are needed.

0.28 - Released May 9, 1998
- Enhanced parsing in specs (word2.1 would work, word 2.1 would not)
- Fixed COPY for a NT jit bug, fixed locate so NOT LOCATE would

work, updated LITERAL not to use more than one exit(rc)
- Fixed a compiler problem that would hit multistreamed pipes using

append or prefix.
- Any options not consumed by njp are passed on to nrc

and java. Mainly for use from the command line, use with care
in .njp files...

- Fixed shortStreams() so it works correctly when shorting streams
in a stage with multiple streams.

- Tested all 8 addpipe forms and fixed runtime to work with all
test cases

- modified filternjp to accept *in and *out without additional labels
- reenabled stop() in exit code...
- added gate, dam, tokenize, juxtapose and courtesy of Chuck Moore,

frlabel stages
0.27 - Released May 3, 1998

- Automated the generation of in/outStream calls. For this to work
the labels need to be of the form *in0: or *out0: where the ’0’ is
replaced by the input or output stream to connect to.

- Fixed compiler/filter problems with stema

80

- Tighted range checking code in specs, fixed problem with delimited
ranges. Specs was compiling the NetRexx EXIT command...

- Fixed a problem where output was not see that objects were
consumed when using sipping pipes...

- Fixed a problem where severing an output stream did not cause the
stages stacked on the node’s outlist to see the sever

- Fixed a problem where the stage issuing a callpipe was not seeing
the called pipe end

- Added debug option to pipes compiler
- Repaired commit and added commit levels to dump() method
- Fixed problems with callpipe servering several outputs, unstacking
the saved stream was selecting it...

- Modified tcpclient and tcpdata to use a secondary thread to
recieve the tcpip inputs.

- Now keep a referenced object for each pipe/stage so the JIT does
not throw away its work and call/addpipes in loops work faster.

- in/outStreamState now return -1 when autocommit is enabled and
the stream is unused.

0.26 - Released April 26, 1998
- Added selection methods to compiler (see getRange in section 4 and

the locate stage an example#
- Added the specs stage. The compiler builds a stage to process the
specs, reducing overhead.

- Added tcp/ip stages
- Fixed problems with severs using addpipe

0.25 - Optimized some stages using jinsight from www.alphaworks.ibm.com.
This more than doubled the speed of some stages.

- fixed bugs in fanin, diskw
- Added netrexx filters to extract pipes, extended the functions
of .njp files (multiple pipes in a file and .njp files can now
contain netrexx code with pipe/callpipe/addpipe)

- fixed a timing bug in deadlock detection.
- xlate and sqlselect stages contributed by René Jansen added

0.24 - Release Feb 98
- modified the compiler so the syntax of pipes from the command line
is the same as pipes from .njp files

- added the sort stage, the sortClass interface and the sortRexx
example implementation

- added the timer stage
0.23 - fixed minor compiler errors (20 Dec 97)

- not stage modifier added.
- errors in this page corrected, NT install information added.
- modified diskr/diskw to use Buffered Streams.

0.22 - second public release
0.21 - enabled auto commit, stages start at a commit level of -2 and

commit to a level of -1 at the first readto, peekto or output.
nocommit disables the auto commit. This feature has not been

81

completely tested (yet).
- fixed compiler not to call netrexx if one of its pipes deadlocks

0.20 - Upgraded to May version of the NetRexx compiler (Thanks Mike!)
this changed the compiler interface. NetRexx from May 10 or
later is now required.

- nocommit added to _stages, though its a nop for now
- modified the compiler class to use the May 10th NetRexx compiler

0.19 - initial public release (4 May 97)

82

List of Figures

1 Run in the NetRexx Workspace 5

2 Run from the OS command line 6

3 Precompile a Pipeline from the OS command line 6

4 example 1 8

5 example 2 9

6 example 3 10

7 example 4 11

8 example 5 11

9 BAGVENDT under VM/CMS 13

10 bagvendt.nrx under NetRexx 13

11 Deadlock detection 21

12 TCP/IP Client/Server compile 28

13 TCP/IP server 28

14 TCP/IP requestor 28

83

List of Tables

84

Listings

1Example Listing . iii

85

86

Index

Rexx, 12, 23, 25
arg, 23, 24
binary, 27
catch, 7, 12, 24, 25, 27
class, 7, 12, 23, 24, 27
do, 7, 12, 24
end, 7, 12, 23–25, 27
exit, 7, 12, 24, 27
extends, 7, 12, 23, 24, 27
final, 7, 23, 24
forever, 7, 12, 24, 25, 27
import, 7, 12, 24, 27
loop, 7, 12, 23–25, 27
method, 7, 12, 23, 24, 27
options, 27
over, 23
public, 23, 24, 27
rexx, 6, 7, 27
say, iii, 23
signal, 12
static, 23
to, 23, 27
where, 29

87

Differences with CMS Pipelines

The goal of this implementation is to be
as close as possible to the the CMS ver-
sion of Pipelines. A few differences are
unavoidable.

. The character set is Unicode and
not EBCDIC, as Unicode is the
character set of the underlying Java
platform. As shells are different, many 3270
related stages are not implemented. Pipes need to be quoted on the
Windows andUnix command lines;
theWorkspace forNetRexx (nrws)
environment is an exception to this
rule. The mainframe is record-oriented
inmany stages, Pipelines forNetRexx
does an approximation of this. Pipelines on the mainframe is an
interpreted language with compo-
nents as the scanner and the dis-
patcher; the NetRexx version is
compiled to Java .class files by pipc,
the pipes compiler, and dispatched
as threads by the JVM.. The mainframe pipes dispatcher
is not multiprocessor enabled. In
Pipelines forNetRexx all tasks (stages)
are dispatched over all available
processors in parallel.. Thefact that pipes run fromNetRexx
implies that they can be used in
Java source. In previous releases
there was more direct support for
this; this has lapsed due to changes
in the way a java toolchain works.
This support can be restored in fu-
ture releases.

. To put the content of a NetRexx
variable in a pipe specification in
a NetRexx program, there is a {}
mechanism. InCMS the pipewould
be quoted in the Rexx source and
you would unquote sections to get
a similiar effect.

9 789081 909037

ISBN 978-90-819090-3-7

88

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	The Pipeline Concept
	What is a Pipeline?
	Stage
	Device Driver

	Running pipelines
	Configuration
	From the NetRexx Workspace (nrws) with direct execution
	From the command line with direct execution
	Precompiled Pipelines
	Compiled from an .njp file
	Compiled from an .njp file with additional stage definitions in NetRexx

	Example Session
	Write your own Filters
	More advanced Pipelines
	Device Drivers
	Record Selection
	Filters
	Other Stages
	Multi-Stream Pipelines
	Pipeline Stalls
	How to use a pipe in a NetRexx program
	Giving commands to the operating system
	Built-ins

	TCP/IP Networking using Pipes for NetRexx
	Selecting from databases with Pipelines for NetRexx
	The Pipes Runner
	The Pipes Compiler
	Built-in Stages
	Appendix A
	List of Figures
	List of Tables
	Index
	Differences with CMS Pipelines

