NetRExXX
Programming Guide

RexxLA

Version 4.02-GA of January 24, 2022

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-0-6

Publication Data
©Copyright The Rexx Language Association, 2011- 2022

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Am-
steldijk 14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom
of The Netherlands.

This edition is registered under ISBN 978-90-819090-0-6

ISBN 978-90-819090-0-6

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

|I'he NetRexx Programming Series i

[nfroduchion i

I Meet the Rexx Family] 1

[T Once upon a Virtual Machingd 1

[[.27Once upon another Virtual Machind 1

[[.3~ Features of NetREx¥ 2

B Learning to program 3

P. T Console Based Programg 3

.27 Comments in programgd 5

D s34 6

D] ause§ 6

5 When does a Clause End?] 6

g6 LongLined 7

% pS 7

P.8 Special Variabled 9

B NetKeExx as a Scripting Language 12

I NetRexx as an Inferprefed Languagd 13

b Source Code Formatting 14
Viod 14

p.2 Beyond RxMode] 15

b Using the translato1 16

p.T " Using the translator as a compile]l 16

p.2 The translator command 16

p.o Compiling multiple programs and using packagesg

1II

18

7 Using build systems - AN 20

T In-source, no packaged 20

27 With package structurd 21

B Using the NetRexxA AP] 24

B.I The NetRexxA constructo] 25

B.2~ The parse method 25

B.37 The getClassObject method 26

P Calling non-JVM programs 27

M0 Using NetRexx classes from Java 32

11 Classes 33
34
[T.2 Dependent Classe§ 34
] D § 34

M2 Using Packages 35

[[2.T The package statemeni 35

[[2.2 Translator performance consequence§ 35

2.3 Some NetRexx package history 35

I3 JPMS, The Java Platform Module System| 37

[3T _CLASSPATH 37

M4 Programming Patterng 39

12 o 39

[[4.2 Observable and Eventy 40

[[4.3 Recursive Parsd 40

[4.4 More Observer/Observabld 41

I5 Incorporating Class Libraries 43

5.7 A Word About Java Generics 43

[[5.2 The Collection Classed 44

6 Input and Outpul 46

[[6.T The File Clasy 46

[[6.2 Object Oriented 1/O using Serialization 49

6.0 Using the SAY instruction to write lines to a fileg

[6.4 Using RexxIO.forEachLind 51

I

M7 Algorithms in NetReExxX 53
53
55

15 U o c 56
[[8.1T Titeral Parsing 56

[[8.2 Positional Parsing 58

[[8.3 Variable Templated 59

19 U o 3 60

[[9.T Tracing Program Statementy 60

[[9.2 Tracing Variabled 61
19 pled 61
9.4 Tracing Note§ 65

R0 Concurrency| 66
0 ds 66

B2 Using NetRexx for Web applets 134

B2 Database Connectivity with JDB(70

B3 WebSphere M) 75

PIMOTT 82

P4.T Pub/Sub with MQ) Telemetry| 82

25 Component based Programming: beans 87

R6 Interfacing to Scripting Languages 88

6.1 Which JSR223 engines are on my system? 88

6.2 Selecting an engind 89

P6.3 Evaluating a scripf 90
6.4 bindings 90

6.5 Interpreted execution of NetRexx scripts from jrunscripf 91

P6.6 Using JavaScript from NetReExx programg 91

P6.7 Using AppleScript on macOY 92

6.8 Execution of NetRexx scripts from ANT taskd 93

6.9 Integration of NetRexx scripting in applicationy 94

E6.70 Interfacing between ooRexx and NetRexx using BSF4ooRex¥ 94

E6.1T General jsr-223 Implementation Noted 94

v

27

NetRexx Tools 96

P71

Editor supporf 96

L7.2

Java to Nrx (javaZnrx) 97

4]

Using Eclipse for NetRexx Developmen{ 99

P8I

Downloading Eclipsd 99

P82

Sefting up the workspacd 99

3.5

ShellshocH 100

P84

Installing Gif 100

3.0

Downloading the NetRexx project from the Git repository] 100

0.6

Sefting up the buildd 100

P87

Using the NetRexx version of the NetRexx Anttasl 101

0.0

Setting up the Eclipse NetRexx Editor PTugin (Optional) 101

29

Platform dependent issues 103

P91

Mobile Platformg 103

p92

IBM Mainframe: Using NetRexx programs in z/OS batch 105

B0

Building the NetREexx translatoi 106

pu.1

Repository 106

BU.Z

The buildfil§ 106

o 107

BT

The NetRExx Workspace - nrws 108

BT.I

Installationf 108

BT.Z

Starting ntwg 108

109

BT A

Exploring the NetRexx languagd 109

BT5

Arithmetic Expressiond 109

BL.6

Some Typed 110

BT.7

Symbols, Variables, Assignments, and Declaration§ 110

BT.8

Conversion 111

BT9

Calling Functiond 111

BI.J0 Long Line§ 112

N bery 112

BT.12 Data Structured 112

BI.I3 Expanding to Higher Dimensiony 114

BI.14 Writing Your Own Function§ 114

BI.15 A Typical Sessionl 114

BT.T6 Running Pipelined 115

BI.I7 System Commandg 115

BI.I8 Input Files and NetRexx File§ 116
BT.T9 Inp § 116

BT.20 The workspace.input Fild 117

BI.2T The nrws.properties Fild 117

BI.22The nrws.history file(s)] 117

bl.25 Workspace tor Netkexx Systerm Commandg

BT.2ZZd Introduction 118

BT25)cd 119

BT.26)clea 119

BT.27)display 120

BT.28)framd 121
Thelp

122

Jhistoryl 123
Jimpor] 124

numerid 124

PT.39 Jshow| 130
PT.40 Jsynonyml 130

PT.4T Jsysteml 131
PT.47 Jtracd 131
PT.43 Jusq 132

BT44 Jwhal 132

B2 Using NetRexx for Web appletd 134

B3 ‘Translator inner workingg 136

B3.T "Translator source filed 136

B3.2 Method resolution 139

Index 141

118

VI

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists
the other publications in this series, and their roles. These books can be ordered
in convenient hardcopy and electronic formats from the Rexx Language Asso-

ciation.

Quick Start Guide

This guide is meant for an audience that
has done some programming and wants to
start quickly. It starts with a quick tour of
the language, and a section on installing the
NetRexx translator and how to run it. It also
contains help for troubleshooting if anything
in the installation does not work as designed,
and states current limits and restrictions of
the open source reference implementation.

Programming Guide

The Programming Guide is the one manual
that at the same time teaches programming,
shows lots of examples as they occur in the
real world, and explains about the internals
of the translator and how to interface with it.

Language Reference

Referred to as the NRL, this is meant as
the formal definition for the language, doc-
umenting its syntax and semantics, and pre-
scribing minimal functionality for language
implementors.

Pipelines Guide & Reference

The Data Flow oriented companion to
NetRexx, with its CMS Pipelines compati-
ble syntax, is documented in this manual. It
discusses running Pipes for NetRexx in the
command shell and the Workspace, and has
ample examples of defining your own stages
in NetRexx.

Introduction

The Programming Guide is the book that has the broadest scope of the pub-
lications in the NetRexx Programming Series. Where the Language Reference and
the Quickstart Guide need to be limited to a formal description and definition
of the NetRexx language for the former, and a Quick Tour and Installation in-
structions for the latter, this book has no such limitations. It teaches program-
ming, discusses computer language history and comparative linguistics, and
shows many examples on how to make NetRexx work with diverse techologies
as TCP/IP, Relational Database Management Systems, Messaging and Queuing
(MQ™) systems, J2EE Containers as JBOSS™ and IBM WebSphere Application
Server, discusses various rich- and thin client Graphical User Interface Op-
tions, and discusses ways to use NetRexx on various operating platforms. For
many people, the best way to learn is from examples instead of from specifica-
tions. For this reason this book is rich in example code, all of which is part of
the NetRexx distribution, and tested and maintained.

Terminology

The NetRexx Language Reference (NRL) is the source of the definitive truth about
the language. In this Programming Guide, terminology is sometimes used more
loosely than required for the more formal approach of the NRL. For example,
there is a fine line distinguishing statement, instruction and clause, where the lat-
ter is a more Rexx-like concept that is not often mentioned in relation to other
languages (if they are not COBOL or SQL). While we try not to be confusing,
clause and statement will be interchangibly used, as are instruction and keyword
instruction.

Acknowledgements

As this book is a compendium of decades of Rexx and NetRexx knowledge, it
stands upon the shoulders of many of its predecessors, many of which are not
available in print anymore in their original form, or will never be upgraded
or actualized; we are indebted to many anonymous! authors of IBM product
documentation, and many others that we do know, and will thank in the fol-
lowing. If anyone knows of a name not mentioned here that should be, please

Ibecause they are unacknowledged in the original publications

ii

be in touch. Dave Woodman, thank you for your contributions to this guide.
A big IOU goes out to Alan Sampson, who singlehandedly contributed more
than one hundred NetRexx programming examples. The Redbook authors (Pe-
ter Heuchert, Frederik Haesbrouck, Norio Furukawa, Ueli Wahli, Kris Buelens,
Bengt Heijnesson, Dave Jones and Salvador Torres) have provided some impor-
tant documents that have shown, in an early stage, how almost everything on
the JVM is better and easier done in NetRexx. Kermit Kiser also provided exam-
ples and did maintenance on the translator. Bill Finlason provided the Eclipse
instructions. If anyone feels their copyright is violated, please do let us know,
so we can properly attribute offending passages, or take them out.?

