Pipelines for NetRexx
QuickStart Guide

Ed Tomlinson Jeff Hennick René Jansen

Version 3.09-GA of September 30, 2020

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-3-7

Publication Data

©Copyright The Rexx Language Association, 2011- 2020

All original material in this publication is published under the Creative Commons - Share Alike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-3-7

| SBN 978-90-819090- 3-7

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

|Lhe NetREXX Programming Serieg i

I'ypographical conventiong iii

1

2 'The Pipeline Concept 2

R.1 Whatisa Pipelineq 2
D o6 2
2.3 Device Drivey 3
B Running pipelineg 4
B.1 Conhguration 4
B.2 From the NetRExX Workspace (nrws) with direct execution 5
B.3 From the command line with direct execution 5
B.4 Precompiled Pipelined 6
B.5 Compiled from an .njp fil§ 6
B.6 Compiled from an .njp file with additional stage definitions in NetREXX|
4 Example Session 8
b Write your own Filters 12
b6 More advanced Pipelineg 14
7 Device Driverg 15
B8 Record Selection 16
0 Filtery 17
10 O ges 18

1 Multi-Stream Pipelineg 19

12 Pipeline Stallg 21

II

I3 How to use a pipe in a NetREXX program| 23

14 Giving commands to the operating system 26

14 B y 26

15 TCP/IP Networking using Pipes for NetREXX| 27

16 Selecting from databases with Pipelines for NetREXX|

L7 "The Pipes Runner 30

I8 'lhe Pipes Compiler 31

19 Built-in Stageq 32

D0 Appendix A 75
83

List of Figures
[istof Tabley 83

Diflerences with CMS Pipelineg 88

III

29

The NetRExX Programming Series

This book is part of a library, the NetRExx Programming Series, documenting the
NetRExx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide

This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRExx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide

The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference

Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRExx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRExx QuickStart Guide

The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetREXX.

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:

+ Body text is in this font

 Examples of language statements are in a bold type

« Variables or strings as mentioned in source code, or things that appear on the con-
sole, are in a typewriter type

« Items that are introduced, or emphasized, are in an italic type

+ Included program fragments are listed in this fashion:

Listing 1: Example Listing

-- salute the reader
> say 'hello reader'

« Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

iii

Introduction

A Pipeline, or Hartmann Pipelinel?, is a concept that extends and improves pipes as they
are known from Unix and other operating systems. The name pipe indicates an inter-
process communication mechanism, as well as the programming paradigm it has intro-
duced. Compared to Unix pipes, Hartmann Pipelines offer multiple input- and output
streams, more complex pipe topologies, and a lot more.

Pipelines were first implemented on VM/CMS, one of IBM’s mainframe operating sys-
tems. This version was later adapted to run under MUSIC/SP and TSO/MVS (now z/OS)
and has been part of several product configurations. Pipelines are widely used by VM
users, in a symbiotic relationship with REXX, the interpreted language that also has its
origins on this platform.

Pipes for NetRexx is the implementation of Pipelines for the Java Virtual machine. It
is written in NetRExx and pipes and stages can be defined using this language. It can
run on every platform that has a JVM (Java Virtual Machine) installed. This portable
version of Pipelines was started by Ed Tomlinson in 1997 under the name of njPipes,
when NetRExx was still very new, and was open sourced in 2011, soon after the NetRExx
translator itself. The included stages have always been open source. It was integrated into
the NetRExx translator in 2014 and first released with version 3.04.

In version 3.08, there are important improvements that enable pipelines to be run
from the command line, and from the NetRexx REPL program nrws, the NetRExx
Workspace. The pipes compiler has been renamed pipc, while the pipes runner compo-
nent keeps using the name pipe.

1 //https://en.wikipedia.org/wiki/CMS_Pipelines
2This page used to be called Hartmann Pipeline, but was renamed to CMS Pipelines in 2016

1

//https://en.wikipedia.org/wiki/CMS_Pipelines

The Pipeline Concept

2.1 What is a Pipeline?

The pipeline terminology is a set of metaphores derived from plumbing. Fitting two or
more pipe segments together yields a pipeline. Water flows in one direction through the
pipeline.

There is a source, which could be a well or a water tower; water is pumped through
the pipe into the first segment, then through the other segments until it reaches a tap,
and most of it will end up in the sink. A pipeline can be increased in length with more
segments of pipe, and this illustrates the modular concept of the pipeline.

When we discuss pipelines in relation to computing we have the same basic structure,
but instead of water that passes through the pipeline, data is passed through a series of
programs (stages) that act as filters.

Data must come from some place and go to some place. Analogous to the well or the
water tower there are device drivers that act as a source of the data, where the tap or the
sink represents the place the data is going to, for example to some output device as your
terminal window or a file on disk, or a network destination.

Just as water, data in a pipeline flows in one direction, by convention from the left to the
right.

2.2 Stage

A program that runs in a pipeline is called a stage. A program can run in more than one
place in a pipeline - these occurrences function independent of each other.

The pipeline specification is processed by the pipeline compiler, and it must be contained
in a character string; on the commandline, it needs to be between quotes, while when
contained in a file, it needs to be between the delimiters of a NetRExx string. An solid
vertical bar | is used as stage separator, while other characters can be used as an option
when specifiying the local option for the pipe, after the pipe name.?

When looking a two adjacent segments in a pipeline, we call the left stage the producer
and the stage on the right the consumer, with the stage separator as the connector.

31n versions before Pipelines for NetRExx 3.08, the default was the exclamation mark (!), which use was discontinued in favour
of conformity with VM/CMS Pipelines.

2.3 Device Driver

A device driver reads from a device (for instance a file, the command prompt, a machine
console or a network connection) or writes to a device; in some cases it can both read
and write. An example of a device drivers are < and > ; these read and write data from
and to files.

A pipeline can take data from one input device and write it to a different device. Within
the pipeline, data can be modified in almost any way imaginable by the programmer.

The simplest process for the pipeline is to read data from the input side and copy it
unmodified to the output side. Chapter [] on page [[J shows the currently supported
input- and output devices. The pipeline compiler connects these programs; it uses one
program for each device and connects them together.

The inherent characteristic of the pipeline is that any program can be connected to any
other program because each obtains data and sends data throug a device independent
standard interface. This becomes apparent when data can be in-line (specified or gen-
erated within the pipeline specification), come in (or be output) to devices like disk or
tape, or be handled through a network - all these formats can be processed by the same
stages.

The pipeline usually processes one record (or line) at a time. The pipeline reads a record
for the input, processes it and sends it to the output. It continues until the input source
is drained.

Running pipelines

There are a number of ways to specify and run a pipeline. A little setup is necessary.

3.1 Configuration

The required configuration is minimal. The NetRexxFEjar (java archive file) needs to
be on the classpath environment variable (NetRExxC.jar, which is smaller, will suffice
when there is a working javac compiler). Also, the current directory (.) needs to be on the
classpath. It is convenient to have aliases or shell scripts defined as abbreviations for the
invocation of the pipe, pipc (pipe compiler) and nrc (netrexx compiler) utility programs.
Aliases are preferable because some shell processors have idiosyncrasies in the treatment
of script arguments. With an alias we can be sure that every NetRExx program sees its
arguments the same way.

.bash_aliases:

alias pipc=”java org.netrexx.njpipes.pipes.compiler”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias nrc="java org.netrexx.process.\nr{}C”

For Windows, the following works: file pipe.bat:
@java -cp ”%NETREXX_HOME%\lib\NetRexxF.jar ;%CLASSPATH%” org.netrexx.njpipes.pipes.runner
For Windows, the following works: file pipc.bat:

@java -cp ”%NETREXX_HOME%\lib\NetRexxF.jar ;%CLASSPATH%” org.netrexx.njpipes.pipes.compil

Do note that the Windows .bat files assume that the NETREXX HOME environment
variable is set correctly, that is, to the top of the path where NetRexx is installed. This
prepends the NetRexxEjar file to an already existing CLASSPATH. For the development

of local classes (that is, all precompiled pipelines), a dot (7), needs to be on this CLASS-
PATH.

These aliases (or command scripts (in Windows it is called a batch file) enable you to do
the following:

To run a pipeline from the commandline, type:

pipe 'gen 100 | dup 999 | count words | console'

Remember to use double quotes on Windows shells. When the pipe alias or command
script is not on your path, you can also use:

4

1 java org.netrexx.njpipes.pipes.runner 'gen 100 | dup 999 | count words | console'

In both cases the answer should be 100000 - you have generated one hundred thousand
lines, but fortunately you did not print them, but only counted them. To see them all,
you can insert a | console | stage in between the dup and the count stage.

After we have verified the working of the command processors, we will discuss in the
next section which possibilities you have for running pipelines in day-to-day usage.

3.2 From the NetRexx Workspace (nrws) with direct execution

The first way is the most straightforward, and highly recognizable for users of CMS
Pipelines, as it mimics the way a pipe is run in the CMS 3270 interface. It also yields the
best response time, specially when the nrws.input file in your home directory preloads
the Pipes subsystem, as in this example:

-- preload the pipe machinery for good response on first pipe
pipe literal Pipelines processor loaded. | console

This is not magic: we do a Pipe execution (that displays: “Pipe processor loaded”) which
loads all necessary classes and leaves them in memory. We can then type this command
after the nrws> prompt.

pipes git:(

FIGURE 1: Run in the NetRExx Workspace

1 pipe literal a man a plan a canal panama | reverse | console

Executed this way, the executed class image will not be written to disk. The timing option
is great for prototyping and performance work.

3.3 From the command line with direct execution

The only difference is that after the pipe command, the rest of the specification needs to
be quoted in the command shells of Linux, Windows and macOS. In CMS, the pipeline
specification can also be quoted - in this way, a pipeline can be entirely portable. Win-
dows needs double quotes, zVM/CMS does not need quotes, but if they are used they
need to be double quotes. macOS and Linux can use single or double quotes, in most
cases.

1 pipe "literal a man a plan a canal panama | reverse | console"

Executed this way, the executed class image again will not be written to disk.

5

pipes git

amanap lanac a nalp a nam a
pipes g (

FIGURE 2: Run from the OS command line

3.4 Precompiled Pipelines

In this mode, which uses the pipc command (for pipe compiler), a .class file will be
persisted to disk. This class can be run as many times as needed, without the overhead of
compilation. This also would be the right mode for pipes that take different arguments
when re-run. The pipe name needs to be specified, and will be the class name. When the
class name exists, it will be overwritten.

1 pipc "(testl) literal a man a plan a canal panama reverse console"

FIGURE 3: Precompile a Pipeline from the OS command line

This will yield a
testl.class

classfile, which can be executed by the java virtual machine.

The file test1.class can be run with the command®:
java testl

Be sure to leave out the .class suffix when invoking java.

3.5 Compiled from an .njp file

When compiled from a file, the pipe specification must not be quoted. Pipes can be spec-
ified in so-called /emphPortrait Mode, which is the standard for more complex pipelines
as it is easier to read. An example is:

pipe (appendtest)

1
2
3 gen 100 |

4 append gen 50 |

5 rexx locate /0/ |
6 console

4or an appropriate shortcut in modern shells

1
2

3
4
5

3.6 Compiled from an .njp file with additional stage definitions in
NetREXX

An example (length1.njp) is:
pipe (lengthp) < output.lst | lengthl | console

import org.netrexx.njpipes.pipes.
class lengthl extends stage final
method run()
do
loop forever
line = rexx peekto()
1 = line.length
output(l 1.d2x line)
readto()
end
catch StageError
rc = rc()
end
exit(rcg (rc<>12))

In this example, the name of the generated pipe is lengthp, while the name of the custom
stage is lengthl. Be sure to invoke the right class, invoking length1 will have the JVM
complain about a non-existing main method. This class (lengthp) will be generated by
the command:

pipc lengthl

note that the .njp suffix is optional when invoking the pipes compiler. When run, it tries
to read the contents of the file length.nrx and will put out its lines, prepended by the line
length in decimal and hex - because that is what the (in NetRexx) specified homegrown
stage does.

Example Session

Imagine you have landed a job as programmer in an accounting firm, and on your first
day there is a question about backups; the backup process takes too long. There is an urgent
need to identify the files that are produced on this day. You know how to this, of course, it
is only some 20 lines of code; use the File() AP]I, fill a collection class (you are thinking of
an ArrayList already), or a TreeMap to sort the File object on last modified date already,
call an instance of the Calender class, run a comparison - get that compiled and test it a
bit - an hour or so would be sufficient. Of course, you need to install the Java compiler,
because all machines have Java nowadays, but just not the compiler. But if you want to
really impress people, you should type in a command line and be done with it. For this
you can use NetRExx pipelines. Fortunately, you emailed the NetRExxFEjar to yourself so
you save it on the machine, and you're in business right away; you add it to the classpath.
Your first pipeline command should just test the waters. For this chapter, we will use the

nrws

program. You send a command into the pipeline, and get its output:

1 pipe command ls -1aFTl | console

FIGURE 4: example 1

The Is command with the flags is the unix way to get a directory listing - for Windows

8

we would use dir. In this case, we send the output into the pipeline, but as the last stage
(called a pipe sink’) occurs immediately after that, every line will be echoed on the con-
sole. A number of lines like these will be displayed on the console, as in example 1.

You see straight away that the relevant info is not in the first columns, and not in consec-
utive columns; we want to know the date (whether it is today or not) and not the time.
So we filter this out of every line with a specs stage, as in example 2.

1 pipe command ls -1aFTl | specs 42-47 1 58-4 8 | console

FIGURE 5: example 2

We can easily sort this, with almost no programming:

1 pipe command ls -1aFTl | specs 42-47 1 58-4 8 | sort | console

So what now comes out of the pipeline is sorted (see example 3). But this is a bit funny,
we would like to see chronological order of course, so we switch around some columns
with another specs stage:

1 pipe command ls -1aFTl | specs 42-47 1 58-4 8 | specs 7-11 1 1-6 7 12-4 12 | sort |
console

which is very near to what we want (see example 4). Only thing to do now is to filter on
the date. We use the locate stage and hardcode the date for now. Let’s say it is the 2nd of
March, 2019:

1 pipe command ls -1aFTl | specs 42-47 1 58-4 8 | specs 7-11 1 1-6
7 12-4 12 | locate /2019 Mar 2/ | sort | console

o

As example 5 shows, on that day there were only two files produced. Also, because this
is a short list now, you can see that Pipelines runs this pipe in 0.157 seconds, because we
switched on the time option in nrws. Normally, you would specify your pipeline in a file
and use portrait mode: commandtest.njp:

1 pipe (newfiles)

N L e W

[XK) java org.vpad.extraworkpad.Workspace %3

FIGURE 6: example 3

command 1s -1aFTl |

specs 42-47 1 58-4 8 |

specs 7-11 1 1-6 7 12-4 12 |
sort |

locate /2019 Mar 2/ |
console

The filename is different from the generated class file name, on purpose. You could, and
would, put different related pipelines in one file. Then we do a:

pipc commandtest && java newfiles

10

[XK) java org.vpad.extraworkpad Workspace %3

FIGURE 7: example 4

o0 e java org.vpad.extraworkpad Workspace 33

FIGURE 8: example 5

11

® N R W N =

[N T Y, B VU

Write your own Filters

So we have seen in the previous example that it is not too hard to make a simple pipeline
out of things called device drivers’ (such as command, for OS commands, '<’ for reading
files on disk, and literal, for inserting literal strings into a pipeline, filters, and sinks.
When a filter is not delivered in the standard set of stages, it is very easy to make one
yourself in the NetRExx language. The model for this closely follows the way it is done
with CMS Pipelines and Classic Rexx. Imagine, for the sake of argument (and a simple
exampleB), that you have an assignment to quickly reverse a string.

/« BAGVENDT REXX -- Reverse the contents of lines in the pipeline 4/
signal on error
do forever
'peekto data'
'output' reverse(data)
'readto’
end
error: exit RCx(RC<>12)

And you would need to remember to call your filetype REXX instead of EXEC. The
peekto reads the input but does not actually commit the read yet, so you can read it one
more time with knowledge about the contents. The output pushes its argument back
into the pipeline. The readto reads and commits the read so the line is really processed
and we can go to the next one.

In NetRexx, that would be about the same, but for some small changes incurred by the
object oriented model of NetRExx, which does not exist in Classic Rexx. Here peekto (),
readto() and output () are method calls on the stage object. This will be made address-
able by the import from org.netrexx.njpipes.pipes. (file: bagvendt.nrx)

import org.netrexx.njpipes.pipes.
class bagvendt extends stage
method run()
loop forever
line = Rexx peekto()
output(line.reverse())
readto()
catch StageError
rc = rc()
end
exit(rcg (rc<>12))

So that would look fairly familiar, and admittedly, a bit easier for us already well versed
in NetRExx. We can test this by building a pipeline and running the filter on its own
source:

pipe ”literal abcd | bagvendt | console”

>From the document CMS Pipelines Explained, by John P. Hartmann

12

If you have a CMS handy, that would be:

pipe literal abcd | bagvendt | console

on the first, Classic Rexx version of the filter - but the quoted version also works on CMS.

- Reverse the contents of lines in the pipeline

‘output' reverse(data)

T: exit RC*(RC<>12)

; T=0. 5 22:08:09
pipe literal abcde endt | console
edcl
Ready; T=0

RUNNING ARUBVMA
37/001|

i Telnet TN3270 INDSFILE 20C1909.L0G 00:08:12 132x38

FIGURE 9: BAGVENDT under VM/CMS

pipes git:() t bagvendt.nrx
import org.netre: pipes.pipes.

method run()

loop for
line = R
output(lin

Compilation o gvendt.nrx' succes
pipes git:("

edc
pipes git:(

FIGURE 10: bagvendt.nrx under NetRExx

13

1
2

3

26
27
28

More advanced Pipelines

Admittedly, the examples in the previous chapters could have been done with Unix pipes
or at least with incorporation of stream utilities like awk or sed.

To get a good idea of what can be done with Pipelines for NetRExxX, look at the tasktest
pipe in the examples directory. It B implements the shell of a multitasking server - using
about eight stages. The file examples/tcptask.njp contains an example of this technique
being used.

--tasktest.njp
pipe (tasktest stall 2000 -gen)

literal ® 1 23456 789 ABCDEFGHIJKLMNOPQRST |
dup 2 |
split | -- supply work for task stage

ptimer |
a: deal secondary ? -- send work to task stage requesting work
b: faninany |
elastic | -- buffer requests to so no deadlocks
ptimer |

a: |

copy | -- buffer work so no deadlocks
task 1 | -- worker task 1

b: ?

a: |
copy |
task 2 | -- worker tast 2...
b: ?
a: |
copy |

task 3 |
b:

Before discussing this example in-depth, we need to go into some more basic concepts.

busing code from Melinda Varians 'Cramming for the Journeyman Plumber Exam’ paper

14

Device Drivers

Pipelines for NetRExx contains the following device drivers:

< read from a fle

> write to a file (which is overwritten if it exists)

» append to a file (which is created if it does not exist)
diskr read from a fle

diskw write to a file (which is overwritten if it exists)
diska append to a file (which is created if it does not exist)
diskslow read, create or append to a file

array manipulate arrays

arraya manipulate arrays

arrayr manipulate arrays

stem manipulate stems

stema manipulate stems

stemr manipulate stems

vector manipulate vectors

vectora manipulate vectors

vectorr manipulate vectors

var read or set a variable in a NetREXX program

zip compress a set of files (0 or more) into a zip archive
unzip decompress a set of files (0 or more) from a zip archive
listzip list a zip file directory

console read from, or write to a terminal (window)

hole destroy data

delay suspend stream

literal write the argument string

strliteral write the argument string

sqlselect select from any jdbc source

xrange

write a character range

15

Record Selection

Various stages can select records and work on data in the pipeline. These are stages
called select, sort, specs, locate, etcetera. For a complete description we refer to the IBM
Pipelines documentation.

These are the main selection stages supported in Pipelines for NetRExx:

between selects records between labels

drop discard records from the beginning or the end of a file
find select lines

strfind select lines

frlabel select records from the first one with leading string

strfrlabel select records from the first one with leading string

inside select records between labels
locate select records between labels
nfind select lines using xedit nfind logic

strnfind select lines using xedit nfind logic

nlocate select lines without a string

notinside select records not between labels

outside select records not between labels

pick select records that satisfy a relation

take select records from the beginning or the end of a file
tolabel select records to the first one with leading string

strtolabel select records to the first one with leading string

unique discard or retain duplicate lines

16

Filters

buffer buffer records

chop truncate the record

join join records

pad expand short records

split split records relative to a target

change substitute contents of records

specs rearrange contents of records

xlate transliterate contents of records

copy copy records

count count lines, words and bytes

dup duplicate the object

reverse reverse contents of records

timestamp prefix date and time to records

append put output from device driver after data on the primary input
casei run selection stage in a case-insensitive manner
not run stages with output streams inverted

prefix Blocks its primary input and excutes stage supplied as an argument
zone run selection stage on subset of input record
elastic buffer sufficient records to prevent stall

fanin concatenate streams

faninany copy records from whichever input stream has one
gate pass records until stopped

juxtapose preface record with marker

overlay overlay data from input streams

command issue a command and write response to pipeline

17

10

Other Stages

query check version and level of Pipelines for NetRExx

-- insert comments into a pipeline

comment insert comments into a pipeline

18

N

[

S

11

Multi-Stream Pipelines

One of the defining differences with Unix pipes is the possibility to define multi-stream
pipelines. The selection stages from the previous chapter all have secondary streams.
What the selection parameters have discarded, seem to have discarded, is in reality not
gone. In fact, Pipelines for NetRExx throws very little away during execution.

The way to use the not-selected part of the data through these secondary streams is ex-
plained in this chapter; it is this capacity that constitutes the freedom to work with many
different streams in one pipeline; where Unix pipes are limited to not very much more
than stdin, stdout, stderr — Pipelines for NetRExx enables the user to define as many
streams as necessary to accomplish the task at hand in an efficient manner.

Let us look at a simple selection like the following:

pipe literal foo bar baz frob frobnitz frobbotzim | split | locate /oo/ |
console

foo

The string that makes it through the selection that is done by the locate is foo’ - it is the
only one that is captured by the /oo/ filter.

The rest of the words is not gone, however, and we can use these in further processing
by using the secondary stream that locate provides.

To prepare for this, we give the secondary stream a name by providing a label for it, we
call it, in absence of any creativity, restl. Also, we send the selected output, foo into a
hole stage, where it disappears.

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
hole

As predicted, there is no output. To get to the rest of the words, unselected by locate, we
connect the secondare output stream to a new pipe, using the "¢’ (the default pipe-end
character) like this:

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
hole ? rest: | console

The output is now:

bar

baz

frob
frobnitz
frobbotzim

7often, you will see it being called a:’

19

N

N

Instead of sending the original output into a black hole, we could have also gone further
with it, and, for example, reverse it:
pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |

reverse | console ? rest: | console

The output is now:

oof

bar

baz

frob
frobnitz
frobbotzim

Likewise, we can specify more filter stages in the second, attached pipeline, and bifurcate
the pipeline even further.

pipe literal foo bar baz frob frobnitz frobbotzim | split | rest: locate /oo/ |
reverse | console ? rest: | locate /botzim/ | console

The output is now:

oof
frobbotzim

It is good to define and implement secondary streams when you write your own stages.

20

12

Pipeline Stalls

With multistream pipelines a new problem sometimes rears its head - a Pipeline stall,
also called deadlock. This happens when stages wait for input that cannot be delivered,
in a way that ensures that it cannot be delivered.

Pipes for NetRexx detects deadlocks and outputs information to allow you to fix the
problem. Consider the following session:

1 pipe literal test | a: fanin | console | a:

g=201 waits @ args=test

01 waits @ args=

FIGURE 11: Deadlock detection

We can see that there are three stages in the Running state. None have any return codes
set. The Flags tell us that all the stages are waiting for an output to complete.

The’->’ show which stream is selected. From this we can see console_3 is trying to output
to fanin_2. Unfortunately fanin_2 is waiting for output on stream 0 to complete, it cannot
read the data waiting on in stream 1. Hence the stall.

The strings after Dumping and Monitored by are the autogenerated class names. When
you name your pipelines with precompiled pipes yourself, the names you have given
them will be displayed here.

When a stream has data being output, there is a boolean flag following the name of the
stage the stream is connected to. This tracks the peek state of the object. For an output

21

stream, true means the following stage has peeked at the value. With input streams, the
current stage has seen the value when its true.

When a stage is multithreaded, like elastic, you can get flags of 3 or 5. This means that
threads are waiting on output and read, or output and any. When using multithreaded
stages, only one thread should use output unless it is serialized using protected or syn-
cronized blocks.

When a stage has a pending sever or autocommit, flag bits are set too.

22

IR ST

13

How to use a pipe in a NetREXX program

This shows how to use a pipe in a NetREXX program:

class testpipe
method testpipe(avar=Rexx)

F
T

Rexx 'abase'
Rexx 1

F[0]=5
F[1]=222
F[2]=3333
F[3]=1111
F[4]=55
F[5]=444

pipe (apipe stall 1000)
stem F | sort | prefix literal {avar} | console | stem T

loop i=1 to T[O]
say 'T['i']="'T[1]
end

method main(a=String[]) static

testpipe(Rexx(a))

A couple of things can be seen in this example. First that it is simple to pass NetRExx
variables to pipes using stem. Also look at the phrase {avar}. It passes the NetRExx
variable’s value to the stage at runtime. In CMS the pipe would be quoted and you would
unquote sections to get a similiar effect.

Another thing to note is that the pipe extraction program is fairly smart. It detects when
pipes takes several lines. As long as there are stages, or the current line ends with a stage-
sep or stageend character, or the next line starts with a stagesep or stageend character. It
gets added to the pipe.

The arg(), arg(rexx) or arg(null) methods get the arguments passed to a stage or pipe.
To get the complete rexx string of an argument use arg(). To get the nth word of a rexx
argument use arg(n). When using pipes in netrexx code you can use arg('name’) to get
the named argument. If the class of the argument is not rexx use arg(null) to get the
object.

In .njp files you can use avar phrase actually just shorthand for arg(‘avar’). The following
example shows what has to be done in a stage to access the rexx variables passed by VAR,
STEM and OVER. The real over stage is a bit more complete.

-- over.nrx
class over extends stage final

method run() public

a = getRexx(arg())
loop i over a

23

10
11
12

® N s W N =

output(ali])
catch StageError
rc = rc()
end

exit(rcg(rec<>12))

The getRexx method is passed the name of a string by the pipe. In the previous example
it would be passed A and would return an Object pointer to A in testpipe. If you wish to
replace a stream this can be done using connectors. For example look at the following
fragment:

-- examples\calltest.njp
pipe (calltl) literal test | calltest {} | console

import org.netrexx.njpipes.pipes.
class calltest extends stage final
method run() public

do
a = arg()
callpipe (cpl) gen {a} | xoutO:

loop forever
line = peekto()
output(line)
readto()

end

catch StageError
rc = rc()
end

exit(rcg(rec<>12))

Running the calltl pipe with an argument of 10 would pass the 10 to calltest via and
arg(). Then cpl’s gen stage would be passed " which is set to 10. Since gen generate
numbers in sequence, the console stage of calltl would get the numbers from 1 to 10.
Now cp1 ends and calltest’s output stream is restored and calltest unblocks and reads the
the literal’s data ’test’ and passes it to console.

The use of only works when compiling from .njp files. It will not work from the com-
mand line. The njpipes compiler recognizes connectors as labels with the following
forms:

*in:
*inN:
*out:
*oUutN

When N is a whole number, the connector connects input or output stream N of the
stage with the connector. When the label *in or *out, the connector connects the stages’s
current input or output stream with the connector. This is used instead of *: due to the
way the compiler/preprocessor works. If you do not want the stage to wait for the called
pipe to complete you can use addpipe. Here is an example.

-- similar to examples\addtest.njp

a = 100

24

b = 'some text for literal'
addpipe (linktest) literal {b} | dup {a} | xin@:

loop forever

line = Rexx readto()
catch StageError
end

readto() will get some text for literal’ one hundred times.

A quick aside. When writing stages remember that njPipes moves objects through pipes.
Use 'value = peekto()’ instead of *value = rexx peekto()’ when ever possible. Some of the
supplied stages pass objects with classes other than rexx and forcing rexx will cause class-
CastExceptions. If a stage needs a rexx object try using the rexx stage modifier to attempt
to convert the object. Feel free to expand this stage, but please send me the updated ver-
sion.

Serious stage writers will probably want to take a good look at the methods defined in
the NetRExx source package org.netrexx.process.njpipes.stages. There you will
find various methods for parsing ranges. You will also find the stub for the stageExit
compiler exit. It can be used to produce on the fly’ code at compile time. You can also
use it to change the topology of the unprocessed part of the pipe. The major use is to al-
low implementations of stages like prefix, append or zone. Its also used to produce better
performing stages, for an example see specs. The compiler also queries the rexxArg() and
stageArg() methods. If your stage expects objects of class Rexx as arguments rexxArg()
should return the number of variables expected. If your stage expects a stage for an ar-
gument, stageArg() should return the word position of the stage.

25

14

Giving commands to the operating system

The command stage is used to issue commands to the operating system and trap the output
to the pipeline. command can receive its input as parameters, or through the pipeline. So

1 pipe literal 1ls | command | sort | console

is equivalent to:

1 pipe command 1s | sort | console

14.1 Built-ins

Some commands, like d-i r in Windows, do not have a separate executable file; there is no
dir.exe. This can be solved by having the command processor, cmd . exe start its built-in
command. The pipeline would be, for example:

1 pipe literal cmd /c dir | command | sort | console

26

26

36

38
39
40

15

TCP/IP Networking using Pipes for NetRExX

As the built-in stages all work on data that is dispatched through the pipeline, irrespective
of which device driver is used, it is also convenient to do network programming using a
set of pipelines.

The tcplisten stage can be used as a network device driver, as in CMS, but limited to
specification of the port and a timeout value. Below an example of how to implement a
sample TCP/IP client/server application.

-- one shot tcpip server

pipe (tcpserv stall 60000 debug 0)
tcplisten 1958 timeout 15000 | tcpexample

-- one shot tcpip requestor

pipe (tcpreq stall 60000 debug 0)
random {} |
specs x—x 1 ,\n, next |
tcpclient deblock ¢ localhost 1958 timeout 10000 linger 500 oneresponse
rexx to console

-- a single tasking server

options binary
import org.netrexx.njpipes.pipes.
class tcpexample extends stage

method run() public
loop forever
peekto ()

callpipe (tcplog stall 15000 debug 0)
*1n0: |
take first 1 |
console |
f: fanin |
tcpdata timeout 10000 deblock C oneresponse
elastic |
insert /\n/ after |
f:
catch StageError
rc = rc()
end

exit(rcg (re<>12))

This example needs to be compiled with the pipes compiler, see TCP/IP Client/Server
compile, which yields the classes tcpserv and tcpreq, for the server and the requester
component.

Now we can start the generated pipelines each in their own shell window. As can be
seen in TCP/IP server, the class keeps waiting on connections on port 1958 - which is

27

FIGURE 12: TCP/IP Client/Server compile

arbitrary, but specified in the pipeline source.

[J ® java tepserv X3

FIGURE 13: TCP/IP server

In another window, we can start the TCP/IP requestor, which when given port 1958 as
argument, connects to the server, and displays a series of random numbers that is sent
to it.

£l -.xamples/pipes %2

FIGURE 14: TCP/IP requestor

Note that the stage tcpexample from the tcpserver pipeline is a custom stage that is written
in this tcpexample.njp file.

28

16

Selecting from databases with Pipelines for
NetRExx

Using the built-in sqlselect stage you can select data, using SQL, from any jdbc source
available.

An sqlselect.properties file is needed to define the jdbc parameters like the driver to
use, the url of the data source and other arguments, like a password and tracing options,
if needed.

The file looks like this:

jdbcdriver=org.sqlite.JDBC
url=jdbc:sqlite:flightroute-iata.sqgb

This is all that is needed for an sqlite database containing flight data. A simple select *
can then be done with the following pipeline:

pipe literal 4 from FlightRoute where flight = 'KLM765' | sqlselect | console

This yields the following output:

FLIGHT--ROUTE--UPDATETIME--
KLM765 AUA-BON-AMS 1494132448

Note that from the command line, the quotes around the pipe specification and the literal
string in the SQL statement should be opposite, while when the pipeline is issued from
the Workspace for NetRExx, the pipeline does not have to be quoted, but the sql string
needs double quotes instead of the - for SQL statements- normal single quotes.

29

17

The Pipes Runner

The pipes compiler is used in both precompiled and directly executed pipelines. When
you directly execute a pipeline from the commandline or from the nrws NetRExx
workspace, the process is optimized to not persist generated NetRExX, Java and Class
files to disk before execution; the whole process runs from memory. The Pipes Runner
uses the Pipes Compiler for this purpose, and as such misses the options for persistence®.

The pipe command alias start the Pipes Runner, which is a command processor that can
execute a pipe from the command line in an OS shell, the OS being Windows, Linux or

macOSE.