2 As the usage of all material in this publication is quoted for educational use, and consists of short fragments, a fair
use clause will apply in most jurisdictions.

iii

iv

Meet the Rexx Family

1.1 Once upon a Virtual Machine

On the 22nd of March 1979, to be precise, Mike Cowlishaw of IBM had a vision
of an easier to use command processor for VM, and wrote down a specifica-
tion over the following days. VM™ (now called z/VM) is the original Virtual
Machine operating system, stemming from an era in which time sharing was
acknowledged to be the wave of the future and when systems as CTSS (on the
IBM 704) and TSS (on the IBM 360 Family of computers) were early timesharing
systems, that offered the user an illusion of having a large machine for their ex-
clusive use, but fell short of virtualising the entire hardware. The CP/CMS sys-
tem changed this; CP virtualised the hardware completely and CMS was the OS
running on CP. CMS knew a succession of command interpreters, called EXEC,
EXEC2 and Rexx " (originally REX - until it was found out, by the IBM legal de-
partment, that a product of another vendor had a similar name) - the EXEC roots
are the explanation why some people refer to a NetRexx program as an “exec”.
As a prime example of a backronym, Rexx stands for “Restructured Extended
Executor”. It can be defended that Rexx came to be as a reaction on EXEC2,
but it must be noted that both command interpreters shipped around the same
time. From 1988 on Rexx was available on MVS/TSO and other systems, like
DOS, Amiga and various Unix systems. Rexx was branded the official SAA pro-
cedures language and was implemented on all IBM’s Operating Systems; most
people got to know Rexx on OS/2. In the late eighties the Object-Oriented suc-
cessor of Rexx, Object Rexx, was designed by Simon Nash and his colleagues
in the IBM Winchester laboratory. Rexx was thereafter known as Classic Rexx.
Several open source versions of Classic Rexx were made over the years, of which
Regina is a good example.

1.2 Once upon another Virtual Machine

In 1995 Mike Cowlishaw ported Java™to OS/2™ and soon after started with an
experiment to run Rexx on the JVM™. With Rexx generally considered the first of
the general purpose scripting languages, NetRexx" is the first alternative lan-
guage for the JVM. The 0.50 release, from April 1996, contained the NetRexx
runtime classes and a translator written in Rexx but tokenized and turned into
an OS/2 executable. The 1.00 release came available in January 1997 and con-
tained a translator bootstrapped to NetRexx. The Rexx string type that can also

1

handle unlimited precision numerics is called Rexx in Java and NetRexx. Where
Classic Rexx was positioned as a system glue language and application macro
language, NetRexx is seen as the one language that does it all, delivering system
level programs or large applications.

Release 2.00 became available in August 2000 and was a major upgrade, in which
interpreted execution was added. Until that release, NetRexx only knew ahead
of time compilation (AOT).

Mike Cowlishaw took early retirement from IBM in March 2010. IBM announced
the transfer of NetRexx source code to the Rexx Language Association (RexxLA)
on June 8, 2011, 14 years after the v1.0 release, and on the same day, it released
the NetRexx source code to RexxLA under the ICU open source license. RexxLA
shortly after released this as NetRexx 3.00 and has followed with updates.

1.3 Features of NetRExx

Ease of use The NetRexx language is easy to read and write because many
instructions are meaningful English words. Unlike some lower level pro-
gramming languages that use abbreviations, NetRexx instructions are com-
mon words, such as say, ask, if...then...else, do...end, and exit.

Free format There are few rules about NetRexx format. You need not start an
instruction in a particular column, you can also skip spaces in a line or skip
entire lines, you can have an instruction span many lines or have multiple
instructions on one line, variables do not need to be pre-defined, and you
can type instructions in upper, lower, or mixed case.

Convenient built-in functions NetRexx supplies built-in functions that per-
form various processing, searching, and comparison operations for both
text and numbers. Other built-in functions provide formatting capabilities
and arithmetic calculations.

Easy to debug When a NetRexx exec contains an error, messages with mean-
ingful explanations are displayed on the screen. In addition, the trace in-
struction provides a powerful debugging tool.

Interpreted The NetRexxlanguage is an interpreted language. When a NetRexx
exec runs, the language processor directly interprets each language state-
ment, or translates the program in JVM bytecode.

Extensive parsing capabilities NetRexx includes extensive parsing capabilities
for character manipulation. This parsing capability allows you to set up a
pattern to separate characters, numbers, and mixed input.

Seamless use of JVM Class Libraries NetRexx can use any class, and class li-
brary for the JVM (written in Java or other JVM languages) in a seamless
manner, that is, without the need for extra declarations or definitions in the
source code.

Learning to program

2.1 Console Based Programs

One way that a computer can communicate with a user is to ask questions and
then compute results based on the answers typed in. In other words, the user
has a conversation with the computer. You can easily write a list of NetRexx
instructions that will conduct a conversation. We call such a list of instructions
a program. The following listing shows a sample NetRexx program. The sample
program asks the user to give his name, and then responds to him by name. For
instance, if the user types in the name Joe, the reply Hello Joe is displayed. Or
else, if the user does not type anything in, the reply Hello stranger is displayed.
First, we shall discuss how it works; then you can try it out for yourself.

/* A conversation x/

say "Hello! What's your name?"
who=ask

if who = '' then say "Hello stranger"
else say "Hello" who

Briefly, the various pieces of the sample program are:

/* ... x/ A comment explaining what the program is about. Where Rexx pro-
grams on several platforms must start with a comment, this is not a hard
requirement for NetRexx anymore. Still, it is a good idea to start every pro-
gram with a comment that explains what it does.

say An instruction to display Hello! What’ s your name? on the screen.

ask An instruction to read the response entered from the keyboard and put it
into the computer’s memory.

who The name given to the place in memory where the user’s response is put.

if An instruction that asks a question.

who = " A test to determine if who is empty.

then A direction to execute the instruction that follows, if the tested condition
is true.

say An instruction to display Hello stranger on the screen.

else An alternative direction to execute the instruction that follows, if the tested

condition is not true. Note that in NetRexx, else needs to be on a separate
line.

say An instruction to display Hello, followed by whatever is in who on the
screen.

The text of your program should be stored on a disk that you have access to
with the help of an editor program. On Windows, notepad or (notepad++),
jEdit, X2 or SlickEdit are suitable candidates. On Unix based systems, includ-
ing macOS, vim or emacs are plausible editors. If you are on z/VM or z/0OS,
XEDIT or ISPF/PDF are a given. More about editing NetRexx code in chapter
R7.7], Editor Support, on page Pé.

When the text of the program is stored in a file, let’s say we called it hello.nrx,
and you installed NetRexx as indicated in the NetRexx QuickStart Guide, we can
run it with

nrc -exec hello
and this will yield the result:

NetRexx portable processor, version NetRexx after3.01, build 1-20120406-1326
Copyright (c) RexxLA, 2011. All rights reserved.

Parts Copyright (c) IBM Corporation, 1995,2008.

Program hello.nzrx

===== Exec: hello =====

Hello! What's your name?

If you do not want to see the version and copyright message every time, which
would be understandable, then start the program with:

nrc -exec -nologo hello
This is what happened when Fred tried it.

Program hello.nzxx

===== Exec: hello =====
Hello! What's your name?
Fred

Hello Fred

The ask instruction paused, waiting for a reply. Fred typed Fred on the com-
mand line and, when he pressed the ENTER key, the ask instruction put the
word Fred into the place in the computer’s memory called “who”. The if in-
struction asked, is “who” equal to nothing;:

rr

who =
meaning, is the value of “who” (in this case, Fred) equal to nothing:
"Fred = '’

This was not true; so, the instruction after then was not executed; but the in-
struction after else, was.

But when Mike tried it, this happened:
Program hello.nzxx

===== Exec: hello =====
Hello! What's your name?

Hello stranger
Processing of 'hello.nrx’ complete

Mike did not understand that he had to type in his name. Perhaps the program
should have made it clearer to him. Anyhow, he just pressed ENTER. The ask in-
struction put ” (nothing) into the place in the computer’s memory called “who”.
The if instruction asked, is:

rr

who =

meaning, is the value of “who” equal to nothing:

In this case, it was true. So, the instruction after then was executed; but the
instruction after else was not.

2.2 Comments in programs

When you write a program, remember that you will almost certainly want to
read it over later (before improving it, for example). Other readers of your pro-
gram also need to know what the program is for, what kind of input it can
handle, what kind of output it produces, and so on. You may also want to write
remarks about individual instructions themselves. All these things, words that
are to be read by humans but are not to be interpreted, are called comments. To
indicate which things are comments, use:

/* to mark the start of a comment
*x/ to mark the end of a comment.

The /x causes the translator to stop compiling and interpreting; this starts again
only after a %/ is found, which may be a few words or several lines later. For
example,

/* This is a comment. =%/

say text /x This is on the same line as the instruction =*/
/* Comments may occupy more

than one line. %/

NetRexx also has line mode comments - those turn a line at a time into a com-
ment. They are composed of two dashes (hyphens, in listings sometimes fused
to a typographical em dash - remember that in reality they are two n dashes.

-- this is a line comment

2.3 Strings

When the translator sees a quote (either ” or ’) it stops interpreting or compiling
and just goes along looking for the matching quote. The string of characters
inside the quotes is used just as it is. Examples of strings are:

"Hello’
"Final result:

n

If you want to use a quotation mark within a string you should use quotation
marks of the other kind to delimit the whole string.

"Don’t panic”
"He said, "Bother”’

There is another way. Within a string, a pair of quotes (of the same kind as was
used to delimit the string) is interpreted as one of that kind.

"Don’' 't panic’ (same as "Don’'t panic”)
"He said, ""Bother”"" (same as 'He said, "Bother”')

2.4 Clauses

Your NetRexx program consists of a number of clauses. A clause can be:

1. A keyword instruction that tells the interpreter to do something; for example,

say "the word”

In this case, the interpreter will display the word on the user’s screen.
2. An assignment; for example,

Message = 'Take care!’

3. A null clause, such as a completely blank line, or

4. A method call instruction which invokes a method from a class
"hiawatha'.left(2)

2.5 When does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to
extend a clause over many lines. The rules are:

+ Usually, each clause occupies one line.

« If you want to put more than one clause on a line you must use a semicolon
(;) to separate the clauses.

« If you want a clause to span more than one line you must put a dash (hy-
phen) at the end of the line to indicate that the clause continues on the next
line. If a line does not end in a dash, a semicolon is implied.

6

What will you see on the screen when this exec is run?

/* Example: there are six clauses in this program */ say "Everybody
cheer!”

say "2"; say "4" ; say "6" ; say "8" ; say "Who do we" -

"appreciate?”