A pipe can be run with options prepended within parentheses, like this:

1 pipe '(testl sep ! stall 2000 debug 63) literal abcde ! console'

The following options are available:

pipename Specify the name of the generated class file. This can be useful for debug-

ging purposes but is not mandatory when running a pipe. An unnamed
pipe receives a generated unique name. This option needs to go first.

sep

The default stage separator is the | (pipe) character; this can be overrid-
den with the sep option; a pipe called testl which uses an exclamation
mark as separator character, needs the options (testl sep !).

debug

The debug option specifies a bitmask for debugging the execution of a
pipe; (debug 63), for example, generates a rather complete debugging
trail).

end

The default pipe end character is the ’ ?” (question mark), which can be
overridden here. Note that the backslash, which is an obvious pipe end
character for the z/VM 3270 interface, is not a good choice for Windows
and Unix shells.

stall

The duration in number of seconds of a pipe stall (or deadlock) detection
cycle.

8But specifying them will not generate an error
%this is a non-exhaustive list of operating systems

30

18

The Pipes Compiler

The purpose of precompiling a pipeline specification is to produce a .class file for the
JVM that can be run independently and on different machines; only the JVM and the
NetRexxC.jar or the NetRexxEjar are required to run a precompiled pipe. A set of pre-
compiled pipes can be shipped as an application.

When precompiling pipes, there are options to save and view the generated NetRexx,
Java and JVM Class files. A precompiled pipe has the advantage that it can be executed
over and over in an application, without the need to compile it every time; the perfor-
mance savings are accumulative in this scenario.

The following options can be used on the pipc command, in addition to the ones specified
in the previous chapter for the Pipes Runner:

-gen Generate the NetRExx source file. The pipeline needs a name.

-keep Keep the Java source which is generated from the NetRExx source.

Example:
1 pipe (testpipe -gen -keep)

This will generate the NetREXX source as well as keep the java source.

31

19

Built-in Stages

This section describes the set of built-in stages, i.e. the ones that are delivered with the
downloadable open source package. These stages are directly executable from the Net-
RexxC.jar file or the NetRexxEjar file (the latter contains a Java compiler for use on
JRE-only systems); also, the source of these stages is delivered in the NetRExx source
repository. This repository can be checked out at

git clone https://git.code.sf.net/p/netrexx/code netrexx-code
The source of the stages is in directory

netrexx—-code/src/org/netrexx/njpipes/stages

32

Stages Built Into
NetRexx Pipelines 3.09
&

CMS Pipelines V7R1
and Their Differences

How to Read Syntax Diagrams
Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.
To read a syntax diagram, follow the path of the line. Read from left to right andtop to bottom.
o The PP --- symbol indicates the beginning of the syntax diagram.
e The ---P symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
e The P>--- symbol, at the beginning of a line, indicates that the syntax diagram is continued from the previous line.
e The ---P € symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items above the line are defaults.

Pipelines Builtin Stages

Show Stages Implemented in:

NetRexx Pipelines: ¢ CMS Pipelines: ¥

Show All Details: ¥ (Double click on a row to turn it on/off.)

Highlight NetRexx Only / CMS Only: v

> Replace or Create a File
diskw

filew

3.09 »p-->--string--p<

* delegates to diskw.

>> Append to or Create a File
diska

filea

3.09 »p-->>--string--p<

o delegates to diska.

>>mdsk Append to or Create a CMS File on a Mode

¢ Not implemented in Netrexx Pipelines.

>>mvs Append to a Physical Sequential Data Set

¢ Not implemented in Netrexx Pipelines.

>>oe Append to or Create an OpenExtensions Text File

o Not implemented in Netrexx Pipelines.

>>sfs Append to or Create an SFS File

¢ Not implemented in Netrexx Pipelines.

>>sfsslow Append to or Create an SFS File

¢ Not implemented in Netrexx Pipelines.

>mdsk Replace or Create a CMS File on a Mode

¢ Not implemented in Netrexx Pipelines.

>mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set
e Not implemented in Netrexx Pipelines.
>oe Replace or Create an OpenExtensions Text File
o Not implemented in Netrexx Pipelines.
>sfs Replace or Create an SFS File
¢ Not implemented in Netrexx Pipelines.
< Read a File
diskr
disk
file »p--<--string--p<
filer
3.09 ¢ Implemented as in CMS; delegates to diskr.
<mdsk Read a CMS File from a Mode
o Not implemented in Netrexx Pipelines.
<mys Read a Physical Sequential Data Set or a Member of a Partitioned Data Set
¢ Not implemented in Netrexx Pipelines.
<oe Read an OpenExtensions Text File
¢ Not implemented in Netrexx Pipelines.
<sfs Read an SFS File
* Not implemented in Netrexx Pipelines.
<sfsslow Read an SFS File
¢ Not implemented in Netrexx Pipelines.
= Comment Stage, No Operation
e NetRexx
3.09
Ph——t- —— —-—- +-—t-mmmm +--mmm - »<
+-COMMENT-+ +-string-+
¢ delegates to comment.
¢ Not in CMS Pipelines;
e This is a STAGE, not a programming comment. It must have a SPACE after --.
¢ |t must have either a stageEnd or pipeEnd.
¢ |f used before a driver stage, it must have a pipeEnd.
3277bfra Convert a 3270 Buffer Address Between Representations
e Not implemented in Netrexx Pipelines.
3277enc Write the 3277 6-bit Encoding Vector
o Not implemented in Netrexx Pipelines.
64decode Decode MIME Base-64 Format
¢ Not implemented in Netrexx Pipelines.
64encode Encode to MIME Base-64 Format
¢ Not implemented in Netrexx Pipelines.
? Display Help for Pipelines
help

* Not implemented in Netrexx Pipelines.

abbreviation

Select Records that Contain an Abbreviation of a Word in the First Positions

abbreviatio
abbreviati
abbreviat »p»--ABBREViation- (1) —+-——---—————-- e +--pd
abbrevi +-word-+----------—-———————————— +-+
abbrev +-number-+------------- +-+
+-ANYcase- (2) -+
+-CASEANY----- +
+-CASEIGNORE--+
+-IGNORECASE--+
+-CASELESS----+
¢ (1) ABBREViation must be ABBREV in CMS
e (2) ANYcase must be ANYCASE in CMS
acigroup Write ACI Group for Users
¢ Not implemented in Netrexx Pipelines.
addrdw Prefix Record Descriptor Word to Records
* Not implemented in Netrexx Pipelines.
adrspace Manage Address Spaces
o Not implemented in Netrexx Pipelines.
aftfst Write Information about Open Files
¢ Not implemented in Netrexx Pipelines.
aggrc Compute Aggregate Return Code
»p»-—-AGGRC--p-«
all Select Lines Containing Strings (or Not)
¢ Not implemented in Netrexx Pipelines.
alserv Manage the Virtual Machine's Access List
¢ Not implemented in Netrexx Pipelines.
apldecode Process Graphic Escape Sequences, Old APL language
¢ Not implemented in Netrexx Pipelines.
aplencode Generate Graphic Escape Sequences, Old APL language
¢ Not implemented in Netrexx Pipelines.
append Put Output from a Device Driver after Data on the Primary Input Stream
»p»--APPEND--string------ »><
array Read or Write an Array
¢ Pipes for NetRexx
arraya Read or Write an Array
e Pipes for NetRexx
arrayr Read or Write an Array
¢ Pipes for NetRexx
arrayw Read or Write an Array

e Pipes for NetRexx

asatomc Convert ASA Carriage Control to CCW Operation Codes. Old printer control
* Not implemented in Netrexx Pipelines.
asmcont Join Multiline Assembler Statements
¢ Not implemented in Netrexx Pipelines.
asmfind Select Statements from an Assembler File as XEDIT Find
¢ Not implemented in Netrexx Pipelines.
asmnfind Select Statements from an Assembler File as XEDIT NFind
¢ Not implemented in Netrexx Pipelines.
asmxpnd Expand Joined Assembler Statements
* Not implemented in Netrexx Pipelines.
beat Mark when Records Do not Arrive within Interval
¢ Not implemented in Netrexx Pipelines.
between Select Records Between Labels
3.09
»p--BETWEEN--| case |-+-delimitedStringl-+-+-number----------- +---p<
+-Xhexstringl------ + +-delimitedString2-+
+-Hhexstringl------ + +-Xhexstring2------ +
+-Bbinstringl------ + +-Hhexstring2------ +
+-Bbinstring2------ +
case
| ==#=—mmmmmmm— - +--|
+-ANYcase----- +
+-CASEANY----- +
+-CASEIGNORE--+
+-IGNORECASE--+
+-CASELESS----+
block Block to an External Format
¢ Not implemented in Netrexx Pipelines.
browse Display Data on a 3270 Terminal
* Not implemented in Netrexx Pipelines.
buffer Buffer Records
»p——BUFFER-—+-—=——— === ————— - — Fo—— >«
+-number--+--------—--—--—--—--—- +-+
+-delimitedString-+
cl4to38 Combine Overstruck Characters to Single Code Point. Old printer.
casei Run Selection Stage in Case Insensitive Manner

PP —-CASEI-—4-——-————————m——m— e ettt +--—-- >
+-ZONE-- | inputRange |-+(1) +-REVERSE-+(1)

»--stage-+-------- +--pr<

+-string-+

e (1) CMS Pipelines only.

change

Substitute Contents of Records

»»--CHANGE--+----——-—-—-—--——- e e e et e >
+-ANYcase----- + +-inputRange------ +
+-CASEANY----- + | oo + |

+-CASEIGNORE--+ +- (--+-range-+--)-+
+-IGNORECASE--+
+-CASELESS----+

»--+-| changeString |--------—---—-—-- +-—t-————————- +----p<
+-delimitedString--delimitedString-+ +-numorstar-+

changeString:
|--delimiter--string--delimiter--string--delimiter---|

changeregex Substitute Contents of Records using Java Regular Expressions
changerege “NetRexx
changereg
changere +-ONE-+
changer »p--CHANGERegex--delimitedString- (1) -delimitedString- (2) -+-----+--p«
3.09 +-ALL-+
e Uses the Java RegEx classes and its dialect of RegEx. See Java's Pattern class and replaceFirst and
replaceAll methods of String for full documentation.
¢ (1) First delimitedString is a Java RegEx expresion for what is to be replaced.
e (2) Second delimitedString is the replacement string. It may contain elements from the first one.
chop Truncate the Record
truncate
truncat
trunca +--80----—--—--—-— - +
trunc PP ——+-—CHOP-———+——4———————mm o m - +--p<
+-TRUNCate-+ +-snumber------------ |
+--| stringtarget |--+
stringtarget:
| == ————— Ll b +-t-———- +-| target |-|
+-ANYcase----- + | +-BEFORE-+ | +-NOT-+
+-CASEANY----- + et totmm - +-+
+-CASEIGNORE--+ +-snumber-+ +-AFTER--+
+-IGNORECASE--+
+-CASELESS----+
target:
| --+--xrange-------------------—--—- +--
+--+-STRing--+--delimitedString-+
+--ANYof--+
cipher Encrypt and Decrypt Using a Block Cipher
¢ Not implemented in Netrexx Pipelines.
ckddeblock Deblock Track Data Record

o Not implemented in Netrexx Pipelines.

Issue OS Commands, Write Response to Pipeline

command
»»-——+-CMD---—- e e s Fommm - »<
+-COMMAND-+ +--string--+
e input stream 0 is for commands
e input stream 1 is stdin
e output stream 0 is stdout
e output stream 1 is the return code
e output stream 2 is stderr
cms Issue CMS Commands, Write Response to Pipeline '
collate Collate Streams
¢ Not implemented in Netrexx Pipelines.
combine Combine Data from a Run of Records
»p——COMBINE-—+———————————————————————— +--+-0r---------—- +--p<
[e it + | +-aNd--------- +
e e e +--+ +-AND--------- +
| +-number--------—---- + | +-eXclusiveor-+
| #=F——mmm e + | +-EXClusiveor-+
| +-KEYLENgth--number-+ | +-FIRST-(2)---+
| +-ALLEOF-(1)+ | +-LAST-(2)----+
+-STOP- (1) -+ +-+
+-ANYEOF- (1) +
e (1) Only for use with secondary input streams. Only options from this column usable with any secondary input
streams.
(This is poorly documented in CMS Pipelines. This is a best guess of their intentions.)
¢ (2) Not usable with STOP and secondary streams.
command Issue OS Commands, Write Response to Pipeline
cmd
»p»—-—-+-COMMAND-+--+-—-—————-——— t-——————————— >«
+-CMD----- + +--string--+
e input stream 0 is for commands
e input stream 1 is stdin
e output stream 0 is stdout
e output stream 1 is the return code
e output stream 2 is stderr
comment Comment stage
3.09 NetRexx
»p——+--COMMENT--+--+-—-—-—————— +o=——- »<
P oo oooooos + +--string--+
¢ Not in CMS Pipelines;
e This is a STAGE, not a programming comment. It must have a SPACE after --.
¢ It must have either a stageEnd or pipeEnd.
¢ If ended with a stageEnd, it passes records through on primary input to output streams.
¢ If ended with a pipeEnd, it does NOT pass records through.
¢ If used before a driver stage, it must have a pipeEnd.

compare Compare Primary and Secondary Streams, Write the Result
rNetRexx
+-TRINARY-+ (1) +-PAD SPACE-+
»»--COMPARE--+--—————-~ e R +-—tmm——— +--p<
+-BINARY--+ (2) | +-PAD-xorc--+ +-ECHO-+
| |
| Fmmmmm e + |
+--ANY delimitedString------ +--+ (4) (5)
+--EQUAL delimitedString----+ (4)
+--LESS delimitedString----- + (3) (4)
+--MORE delimitedString----- + (3) (4)
+--NOTEQUAL delimitedString-+ (4)
e (1) -1 = Primary is shorter/less, 0 = equal, 1 = Secondary is shorter/less
e (2) 0 = equal, 1 = not equal
e (3) Primary is LESS/shorter (or MORE/longer) than secondary
e (4) DStrings can use any of the following escapes (or the lowercase) for the unequal situation:
o \C (count) for the record number,
o \B (byte) for column number
o \P (primary) for the primary stream record
o \S (secondary) for the secondary stream record
o \L (Least) for the stream number that is shorter, -1 if equal
o \M (Most) for the stream number that is longer, -1 if equal
¢ (5) Equal or not, this DString precedes any of the others.
e (6) This is NetRexx Pipelines only, not included in CMS
e (7) In reporting \P & \S, control charactors, except new line, \n, are transliterated to [blob, 219.d2¢()]
¢ (8) Without ECHO, this stops and reports at first non-compare. With ECHO, each primary input is reported; after
first non-compare primary input stream records continue to be read and reported, but no testing is done.
¢ (9) Options work in any order
e Input streams:
o 0: Data 1
o 1: Data 2
e Output streams:
o 0: Result (single record, possibly multiple lines)
o 1: Last primary record read at first no match, or end of stream
o 2: Last secondary record read at first no match, or end of stream
configure Set and Query CMS Pipelines Confguration Variables
¢ Not implemented in Netrexx Pipelines.
console Read or Write the Terminal in Line Mode
consol
conso
cons »p--+-CONSole--+-—+-——————————————— - —— e e L L L L) +--»<
cons +-TERMinal-+ +-EOF--delimitedString-+ +-DIRECT-(1l)--------- +
terminal +-NOEQOF-—-—--——-————————— + +-ASYNchronously- (1) -+
termina +-DARK- (1) -----—-—-—---- +
termin
termi ¢ (1) CMS Pipelines Only.
term
copy Copy Records, Allowing for a One Record Delay

»»—-COPY——-——-——— >

count Count Lines, Blank-delimited Words, and Bytes
N oy S Sy +
»»--COUNT--+-+-+-CHARACTErs-+-+-+------p«
| +-CHARS------ + |
| +-BYTES------ + |
+-WORDS----—-—--~ +
+-+-LINES--—+---—+
| +-RECORDS-+ I
+-MINline-------- +
+-MAXline-------- +
cp Issue CP Commands, Write Response to Pipeline
¢ Not implemented in Netrexx Pipelines.
crc Compute Cyclic Redundancy Code
¢ Not implemented in Netrexx Pipelines.
dam Pass Records Once Primed
»p——DAM-————————————— »><
dateconvert Convert Date Formats
dateconver
dateconve
dateconv

3.09

»»--DATECONVert——+--—-—-—-—-——————- do—m - >
+--inputRange- (3) -+

+-SHOrtdate ISOdate------------------ + +-WINDOW -50---------- +
e e e e L e e +--»

| +-ISOdate-----—----- + +-WINDOW-signednumber-+

+-| Inputformat |-+-+---------------—-- + +-BASEYEAR-yearnumber-+

| +-PREFACE-+ | +-| Outputformat |-+

+-NOW-+- (5) ----- +-+

+-APPEND--+

+--MIDNIGHT-- (4) -+

P——tmmm— oo mm e B »<
+--TIMEOUT--+ +--NOON--(4)----- +

Inputformat, Outputformat:

SHOrtdate } mm/dd/yy hh:mm:ss.uuuuuu

USA_SHORT }

REXX DATE U }

FULldate } mm/dd/yyyyyyy hh:mm:ss.uuuuuu
USA }

ISO_SHORT yy-mm-dd hh:mm:ss.uuuuuu
ISOdate yyyyyyy-mm-dd hh:mm:ss.uuuuuu
DB2_SHORT yy-mm-dd-hh.mm. ss.uuuuuu