2.6 Long Lines

Ever since the days of the punch card images are over, the lines in program
sources have become longer and longer, and with NetRexx being a free format
language, there is no real technical reason to limit line length. Still, for read-
ability and for ease access to words within a line, it is often indicated to keep
lines relatively short and tidy. For this reason, the continuation character -’ can
be used. This also makes it possible to split long literal strings over lines.

say 'good' -

‘night’

This example will concatenate ‘'good” and 'night” with a space inbetween. When
you want to avoid that, use the ’||" concatenation operator.

say 'good' -
|| "'night'
2.7 Loops

We can go on and write clause after clause in a program source files, but some
repetitive actions in which only a small change occurs, are better handled by the
loop statement.

Imagine an assignment to neatly print out a table of exchange rates for dollars
and euros for reference in a shop. We could of course make the following pro-
gram

say 1 'euro equals' 1 = 1.19 'dollars'
say 2 'euro equals' 2 *x 1.19 'dollars'
say 3 'euro equals' 3 *x 1.19 'dollars'
say 4 'euro equals' 4 x 1.19 'dollars'
say 5 'euro equals' 5 x 1.19 'dollars'
say 6 'euro equals' 6 =* 1.19 'dollars'
say 7 'euro equals' 7 *x 1.19 'dollars'
say 8 'euro equals' 8 * 1.19 'dollars'
say 9 'euro equals' 9 *x 1.19 'dollars'
say 10 'euro equals' 10 =* 1.19 'dollars'

This is valid, but imagine the alarming thought that the list is deemed a success
and you are tasked with making a new one, but now with values up to 100. That
will be a lot of typing.

The way to do this is using the loopt statement.

3Note that Classic Rexx uses do for this purpose. In recent Open Object Rexx versions loop can also be used.

7

loop i1=1 to 100
say L 'euro equals' 1 * 1.19 'dollars'
end

Now the loop index variable i varies from 1 to 100, and the statements between
loop and end are repeated, giving the same list, but now from 1 to 100 dollars.

We can do more with the loop statement, it is extremely flexible. The following
diagram is a (simplified, because here we left out the catch and finally options)
rundown of the ways we can loop in a program.

FIGURE 1: Loop

(1oon)
loop

instructionlist

lr (end)
repetitor
(O-{ows -

frmo 4
/
~— forever } j

conditional

wh il@—‘ exprw
until}—‘ expru

A few examples of what we can do with this:

loop

+ Looping forever - better put, without deciding beforehand how many times

loop forever

say 'another bonbon?'

X = ask

if x = 'enough already' then leave
end

The leave statement breaks the program out of the loop. This seems futile,
but in the chapter about I/O we will see how useful this is when reading

8

files, of which we generally do not know in advance how many lines we
will read in the loop.
+ Looping for a fixed number of times without needing a loop index variable

loop for 10
in.read() /* skip 10 lines from the input file x/
end

+ Looping back into the value of the loop index variable

loop 1 = 100 to 90 by -2
say 1
end

This yields the following output:

===== EXeC: ‘tes‘t =====

90
Processing of 'test.nrx’ complete

2.8 Special Variables

We have seen that a variable is a place where some data, be it character date or
numerical data, can be held. There are some special variables, as shown in the
following program.

/* NetRexx x/
options replace format comments java symbols binary

class RCSpecialVariables

method RCSpecialVariables()
X = super.toString
y = this.toString
say '<super>'x'</super>'
say '<this>'y'</this>'
say '<class>'RCSpecialVariables.class'</class>'
say '<digits>'digits'</digits>'
say '<form>'form'</form>'
say '<[1, 2, 3].length>'
say [1, 2, 3].length
say '</[1, 2, 3].length>'
say '<null>'
say null
say '</null>'
say '<source>'source'</source>'
say '<sourceline>'sourceline'</sourceline>'
say '<trace>'trace'</trace>'
say '<version>'version'</version>'

say 'Type an answer:'
say '<ask>'ask'</ask>'

return
method main(args = String[]) public static
RCSpecialVariables()

return

this The special variables this and super refer to the current instance of the
class and its superclass - what this means will be explained in detail in the
chapter Classes on page B3, as is the case with the class variable.

digits The special variable digits shows the current setting for the number
of decimal digits - the current setting of numeric digits. The related vari-
able form returns the current setting of numeric form which is either
scientific or engineering.

null The special variable null denotes the empty reference. It is there when a
variable has no value.

source The source and sourceline variables are a good way to show the source-
file and sourceline of a program, for example in an error message.

trace The trace variable returns the current trace setting, which can be one of
the words off var methods all results.

version The version variable returns the version of the NetRexx translator that
was in use at the time the clause we processed; in case of interpreted exe-
cution(see chapter f] on [[3, it returns the level of the current translator in
use.

The result of executing this exec is as follows:

===== Exec: RCSpecialVariahles =====
<super>RCSpecialVariables@4e99353f</super>
<this>RCSpecialVariables@4e99353f</this>
<class>class RCSpecialVariables</class>
<digits>9</digits>

<form>scientific</form>

<[1, 2, 3].length>

3

</[1, 2, 3].length>

<null>

</null>

<source>Java method RCSpecialVariables.nrx</source>
<sourceline>21</sourceline>

<trace>off</trace>

<version>NetRexx 3.02 27 Oct 2011</version>

Type an answer:

hello fifi

<ask>hello fifi</ask>

10

It might be useful to note here that these special variables are not fixed in the
sense of that they are not Reserved Variables. NetRexx does not have reserved
variables and any of these special variables can be used as an ordinary variable.
However, when it is used as an ordinary variable, there is no way to retrieve the
special behavior.

11

NetRexx as a Scripting Language

The term scripting is used here in the sense of using the programming language
for quickly composed programs that interact with some application or environ-
ment to perform a number of simple tasks.

You can use NetRexx as a simple scripting language without having knowledge
of, or using any of the features that is needed in a Java program that runs on the
JVM - like defining a class name, and having a main method that is static and
expects an array of String as its input.

Scripts can be written very fast. There is no overhead, such as defining a class,
constructors and methods, and the programs contain only the necessary instruc-
tions. In this sense, a NetRexx script looks like an oo-version of a classic script, as
the ceremonial aspects of defining class and method can be skipped. These will
be automatically generated in the Java language source that is being generated
for a script.

The scripting feature can be used for test purposes. It is an easy and convenient
way of entering some statements and testing them. The scripting feature can
also be used for the start sequence of a NetRexx application.

Scripts can be interpreted or compiled - there is no rule that a script needs to
be interpreted. In interpreted mode, the edit-compile-run cycle is shortened, in
the sense that there is no separate compilation step necessary and incremental
editing and testing can be done very efficiently. In both cases, interpreted or
compiled, the NetRexx translator adds the necessary syntactic overhead into
the Java source to enable the JVM to execute the resulting program.

The scripting facility and its automatic generation of a class statement can lead
to one surprising message when there is an error in the first part of the program:
class x already implied when the automatically generated class statement (using
the program file name) somehow clashes with the specified name that contains
the error. When not in scripting mode, this error message nearly always indi-
cates an error that occurred before the first class statement.

12

NetREexx as an Interpreted Language

In the JVM environment, compilation and interpretation are concepts that are
not as straightforward as in other environments; JVM code is interpreted on
several levels. When we are referring to interpreted NetRexx code, we indicate
that there is no intermediate Java compilation step involved. A JVM .class file is
always interpreted by the JVM runtime; the NetRexx translator is able to execute
programs without generating either .java or .class files.

This enables a very quick edit-debug-run cycle, especially when combined with
the command line feature that keeps the translator classes resident (the -prompt
option), or one of the IDE plugins for NetRexx.

For NetRexx to deliver this functionality, the translator has been designed to
have an analogous interpret facility for every code generation part.?

“This is the right order in which to explain this feature, because historically, the compiler was first (1996) and the
interpretation facility was added later (in 2000) -(but not without an extensive redesign of the compiler).

13

Source Code Formatting

5.1 RxModel

Rexx is mostly a free-form programming language allowing each programmer
to write code in their own unique style. Over time, large programs with many
contributing authors may become difficult to read for new users. RxModel is a
NetRexx source code formatter that merges each style into one form. Visually,
it lays out nesting and control flow in a plain and simple manner.

The default built-in model is Model Zero and does nothing. Model One pro-
duces clean, indented source without comments. Model Two produces clean, in-
dented and compacted source with merged comments. Model Three is a clever
extension of Model One inserting commented braces for code-folding editors.

Before starting, make a backup of your original source files. Your code must
compile cleanly before using RxModel. To use RxModel you only need to pass
-model[0-3] as an argument to the NetRexx Compiler. RxModel does have prob-
lems with some clauses that can be resolved by editing the original NetRexx file
and running RxModel again. When the command finishes, you are left with the
untouched NetRexx file and a Model file with “.mod” as its extension. After re-
view, you can replace the NetRexx file with the new Model file. You must make
sure the Model file stills compiles. If you used Model Two, please ensure all
comments have been preserved and apply in context as the author intended.

For NetRexx developers, a powerful example is running RxModel against Net-
Rexx’s own code base.

git clone https://git.code.sf.net/p /netrexx/code netrexx-code
cd ./netrexx-code

ant clean

edit ./src/ org/netrexx/process/ RxFlag.nrx

Change line 57 from ”int 0” to ”int 1” and save.

ant

Rename the original cloned ./lib/NetRexxC jar

Replace it with the freshly built one in ./build/lib/NetRexxC jar
ant clean

ant

Now, for each "*nrx” inside the ./build/classes sub-directories you have a

14

7* mod” file.

A developer might want to keep the newly created NetRexxC.jar or NetRexxF.jar
that defaults to Model One without passing in -modell for everyday personal
use. A Model One file will be generated each time the compiler is used.

5.2 Beyond RxModel

Under ./tools/java2xml is a NetRexx front-end to the sourceforge project XES
that converts Java to XML. It is older but it is currently a better option than the
buggy one provided by JavaParser. Under ./examples/javaparser, NrxWriter.nrx
is an almost perfect port of the DefaultPrettyPrinterVisitor included with the
current JavaParser project. It could become the next generation of java2nrx or
modified for other special projects. NrxJava.nrx is a very simple use case of the
DefaultPrettyPrinterVisitor in JavaParser to test NrxWriter. Also, included is
NrxYaml.nrx for those who like working with YAML files.

15

Using the translator

This section of the document tells you how to use the translator package.

The NetRexx translator may be used as a compiler or as an interpreter (or it
can do both in a single run, so parsing and syntax checking are only carried out
once). It can also be used as simply a syntax checker.

When used as a compiler, the intermediate Java source code may be retained,
if desired. Automatic formatting, and the inclusion of comments from the
NetRexx source code are also options.

6.1 Using the translator as a compiler

The installation instructions for the NetRexx translator describe how to use the
package to compile and run a simple NetRexx program (hello.nrx). When using
the translator in this way (as a compiler), the translator parses and checks the
NetRexx source code, and if no errors were found then generates Java source
code. This Java code is then compiled into bytecodes (.class files) using a Java
compiler, in a process called AOT compilation. By default, the javac compiler in
the Java toolkit is used.

This section explains more of the options available to you when using the trans-
lator as a compiler.

6.2 The translator command

The translator is invoked by running a Java program (class) which is called
org.netrexx.process.NetRexxC

(NetRexxC, for short). This can be run by using the Java interpreter, for example,
by the command:

java org.netrexx.process.NetRexxC

or by using a system-specific script (such as NetRexxC.cmd. or nrc.bat). In either
case, the compiler invocation is followed by one or more file specifications (these
are the names of the files containing the NetRexx source code for the programs
to be compiled).

File specifications may include a path; if no path is given then NetRexxC will

16

look in the current (working) directory for the file. NetRexxC will add the ex-
tension .nrx to input program names (file specifications) if no extension was
given.

So, for example, to compile hello.nrx in the current directory, you could use any
of:

java org.netrexx.process.NetRexxC hello
java org.netrexx.process.NetRexxC hello.nrx
NetRexxC hello.nrx

nrc hello

(the first two should always work, the last two require that the system-specific
script be available). The resulting .class file is placed in the current directory, and
the .crossref (cross-reference) file is placed in the same directory as the source
file (if there are any variables and the compilation has no errors).

Here is an example of compiling two programs, one of which is in the directory
d:\myprograms:

nrc hello d:\myprograms\test2.nrx

In this case, again, the .class file for each program is placed in the current direc-
tory.

Note that when more than one program is specified, they are all compiled
within the same class context. That is, they can see the classes, properties, and
methods of the other programs being compiled, much as though they were all
in one file. B This allows mutually interdependent programs and classes to be
compiled in a single operation. Note that if you use the package instruction you
should also read the more detailed Compiling multiple programs section.

On completion, the NetRexxC class will exit with one of three return values: 0
if the compilation of all programs was successful, 1 if there were one or more
Warnings, but no errors, and 2 if there were one or more Errors. The result can
be forced to 0 for warnings only with the -warnexitO option.

As well as file names, you can also specify various option words, which are dis-
tinguished by the word being prefixed with -. These flagged words (or flags)
may be any of the option words allowed on the NetRexx options instruction
(see the NetRexx languagen documentation, and the below paragraph). These
options words can be freely mixed with file specifications. To see a full list of
options, execute the NetRexxC with the ~help option command without speci-
tying any files. As this command states, all options may have prefix no” added
for the inverse effect.

6.2.1 Options

Here are some examples:

java org.netrexx.process.NetRexxC hello -keep -strictargs

5The programs do, however, maintain their independence (that is, they may have different options, import, and
package instructions).

17

java org.netrexx.process.NetRexxC -keep hello wordclock

java org.netrexx.process.NetRexxC hello wordclock -nocompile
nrc hello

nrc hello.nrx

nrc -run hello

nrc -run Spectrum -keep

nrc hello -binary -verbosel

nrc hello -noconsole -savelog -format -keep

Option words may be specified in lowercase, mixed case, or uppercase. File
specifications are platform-dependent and may be case sensitive, though NetRexxC
will always prefer an exact case match over a mismatch.

Note: The -run option is implemented by a script (such as nrc.bat or NetRexxC.cmd),
not by the translator; some scripts (such as the .bat scripts) may require that the
-run be the first word of the command arguments, and/or be in lowercase. They
may also require that only the name of the file be given if the -run option is
used. Check the commentary at the beginning of the script for details.

6.3 Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all
compiled within the same class context: that is, they can see the classes, proper-
ties, and methods of the other programs being compiled, much as though they
were all in one file.

This allows mutually interdependent programs and classes to be compiled in a
single operation. For example, consider the following two programs (assumed
to be in your current directory, as the files X.nrx and Y.nrx):

/* X.nrx x/
class X
why=Y null
/* Y.nrx x/
class Y
exe=X null

Each contains a reference to the other, so neither can be compiled in isolation.
However, if you compile them together, using the command:

nrc XY

the cross-references will be resolved correctly.

The total elapsed time will be significantly less, too, as the classes on the
CLASSPATH need to be located only once, and the class files used by the
NetRexxC compiler or the programs themselves will also only be loaded (and
JIT-compiled) once.

This example works as you would expect for programs that are not in packages.
There is a restriction, though, if the classes you are compiling are in packages

18

(that is, they include a package instruction). NetRexxC uses either the javac
compiler or the Eclipse batch compiler ecj to generate the .class files, and for
mutually-dependent files like these; both require the source files to be in the
Java CLASSPATH, in the sub-directory described by the package instruction.

So, for example, if your project is based on the tree:
D:\myproject
if the two programs above specified a package, thus:

/* X.nrx x/
package foo.bar
class X

why=Y null

/* Y.nrx x/
package foo.bar
class Y

exe=X null

1. You should put these source files in the directory: D:\myproject\foo\bar

2. The directory D:\myproject should appear in your CLASSPATH setting (if
you don’t do this, javac will complain that it cannot find one or other of the
classes).

3. You should then make the current directory be D:\myproject\foo\bar and
then compile the programs using the command nrc X Y, as above.

With this procedure, you should end up with the .class files in the same directory
as the .nrx (source) files, and therefore also on the CLASSPATH and immedi-
ately usable by other packages. In general, this arrangement is recommended
whenever you are writing programs that reside in packages.

Notes:

1. When javac is used to generate the .class files, no new .class files will be
created if any of the programs being compiled together had errors - this
avoids accidentally generating mixtures of new and old .class files that can-
not work with each other.

2. If aclass is abstract or is an adapter class then it should be placed in the list
before any classes that extend it (as otherwise any automatically generated
methods will not be visible to the subclasses).

19

Using build systems - ANT

From the command line, different build systems can be used to build an entire
project in one go. This chapter explains how to use ANT, one of the early Java
cross-platform build tools. With ant, the specification for the build needs to be
provided in an .xml file; the default is build.xml. NetRexx itself is built using ant;
its build.xml can be checked out in the git repository. Two scenarios for building
with ant are mentioned in the following sections. Unlike make, ant does not work
with command lines, but with specialized Java tasks, to make this build system
platform independent. A special NetRexx ant task (written in NetRexx) is pack-
aged in the NetRexxC jar and NetRexxF.jar files, this needs to be specified in the
build file; the small ant-netrexx.jar file also can be used.

The official Apache package for ant has the original NetRexx optional task writ-
ten in the Java language; this can be used, but is not up to date with the RexxLA
version.

Note that when building NetRexx from source, there are two bootstrapping sit-
uations: NetRexx is written in itself, and is built using the optional NetRexx ant
task, written in NetRexx, using ant.

7.1 In-source, no packages

In this scenario, the build is in-source, this means the program source files and
the class files are interspersed in the same directory; this is often the case with
small projects that only have a few source files and no package structure. This
situation enables a very small buildfile, with only two "build goals’ in it: prepare
compile and clean, identified by <target> XML tags. In this case, the ‘compile’
goal is the default, as indicated on the <project> tag, default= attribute. We also
need to include a <taskdef> tag for ant to find the NetRexx task.

Also, we assume that the environment settings for the current user are in effect,
notably the one for CLASSPATH. Larger projects will probably package their own
libraries, and possibly need to specify build- and runtime classpaths; these are
not needed here.
<?xml version="1.0" ?>
<project name="Hello"

default="compile"

basedir=".">
<property environment="env"/>

20

<taskdef name="nrc"
classname="org.apache.tools.ant.taskdefs.optional.NetRexx"
classpath="${env.CLASSPATH}">

</taskdef>

<target name="compile"
description="compile">
<nrc srcDir="."
classpath="${env.CLASSPATH}"
includes="*.nrx"
compile="yes" />
</target>

<target name="clean"
description="deletes the .class files">
<delete>
<fileset dir="." includes="x.class"/>
</delete>
</target>

</project>

This build process will be run when the user enters the ant command, and the
result is a number of class files - if there are no errors. In case of errors, no class
tiles are produced. On subsequent runs, only the classes of which the source
tiles are newer than the class files, will be compiled - this makes for an efficient
build process.

7.2 With package structure

For a slightly larger project, which has its own package structure, we can use a
slightly more complicated build file, that will serve a lot of projects of this kind.
In this scenario, the source files are in a src directory, and the class files will be
compiled to a file system directory structure based on the package names. As an
example, if the file hello.nrx is in a src subdirectory of the project, and its pack-
age name is org.rexxla.examples, the hello.class file will be in a subdirectory
<project>/war/WEB-INF/classes/org/rexxla/examples/.

For universal usability, e.g. in a JEE webserver as Tomcat, Jetty or JBoss, we use
the WAR file structure, as is the standard for these application servers..

Next to the environment, we define two properties for the NetRexx optional ant
task: we tell it to generate Java source files ("keepasjava’), and to replace Java
source that is already there without asking.