DB2 yyyyyyy-mm-dd-hh.mm. ss . uuuuuu
VMDATE (2)

NORMAL dd mmm yyyyyyy hh:mm:ss.uuuuuu
CSL_SHORT } yy/mm/dd hh:mm:ss.uuuuuu

REXX DATE O }

CSL yyyyyyy/mm/dd hh:mm:ss.uuuuuu
PIPE_SHORT yymmddhhmms suuuuuu

PIPE } yyyymmddhhmms suuuuuu

REXX DATE S }

deal PREBIHPBEIRecords to ClipunSyrednis Rousrl Robinu
EUR dd.mm.yyyyyyy hh:mm:ss.uuuuuu
JULIAN SHORT yy.ddd hh:mm:ss.uuuuuu
JULIAN +-STOP-yREHROF -ddd-hh+mm:ss-uuuuuu+t
E®D-RABBOEYFE-}--42)----------------———------ +-—————— >«
TODABS +-$TOR2)+-ALLEOF- (2) +---———-—————- +
SCIENTIFIC_ABSOLUTE+}ANYEQF----+ I
SCIABS I +}nuppr----+ I
POSIX +-SECONBAB¥ss$s—--——---—- +o—mmm - +
TOD RELATIVE } (2) +-RELEASE---+ [
TODREL | 1} (2) +-LATCH- (1) -+ |
SCIENTIFIC REKEY¥VEnputRapge--+------- Fm———— +
SCIREL [}(2) +-STRIP-+ [
MET (2) +-STREAMid--inputRange--+------- +-+

+-STRIP-+

The following can be REXX DATE x, REXXx, or Rx
REXX DATE B (2)3xx Pipelines
REXX DATE C (2)
REZXcBAERaRiispatchesithé fthgenthrsadsiudiaAls may not see a sever immediately, as the severing thread can
REZa! rhaliEagked. This cid/make pplibnsitikes S\NE@&Euwork in unexpected ways.
REXX DATE E LONG dd/mm/yyyyyyy hh:mm:ss.uuuuuu

deblock DRIbYEcPEREerhal Data FoyAdds hh :mm: ss. uuuuuu

REXX DATE J LONG yyyyddd hh:mm:ss.uuuuuu

REXX DATE M mmmmmmmmm (output only)

REXX DATE N _SHORT dd mmm+y$Ohh:imm:s$s.uuuuuu

REXX DATE N +--FAAERmm+ypupbblr+-mm+s$-uuudua-----— - +
REXX DATE W | Wwwwwwwwww (output omtyPAD--xorc--+ (1) |
PP~ —DEBLOCK-—+— == == == == = = = = = — = — - — +-><
e (1): SPACE is optiehathere------—-—-———————————- +-t—m— +-4————- +

(2) Not implemented #¥ NetRexx Pipetines at this- time;: inainlYERMONATE-UsefuEQHY-+
(3): NetRexx Pipelife<Bids-IRange-which gives—a supdrset of range options.
(4): NetRexx PipelirtesLGNENW/ heotigre-to-assume-if btahk time on input.

(5): NetRexx PipelintesS@R§NG--delimi tedString-+

o Use current local date time.) o
CMAhamparangene [gasrsame centric formats that NetRexx Pipelines does not process.

* (1) NalGMptiRelNgScan be used.

o PREFACE Write the date record before passing the input to the output.

delay

Suspend Stream

e Not implemented in Netrexx Pipelines.

devinfo Write Device Information

¢ Not implemented in Netrexx Pipelines.
dfsort Interface to DFSORT/CMS

¢ Not implemented in Netrexx Pipelines.
diage4 Submit Diagnose E4 Requests

¢ Not implemented in Netrexx Pipelines.
dict Read or Write a Dictionary
hash

e Pipes for NetRexx only.
dicta Read or Write a Dictionary
hasha

¢ Pipes for NetRexx only.
dictr Read or Write a Dictionary
hashr

¢ Pipes for NetRexx only.
dictw Read or Write a Dictionary
hashw

¢ Pipes for NetRexx only.
digest Compute a Message Digest

¢ Not implemented in Netrexx Pipelines.
disk Read a File
gls"r NetRexx
file (»b——DISK——string——><
filer

e As in CMS, equivalent to diskr (Pipes for NetRexx Only) or <.
diska Append to or Create a File
>>
filea NetRexx

»p»--DISKA--string--p<
diskback Read a File Backwards
fileback

¢ Not implemented in Netrexx Pipelines.
diskfast Read, Create, or Append to a File
filefast

¢ Not implemented in Netrexx Pipelines.
diskid Map CMS Reserved Minidisk

o Not implemented in Netrexx Pipelines.
diskr Read a File
‘<’15k NetRexx
file (bb——DISKR——string——><
filer

e As in CMS, equivalent to diskr (Pipes for NetRexx Only) or <.
diskrandom Random Access a File
filerandom

o Not implemented in Netrexx Pipelines.

diskslow Read, Create, or Append to a File
fileslow
e Not implemented in Netrexx Pipelines.
diskupdate Replace Records in a File
fileupdate
¢ Not implemented in Netrexx Pipelines.
diskw Replace or Create a File
filew
>
»p-->--string--p<
drop Discard Records from the Beginning or the End of the File
+-FIRST-+ +4-1---------—- +
»»--DROP-—+-—-—----— e +-—tmm - +-mm——— »<
+-LAST--+ +-snumber-(1l)+ +-BYTES-+
oK +
e (1) CMS: must be positive.
NetRexx Pipelines: negative reverses FIRST/LAST, so DROP FIRST -3 is the same as DROP LAST 3.
duplicate Copy Records
duplicat
duplica
duplic t-I1------ +
dupli »»--DUPlicate--+-------- Fomm—————- »<
dupl +-number-+
dup S el +
+- -1---——+4
e (1) CMS is DUPlicat due to 8-character name limitation
elastic Buffer Sufficient Records to Prevent Stall
»»--ELASTIC----—-—--- ><
eofback Run an Output Device Driver and Propagate End-of-?le Backwards
¢ Not implemented in Netrexx Pipelines.
escape Insert Escape Characters in the Record
¢ Not implemented in Netrexx Pipelines.
fanin Concatenate Streams
»»——FANIN-—+---—————————— +-—————- »<
| ¥=mmmm——= + |
+----stream-+-+
faninany Copy Records from Whichever Input Stream Has One
»p--FANINANY---------~- »<
fanintwo Pass Records to Primary Output Stream
fanout Copy Records from the Primary Input Stream to All Output Streams
+-STOP--ALLEOF----—-—-—--—— +
»p——FANOUT-—+-——————————————————————— +-———-m - »><
+-STOP--+-ANYEOF---—---- +-+
+-ALLOF-- (1) ---+
+-number------- +
e (1) CMS only
fanouttwo Copy Records from the Primary Input Stream to Both Output Streams

fbaread

Read Blocks from a Fixed Block Architecture Drive

e Not implemented in Netrexx Pipelines.

fbawrite Write Blocks to a Fixed Block Architecture Drive
¢ Not implemented in Netrexx Pipelines.
fblock Block Data, Spanning Input Records
»»--FBLOCK--number--+--------— o »<
+--xorc--+
file Read a File
f%ler rNetRexx
disk
diskr »»—-FILE--string--p<
filea Append to or Create a File
diska
>>
»p--FILEA--string--»<
fileback Read a CMS file backwards
diskback
¢ Not implemented in Netrexx Pipelines.
filedescriptor | Read or Write an OpenExtensions File that Is Already Open
¢ Not implemented in Netrexx Pipelines.
filefast Read or write a CMS file
diskfast
¢ Not implemented in Netrexx Pipelines.
filer Read a File
file
disk NetRexx
diskr »p--FILER--string--p<«
<
filerandom Read specific records from a CMS file
diskrandom
fileslow Read, Create, or Append to a File
diskslow
e Not implemented in Netrexx Pipelines.
filetoken Read or Write an SFS File That is Already Open
e Not implemented in Netrexx Pipelines.
fileupdate Change records in a CMS file
diskupdate
filew Replace or Create a File
‘;"‘Skw NetRexx
(b»——FILEW——string——><
fillup Pass Records To Output Streams
¢ Not implemented in Netrexx Pipelines.
filterpack Manage Filter Packages
¢ Not implemented in Netrexx Pipelines.
find Select Lines by XEDIT Find Logic
- FIND--+---—-—--——---— - »><
+--string--+
fitting Source or Sink for Copipe Data

* Not implemented in Netrexx Pipelines.

fmtfst Format a File Status Table (FST) Entry

* Not implemented in Netrexx Pipelines.

frlabel Select Records from the First One with Leading String
fromlabel

- FRLABEL--+-----—-—--— o »<

+--string-+

fromlabel Select Records from the First One with Leading String
frlabel

»h————- FROMLABEL--+------—---— +-——--- »><

+--string-+

frtarget Select Records from the First One Selected by Argument Stage

»»--+--FRTARGET----+--stage--+------—-——-- +-—————- »><

+--FROMTARGet--+ +--operands--+

fullscrq Write 3270 Device Characteristics

o Not implemented in Netrexx Pipelines.

fullscrs Format 3270 Device Characteristics

¢ Not implemented in Netrexx Pipelines.

gate Pass Records Until Stopped
»»--GATE-—+-——--———-— o »<
+--STRICT--+
gather Copy Records From Input Streams

¢ Not implemented in Netrexx Pipelines.

getfiles Read Files
getfiles
getfile
getfil »p»--GETfiles-----—--—--——-——-——-—————- »<
getfi
getf
get

getovers Write the Contents of Objects

¢ Input stream 0 should contain rexx objects. The getovers stage will output the index and contents of the stem on
stream 0. If output stream 1 is connected, the root is placed there. Any severed streams will cause then stage to
exit. Passing a non rexx object will cause the stage to exit with return code 13.

¢ Pipes for NetRexx only.

getstems Write the Contents of Members of Stems

e Input stream 0 should contain rexx objects containing stems. The getstems stage will output the contents of the
stem on stream 0. If output stream 1 is connected, the root is placed there. Any severed streams will cause then
stage to exit. Passing a non rexx stem object will cause the stage to exit with return code 13.

¢ Pipes for NetRexx only.

grep Select Lines by a Regular Expresion
regex . %
3. 09 NetRex
PP ——+-——GREP-———+—-—t—————————————————————————— +--regex Dstring- (1) ---»<«
+--REGEX--+ +-(--| options_string |--)-+
options_string:
Sy gy iy +
| ——+—4-——— +-+--|
+-Numbers-------------—-——-———————— + (2)
+-Before-+-1-----—- e e + (3)
| +-number-+ |
+-After-+-1------ e e + (3)
| +-number-+ |
+-Context-+-1------ EEE S S + (4)
| +-number-+ |
+-NOSeparator------—----—-—--—-—-—-—- + (5)
+-Separator-+-/--/------------ +--+ (5)
| +-delimitedString-+ |
+-Tertiary--------------——-——-—-—-—- + (6)
+-COUnt—=-—=-—=—=—=—=————————————— + (7)
¢ NetRexx Pipelines only.
e Records matching the RegEx are put out on primary output.
e Records not matching are put out on secondary, if connected, or discarded.
.o .
¢ (1) Regex_string is a Java RegEx expresion. Null string passes all records.
¢ (2) Records are prefaced with records number, 10 characters, right justified.
¢ (3) Number of records put out after a matching record.
e (4) Number of records put out before and after a matching record.
¢ (5) Inserted before a group of "before records" or the found record with "after records."
¢ (6) Send all matching records (no numbers) to tertiary output stream, if connected.
e (7) Only a count of matches is put out on the primary output stream. (Other options probably should not be used
with this.)
hash Read or Write a Dictionary
dict
¢ Pipes for NetRexx only.
hasha Read or Write a Dictionary
dicta
hashr Read or Write a Dictionary
dictr
hashw Read or Write a Dictionary
dictw
help Display Help for Pipelines
?
¢ Not implemented in Netrexx Pipelines.
hfs Read or Append File in the Hierarchical File System
¢ Not implemented in Netrexx Pipelines.
hfsdirectory Read Contents of a Directory in a Hierarchical File System
¢ Not implemented in Netrexx Pipelines.
hfsquery Write Information Obtained from OpenExtensions into the Pipeline

¢ Not implemented in Netrexx Pipelines.

hfsreplace

Replace the Contents of a File in the Hierarchical File System

* Not implemented in Netrexx Pipelines.

hfsstate Obtain Information about Files in the Hierarchical File System
¢ Not implemented in Netrexx Pipelines.
hfsxecute Issue OpenExtensions Requests
¢ Not implemented in Netrexx Pipelines.
hlasm Interface to High Level Assembler
¢ Not implemented in Netrexx Pipelines.
hlasmerr Extract Assembler Error Messages from the SYSADATA File
* Not implemented in Netrexx Pipelines.
hole Destroy Data
»p—-HOLE-————————— »<
hostbyaddr Resolve IP Address into Domain and Host Name
3.09
Py HOSTBYADDR -------—-——-———-— o o »><
+--INCLUDEIP----+ (1)
e (1) Optional parameter not present in VM/CMS version
¢ INCLUDEIP - Also include the IP address along with the hostname.
Output: <hostname>/<ip address>
Example: dns.google/8.8.8.8
e Known issues: The underlying Java method getByName/getHostName does not appear to handle IPv6
addresses in any known and consistent manner. Could be related to a host configuration issue but googling
shows odd and inconsistent results for getting around this.
hostbyname Resolve a Domain Name into an IP Address
3.09
»p--HOSTBYNAME ----—-—-—==—=== e e L L L Fom »><
+--INCLUDENAME--+ (1)
e (1) Optional parameter not present in CMS Pipelines
e Arguments: INCLUDENAME - Also include the name of the host on output.
e Output: <hostname>/<ip address>
Example: dns.google/8.8.8.8
hostid Write TCP/IP Default IP Address
3.09
»p—-HOSTID---—4-——====—————————————— o »<
+--USERid--word- (1) --+
¢ (1) The USERId option available under CMS Pipelines is not applicable and is ignored in NetRexx Pipelines
hostname Write TCP/IP Host Name
3.09

»p——HOSTNAME - —4————————————————— ot +-——p<
+--INCLUDEIP-- (1) -+ +--USERid--word-(2)--+

¢ (1) Optional parameter not present in VM/CMS version

¢ (2) The USERId option available under CMS is not applicable and is ignored in NetRexx Pipelines

e Arguments: INCLUDEIP - include the IP address of the system in the response in the form <hostname>/<ip
address>

httpsplit

Split HTTP Data Stream

* Not implemented in Netrexx Pipelines.

iebcopy

Process IEBCOPY Data Format

o Not implemented in Netrexx Pipelines.

if

Process Records Conditionally

¢ Not implemented in Netrexx Pipelines.

immemd

Write the Argument String from Immediate Commands

¢ Not implemented in Netrexx Pipelines.

insert

Insert String in Records

+-BEFORE-+
»»--INSERT--delimitedString-—+----—---- s T e <
+-AFTER--+ +-inputRange--+

e insert a string into a record before or after the record content. Will be much more efficient than specs especially
if the input is a Byte[]

inside

Select Records between Labels

»p--INSIDE--+---—-——-=-—-———-— +--delimitedString--+-number---------- +--p<
+-ANYcase----- + +-delimitedString-+
+-CASEANY----- +
+-CASEIGNORE--+
+-IGNORECASE--+
+-CASELESS----+

instore

Load the File into a storage Buffer

e Not implemented in Netrexx Pipelines.

ip2socka

Build sockaddr_in Structure

o Not implemented in Netrexx Pipelines.

ispf

Access ISPF Tables

¢ Not implemented in Netrexx Pipelines.

jeremy

Write Pipeline Status to the Pipeline

¢ Not implemented in Netrexx Pipelines.

join

Join Records

e e +

»p——~JOIN-+-—————— o +--p
+-COUNT-+ +-number------------ +
Koo +

+-KEYLENgth--number-+

| e e et +---p<
+-delimitedString-+----------- +-+ +-number-+
+-TERMinate-+

joincont Join Continuation Lines
+-TRAILING---------- +
»»—--JOINCONT--+-——————————— +-+-———- ot +-t——————- +--»
+-ANYCase----+ +-NOT-+ +-RANGE--inputRange-+ +-DELAY-+
+-CASEANY----+ +-LEADING----------- +
+-CASEIGNORE-+
+-IGNORECASE-+
+-CASELESS---+
P-t-—————= +-delimitedString--+------ B R +----p<
+-ANYof-+ +-KEEP-+ +-delimitedString-+
juxtapose Preface Record with Marker
»»--JUXTAPOSe----+--—-—-——-~ Fomm e »><
+-COUNT-+
ldrtbls Resolve a Name from the CMS Loader Tables
¢ Not implemented in Netrexx Pipelines.
listcat Obtain Data Set Names
¢ Not implemented in Netrexx Pipelines.
listdsi Obtain Information about Data Sets
¢ Not implemented in Netrexx Pipelines.
listispf Read Directory of a Partitioned Data Set into the Pipeline
¢ Not implemented in Netrexx Pipelines.
listpds Read Directory of a Partitioned Data Set into the Pipeline
¢ Not implemented in Netrexx Pipelines.
listzip List the Files in a Zipped File
rNetRexx
»p»—--LISTZIP----zipFileName----—- »<
literal Write the Argument String
»»---LITERAL---+-—-—--———— - »><
+-string-+
locate Select Lines that Contain a String