<?xml version="1.0" ?>

<project name="Hello Packages"
default="nrccompile"
basedir=".">

<property environment="env"/>
<property name="ant.netrexxc.keepasjava" value="true"/>
<property name="ant.netrexxc.replace" value="true"/>

21

<taskdef name="nrc"
classname="org.apache.tools.ant.taskdefs.optional.NetRexx"
classpath="${env.CLASSPATH}">

</taskdef>

<path id="project.class.path">
<pathelement location="war/WEB-INF/classes"/>
<pathelement location="${env.CLASSPATH}"/>
<fileset dir="war/WEB-INF/1ib" includes="xx/*.jar"/>
</path>

<target name="1l1ibs" description="Copy libs to WEB-INF/lib">
<mkdir dir="war/WEB-INF/lib" />
<mkdir dir="war/WEB-INF/classes"/>

</target>

<target name="nrccompile" depends="1ibs" description="Compile
NetRexx source to Java'">
<nrc srcDir="src" destDir="war/WEB-INF/classes"
includes="x*x" compile="yes"
classpath="${env.CLASSPATH}"/>
<copy todir="war/WEB-INF/classes">
<fileset dir="src" excludes="x*x*/x.nrx"/>
</copy>
</target>

<target name="javacompile" depends="1libs,nrccompile" description=
"Compile Java source to bytecode">
<javac srcdir="src" includes="*x" encoding="utf-8"
destdir="war/WEB-INF/classes">
<classpath refid="project.class.path"/>
</javac>
<copy todir="war/WEB-INF/classes">
<fileset dir="src" excludes="x*x*/*x.java"/>
</copy>
</target>

<target name="war" depends="nrccompile,javacompile" description="
Create a war file">
<zip destfile="Example.war" basedir="war"/>
</target>

<target name="clean"
description="Cleans this project">
<delete dir="war"
failonerror="false" />
</target>

</project>

In an analogous way, we compile the sources there might be in .java files in a
larger project with the javac task.

In the libs target we create the output directories as indicated in the standard.
The compile task then translates the .nrx source files to the respective files in the
target directories, by using a compile and a copy task. This enables us to have

22

the same package structure in the source and target directories, which then are
ready to be compressed - and packaged - into a .war file, which is a standard
web archive, with the ant war command.

The clean task deletes the whole directory tree that starts with war, which is a
very efficient way to clean out all built objects (except the compressed war file
itself).

23

Using the NetRexxA API

As described elsewhere, the simplest way to use the NetRexx interpreter is to

use the command interface (NetRexxC) with the -exec or -arg flags. There is

a also a more direct way to use the interpreter when calling it from another
NetRexx (or Java) program, as described here. This way is called the NetRExxA
Application Programming Interface (API).

The NetRexxA class is in the same package as the translator (thatis, org.netrexx.process),
and comprises a constructor and two methods. To interpret a NetRexx program

(or, in general, call arbitrary methods on interpreted classes), the following

steps are necessary:

1. Construct the interpreter object by invoking the constructor NetRExxA().
At this point, the environment’s classpath is inspected and known com-
piled packages and extensions are identified.

2. Decide on the program(s) which are to be interpreted, and invoke the
NetRexxA parse method to parse the programs. This parsing carries out
syntax and other static checks on the programs specified, and prepares
them for interpretation. A stub class is created and loaded for each class
parsed, which allows access to the classes through the JVM reflection mech-
anisms.

3. At this point, the classes in the programs are ready for use. To invoke a
method on one, or construct an instance of a class, or array, etc., the Java
reflection API (in java.lang and java.lang.reflect) is used in the usual way,
working on the Class objects created by the interpreter. To locate these Class
objects, the API’s getClassObject method must be used.

Once step 2 has been completed, any combination or repetition of using the
classes is allowed. At any time (provided that all methods invoked in step 3
have returned) a new or edited set of source files can be parsed as described in
step 2, and after that, the new set of class objects can be located and used. Note
that operation is undefined if any attempt is made to use a class object that was
located before the most recent call to the parse method.

Here’s a simple example, a program that invokes the main method of the
hello.nrx program’s class:

options binary
import org.netrexx.process.\nr{}A

interpreter=NetRexxA() -- make 1interpreter
files=['hello.nrx"'] -- a file to interpret
flags=['nocrossref', 'verbose®'] -- flags, for example

24

interpreter.parse(files, flags) -- parse the file(s), using the
flags

helloClass=interpreter.getClassObject(null, 'hello') -- find the
hello Class

-- find the 'main' method; it takes an array of Strings as its
argument

classes=[interpreter.getClassObject('java.lang', 'String', 1)]

mainMethod=helloClass.getMethod('main', classes)

-- now invoke it, with a null instance (it is static) and an empty
String array
values=[0bject String[0]]

loop for 10 -- let's call it ten times, for fun...
mainMethod. invoke(null, values)
end

Compiling and running (or interpreting!) this example program will illustrate
some important points, especially if a trace all instruction is added near the top.
First, the performance of the interpreter (or indeed the compiler) is dominated
by JVM and other start-up costs; constructing the interpreter is expensive as
the classpath has to be searched for duplicate classes, etc. Similarly, the first
call to the parse method is slow because of the time taken to load, verity, and
JIT-compile the classes that comprise the interpreter. After that point, however,
only newly-referenced classes require loading, and execution will be very much
faster.

The remainder of this section describes the constructor and the two methods of
the NetRexxA class in more detail.

8.1 The NetRexxA constructor

NetRexxA()

This constructor takes no arguments and builds an interpeter object. This pro-
cess includes checking the classpath and other libraries known to the JVM and
identifying classes and packages which are available.

8.2 The parse method

parse(files=String[], flags=String[]) returns boolean

The parse method takes two arrays of Strings. The first array contains a list of
one or more file specifications, one in each element of the array; these specify
the files that are to be parsed and made ready for interpretation.

The second array is a list of zero or more option words; these may be any option
words understood by the interpreter (but excluding those known only to the
NetRexxC command interface, such as time). 8 The parse method prefixes the

®Note that the option words are not prefixed with a -.

25

nojava flag automatically, to prevent .java files being created inadvertently. In the
example, nocrossref is supplied to stop a cross-reference file being written, and
verbose(is added to prevent the logo and other progress displays appearing.
The parse method returns a boolean value; this will be 1 (true) if the parsing
completed without errors, or 0 (false) otherwise. Normally a program using
the API should test this result an take appropriate action; it will not be possible
to interpret a program or class whose parsing failed with an error.

8.3 The getClassObject method

getClassObject(package=String, name=String [,dimension=int]) returns
Class

This method lets you obtain a Class object (an object of type java.lang.Class)
representing a class (or array) known to the interpreter, including those newly
parsed by a parse instruction.

The first argument, package, specifies the package name (for example, com.ibm.math).
For a class which is not in a package, null should be used (not the empty string,

"

The second argument, name, specifies the class name (for example, BigDecimal).
For a minor (inner) class, this may have more than one part, separated by dots.
The third, optional, argument, specifies the number of dimensions of the re-
quested class object. If greater than zero, the returned class object will describe

an array with the specified number of dimensions. This argument defaults to
the value 0.

An example of using the dimension argument is shown above where the java.lang.String| |
array Class object is requested.

Once a Class object has been retrieved from the interpreter it may be used with
the Java reflection API as usual. The Class objects returned are only valid until
the parse method is next invoked.

26

Calling non-JVM programs

Non-JVM programs can be called using the Address instruction. For optimal
flexibility in the handling of output, this sections describes how to use the na-
tive Java facilities for this. It is easy to call non-JVM programs from a NetRexx
program - not as easy as calling a JVM class of course, but if the following recipe
is observed, it will show not to be a major problem. The following example is
reusable for many cases.

/* script NonJava.nrx

This

program starts an UNZIP program, redirects its output,

parses the output and shows the files stored in the zipfile */

parse arg unzip zipfile .

if

end

do

check the arguments - show usage comments

zipfile = '' then do
say 'Usage: Process unzipcommand zipfile'
exit 2
say "Files stored in" zipfile
say "-".left(39,"-") "-".left(39,"-")
child = Runtime.getRuntime().exec(unzip ' -v' zipfile) -- program

start
-- read input from child process
in = BufferedReader(InputStreamReader(child.getInputStream()))
line = in.readline
start = 0 -- listing of files are not available yet
count = 0
loop while 1line \= null

parse line sep program

if sep = '"-———-- " then start = \start

else

if start then do
count = count + 1
if count // 2 > 0@ then say program.word(program.words).
left(39) '\-'
else say program.word(program.words)
end

line = in.readline()

end

-- wa

it for exit of child process and check return code

27

child.waitFor()
if child.exitValue() \= 0 then
say 'UNZIP return code' child.exitValue()

catch IOException
say 'Sorry cannot find' unzip
catch e2=InterruptedException
e2.printStackTrace()
end

Just firing off a program is no big deal, but this example (in script style) shows
how easy it is to access the in- and output handles for the environment that
executes the program, which enables you to capture the output the non-jvm
program produces and do useful things with it.f Line 17 starts the external com-
mand using the JVM Runtime class in a process called child. Inline 20 we create a
BufferedReader from the child processes’” output. This is called an InputStream
but it might as well have been called an OutputStream- everything regarding
I/0 is relative - but fortunately the designers of the JVM took care of deciding
this for you. In lines 25-35 we loop through the results and show the files stored
in the zipfile. Note that we do (line 14) have to catch (line 42) the IOException
that ensues if the runtime cannot find the unzip program, maybe because it is
not on the path or was not delivered with your operating system.

Starting from JVM 1.5 releases, there is a new way to accomplish the same goal,
in a cleaner manner and with the added bonus of being able to redirect streams,
and use environment variables. In this regard, the environment variable has
made an important comeback from having its calls deprecated, to easy to use
support in the ProcessBuilder class.

VAT
* Class OSProcess implements ways to execute and get output from an
0S Process
*/
class OSProcess

properties indirect

pid = Process

returncode

commandList = ArrayList()
outList = ArrayList()

properties private
listeners = HashSet()

/¥
* Default constructor
*/
method OSProcess()
return
/ *
* helper method that makes an ArrayList of out a Rexx string for
use
* 1n the similarly named method that has an ArrayList as input
*/

7This is akin to what one would do with gueue on z/VM CMS and outtrap on z/OS TSO in Classic Rexx.

28

method outtrap(command_=Rexx) returns ArraylList

if command_ = '', command_ = null then return null

a = ArrayList()

loop until command_ = '
parse command_ first command_
a.add(first.toString())

end

return this.outtrap(a)

/ *

* helper method that makes an ArrayList of out a Rexx string for
use
* 1n the similarly named method that has an ArrayList as input
*/
method exec(command_=Rexx, wait=1)

if command_ = '', command_ = null then return

a = ArraylList()

loop until command_ = "'
parse command_ first command_
a.add(first.toString())

end

this.exec(a,wait)

/%%
* Method outtrap starts an 0S process from a command line in an
ArraylList
* @param command is a List that has the command to be executed as
elements
* @return List containing the output of the command
*/
method outtrap(command_=ArrayList) returns ArrayList
this.commandList = command_
do
pb = ProcessBuilder(command_)
pb.redirectErrorStream(1)
this.pid = pb.start()
in = BufferedReader(InputStreamReader(this.pid.getInputStream()
))
line = Rexx in.readLine()
loop while line <> null
this.outList.add(line)
line = Rexx in.readLine()
end
pid.waitFor()
returncode = pid.exitValue()
return this.outList
catch 1ox=I0Exception
say iox.getMessage()
return ArrayList()
catch InterruptedException
say "interrupted"
return ArrayList()
end -- do

/¥

* Method exec starts an 0S process from a command line in an
ArraylList

29

* @param then fires off outputEvent events to every registered
listener
* @return void
*/
method exec(command_=ArraylList,wait=1)
this.commandList = command_
do
pb = ProcessBuilder(command_)
pb.redirectErrorStream(1)
this.pid = pb.start()
if wait then do
in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
line = in.readlLine()
loop while line <> null
line = in.readLine()
1 = this.listeners.iterator()
loop while 1i.hasNext()
op = OutputEventListener i.next()
op.outputReceived(OutputLineEvent(this,line,this.pid))
end
end
pid.waitFor()
returncode = pid.exitValue()
end
catch 1ox=I0Exception
say iox.getMessage()
catch InterruptedException
say "interrupted"

end -- do
VAT
* Method addOutputEventListener supports registering an event
listener
* @param listener_ is a OutputEventListener
*/

method addOutputEventListener(listener_=0utputEventListener)
this.listeners.add(listener_)

VAT
* Method removeQutputEventListener supports de-registering an
event listener
* @param listener_ is a OutputEventListener
*/
method removeOutputEventListener(listener_=0utputEventListener)
this.listeners.remove(listener_)

In the above sample, we are using two different ways to obtain the output from
a process started by the JVM from our own program. The method outtrap waits
until the invoked process is finished and returns all output lines in an ArrayList.
Its name is not entirely coincidental with the similar TSO outtrap function.

Sometimes we cannot wait until the child process is finished, for example when
it is a long running process and we need to capture the output on a line-by-line

basis to see what is happening - in case of the example, this was done to capture

the output as part of a testsuite for a multithreaded file transfer application,

30

which has a server resident process that is not supposed to end, because one of
its tasks is to poll a directory for incoming files with a specific pattern in the file
names. This is implemented using an Event based pattern (as explained in 4.2
on page A0
import java.util.EventObject
VET:

* Class OutputLineEvent embodies the OutputLineEvent

*/
class OutputLineEvent extends EventObject

properties indirect
pid = Process
line
/%%
* Default constructor
*/
method OQutputLineEvent(ob=0bject,line_, pid_=Process)
super(ob)
this.line = line_
this.pid = pid_
return

import java.util.EventListener
/*x*
* Interface OutputEventListener specifies the one mandatory method
for this interface
*/
class OutputEventListener interface implements EventListener

method outputReceived(ob=0utputLineEvent)

The call would look something like this:

0os = OSProcess()
0s.addOutputEventListener(this)
o0s.exec(command)

The class must extend OutputEvenListener, and implement this method:

method outputReceived(ob=0utputLineEvent)
this.counter = this.counter+l
say this.counter ob.getPid() ob.getLine()

31

10

Using NetRexx classes from Java

If you are a Java programmer, using a NetRexx class from Java is just as easy as
using a Java class from NetRexx. NetRexx compiles to Java classes that can be
used by Java programs. You should import the netrexx.lang package to be able
to use the short class name for the Rexx (NetRexx string and numerics) class.

A NetRexx method without a returns keyword can return nothing, which is
the void type in Java, or a Rexx string. NetRexx is case independentf; Java is
case dependent. NetRexx generates the Java code with the case used in the class
and method instructions. For example, if you named your class Spider in the
NetRexx source file, the resulting Java class file is Spider.class. The public class
name in your source program must match the NetRexx source file name. For
example, if your source file is SPIDER.NRX, and your class is Spider, NetRexx
generates a warning and changes the class name to SPIDER to match the file
name. A Java program using the class name Spider would not find the generated
class, because its name is SPIDER. class - if the compile succeeded, which is not
guaranteed in case of casing mismatches. If you have problems, compile your
NetRexx program with the options -keepasjava -format. You then can look at
the generated java file for the correct spelling style and method parameters.

8With the default of options nostrictcase in effect.

32

11

Classes

Somewhere in the nineties Object Orientation became one of the mainstream
ways to organize computer programs, and support for this was added to pro-
gramming languages. C became C++ with a preprocessor that generates CH
that is not entirely unlike the NetRexx translator produces Java. Java in itself is
syntax-wise a cleaned up version of C++, but in essence an entirely different
language. Its inventor and architect, James Gosling, has stated on various occa-
sions that he was planning a fully different syntax for what finally became Java
- but that Sun management more or less forced him to use a C++ derived syn-
tax, because C++ compilers was what SUN did well at the time. With Brendan
Eich having to base JavaScript qua naming and syntax on Java, the circle that
brought the world terse, curly braces based notations, is complete.

For an audience of Rexx programmers, the usual OO presentation goes into the
advantages of the paradigm. Today, that is not really necessary, and OO is a
given; it slightly deviates from earlier notation as result of trying to put data
and procedure into Objects, but it is no great deal, and this NetRexx Program-
mer’s Guide does not need a special section on the benefits of the OO paradigm.
It is assumed that with a few examples everyone should be able to get it; some
old programmers might resist but there is really no use in fighting the main-
stream. Consequently, this section discusses the way to do this in NetRexx; the
way NetRexx does it is for a very large part formed by the way the JVM dictates
it, adapted to Rexx notational style and conventions.

Where traditional Rexx would say:

l=1left(ourstring,1)

the OO-versions of Rexx would say:

l=ourstring.left(1)

As often the case, the hard part is in the notational ommission that OO has
as its characteristic: the instance pointer is no part of the function call and has

moved to the left (in what now is called a method. The weight has shifted from
the operation to the object it is called on.

9Cfront

33

11.1 Classes

Classes represent a blueprint, ‘cookie cutter’ approach in creating objects that do
useful things. A class is defined in a file by the same name (exceptions here for
dependent classes). So a class called Cookie is defined in a file called Cookie.nrx.
Its real, which means its most specific name, including its package specification,
is not given by the file name but by the combination of the class=file + the
name given on the package statement. This enables one to put classes in different
packages without having to change the file names.

11.2 Dependent Classes

Dependent Classes are the NetRexx way to implement Java minor classes. There
is no in-line definition possible, and dependent classes need their own class
definition, but can be defined in the same source file as the classes they depend
on. The notational advantage of 'nested’ class definition, like customary in (for
example) Java Swing programs is absent. What is present, is the way dependent
classes can seamlessly access properties of their parent classes.

11.3 Properties

The properties statement enables us to define variables that are global to the
class definition, and as such can be used by all methods of the class.

A properties statement needs at least one visibility or modifier keyword. When
this is left out, a variable called “properties” is defined, which is not an error,
but (most of the times) not what was intended.

Because the properties of a class can be externally visible (depending on visibil-
ity they need to have a type. When the type is omitted in the definition, they are
of type Rexx. So-called indirect properties, defined with the properties indirect
modifier, give rise to automated generation of getter and setter methods for use
in Java Beans.

34

12

Using Packages

Any non-toy, non-trivial program needs to be in a package. Only examples
in programming books (present company included) have programs without
package statements. The reason for this is that there is a fairly large chance that
you will give something a name that is already used by someone else for some-
thing else. Things are not their names™, and the same names are given to wildly
dissimilar things. The package construct is the JVM’s approach to introducing
namespaces into the total set of programs that programmers make. Different
people will probable write some method that is called 1istDifferences some-
time. With all my software in a package called com.frob.nitz and yours in a
package called com. frob.otzim, there is no danger of our programs calling the
wrong class and listing the wrong differences.

It is imperative to understand this chapter before continuing - it is a mechanical
nuts-and-bolts issue but an essential one at that.

12.1 The package statement

The final words about the NetRexx package statement is in the NetRexx Lan-
guage Reference, but the final statement about the package mechanism is in the
JVM documentation.

12.2 Translator performance consequences

Because the NetRexx translator has to scan all packages that it can see (meaning
a recursive scan of the directories below its own level in the directory tree, and
on its classpath, it is often advisable (and certainly if . (a dot, representing the
current directory) is part of the classpath) to do development in a subdirectory,
instead of, for example, the top level home directory. If a large number of pack-
ages and classes are visible to the translator, compile times will be negatively
impacted.

12.3 Some NetRexx package history

All IBM versions of NetRexx had the translator in a package called

OWillard Van Orman Quine, Word and Object, MIT Press, 1960, ISBN 0-262-67001-1

35

COM.ibm.netrexx.process

The official, SUN ordained convention for package names was, to prepend the
reversed domain name of the vendor to the package name, while uppercasing
the top level domain. NetRexx, being one of the first programs to make use of
packages, followed this convention, that was quickly dropped by SUN after-
wards, probably because someone experienced what trouble it could cause with
version management software that adapted to case-sensitive and case-insensitive
tile systems. For NetRexx, which had started out keenly observing the rules, this
insight came late. With the first RexxLA release of NetRexx in 2011, the package
name was changed to org.netrexx, while the runtime package name was kept as
netrexx.lang, also because some major other languages follow this convention.