»»—-LOCATE-4-——-——==—==—= +t—mm o e L e ot +--»
+-ANYCase----- + +-MIXED-(1)-+ +-inputRanges-+ +-ANYof-+
+-CASEANY--—-- + +-ONEs-- (1) -+
+-CASEIGNORE--+ +-ZEROs- (1) -+
+-IGNORECASE--+
+-CASELESS----+

Pt +---p<
+-delimitedString-+

(1) Not in NetRexx Pipelines, yet.

lookup Find Records in a Reference Using a Key Field

rNetRexx
»p—-LOOKUP-—+---———= +——t————————— +——f————————— +——t———————— +-»>
+-COUNT-+ +-ANYCASE-+ +-AUTOADD-+ +-BEFORE-+
Pt e et e e e >

e e L e e LT oo dommmm e >
+-inputRange-+------------ +
+-inputRange-+
| e it >«
+-DETAIL MASTER-------—-——-- +
+-DETAIL ALLMASTER PAIRWISE-+
+-DETAIL ALLMASTER------—--- +
+-DETAIL-—--——=———=——=——————— +
+-MASTER DETAIL-------—-——-- +
+-MASTER-—--—————=—————=———— +
+-ALLMASTER DETAIL PAIRWISE-+
+-ALLMASTER DETAIL---------- +
+-ALLMASTER-------——-—--—-—-—-—- +

in stream 0 are detail records

in stream 1 are master records
in stream 2 adds to masters

in stream 3 delete from masters

out stream 0 are matched records

out stream 1 are unmatched detail records

out stream 2 are unmatched or counted master records
out stream 3 deleted masters

out stream 4 duplicate masters

out stream 5 unmatched master deletes

lookup does not consider an unconnected output stream an error. It does proprogate EOFs from output streams.

lookup Find Records in a Reference Using a Key Field

rCMS
»p--LOOKUP-—+--——-—-— B e ettt -t m - +--p
+-COUNT-+ +-MAXcount-number-+ +-INCREMENT-+
+-NOPAD----+
P——t——m -t -t +-t———————— +--p
+-SETCOUNT-+ +-TRACKCOUnt-+ +-PAD-xorc-+ +-ANYcase-+
[A e e -t +-t——————— +-—p
+-AUTOADD-+-—------- +-+ +-KEYONLY-+ +-STRICT-+
| +-BEFORE-+ |
+-CEILING-------—--——- +
+-FLOOR---—--————————— +
| e it T +--p
+-inputRange-+------------ +-+
+-inputRange-+
+-DETAIL MASTER--------—-—-—- +
| ittt T e Bt ottt »<
+-DETAIL ALLMASTER PAIRWISE-+
+-DETAIL ALLMASTER----—-—-—- +
+-DETAIL--—-———————————————— +
+-MASTER DETAIL-----—-——-—-—- +
+-MASTER--—————————————————— +
+-ALLMASTER DETAIL PAIRWISE-+
+-ALLMASTER DETAIL--------—- +
+-ALLMASTER-—-—-——-—————————— +
e in stream O are detail records
e in stream 1 are master records
e in stream 2 adds to masters
e in stream 3 delete from masters
[]
e out stream 0 are matched records
e out stream 1 are unmatched detail records
e out stream 2 are unmatched or counted master records
e out stream 3 deleted masters
e out stream 4 duplicate masters
e out stream 5 unmatched master deletes
[]
¢ lookup does not consider an unconnected output stream an error. It does proprogate EOFs from output streams.

maclib Generate a Macro Library from Stacked Members in a COPY File

¢ Not implemented in Netrexx Pipelines.

mapmdisk Map Minidisks Into Data spaces

o Not implemented in Netrexx Pipelines.

mctoasa Convert CCW Operation Codes to ASA Carriage Control

¢ Not implemented in Netrexx Pipelines.

mdiskblk Read or Write Minidisk Blocks

¢ Not implemented in Netrexx Pipelines.

mdskrandom Random Access a CMS File on a Mode

¢ Not implemented in Netrexx Pipelines.

mdskslow Read, Append to, or Create a CMS File on a Mode

o Not implemented in Netrexx Pipelines.

mdskupdate Replace Records in a File on a Mode

¢ Not implemented in Netrexx Pipelines.

members

Extract Members from a Partitioned Data Set

* Not implemented in Netrexx Pipelines.

merge Merge Streams
¢ Not implemented in Netrexx Pipelines.
mgsc Issue Commands to a WebSphere MQ Queue Manager
¢ Not implemented in Netrexx Pipelines.
nfind Select Lines by XEDIT NFind Logic
notfind
»p———+-NFIND--—+-—+-—-—-——————— L EEEEEL »><
+-NOTFIND-+ +--string--+
ninside Select Records Not between Labels
notinside
3.09
»p»-+-NINSIDE----+-+--—-————————-— +-delimitedString-+-number---------- +--p<
+-NOTINSIDE--+ +-ANYcase----+ +-delimitedString-+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
nlocate Select Lines that Do Not Contain a String
notlocate
»»—-+-NLOCATE--—+-4-————-——————— R e Lt R L e e R >
+-NOTLOCATE-+ +-ANYCase----- + +-MIXED-(l)-+ +-inputRanges-+
+-CASEANY----- + +-ONEs--(1)-+
+-CASEIGNORE--+ +-ZEROs-(1)-+
+-IGNORECASE--+
+-CASELESS----+
>t ot - +-p<
+-ANYof-+ +-delimitedString-+
e (1) Not in NetRexx Pipelines, yet.
noEofBack Pass Records and Ignore End-of-file on Output
»»--NOEOFBACK--------- »<
nop No Operation
rNetRexx———
»p—-NOP-———————— »><
¢ Pipes for NetRexx only.
not Run Stage with Output Streams Inverted
»»--NOT--stage--+--—--——-——-——--- +-—————- »<
+--operands--+
notfind Select Lines by XEDIT NFind Logic
nfind

»»-——+-NOTFIND-+-—+--——--——-- Fmmmmmmm o ><

+-NFIND---+ +--string--+

notinside Select Records Not between Labels
ninside
»»-+-NOTINSIDE-—+-+--——-——-—————— +-delimitedString-+-number---------- +--p<«
+-NINSIDE----+ +-ANYcase----+ +-delimitedString-+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
notlocate Select Lines that Do Not Contain a String
nlocate
»»-+-NOTLOCATE-+-+--—--—-—-—————— s e Lt T +o———= >
+-NLOCATE---+ +-ANYCase----- + +-MIXED-(l)-+ +-inputRanges-+
+-CASEANY----- + +-ONEs--(1)-+
+-CASEIGNORE--+ +-ZEROs- (1)-+
+-IGNORECASE--+
+-CASELESS----+
Pt R L e e P E +-»<
+-ANYof-+ +-delimitedString-+
e (1) Not in NetRexx Pipelines, yet.
nucext Call a Nucleus Extension
o Not implemented in Netrexx Pipelines.
optcdj Generate Table Reference Character (TRC)
¢ Not implemented in Netrexx Pipelines.
outside Select Records Not between Labels
»»—-OUTSIDE-+-—--—-—-——--—~ +-delimitedString-+-number---------- +--p<
+-ANYcase----+ +-delimitedString-+
+-CASEANY----+
+-CASEIGNORE-+
+-IGNORECASE-+
+-CASELESS---+
outstore Unload a File from a storage Buffer
o Not implemented in Netrexx Pipelines.
over Write the Values of Stems
¢ Obsolete. Now use varover. over is now an alias for overlay..
overlay Overlay Data from Input Streams
DL ~NetRexx
overl
over +-NOHOLD- (1) -+ +-PAD-(1)+ +-BLANK----+
»»--OVERlay----- o - -t +-———- >
+-HOLD- (1) ---+ +-xorc----- +
+-SPACE- (1) +
Pt m B +--p<
+-TRANSparent-+-xorc--+- (1) + +-STRING--delimitedString- (1) (2)+
+-BLANK-+
+-SPACE-+
o HOLD keeps the last record from each stream, except primary, and uses it if the stream ends.
o TRANSPARENT means that character can be different from the PAD character.
If omitted, it is the same as PAD character.
e dstream can be used instead of a non-primary stream.
¢ (1) NetRexx Pipelines only
¢ (2) same as highest (+1) stream; implies HOLD

overlay Overlay Data from Input Streams
CMsS

+-BLANK-+
»»--OVERlay—+------- e L ><
+-xorc--+

overstr Process Overstruck Lines

¢ Not implemented in Netrexx Pipelines.

pack Pack Records as Done by XEDIT and COPYFILE

e Not implemented in Netrexx Pipelines.

pad Expand Short Records
+-Right-+ +-BLANK-+
»p-PAD-+-—---——- Lt e +--number--+------- +--p<
+-Left--+ +-+--—---—--- +-MODULO-+ +-xorc--+
+-number-+
parcel Parcel Input Stream Into Records

¢ Not implemented in Netrexx Pipelines.

parse Rearrange Contents of Records
3.09 NetRexx
’7>>——PARSE——parse template Dstring---output template Dstring--p<
e Records are parsed via the parse_template_delimited_string.
e Variables are named $n, where nis 1 to 9.
e The values of the variables are put into the output_template_delimited_string replacing $n.
e For a literal $n that won't be changed, use $$n.
¢ NetRexx Pipelines only.
.o .
e Example:

parse / 2 $1 +1/ /The second letter is "$1". $$1 won't be changed./

pause Signal a Pause Event

¢ Not implemented in Netrexx Pipelines.

pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.

pick Select Lines that Satisfy a Relation

rNetRexx
+-NOPAD----+
»p—-PICK-+-——=——=———- ot +--p
+-PAD-xorc-+ +-ANYcase-(1)+
+-CASEANY----+
+-CASEIGNORE-+
+-CASELESS---+
+-IGNORECASE-+
R e L == +-><
+-inputRange-+ +-“==-+ +-inputRange------ +

+-<<--+ +-delimitedString-+

+-<<=-+

+->>-—+

+->>=-+

+-\==-+(2)

+-/==-+

+-=---+

+-r=——+

+-<---+

+-<=--+

+->---+

+->=--+

+-\=--+(2)

+-/=—-+

¢ (1) Can be before PAD/NOPAD. Depreciated.
¢ (2) The backslash (\) may need to be escaped, doubled, in some systems shells.

pick Select Lines that Satisfy a Relation

rCMS

+-NOPAD----- +
»p--PICK--—+-—-—-———————— e e e e +-—==>
+-PAD--xorc-+ +-ANYcase----+
+-CASEANY----+
+-CASEIGNORE-+
+-CASELESS---+
+-IGNORECASE-+
P — o —mmm +---| List |-+--»<
| +-+-FROM-+--4---—--—- +-+ |
| | +-TO---+ +-AFTER-+ | |
| +-WHILE---—--—————————- + |
+-| Fromto |-------—---"--""""—"-"—"———"———- +
Fromto:
| --FROM--+—-—————— +--| List |--+-TO-+------- +--| List |-+--|
+-AFTER-+ | +-AFTER-+ |
+-COUNT--number------——---- +
List:
| o pemmeessmomossooooos +--| Test |--|
+-| List |--+-AND-+-+
+-OR--+
Test:
|--| RangeString |--+--| NonEqualOp |--| RangeString |--+--|
+--| EqualOp |----| CommalList |----- +
Commalist:
I e C LT +
| =o=== | RangeString |--+--|
RangeString:
| -—+-inputRange------- +--|
+-delimitedString--+
+-number+---------- +

Character Operators::
== A== \== /== << <<= >> >>= IN NOTIN

Numeric Operators:
= =< <= > >=

pickparse
3.09

Select Lines that Satisfy Relations using Rexx Parse

NetRexx

»p--PICKPARSE--+-—--—-———————————————— +--parse Dstring----- e e +--+--p«
+--ALL--4------——-- +--+ +--logic Dstring--+
+--SINGLE--+ +--ELSE- (1) -——-———- +

e Records are parsed via the parse_delimited_string.

e Variables are named $n, where nis 1 to 9.

e The values of the variables are put into the logic_delimited_string replacing $n and evaluated. If TRUE, the
record is put out on the stream numbered by the dstring's position.

e The stream for a Dstring of ELSE is used if no previous logic Dstring is TRUE.

If there is no specific ELSE, there is an implied one at the end; if that stream is not connected, the record is

discarded.

¢ |f ONE then the record is put out on, at most, one stream: the first one matched.

¢ If ALL then the record is put out on all streams matched.

o |f SINGLE then the records are all put out on the primary output stream.

[]

The parse_delimited_string and logic_delimited_string(s) follow normal NetRexx rules.

(1) Implied ELSE after last specified dstring.
e (2) Up to 10 logic_Dstrings may be specified to go to up to 11 ouput streams (including an implied ELSE).
¢ Not implemented in CMS Pipelines.

Pickparse permits selecting records by a NetRexx logical expression, using parts of the record selected by a Rexx
PARSE template.

A simple example has two delimited strings, a Rexx template and a logical expression:
pickparse / . . $3 . 50 $5 +5 / / $3 < $5 /

The parse template selects the 3rd word, and the 5 characters starting in column 50. the variable names are a dollar
sign and a digit. Then those variables can be used in the logic expression. When run, and records matching the
logic expression are written to the primary output stream, others to the secondary. If either stream is not connected,
the corresponding records are discarded.

There can be multiple logic expressions, each in its own delimited string. Parenthetical expressions may be used.
Records are matched to each in turn. Any records matching are written to that output stream, if connected.

With the option ONE, the default, each record is written to one output stream: the first one it matches. With the
option ALL, the matching goes on and a record could be written to multiple output streams.

There is an implicit or explicit ELSE as the last logic expression. Records that have not matched any of the previous
expressions match this and are written or discarded depending on if the stream is connected or not.

The parse template can define up to 9 separate zones, $1 to $9. The variables $_n are also available for the logic

expressions; they are the values from the previous record. Initially these are "".

There can be up to 10 output streams defined, and up to 9 logic expressions plus ELSE.

pipcmd

Issue Pipeline Commands

¢ Not implemented in Netrexx Pipelines.

pipestop

Terminate Stages Waiting for an External Event

¢ Not implemented in Netrexx Pipelines.

polish

Reverse Polish Expression Parser

e Not implemented in Netrexx Pipelines.

predselect

Control Destructive Test of Records

e Not implemented in Netrexx Pipelines.

preface

Put Output from a Device Driver before Data on the Primary Input Stream

¢ Not implemented in Netrexx Pipelines.

prefix Stop and Run a Stage First, Before Continuing

(Ne tRexx

»p--PREFIX---string------—--—--—-—-| »<

¢ Blocks its primary input and excutes stage supplied as an argument. The output from this stage are put to the
primary output stream. When its compete the primary input is shorted.
¢ Not implemented in CMS Pipelines.

printmc Print Lines

e Not implemented in Netrexx Pipelines.

punch Punch Cards

o Not implemented in Netrexx Pipelines.

gpdecode Decode to Quoted-printable Format

¢ Not implemented in Netrexx Pipelines.

gpencode Encode to Quoted-printable Format

¢ Not implemented in Netrexx Pipelines.

gsam Read or Write Physical Sequential Data Set through a DCB

¢ Not implemented in Netrexx Pipelines.

query Obtain Information From Pipelines
+-VERSION------ +
»»--Query-—+---—-—--—-——-—-—- tommm »<
+-LEVEL-------— +

+-SOURCE- (1) --—+
+-MSGLEVEL- (2) -+
+-MSGLIST- (2) -+

¢ (1) Not CMS
¢ (2) Not NetRexx Pipelines

random Generate Pseudorandom Numbers
3.09
PP~ —RANDOM-—4—————— == == — —m e +-—---p<
| -k + K + |
+-+-max _number-+--+-------------- +-+
+-seed snumber-+

o NetRexx Pipelines will be a different sequence than CMS gives with the same seed.

reader Read from a Virtual Card Reader

o Not implemented in Netrexx Pipelines.

readpds Read Members from a Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.

regex Select Lines by a Regular Expresion
grep ~ m
3. 00 NetRex
»p--+--REGEX--+--+---——-—--—-—-——————————————— +--regex Dstring- (1) ---»<«
+--GREP---+ +-(--| options_string |--)-+
options_string:
gy gy iy +
| ——+—4-———— +-+--|
+-Numbers-------------—-——-———————— + (2)
+-Before-+-1-----—- e e e + (3)
| +-number-+ |
+-After-+-1------ e e + (3)
| +-number-+ |
+-Context-+-1------ EEE S S + (4)
| +-number-+ |
+-NOSeparator-----—---—-—-—--—-—-—-—- + (5)
+-Separator-+-/--/------------ +--+ (5)
| +-delimitedString-+ |
+-Tertiary--------------——-——-—-—--—- + (6)
+-C0Unt—=-—=—-—=—=—=——————————————— + (7)
¢ NetRexx Pipelines only.
e Records matching the RegEx are put out on primary output.
e Records not matching are put out on secondary, if connected, or discarded.
[]
¢ (1) Regex_string is a Java RegEx expresion. Null string passes all records.
¢ (2) Records are prefaced with records number, 10 characters, right justified.
¢ (3) Number of records put out after a matching record.
e (4) Number of records put out before and after a matching record.
¢ (5) Inserted before a group of "before records" or the found record with "after records."
¢ (6) Send all matching records (no numbers) to tertiary output stream, if connected.
e (7) Only a count of matches is put out on the primary output stream. (Other options probably should not be used
with this.)
retab Replace Runs of Blanks with Tabulate Characters
¢ Not implemented in Netrexx Pipelines.
reverse Reverse Contents of Records
»»--REVERSE-——————————————————— »<
rexx Run a REXX Program to Process Data
¢ Not implemented in Netrexx Pipelines.
rexxvars Retrieve Variables from a REXX or CLIST Variable Pool
¢ Not implemented in Netrexx Pipelines.
runpipe Issue Pipelines, Intercepting Messages
* Not implemented in Netrexx Pipelines.
scm Align REXX Comments
o Not implemented in Netrexx Pipelines.
sec2greg Convert Seconds Since Epoch to Gregorian Timestamp
¢ Not implemented in Netrexx Pipelines.

serialize Convert Objects to a Single Text String

(NetRexﬁ

limited information available

¢ {class} if class is specified deserialize input to objects of this type otherwise serialize input objects.