36

13

JPMS, The Java Platform Module System

Java9+ introduced the Java Platform Module System (JPMS) per JSR 376. While
Java 9 still loads external classes from files and jar-files, all run-time packages

now are bundled in modules. NetRexx 3.xx was not capable to load classes from
the JPMS.

NetRexx 4 is now supporting the JPMS to find and load its needed run-time
packages.l

From a NetRexx source code perspective, nothing changes. NetRexx is agnostic
about modules. It processes packages and classes whether found in directories,
jar-files or - now - modules. All existing source code should run unmodified,
with the exception that possibly classes could need to be called explicitly when
short-named classes now exhibit ambiguous classes if the short-named class is
found in more than one module/package. E.g.

/modules/java.base/java/util/spi/ToolProvider.class
/modules/java.compiler/javax/tools/ToolProvider.class

NetRexx 4 depends on JSR 203 (NIO.2) and thus requires a minimum JDK level
of Java 7, whereas NetRexx 3 runs on Java 6. NetRexx 4 compiles and runs on
Java 7/8 (without JPMS) and on Java 9+ (with JPMS).

13.1 CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH
to indicate a search path for Java classes. The Java Virtual Machine and the
NetRexx translator rely on the CLASSPATH value to find directories, zip files,
and jar files which may contain Java classes. The procedure for setting the
CLASSPATH environment variable depends on your operating system (and
there may be more than one way).

« For Linux and Unix (BASH, Korn, or Bourne shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH

« Changes for re-boot or opening of a new window should be placed in your
/etc/profile, login, or .profile file, as appropriate.

You'll find, in the NetRexx source code, updates in RxClasser, where method importclasses() is extended to look
for packages and classes in JPMS’ jrt:/ file system.

Method packmodfind() walks the jrt:/ directory tree at initialisation and registers all found packages. Method
modfind () registers classes when imported. Method loadclass() loads the class image from the JPMS.

37

« For Linux and Unix (C shell), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

Changes for re-boot or opening of a new window should be placed in your
.cshrc file. If you are unsure of how to do this, check the documentation
you have for installing the Java toolkit.

» For Windows operating systemes, it is best to set the system wide environ-
ment, which is accessible using the Control Panel (a search for “environ-
ment” offsets the many attempts to relocate the exact dialog in successive
Windows Control Panel versions somewhat).

The Quick Start Guide has more information about CLASSPATH.

38

14

Programming Patterns

Much has been made of patterns as aggregations of higher level embodiments
of programming solutions. It has been observed™ that of a number of the C++
oriented patterns in Design Patternst, some owe their existence to complica-
tions in the C++ language and are not readily reproducible in a Java Patterns
or Ruby Patterns book. The same goes for NetRexx- in this chapter we would
like to present a number of Java patterns usable in NetRexx, and a number of
patterns that are unique to NetRexx.

14.1 Singleton

Sometimes we only want one instance of a class, and we want every user of
the class to refer to that same instance. In this case, we need to adapt the class
construction mechanism to make sure this happens. There are different ways to
implement this, one way is shown below.

class TheGatherer

properties static
instance = TheGatherer

method getInstance() returns TheGatherer static protect
if TheGatherer.instance <> null then
do
return TheGatherer.instance
end
else
do
TheGatherer.instance = TheGatherer()
return TheGatherer.instance
end

VAT
* private constructor enforces singleton
*/
method TheGatherer() private signals ClassNotFoundException

The way that has been chosen here is to make the constructor private, so no
other class can use it. We need an alternative method to make the first and only
instance of this class, and this is the getInstance() method. This checks if a

12This observation from a Java patterns book.
13Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Professional; 1994

39

static property instance is null, in which case the private constructor is run and
its return value put in instance. Every subsequent call to getInstance() sees
the value of the static variable instance being not null, and returns that value,
which now refers to the single instance. There are several ways to enhance this
method, but this is a simple way and it fits the bill. For added security, override
the methods for class serialization.

There is a common naming pattern for Singletons, which is the prepend the
name of the class with The, as in the above example.

14.2 Observable and Events

The observer pattern can also be referred to as Callback, and the Java Event class
delivers support for it. It is very usable if some result needs to be available for a
set of callers, where the set is 0 to many. It works as follows: (see a simple im-
plementation in section P.4 on page B1) An object, maintains a list of its depen-
dents, called observers, and notifies them automatically of any state changes,
usually by calling one of their methods. It is mainly used to implement dis-
tributed event handling systems. The Observer pattern is also a key part in the
familiar Model View Controller (MVC) architectural pattern. In the JVM, this
object needs to implement the methods of the Listener interface; this interface
specifies the addListener and RemoveListener methods; it keeps a collection
in which references to the added listener objects are maintained. The listening
is done to subclassed Java Event classes. The event specifies the method to be
called when ’firing off” and event. This means that this method is called on every
listener.

One of the larger benefits: it decouples the observer from the subject. The subject
doesn’t need to know anything special about its observers. Instead, the subject
simply allows observers to subscribe. When the subject generates an event, it
simply passes it to each of its observers. Another benefit is that event consuming
classes don’t have to wait until a process is finished, and can consume events
as they come in. The OSProcess class on page BI]) uses an event approach to
consume output lines from a subprocess - in the version that puts the output
in an ArrayList needs to wait for the subprocess to end, but the event driven
version can monitor a long running process and analyze output lines whenever
they are received.

14.3 Recursive Parse

This is a pattern somewhat unique to Rexx, by virtue of Rexx having the Parse
statement. It also works in NetRexx.

/* process a string word by word */
testString = "Foo Bar Baz Frob Frobnitz Frobbotzim"

loop until testString = ""

40

-- copy the first word of testString into curName
-- remove it from testString

parse testString curName testString

say "Current word is " curName
say "Remaining words in testString are " testString
end -- loop until testString

This enables one to "peel off’ one word of a sentence at at time.

14.4 More Observer/Observable

Java has special support for the Observer/Observable pattern in the form of the
Observer class and the Observable interface. In the following snippet one can see
the Observer class in working.

The class is the same singleton as shown above, and starts several threads which
need to be observed.
class TheGatherer implements Observer

The Observable threads need to implement the Observable interface, and to be
able to be started as a thread, Runnable. This is how we start it; its definition
follows.
method TheGatherer() private signals ClassNotFoundException

logger_.info("TheGatherer: start")

tl = TransactionStatusMonitor(Rexx 10000)

t1l.addObserver(this)

Thread(tl).start()

logger_.info("TheGatherer: started thread

TransactionStatusMonitor")

We instantiate the Observable class as t1, and add the instance of our Observer
class, TheGatherer, to it as Observer. After we have done this, we start it by
instantiating a Thread object with it and calling the start method, which, by
virtue of it implementing the Runnable interface, starts its run method.

Note that the TransactionStatusMonitor extends a class called Monitor, which in
turn, implements the Observable interface. The reason for this is, we run several
monitoring threads, and they all behave in the same way.

import java.util.Observable
class Monitor extends Observable

properties public
logger_ = Logger.getLogger(Monitor.class.getName())
sleeptime

properties static
da = TheDataAccess null

method Monitor()
this.da = TheDataAccess.getInstance()

41

class TransactionStatusMonitor implements Runnable extends Monitor

method TransactionStatusMonitor(s) signals ClassNotFoundException
this.sleeptime = s

method run()

do
loop forever
pi = this.da.idealql()
if pi.getID().length() < 5 then
do
nop
end
else do
pi.setIdType('ideal"')
ibidp = this.da.getIBPostIDStatuses(pi)

setChanged()
notifyObservers(ibidp.getStatusDelta())
end

Thread.currentThread().sleep(this.sleeptime) -- sleep for
sleeptime seconds
end
catch InterruptedException
parse source s
say "thread interrupted:" s
end

In lines 17 an 18 the magic happens: the setChanged () method sets the status
of this instance as updated, and the notifyObservers() method calls for all the
registered Observers their update () methods; this has the following signature:

method update(o=0bservable,obj=0bject) protect
cl = o.getClass().getName()

The update () method receives an Object. The .getClass.getName call is for il-
lustrative purposes and can be used to decide how to treat the received update
object.

42

15

Incorporating Class Libraries

15.1 A Word About Java Generics

Many classes in Java are expressed as generics. It is important to note that the
generic is a compile time only java type enforcement mechanism, and therefore
does not affect NetRexx.

A generic class has, underlying it, a class that accepts one or more objects as
parameters - taking as an example the ArrayList class, the Java documentation
shows that this has a class signature of public class ArraylList<E> with one of
the constructors being ArrayList() and, for example, a method add (E e). If the
Arraylist is instantiated in Java as follows:-

ArraylList<String> stringlList = new ArraylList<String>();

then the Java compiler will note that the ArrayList is instantiated with a <String>
object - and will enforce String usage everywhere else that the <> is used in the
class documentation - in this case the type add(E e).

Thus

stringlist.add("Item”);

will be permitted by the compiler, since a string is being added. In contrast,
stringlist.add(new Integer(7));

will fail since a string is not being added.

Remembering that the ArrayList deals directly with objects the following short
NetRexx program will correctly use ArraylList without worrying about the
“complication” of generics.

al = ArrayList() -- An ArrayList just deals with Objects
al.add("Eric") -- SO0 we give it some Rexx objects
al.add("Erica")

num = 0

al.add(num)

say "There are" al.size "elements in the list" -- and show they
are present

/* Now, to retrieve them x/

loop item over al
say item

43

3.02

end

If one does not need generics, then it could be asked why they have been im-
plemented at all - the answer is that they prevent many Java run-time errors
resulting from a failure to cast the object used to the correct type. When pro-
gramming in NetRexx the use of the “universal” Rexx class means that this is
rarely an issue. When retrieving objects from a generic class used from within
Java one must remember to use the correct type, cast or the binary option just
as would be expected when using a Java object in any other way.