¢ Pipes for NetRexx only.

e For some reason readObject does not like more than one object network in its stream. Block multiple objects.
see examples/sertest.njp

sfsback Read an SFS File Backwards

e Not implemented in Netrexx Pipelines.

sfsdirectory List Files in an SFS Directory

o Not implemented in Netrexx Pipelines.

sfsrandom Random Access an SFS File

¢ Not implemented in Netrexx Pipelines.

sfsupdate Replace Records in an SFS File

¢ Not implemented in Netrexx Pipelines.

snake Build Multicolumn Page Layout
3.09

»»—-SNAKE--number cOls-——+-———————————— - +--p<
+--number rows--+---------------————-————————— +--+

+--page seperator DString-(1l)-+

¢ (1) NetRexx Pipelines only. Appears first, last, and between pages.
Avoid \ as escape terms maybe added in the future. \n for newline is OK.
Your system may require \\n .

sockalip Format sockaddr_in Structure

¢ Not implemented in Netrexx Pipelines.

sort Order Records
rNetRexx
PP ——SORT-——4————————mmm e~ - +--p
| +-REXX----- + +-10000-+ | +-inputRange-+
+- (—t-———m =) =+

+-class-(2)+ +-size--+

+-Ascending- (1) -+
R R e e T e L P +--p<
+-Descending-(1)+ +-SINGLEOK- (3)+

e (1) May come before inputRange, for backwards compatability.
¢ (2) Requires that you implement another sortClass with a name begining with 'sort'
¢ (3) Suppresses error message if only one record to sort for Rexx objects.
e Uses sortClass class as Interface Class for Generic Sort Objects
and sortRexx class to Sort Rexx Text Objects

sort Order Records

rCMS
+-NOPAD----+
»»--SORT-+-------- e +-—tmmmmm - +-=--»
+-COUNT--+ +-PAD-xorc-+ +-ANYcase-+
+-UNIQue-+
+-Ascending-—--—--—--—--—-——-————— - — +
P e RS L e +---p<
+-Descending---—--—--—--—--—--—-——————————————— +
T + |
| +-Ascending--+ | |
+-v-inputRange-+----------—-—- e S +-+--+
+-Descending-+ +-NOPAD----+
+-PAD-xorc-+
space Space Words Like REXX
3.09
(1)
+-1------ + +-BLANK------—-——————————————- +
»»-—SPACE-+-—-—-——- T +--»
+-number-+ +-xorc--------—--—--—-——-——-——-—-—- +
R +-delimitedString-+
+-STRing-+
(2)
+-BLANK-————-——————————————————— +
| e LD L L Lt +-»<
+-xorc----—--—--—--—--—--———————— +
| +-ANYof----- + I
+-t-—————————- +-delimitedString-+
+-ALLof- (3) -+
e (0) The order is the reverse of CHANGE!
¢ (1) the replacement char/string
¢ (2) the char/chars that will be stripped and replaced
¢ (3) NetRexx Pipelines only, not CMS. The dstring is treated as a single unit for stripping or replacing
spec Rearrange Contents of Records

specs

+-STOP--ALLEOF----+ (3)

»p»--SPECsS--+--—-—-—-—-——-———————-—- +-———————- >
+-STOP-+-ANYEOF-+-+ (3)
+-n------ + (3)
e ittt L +
»--+--+-| Group |--------—-—-—-—-—————————— +-+---p«
+-READ---——————————————————————————— + (5)
+-READSTOP-—-—====—=——— === == — +
+-WRITE-—-—————-—==——=—=—————————————— +
+-SELECT-+-streamnum-+-----------—--- +
| +-streamid--+ | (3)
[+-FIRST----- + |
| +-SECOND----+ |
+-PAD--+-char----—+----—————————————- +
| +-hexchar-+ |
[+-BLANK---+ |
I +-SPACE---+ |
+-+-WORDSEParator---+--+--char---+--+ (3)
+-WS-—--—-———————-- + +-hexchar-+ (3)
+-FIELDSEparator- + +-BLANK---+ (3)
+ - S + +-SPACE---+ (3)
Group:

|--] Input |--| Conversion |--| Output |--| Alignment |--|

Input:
| -—+-Words- (1) ~-wnumberrange---—----——-—-————————————- +-—————- |
+-Fields- (1) -fnumberrange-------—----—--—-—--—-—---- + (3)
+-cnumberrange----------—-——-————————————————- +
+-delimitedString-----------——-——————————————- +
+-Xhexstring--—----——-—-—-——-———————————————————\——— +
+-Hhexstring------—----———————————————————————- +
+-Bbinstring------—-—--———————————————————————— +
| +-FROM--1---—--- + +-BY--1----- + |
+-+-RECNO-—+-+-—--——————————— e e +--+

| +-NUMBER-+ +-FROM--fromnum-+ +-BY--bynum-+ |
+-TODclock———=—=—=—————— - mm—mm e —m—————— - +

Conversion:
| -4-—--—-- s e +-————- [
+-STRIP-+ +-B2C--—-——-—-———-——- +
+-B2D----=-=—=————————— + (4)
+-B2X--—-——=—=—=—=——= + (4)
+-C2B----—-—=———————— +
+-C2D-— == —mmmm e +
+-C2F---—==—————————— + (3)
+-C2I--—--——————————— + (3)
+-C2P-+--=-==——————- +-+ (3)
| +-(2) (scale)-+ | (3)
+-C2V-————mmm - + (3)
+-C2X———————————————— +
+-D2C---=-—=—=—== == === +
+-D2X-—==——mm———————— + (4)
+-F2C-----——————————— + (3)
+-I2C--—==-=-—————————— + (3)
4=P2C—4-———=————— +-+ (3)
spill Spill Long Lines at Word Bow! (2) (scale)-+ | (3)
+-V2C--——-==————————— + (3)
e Not implemented inlxop—-—-—————— o —— + (4)
4=X9Cmmmmmmmmmm e +
split Split Records Relativex2D------————————-- + (4)
T /] Sy +
+-LOWER---—--—-—-—-—=~ + (4)
»p--SPLIT--+---f SUPPER--=t-=-t----=---f- ay-——"""—- +-—————- »
+-ANY@BRENG---+- - +=-MINipugry number--+
+-CASEANY----- +
Output: +-CASEIGNORE--+
| -—+-Next-+=IGNORECASE--+_,__ |
[F-ERPERESS-———-+ |
+-NEXTWord-+-+--—--—-+-+
s Ea--==F ~F- {2y TA-F r' +-BLANK---—=-—f-—=--=--- +
»——tp= -6 IGmAFange-=--==--=F "t~ +--—-—- +--+----—-—-———————r——————— +--»<
ot ——— +-—t- BEFORE + +-NOT-+ +-| target |-+f------- +-+
Allgnmeﬁfsnumber‘+ +-AFTER--+ ++number-+
| ==4==m=mmme +--|
targeF—Left———+
| ~Ficeg@Rge——————"----T-TT--o-ooooo- +=-
+icager8TRing--+---delimitedString--+
+-RigREBNYOE-——+
Ranges (cnumberrange, fnumberrange (3), wnumberrange) :
| ——+- snumber—+——(2)——+ ————————————————————————— +--|
oK + o= ———— (2) ----number----+
+- - -+--(2)--+-snumber-+-+
- -t ke +

(1) Blanks are optional in this position.

(2) Blanks are not allowed here.

(3) CMS only. Not yet implemented in NetRexx Pipelines

(4) NetRexx Pipelines only. Not yet implemented in CMS

(5) READ is giving the same output as READSTOP when the streams are different length.

[6] This senses if it is the first stage, but comment stages will fool it into not producing any output.

sqgl

Interface to SQL

3.09
+-;-+
PP--SQL-—+-———————————————— R e +-+-—-—+--p<
+-(-| options |-)-+ +-sqgl statement string-(3)+
options:
gy g +
=== e +-+-|
| +-/sglselect.properties/-+ |
+-PROPERTIES-+-filename Qword- (7)----- +-(5)+-+
| +-HEADERS---+ |
+=+ +=(5) (6) ==========—mmem—eeee +
| +-NOHEADERS-+ |
+-COUNT2SECondary- (5) (11) ~---—---—————-———-—- +
+-URL-Qword- (5) (7) ——=-—=--—=——=————————————— +
+-JDBCDRIVER-Qword- (5) (7) ————-—-————————————- +
+-DBMS-Qword- (5) (7) (8) —=——=-—=————————————— +
+-DB_NAME-Qword- (5) (7) (8) ————---——--———-—— +
+-USER-Qword- (5) (7) (8) (10) ———--—=-————————- +
+-PASS-Qword- (5) (7) (8) (10) —==---=--=------- +
¢ uses jdbc to select from any jdbc enabled dbms
¢ properties file (sqlselect.properties default) is read from the secondary input stream to find jdbcdriver name, url,
user, pass
e sample properties file:
[]
#JDBC driver name
#Tue Feb 03 23:29:43 GMT+01:00 1998
jdbcdriver=com.imaginary.sql.msql .MsqglDriver
url=jdbc:msql://localhost:1114/TESTDB
the following are not needed for some DBMS, ex: SQLite
user=db_user_ name
pass=password_ for_db
[]
o if this file is not found default (compiled in) values are used
e (1) when using a sql select * (all columns) from the commandline, quote the query as in
java pipes.compiler (query) "sql select * from dept | console"
¢ (2) the netrexx/jdbc combination is extremely case sensitive for column and table names
¢ (3) this sql_select_string executed, then statements are read from the primary input stream.
this is optional in NetRexx Pipelines only.
e (4) CMS does not use the stream input
¢ (5) NetRexx Pipelines only
e (6) CMS Pipelines is implyed HEADERS only.
¢ (7) A Qword is an optionally quoted word. If it contains spaces, it must be quoted.
¢ (8) EXPERIMENTAL Subject to change. DBMS is the kind of database, e.g. SQLite. DB_name is the file name.
These are used in place of URL and JDBCDRIVER. SQLite is the only one tested as of 8/15/20.
¢ (9) the SQLSELECT stage uses HEADERS as the default.
e (10) USER & PASS are needed for some DBMSs and not others, ex. SQLite.
¢ (11) the count or other output from non-select statements goes to the secondary output stream if connected, or is
discarded. Otherwise it goes to the primary.
[]
e Priority order for URL, JDBCDRIVER and DBMS, DB_NAME (first one found rules):
1. option in the SQL command string
2. from secondary input stream
3. from "sql.properties” file or from file specified by PROPERTIES option
4. Builtin
sqlcodes Write the last 11 SQL Codes Received

o Not implemented in Netrexx Pipelines.

sglselect

Query a Database and Format Result

»p—-SQLSELECT-—+-—-——-——-——-——-—- +--»
+-(-| options |-)-+

+-SELECT-+ +-;-+
P—t———————— e e e e L P e +-+-——+--p<
+-sql_select statement string-(3)-+

options:

+
| +-/sqlselect.properties/-+ |
+-PROPERTIES-+-filename Qword- (7)----- +-(5)+-+
| +-NOHEADERS-+ |
+—+ +-(5) (6) === mmmm oo +
| +-HEADERS---+ |
+-URL-Qword- (5) (7) --—-—=-—=—==—===—=————————— +
+-JDBCDRIVER-Qword- (5) (7) —==============——~ +
+-DBMS-Qword- (5) (7) (8) ——=========—————————= +
+-DB_NAME-Qword- (5) (7) (8) —======-====——==—= +
+-USER-Qword- (5) (7) (8) (10) ——=---===———————= +
+-PASS-Qword- (5) (7) (8) (10) ———=————=———————- +

¢ (1) when using a sqlselect * (all columns) from the commandline, quote the query as in java pipes.compiler
query) "sqlselect * from dept | console"

2) the netrexx/jdbc combination is extremely case sensitive for column and table names

3) if no sql_select_string is specified, it is read from the primary input stream.

his is optional in NetRexx Pipelines only. CMS does not use the stream input.

(4) a maximum of only one record is ever read from the primary input stream.

(5) NetRexx Pipelines only

(6) CMS Pipelines is implied HEADERS only.

(7

(8

(
*
* (

t

) A Qword is an optionally quoted word. If it contains spaces, it must be quoted.
) EXPERIMENTAL Subject to change. DBMS is the kind of database, e.g. SQLite. DB_name is the file name.
These are used in place of URL and JDBCDRIVER. SQLite is the only one tested as of 8/15/20.
¢ (9) the SQL stage uses NOHEADERS as the default.
e (10) USER & PASS are needed for some DBMSs and not others, ex. SQLite.
e Priority order for URL, JDBCDRIVER, DBMS, DB_NAME, USER, & PASS (first one found rules):
1. option in the SQL command string
2. from secondary input stream
3. from "sqlselect.properties” file or from file specified by PROPERTIES option
4. Builtin

stack

Read or Write the Program Stack

¢ Not implemented in Netrexx Pipelines.

starmon

Write Records from the “MONITOR System Service

¢ Not implemented in Netrexx Pipelines.

starmsg

Write Lines from a CP System Service

* Not implemented in Netrexx Pipelines.

starsys

Write Lines from a Two-way CP System Service

o Not implemented in Netrexx Pipelines.

state

Provide Information about CMS Files

¢ Not implemented in Netrexx Pipelines.

state

Verify that Data Set Exists

¢ Not implemented in Netrexx Pipelines.

statew

Provide Information about Writable CMS Files

¢ Not implemented in Netrexx Pipelines.

stem Retrieve or Set Variables in a REXX or CLIST Variable Pool
NetRexx
(»»——STEM——stem ——————————————— »<
stem Retrieve or Set Variables in a REXX or CLIST Variable Pool
rCMS
»»--STEM--stem--+------——-- R e L L +-»
+-PRODUCER-+ +-number-+ +-NOMSG233-+
+-MAIN----- +
+-SYMBOLIC-+
| T e L L === »<
+-DIRECT---+ +-APPEND------- +
+-FROM--number-+
stfle Store Facilities List
o Not implemented in Netrexx Pipelines.
storage Read or Write Virtual Machine Storage
¢ Not implemented in Netrexx Pipelines.
strasmfind Select Statements from an Assembler File as XEDIT Find
¢ Not implemented in Netrexx Pipelines.
strasmnfind Select Statements from an Assembiler File as XEDIT NFind
¢ Not implemented in Netrexx Pipelines.
strfind Select Lines by XEDIT Find Logic
pp----STRFIND--+----—--—-—-—--- +--delimitedString--------—- »<
+-ANYcase----+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
¢ Not implemented in Netrexx Pipelines.
strfrlabel Select Records from the First One with Leading String
strfrlabe
strfrlab
strfrlab +--STRFROMLABEL--+ +-INCLUSIVe-+
»p--+--STRFRLABel----+4-+-—-=-==——————— et L L +-delimitedString--»<
+-ANYcase----+ +-EXCLUSIVe-+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
strfromlabel Select Records from the First One with Leading String
strfrlabel
strfrlabe
strfrlab +--STRFROMLABEL--+ +-INCLUSIVe-+
»p--+--STRFRLABel---—+-+--—---———-——--— t-t-—————————- +-delimitedString--p<
+-ANYcase----+ +-EXCLUSIVe-+

+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+

+-CASELESS---+

strip Remove Leading or Trailing Characters
+-BOTH----- +
»»--STRIP-—+--——---—————- e T e +--»
+--| case |--+ +-LEADING--+ +-TO--+
+-TRAILING-+ +-NOT-+
+-BLANK----—--——————————————— +
e T +--p<
+--| target |--+-----—---—- +--+
+--number--+ (1)
case
| ————— +--
+--ANYCase----- +
+--CASEANY----- +
+--CASEIGNORE--+
+--IGNORECASE--+
+--CASELESS----+
target:
| --+--xrange-------------—-—-—-—-—--—- +--|
+--+--STRing--+--delimitedString--+
+--ANYof---+
¢ (1) Not implemented in Netrexx Pipelines.
strliteral Write the Argument String
»p--STRLITeral-—+--—————————————— - ———————— L +--p<
| +-PREFACE-+ | +-delimitedString-+
-t - e +-+
| +-APPEND--+ +-CONDitional-+ |
+-IFEMPTY----—————————————————— +
strnfind Select Lines by XEDIT NFind Logic
»p——STRNFIND-—+-——————————— +--delimitedString---------- »><
+-ANYcase----+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
strtolabel Select Records to the First One with Leading String
strtolabe
strtolab
+-INCLUSIVe-+
»»--STRTOLABel--+---—--—--—-- B +--delimitedString------- »<
+-ANYcase----+ +-EXCLUSIVe-+
+-CASEANY----+
+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+
structure Manage Structure Defnitions
¢ Not implemented in Netrexx Pipelines.
strwhilelable | Select Run of Records with Leading String
strwhilelabl
strwhilelab
strwhilela +-INCLUSIVe-+
strwhilel »»--STRWHILElabel--+------—------ e e +-delimitedString--»<
strwhile +-ANYcase----+ +-EXCLUSIVe-+
3.09 +-CASEANY----+

+-IGNORECASE-+
+-CASEIGNORE-+
+-CASELESS---+

stsi Store System Information
* Not implemented in Netrexx Pipelines.
subcom Issue Commands to a Subcommand Environment
¢ Not implemented in Netrexx Pipelines.
substring Write substring of record
¢ Not implemented in Netrexx Pipelines.
synchronise Synchronise Records on Multiple Streams
synchronize
¢ Not implemented in Netrexx Pipelines.
synchronize Synchronise Records on Multiple Streams
synchronise
* Not implemented in Netrexx Pipelines.
sysdsn Test whether Data Set Exists
o Not implemented in Netrexx Pipelines.
sysout Write System Output Data Set
¢ Not implemented in Netrexx Pipelines.
sysvar Write System Variables to the Pipeline
¢ Not implemented in Netrexx Pipelines.
take Select Records from the Beginning or End of the File
+-FIRST-+ +-1--——-————- +
»p—-TAKE-—+-——=——— e e e e L Fomm e >«
+-LAST--+ +-number----- + +-BYTEs(1)-+
+-snumber (2) -+
oK +
e (1) CMS must be BYTES
¢ (2) Not CMS; NetRexx Pipelines: minus reverses first/last
tape Read or Write Tapes
e Not implemented in Netrexx Pipelines.
tcpchsum Compute One's complement Checksum of a Message
o Not implemented in Netrexx Pipelines.
tcpclient Connect to a TCP/IP Server and Exchange Data

¢ Simple tcpclient implementation. The options implemented are similar to the CMS definition.
o linger - wait a bit before terminating the last read (units SECONDS)
timeout - wait this long before timing reads out (units MS)
deblock - If deblock is omitted a copy stage is used.
group - similar to CMS. A delimited string containing a stage is expected. You can use a run of stages, but its
is dangerous since you to know the stage sep character being used...
greeting - expect a greeting message and discard it
nodelay - use the nodelay option
keepalive - enable keep alive socket option
oneresponse - synchronize cmds/replys

o O O

o O O O

tcpdata

Read from and Write to a TCP/IP Socket

e Simple tcpdata implementation.
o linger - wait a bit before terminating the last read (units SECONDS)
timeout - wait this long before timing reads out (units MS)
deblock - If deblock is omitted a copy stage is used.
group - similar to cms. A delimited string containing a stage is expected. You can use a run of stages, but its
is dangerous since you need to know the stage sep character being used...
nodelay - use the nodelay option
oneresponse - synchronize requests/replies

o O O

(o]

(o]

tcplisten Listen on a TCP Port
e Simple tcplisten implementation. You can only supply the port and a timeout value, which is ignored unless
teplisten's output stream has been severed, in which case tcplisten terminates.
¢ If input stream 0 is connected, tcplisten does a peekto before calling the accept method. The object is consumed
after the output of the socket object returns.
terminal Read or Write the Terminal in Line Mode
termina
termina
termin »p--+-TERMinal-+--+---—=-——=—=——————————— e S L L e P e +--p<q
termi +-CONSole--+ +-EOF--delimitedString-+ +-DIRECT-(l)--------- +
term +-NOEQOF-—--—--—=-———=————— + +-ASYNchronously-(1)-+
console +-DARK- (1) -=—=—------ +
consol
conso ¢ (1) CMS Pipelines Only.
cons
cons
threeway Split record three ways
¢ Not implemented in Netrexx Pipelines.
timestamp Prefix the Date and Time to Records
(1) (2)
»p--TIMEstamp--—+-—+-————————————————————————— +-—t——————— »<
I +-8-=-—-- + I
| +--+-number-+--+-------- +--+ |
| +-number-+ |
+-SHOrtdate-------——=---————————- + (3/09/46 23:59:59)
+-ISOdate---—-—-—=——————————————— + (1946-03-09 23:59:59)
+-FULLdate-—-----——====——————=—-— + (3/09/1946 23:59:59)
+-STAndard----—=-=--========——————- + (19460309235959)
+-STRing--delimitedString--(3)---+
¢ (1) In CMS Pipelines, the delimited string is required. In NetRexx Pipelines, it defaults to // if no second string.
tokenise Tokenise Records
tokenize
»p——+-TOKENISE-+-—+-———————————————————— B +--p<
+-TOKENIZE-+ +-delimitedString-(l)-+ +-delimitedString-+
e (1) In CMS Pipelines, the first delimited string is required. In NetRexx Pipelines, it defaults to // if no second
string.
tolabel Select Records to the First One with Leading String
tolabe
tolab
»»--TOLABel--+---—------- LB EEEE >«
+--string--+
totarget Select Records to the First One Selected by Argument Stage

»»--TOTARGET----stage--+--—---—---—--- - »><

+--operands--+

trackblock Build Track Record
* Not implemented in Netrexx Pipelines.
trackdeblock Deblock Track
¢ Not implemented in Netrexx Pipelines.
trackread Read Full Tracks from ECKD Device
¢ Not implemented in Netrexx Pipelines.
tracksquish Squish Tracks
¢ Not implemented in Netrexx Pipelines.
trackverify Verify Track Format
* Not implemented in Netrexx Pipelines.
trackwrite Write Full Tracks to ECKD Device
o Not implemented in Netrexx Pipelines.
trackxpand Unsquish Tracks
¢ Not implemented in Netrexx Pipelines.
translate Transliterate Contents of Records
translat
translate
transl »p--+--TRANSlate-—+-+-—-—————————mm o — - St L L e +--»
trans +--XLATE------ + +--inputRange------------ + +-| default-table |-+
xlate | ¥ + |
+--+- (--inputRange--) -+--+
§ e +
| R R L »<
+——xrange-—xrange—-+
default-table:
| -—+--UPper-—=-=-—=--—=———————————— o |
+--LOWer-------—----—-—————-—————-———— +
+--INput-------—--—--—-——————————— +
{ +--OUTput------—-—-—-—————————————— + }
{ +--4+--TO----4--F-----en +--n--+ }
{ +--FROM--+ +--CODEPAGE--+ }
{ }
{ Not yet in Pipes for NetRexx }
trfread Read a Trace File

¢ Not implemented in Netrexx Pipelines.

truncate Truncate the Record

truncat

trunca

trunc +--80-----—————————-- +

chop »»-—+-TRUNCate-+-—+--——--———-—————————— +--p<
+-CHOP----- + +-snumber------------ |

+--| stringtarget |--+
stringtarget:

[——4-——— - e e L T P T +-t-—-—- +--| target |--|
+-ANYcase----- + | +-BEFORE-+ | +-NOT-+
+-CASEANY----- + -t -t +--+
+-CASEIGNORE--+ +-snumber-+ +-AFTER--+
+-IGNORECASE--+
+-CASELESS----+

target:
| --+--xrange-----------——-—-—————--- +--|
+--+-STRing--+--delimitedString-+
+--ANYof--+
tso Issue TSO Commands, Write Response to Pipeline
¢ Not implemented in Netrexx Pipelines.
udp Read and Write an UDP Port
e Not implemented in Netrexx Pipelines.
unique Discard or Retain Duplicate Lines
uniqu
uniqg
+--NOPAD------ +
»p--UNIQue-—-+----—-—--—- o oo - +-————— >
+--COUNT--+ +--PAD--xorc--+ +-ANYcase----- +
+-CASEANY--—--- +
+-CASEIGNORE--+
+-IGNORECASE--+
+-CASELESS----+
+--LAST------ +
[A et B s o >«
+--| uniqueRanges |-+ +--SINGLEs---+
+--FIRST----- +
+--MULTiple--+
+--PAIRwise--+
uniqueRanges:
| --+--inputRange--------—-——-——————————————————— +--|
| e e e o + |
+-- (--+-inputRange--+------------- +-—4-=)-—+
+--NOPAD------ +
+--PAD--xorc--+
unpack Unpack a Packed File
e Not implemented in Netrexx Pipelines.
untab Replace Tabulate Characters with Blanks
o Not implemented in Netrexx Pipelines.
update Apply an Update File
¢ Not implemented in Netrexx Pipelines.
urldeblock Process Universal Resource Locator

¢ Not implemented in Netrexx Pipelines.

uro Write Unit Record Output
* Not implemented in Netrexx Pipelines.
utf Convert between UTF-8, UTF-16, and UTF-32
o Not implemented in Netrexx Pipelines.
var Retrieve or Set a Variable in a REXX or CLIST Variable Pool
»p--VAR--variable-------—------ >«
e Pipes for NetRexx: this can only read vars
vardrop Drop Variables in a REXX Variable Pool
o Not implemented in Netrexx Pipelines.
varfetch Fetch Variables in a REXX or CLIST Variable Pool
¢ Not implemented in Netrexx Pipelines.
varload Set Variables in a REXX or CLIST Variable Pool
¢ Not implemented in Netrexx Pipelines.
varover Write the Values of Stems
— NetRexx
(»b——VAROVER——VarName———><
¢ NetRexx Pipelines only; not CMS Pipelines
varset Set Variables in a REXX or CLIST Variable Pool
¢ Not implemented in Netrexx Pipelines.
vchar Recode Characters to Different Length
¢ Not implemented in Netrexx Pipelines.
vector Read or Write an Array of Vectors
¢ Pipes for NetRexx only.
vectora Add to an Array of Vectors
e Pipes for NetRexx only.
vectorr Read From an Array of Vectors
¢ Pipes for NetRexx only.
vectorw Write to an Array of Vectors
¢ Pipes for NetRexx only.
;eg.;fy Verify that Record Contains only Specified Characters

»p—-VERIFY-—4---————————— e e +-+-+-delimitedString-+-+--p<
+-ANYCASE----+ +-inputRange-+ +-character-range-+ (1)
+-CASEANY----+
+-CASEIGNORE-+
+-IGNORECASE-+
+-CASELESS---+

¢ (1) NetRexx Pipelines only
e (1) Examples: A-Z 0-9 c-g a4-ba; 16-bit Unicode characters or hex numbers
¢ (1) Any number greater than zero, any order, of delimitdStrings and character-ranges are allowed.

vmc Write VMCF Reply

e Not implemented in Netrexx Pipelines.

vmcdata Receive, Reply, or Reject a Send or Send/receive Request

¢ Not implemented in Netrexx Pipelines.

vmclient Send VMCF Requests

¢ Not implemented in Netrexx Pipelines.

vmclisten Listen for VMCF Requests

* Not implemented in Netrexx Pipelines.

waitdev Wait for an Interrupt from a Device

o Not implemented in Netrexx Pipelines.

warp Pipeline Wormhole

¢ Not implemented in Netrexx Pipelines.

warplist List Wormholes

¢ Not implemented in Netrexx Pipelines.

whilelabel Select Run of Records with Leading String
3.09
»»--WHILELABEL-+--------- +---p<
+-string--+
wildcard Select Records Matching a Pattern

¢ Not implemented in Netrexx Pipelines.

writepds Store Members into a Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.

xab Read or Write External Attribute Buffers

¢ Not implemented in Netrexx Pipelines.

xedit Read or Write a File in the XEDIT Ring

* Not implemented in Netrexx Pipelines.

xlate

Transliterate Contents of Records

translate
translat
transla pp——+--XLATE-—-—-—-—— -t -+ +-»>
transl +--TRANSlate--+ +--inputRange------------ + +-| default-table |-+
trans | ¥ + |
+--+- (--inputRange--) -+--+
S +
e e e e e e L L e e Pt e »<
+--xrange--xrange--+
default-table:
| ==+=-UPper—=—=m== == m e T |
+--LOWer-------—--—--—————-———————— +
+-—INput-———-=————=——— +
{ +--OUTput----------------"--"---—-—- + }
{ +-——-+--TO-———4-——-F+-——-—————————- +--n--+ }
{ +--FROM--+ +--CODEPAGE--+ }
{ }
{ Not yet in Pipes for NetRexx }
xmsg Issue XEDIT Messages
* Not implemented in Netrexx Pipelines.
xpndhi Expand Highlighting to Space between Words
¢ Not implemented in Netrexx Pipelines.
xrange Write a Range of Characters
3.09
»p--XRANGE--+-—-—-—-=-—————-—— +-————- »<
+-xrange----- @
+-xorc--xorc-+
¢ NetRexx uses UTF-16 (ASCII) and CMS uses EBCDIC
zone

Run Selection Stage on Subset of Input Record

PP — = ZONE — === = == m — o +--»
+--+--WORDSEParator---+---+--char----- +--+
+--WS--———--——————- + +--hexchar--+
+--FIELDSEparator--+ +--BLANK----+
+--FS-————————————- + +--SPACE----+
»-+--Words----wNumberRange---+------ >
+--Fields----fNumberRange--+
+--cNumberRange---------—-- +
e e e LR +--stage--+------------ +---p<
+--CASEI--+ +--REVERSE--+ +--operands--+

20

Appendix A

.50

- Released May 30, 1999

.49

.48

.47

Fixed a stall occurring when dinterrupted threads, with the [interrupt
caught by ThreadPool, were reused.

Fixed a thread safety problem in ELASTIC

Improved the timeout options in TCPDATA and TCPCLIENT, they also
byte[] 1instead of strings. This was done since converting to and
from strings sometimes scrambles binary data (more research on
encodings...)

Changed DELBLOCK it now handles byte[] to help keep tcpdata and
tcpclient efficient. The EOF option was broken, +its fixed now.
Changed DISKR, DISKW and DISKA to handle byte[] when using streams.
Added INSERT which handles byte[]. This should be used instead of
SPECS to add LF or CR

Changes SERIALIZE to use bytel[].

Released May 21, 1999

compiled with 1.2.1 and NetRexx 1.148

Added preliminary support added to .njp compiler for files containing
java source! See the (some what messy) java samples in vectortl.njp,
overtest.njp and addtest4.njp

Added code to generate a dummy .nrx file containing the public class
in a .java file. This allows NetRexx to compile class that depend on
the java source.

Modified sort to accept arguements 1in the same order as CMS

Fixed rc logic in drop stage

Fixed shortcut code for {n} where n is numeric.

Released May 16, 1999

Fixed a (nasty) bug involving reusing pipe objects.

Added the reuse() method to the stage class. To use it override

it in your stage. It was added so there was a foolproof way to
reset a stage when its pipe object 1is reused. (doSetup 1is intended
for use with dynamic arguements 1in call or added pipes)

Added the cont option and defaulted it to comma.

fixed return code logic in some stages and in selectInput/Output
Added the Emsg methods

Added arguement debug option (128)

There are no more final methods

Much dimproved error reporting from stages via new Emsg method
Released Jan 3, 1999

75

0.46a

recompiled with 1.1.7A and netrexx 1.148

UNIQUE repaired?

Added stages to acess java objects easily

VECTOR, VECTORR, VECTORW, VECTORA for java.util.vector

ARRAY, ARRAYR, ARRAYW, ARRAYA for Object[]

HASH, HASHR, HASHW, HASHA for java.util.Hashtable

DICT, DICTR, DICTW, DICTA for java.util.Dictionary

The hash stages mostly map directly to DICT stages. The exception
is HASHW which uses the clear() method of Hashtable.

Modified LITERAL to be able to put any object into a pipe

Modified pipe package to store arguements in a hashtable instead of
a rexx stem - arguements can now be of any class. Use the arg(null)
method to get an object arguement.

Released Oct 14, 1998

recompiled with 1.1.7

TCPLISTEN now supports an input stream to be used to pace accepts
Released Sept 20, 1998

COMMAND, CHANGE, FILE, LOCATE, DROP, LOOKUP, TCPCLIENT, TCPLISTEN
SQLSELECT, CONSOLE, TCPDATA, NOEOFBACK -improved.

Jeff dimproved the testing process with the addition of the COMPARE
stage, he also upgraded many of the tests.

Added the buildtests pipe, it builds a test script to be run with:
test > output < console.data

Unexpected exceptions should no longer hang pipes

Released Sept 9, 1998

Recompile all your stages. To fix a commit problem I had to
change the _stage interface class...

tcpclient restart problems with oneresp active fixed.

commit now returns the current return code of the pipe.

fixed minor errors in tcpclient and diska.

Released Sept 8, 1998

a recompile of pipes using STEM 1is required

smart DISK, FILE and STEM stages now exist.

Made to and from synonoms for in and out in REXX and STRING stages.
Added stream option to DISKR and DISKW to read raw streams.

Added DISKSLOW and SERIALIZE stages.

Now DISK, DISKR, DISKW, DISKA and DISKSLOW have FILE synonyms.
Deadlock detection -improvements.

TCPDATA & TCPCLIENT optimized once again.

selectAnyInput could deadlock - fixed.

interrupting a pipe now kills it - use this with care (ie. kill -9)
Pseudo methods njpRC() and njpObject() are reconized by the pipes
compiler and return the pipe’s RC or object respectivily.

Released August 30, 1998

Fixed deadlock dection to see commit deadlocks.

Added rest of code to handle +improved StageError logic.

Added stage templates (templatex.nrx) in the njpipes directory.

76

0.

.42

.41

.40

.39

38

Added a debug flag (64) to trace all StageError rasied by the
stage class.

Not released

A recompile of pipes using TCPCLIENT, TCPDATA is required.

A recompile of pipes using REXX, STRING, ZONE, CASEI is recommended.
Updated the comments in _stage to reflect the possible StageError
and return codes that can be 1issued.

Added the DEBLOCK stage and reworked TCPDATA, TCPCLIENT & GATE.
Improved eofReport processing and added a new option ’either’ that
will trigger a StageError when any stream, input or output, severs.
Fixed variable subsitution so multiple variables passed to a stage
will work.

Added the ability to pass thru arguements to callpipe and addpipe.
Fixed a problem with some StageExits requiring stage_reset methods.
Added a function to utils to help assign smarter name to classes
generated by StageExits.

Added counter method to stage. use to count external waits so
deadlock/stall detection 1is not fooled.

Released August 23, 1998

removed OBJ2REXX, OBJ2STRING stages, use REXX and STRING stage
modifiers.

pipes using TCPDATA, TCPCLIENT & LOOKUP should be recompiled
exhanced REXX stage modifier via an object2rexx +improvement in
pipes/utils.nrx

optimized ThreadPool startup times. No setName and only use
setPriority when 1its required.

made it possible to optimized stage startup time when arguements
are static. See TCPDATA, TCPCLIENT & LOOKUP

faq.txt enhanced

Released August 14, 1998

All pipes MUST be recompiled. O0Old pipe class files will stall.
OBJ2REXX 1is depreciated and will be removed, use the REXX stage.
added REXX and STRING stages to convert objects entering and leaving
a stage to rexx or string. Inorder to avoid nasty class conflicts,
REXX and STRING are implemented in _rexx and _string. The compler
adds the ’_’ when necessary (any stage can use this feature).

fixed an intermitant stall in callpipe (was completing too fast :-)
fixed a stall occuring between shortStreams and COMMAND

optimized pipe startup time in pipe.class and via the compiler.
optimized rc, commit, deadlock, threadpool code

Released August 9, 1998

WAIT_COMMIT and WAIT_ANY are now used in the call/addpipe logic
callpipe was not notifiing its pipe when ending leading to an

very intermitant hang.

Released August 3, 1998

A1l your stages must be recompiled. Recompile your pipes to
exploit the pipe & thread pool performance -improvements.

77

0.

0.

0.

37

36

.35

35

fixed and optimized commit logic.

implement a pool for pipes to decrease overhead.
implement a pool for threads to decrease overhead.
compiler fix to proprogate return codes from stageExits (thanks Jeff).
signal StageError(’... 1in all stageExits modified to

signal StageError(13,’Error - ’pInfo’ -

UNIQUE stage added by Jeff. It exploits stageExit.

COMMAND stage was not starting its threads correctly.

SORTs 1in different pipes could corrupt each other. Thanks René,
Released July 25, 1998

A recompile of pipes using SORT 1is required

added NOEOFBACK, TOTARGET and FRTARGET.

removed a protected method from dump(), added arg() to the dump
upgraded SORT, sortRexx to exploit IRange and stageExit, optimized
use, and factored the sort algorithm out of sort/sortRexx.
multiple sort stages no longer try to share static variables...
the compiler just uses the stage name (not args) when naming stages
Released July 19, 1998

A recompile of ALL pipes with stages using IRANGE is required.
(CHANGE, DEAL, JOINCONT, LOCATE, LOOKUP, PICK, XLATE & ZONE)

pipes using NFIND, NLOCATE, STRNFIND or SORT also need to be
recompiled

Added BuildIRangeExit and other methods to an updated IRange
class. Using ’zone range stage ...’ will be faster than

’stage range ...’ when the range consists of n.c or n-c (s).
NFIND, NLOCATE, STRNFIND 1implemented via stageExit and NOT

Fixed bugs in, JUXTAPOSE, FIND, STRFIND, SORT, COMMAND, CHANGE

The compiler was not calling stageExit in the correct order when
several calls were needed to build the stage. (zone wl nfind..)
Released July 16, 1998

Jeff Hennick pointed out a bugglet that effected LOOKUP, ZONE and
PICK that could occur with complex ranges, I found another bug 1in
strliteral

Jeff Hennick updated this doc with information on IRange and DString
Released July 15, 1998

A recompile of ALL pipes using ZONE, TCPCLIENT, TCPDATA, PREFIX
and APPEND 1is required.

prefix and append can now be labeled, tcpclient and tcpdata

now use a stage, instead of a pipe, to group data.

added compiler support for negitive stream numbers. This 1is
intended to be used by stageExit. See append, prefix, tcpdata

and tcpclient.

Redefined rexxArg() and stageArg() to simplify the compiler.
selection stages are no longer defined as final.

SelectInput(0) and selectOutput(0) are always called by the

stage implementation so they can be overrdidden...

Reimplemented ZONE using stageExit, added CASEI using the same

78

0.

.34

.33

.32

.31

31

technique. In theory NOT could be done the same way but, to

avoid some recursion problems NOT is staying in the compiler.
StageExit modified to allow it to pass back another stage to

call. see ZONE, CASEI and NOT.

Released July 11, 1998

minor reportEOF(any) logic fix

improved command stage, threads used to process stdout and stderr.
added zone, pad, lookup, pick, upgraded juxtapose, fixed bugs 1in
specs & buffer.

added pad option to setIRange method

Released July 5, 1998

added rexxArg() and stageArg() methods to utils.nrx for use by the
compiler to query stages about what they expect their arguments to
contain. This allowed the compiler to be simplified.

locate now handles null arguments correctly. Tliterals now include
leading blanks. Thanks for pointing out the problem René.

René Jansen contributed the timestamp stage.

logic modified to stop output() from getting an EOF when the output
object has been peeked. The peek status is also displayed by the
dump () method and hense by deadlocks.

minor specs bug fixes (next.n and nextw.n output specs now work)
modified the compiler to invoke stageExit(rexx,rexx) method. This
allows stages to generate code and/or change the pipe topology. See
specs, append, prefix, change and xnop, in the stages directory.
modified StageError in preparation for usage changes.

removed the Range class - Jeff’s code is better and anything that
could be done with Range can be done using stageExit.

Jeff fixed bugs in change and join and added:

fblock joincont notinside outside

inside

Released June 20, 1998

Jeff updated these stages adding a few new ones too:

abbrev between split locate
nlocate strnfind strfind nfind
find chop

minor docuementation updates

the Range class is depreciated and will be removed. Use the
replacements Jeff created (see pipes\utils.nrx and stages\).
Released June 17, 1998

modified count, drop, take and deal to handle non rexx objects
when possible

Released June 16, 1998

improved eofReport(ANY) logic to trigger when waiting on output
and a different output stream severs.

factored the source for utils.class out of stages so there 1is
a class to add (probably static) shared methods for all stages
fixed a deadlock that occured between shortStreams and exit

79

0.

30

.29

.29

.28

.27

(severInput)
Jeff Hennick updated many stages to work at CMS or near CMS levels.

append deal join strfrlabel xlate
buffer drop literal strliteral

change fanin locate strtolabel

console fanout split take

count frilabel strfind tokenize

All of Jeff’s changes are GNUed. See CopylLeft.txt in the njpipes
directory.

Released May 24, 1998

fixed logic in core classes to post all pending severs and not
clear them too early either, this corrects a problem seen on
Multiprocessor machines.

www page update (docuemention) May 20

deadlock section updated

installation verification example corrected!

Released May 17, 1998

added obj2rexx stage, tolabel stage courtesy of Chuck Moore.
enhanced change to support a single range

Added setJITCache(Hashtable) method to pipes. This can be used
to build a global object cache 1in programs calling pipes. The name
of the Hasttable s passed to pipe/callpipe/addpipe via a cache
parameter.

Added support for reportEof options. This support is not too
well tested - some good testcases are needed.

Released May 9, 1998

Enhanced parsing 1in specs (word2.1 would work, word 2.1 would not)
Fixed COPY for a NT jit bug, fixed locate so NOT LOCATE would
work, updated LITERAL not to use more than one exit(rc)

Fixed a compiler problem that would hit multistreamed pipes using
append or prefix.

Any options not consumed by njp are passed on to nrc

and java. Mainly for use from the command line, use with care

in .njp files...

Fixed shortStreams() so it works correctly when shorting streams
in a stage with multiple streams.

Tested all 8 addpipe forms and fixed runtime to work with all
test cases

modified filternjp to accept *in and *out without additional labels
reenabled stop() in exit code...

added gate, dam, tokenize, juxtapose and courtesy of Chuck Moore,
frlabel stages

Released May 3, 1998

Automated the generation of in/outStream calls. For this to work
the labels need to be of the form *in®: or *out®: where the ’0’ is
replaced by the {input or output stream to connect to.

Fixed compiler/filter problems with stema

80

0.26
- Added

0.25 -

0.24 -

0.22 -
0.21 -

Tighted range checking code in specs, fixed problem with delimited
ranges. Specs was compiling the NetRexx EXIT command...

Fixed a problem where output was not see that objects were
consumed when using sipping pipes...

Fixed a problem where severing an output stream did not cause the
stages stacked on the node’s outlist to see the sever

Fixed a problem where the stage issuing a callpipe was not seeing
the called pipe end

Added debug option to pipes compiler

Repaired commit and added commit levels to dump() method

Fixed problems with callpipe servering several outputs, unstacking
the saved stream was selecting it...

Modified tcpclient and tcpdata to use a secondary thread to
recieve the tcpip inputs.

Now keep a referenced object for each pipe/stage so the JIT does
not throw away 1its work and call/addpipes in loops work faster.
in/outStreamState now return -1 when autocommit is enabled and
the stream 1is unused.

Released April 26, 1998

selection methods to compiler (see getRange in section 4 and

the locate stage an example#

Added the specs stage. The compiler builds a stage to process the
specs, reducing overhead.

Added tcp/ip stages

Fixed problems with severs using addpipe

Optimized some stages using jinsight from www.alphaworks.ibm.com.
This more than doubled the speed of some stages.

fixed bugs in fanin, diskw

Added netrexx filters to extract pipes, extended the functions

of .njp files (multiple pipes in a file and .njp files can now
contain netrexx code with pipe/callpipe/addpipe)

fixed a timing bug in deadlock detection.

xlate and sqlselect stages contributed by René Jansen added
Release Feb 98

modified the compiler so the syntax of pipes from the command line
is the same as pipes from .njp files

added the sort stage, the sortClass interface and the sortRexx
example implementation

added the timer stage

fixed minor compiler errors (20 Dec 97)

not stage modifier added.

errors in this page corrected, NT install information added.
modified diskr/diskw to use Buffered Streams.

second public release

enabled auto commit, stages start at a commit level of -2 and
commit to a level of -1 at the first readto, peekto or output.
nocommit disables the auto commit. This feature has not been

81

.20

.19

completely tested (yet).

fixed compiler not to call netrexx if one of its pipes deadlocks
Upgraded to May version of the NetRexx compiler (Thanks Mike!)
this changed the compiler interface. NetRexx from May 10 or
later 1is now required.

nocommit added to _stages, though its a nop for now

modified the compiler class to use the May 10th NetRexx compiler
initial public release (4 May 97)

82

List of Figures

1 Run in the NetRExx Workspace 5

2 Run from the OS command ling 6

B Precompile a Pipeline from the OS5 command ling 6
: example] 8

9

10

11

8 example 5 11

p BAGVENDT under VM/CMSY 13

10 bagvendt.nrx under NetRExx 13

11T Deadlock detection 21

12 TCP/IP Client/Server compileg 28
13 TCP/IP servey 28
14 TCP/IP requestoy 28

83

List of Tables

84

Listings

[Example Listing

85

86

Index

Rexx, @, E, E
arg, b3, b4
binary, ﬁ
catch, ﬂ, @, E, E ﬂ
class, ﬂ, E, E, E, E
do, ﬁ’ E’ E

end, E’ , E“E) ﬂ
exit, ﬂ, E, E, E
extends, ﬂ, , E,
final, @, B3, B4
forever, ﬂ, E, E,
import, ﬂ, , E,
loop’ E: E’ E_Ea
method, ﬂ, E, E, E
options, ﬁ

over, E

public, E, E, E
rexx, E, ﬂ, E

say, J E

signal, E

static, E

to, B3, B1

where, E

&l

87

Differences with CMS Pipelines

The goal of this implementation is to be
as close as possible to the the CMS ver-
sion of Pipelines. A few differences are
unavoidable.

The character set is Unicode and
not EBCDIC, as Unicode is the
character set of the underlying Java
platform

As shells are different, many 3270
related stages are not implemented

Pipes need to be quoted on the

Windows and Unix command lines;

the Workspace for NetRExx (nrws)
environment is an exception to this
rule

The mainframe is record-oriented

in many stages, Pipelines for NetRExx

does an approximation of this

Pipelines on the mainframe is an
interpreted language with compo-
nents as the scanner and the dis-
patcher; the NetRExx version is
compiled to Java .class files by pipc,
the pipes compiler, and dispatched
as threads by the JVM.

The mainframe pipes dispatcher
is not multiprocessor enabled. In

Pipelines for NetRExx all tasks (stages)

are dispatched over all available
processors in parallel.

The fact that pipes run from NetRExx

implies that they can be used in
Java source. In previous releases
there was more direct support for
this; this has lapsed due to changes
in the way a java toolchain works.
This support can be restored in fu-
ture releases.

88

 To put the content of a NetRExx

variable in a pipe specification in

a NetRExX program, there is a {}

mechanism. In CMS the pipe would

be quoted in the Rexx source and

you would unquote sections to get
similiar eﬂe%t_.7

| SBN 97%-90-819090-

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	The Pipeline Concept
	What is a Pipeline?
	Stage
	Device Driver

	Running pipelines
	Configuration
	From the NetRexx Workspace (nrws) with direct execution
	From the command line with direct execution
	Precompiled Pipelines
	Compiled from an .njp file
	Compiled from an .njp file with additional stage definitions in NetRexx

	Example Session
	Write your own Filters
	More advanced Pipelines
	Device Drivers
	Record Selection
	Filters
	Other Stages
	Multi-Stream Pipelines
	Pipeline Stalls
	How to use a pipe in a NetRexx program
	Giving commands to the operating system
	Built-ins

	TCP/IP Networking using Pipes for NetRexx
	Selecting from databases with Pipelines for NetRexx
	The Pipes Runner
	The Pipes Compiler
	Built-in Stages
	Appendix A
	List of Figures
	List of Tables
	Index
	Differences with CMS Pipelines