15.2 The Collection Classes

The Java collections framework (JCF) is a set of classes and interfaces that im-
plement commonly reusable collection data structures. The JCF provides both
interfaces that define various collections and classes that implement them. Col-
lection implementations in pre-JDK 1.2 versions of the Java platform included
few data structure classes, but did not contain a collections framework. The stan-
dard methods for grouping Java objects were via the array, the Vector, and the
Hashtable classes, which were not easy to extend, and did not implement a stan-
dard member interface. The collections framework was designed and developed
primarily by Joshua Bloch, and was introduced in JDK 1.2.

Almost all collections in Java are derived from the java.util.Collection inter-
face. Collection defines the basic parts of all collections. The interface states the
add() and remove () methods for adding to and removing from a collection re-
spectively. Also required is the toArray () method, which converts the collection
into a simple array of all the elements in the collection. Finally, the contains()
method checks if a specified element is in the collection. The Collection interface
is a subinterface of java.util.Iterable, so any Collection is iterable (using an
iterator for a loop over the contents). All collections have an iterator that goes
through all of the elements in the collection.

The Collection framework is one of the aspects of where NetRexx relegates to
Java for its implementation. Where ooRexx has had its collection classes in the
language definition from day one, in NetRexx they are not part of the language;
most of the data related support is in the indexed strings feature. This, in turn,
makes use of the Dictionary mechanism already implemented in the earliest
versions of Java; NetRexx language design was long complete when JDK 1.2
came out.

The Pre-Java Generic classes JFC had, in order to be generic, an interface in
which objects could be added in as a java.lang.Object, but on return, that ob-
ject needed to be typecast to the right type. Using collection classes did entail a
good deal of casting return values, as type Rexx was not part of the set of types
that collections had native support for. Modern NetRexx versions have builtin
support for using type Rexx in collection classes, so these can be added to and
retrieved from collection classes without further ado.

14In actuality, the needed interfaces, like Comparable and Comparator are now provided in the Rexx type

44

The NetRexx native Rexx datatype contains a Java Hashtable which is part of
the Collections Framework. New classes, constructors and methods have been
added to implement the Java Map interface and allow better interoperation
with Java. Some of the new collections support methods include isindexed()
to check if a Map currently exists, size () to determine the count of map entries
and buildmap (sequencel, sequence?2) to construct Rexx maps from arrays or Java
Lists. Other classes and methods are documented in the Java Collections Map
interface Javadocs. “isindexed()” returns 0 if no indexed values exist and 1 if
there is at least one indexed value in a Rexx object. To build a new indexed Rexx
map with the buildmap method you can do this: Rexx (default) .buildMap (keys,
values) where keys and values are any arrays or Java collections framework
Lists and default is the default value for the Rexx variable (using the standard
Rexx constructors).

All elements are converted to strings before being added to the indexed Rexx
variable which is returned. Null can be passed for one of the keys or values
parameters to default to a 1-n integer sequence matching the other parameter
but if both parameters are provided they must have the same length. Note that
arrays do not need to be string arrays and that primitive arrays such as int[| are
also accepted.

Collection is a Java generic. Any collection can be written to store any class.
For example, Collection<String> can hold strings, and the elements from the
collection can be used as strings without any casting required. NetRexx 3.02
added loop over support in NetRexx programs for collection classes; this has
been implemented without the need for Java generics. This makes it impossible
to use the generics mechanism to constrain collection class membership to a
specified type. This, however, can be easier accomplished by subclassing the
collection class and overriding its constructors.

45

16

Input and Output

A NetRexx design decision was to leave I/O operations out of the language, and
to depend on the JVM functionality for this. This turned out to be a good deci-
sion, as JVM I/O has been enhanced and changed over the years; also, the var-
ious environments in which NetRexx can be used as a programming language,
are not limited to file I/O, but have various implementations to interact with the
outside world. A NetRexx program that employs Web technology has different
method calls to make than a program that uses ISPF for user interaction.

This does not preclude us to implement file I/O in a way that is reminiscent of
Classic Rexx, and in fact this has been done, and the future might see a compat-
ible implementation in NetRexx.

16.1 The File Class

The Java File class represents a file; various pieces of information can be re-
quested from a instance of this class, when it points to a file on disk.

16.1.1 Example

/* file\FileInfo.nrx
Display file/directory/path information */

parse arg fileName .
if fileName = "" then do
say "Enter file or directory name to test ?"
filename = ask
end
fl = File(fileName) -- create file object
if fl.exists() = 0 then do
say 'File:' filename 'does not exist.'
exit 8
end

say "System related information -------——-------——-——- '

say " pathSeparator :" fl.pathSeparator -- these are
not methods

say " pathSeparatorChar :" fl.pathSeparatorChar -- they are
public

say " separator :" fl.separator --
static

46

say " separatorChar :" fl.SeparatorChar --
class variables
say
say "File/directory related information --------—--—---- !
say " canRead :" fl.canRead()
say " canWrite :" fl.canWrite()
say " 1isDirectory :" fl.isDirectory()
say " 1sFile " fl.isFile()
say " Tlength :" fl.length()
say " TlastModified :" fl.lastModified() "=" Date(fl.
lastModified())
say " 1sAbsolute :" fl.isAbsolute()
say " getAbsolutePath :" fl.getAbsolutePath()
say " getCanonicalPath :" fl.getCanonicalPath()
say " getPath :" fl.getPath()
parentl = fl.getParent()
if parentl = null then parentl = "null returned"”
say " getParent :" parentl
say " getName :" fl.getName()
say " toString :" fl.toString()
say " hashCode :" fl.hashCode()
if fl.isDirectory() then do
say
say "List of this directory --------——— - - - ———- \n"

listl = fl.1list()
if listl.length = 0
then say " directory is empty"

end

say "\n

else

loop 1 = 0 to listl.length -1
f2 = File(fl.getAbsolutePath()''fl.separator''listl[i])
if f2.isDirectory() then say " Dir :" 1istl[1i]

end

-- end fileinfo

else say " File:" 1istl[i]

16.1.2 Line mode I/O using BufferedReader and FileOutputStream

While standard Java I/O does not perform particularly well in the unbuffered
version, a BufferedReader can be wrapped around any Reader in order to max-
imize the amount of data that is read in one I/O operation.

Example

/* linecomment.nrx -- convert appropriate block comments to line
comments x/

/* This is a sample file input and output program, showing how to
open,
check, and process text files, and handle exceptions.

Note the use of the Reader and Writer classes, which convert your

(character encoding) to Unicode

local computer's 'code page'
during

47

reading and back again during writing. */

parse arg fin fout . -- get the arguments: input and output files
if fout='"' then do

say '# Please specify both input and output files'

exit 1
end

/* Open and check the files x/
do
infile=File(fin)
instream=FileInputStream(infile)
inhandle=BufferedReader(InputStreamReader(instream))
outfile=File(fout)
if outfile.getAbsolutePath=infile.getAbsolutePath then do
say '# Input file cannot be used as the output file'
exit 1
end
outstream=FileOutputStream(outfile)
outhandle=0utputStreamWriter(outstream)
say 'Processing' infile'...'
catch e=I0Exception
say '# error opening file' e.getMessage
end

linesep=System.getProperty('line.separator') -- be platform-neutral

/* The main processing loop */
loop linenum=1 by 1

line=Rexx inhandle.readlLine -- get next line [as Rexx
string]

if line=null then leave linenum -- normal end of file

parse line pre '/+' mid '*/' post -- process the line

if pre\=""' then
if mid\="" then
if post=='"' then
line=pre'--"'mid

if linenum>1 then outhandle.write(linesep, 0, linesep.length)
outhandle.write(line, 0, line.length)
catch e=I0Exception
say '# error reading or writing file' e.getMessage
catch RuntimeException
say '# processing ended’
finally do -- close files
if inhandle\=null then inhandle.close
if outhandle\=null then outhandle.close
catch IOException
-- 1ignore errors during close
end
end linenum

say linenum-1 'lines written'

48

16.2 Object Oriented I/O using Serialization

The serialization methods of a Class can be used to write a class as serialized
binary data. Using the writeObject() method, an object can be written to a file
using one call. Note that the Rexx class is serializable for a long time already.

16.2.1 Example

/* file\SeriaIO.nrx

Output of a Customer object with binary data using Serialization
*/

class Serial0
Properties constant
yes boolean 1
no boolean 0

method main(args=String[]) static

custDB = Customer2[4] -- allocate 4
customers

custRD = Customer2[] -- read back "x"
customers

-- instanciate objects

custDB[@] = Customer2(101,"Ueli Wahli" ,"U.S.AL"
,500.5,25,yes)
custDB[1] = Customer2(102,"Peter Heuchert" , "Germany"

,400.4,30,yes)

custDB[2] = Customer2(103,"Frederik Haesbrouck","Belgium"
,350.9,24,n0)

custDB[3] = Customer2(104,"Norio Furukawa" ,"Japan”
,250.5,39,n0)

-- writes the object variables to a file
say 'Writing' custDB.length 'customers'
0s = ObjectOutputStream(FileOutputStream("seriaio.dat"))

os.writeInt(custDB.length) -- number of objects

os.writeObject(custDB) -- WRITE OBJECTS
WITH ONE CALL

os.flush() -- force output

os.close()

-- reads the object variables from the file

say 'Reading...’

i1s = ObjectInputStream(FileInputStream("seriato.dat"))

n = is.readInt() -- number of
customers

say 'Display of' n 'customers:'

custRD = Customer2[] is.readObject() -- READ OBJECTS WITH
ONE CALL

loop 1 = 0 to custRD.length-1

49

say custRD[1].getCustNo() (Rexx custRD[i].getName()).left(20) -
(Rexx custRD[1].getAddress_()).left(10) -
(Rexx custRD[1].getHourly() * custRD[1].getWork()).right
(10) -
custRD[1].getBool()

end

is.close()
Y I e ittt */
/* Customer class */
R ittt */
class Customer2 implements Serializable

properties private -- various data
types

custNo = String

name = String

address_ = String

hourly = float

work = int

bool = boolean

method Customer2(aCustNo=String, aName=String, aAddress_=rexx, -
aHourly=float, aWork=int, aBool=boolean)

aCustNo; name aName; address_ = aAddress_

aHourly; work = aWork; bool = aBool

custNo
hourly

method getCustNo() returns String
return custNo

method getName() returns String
return name

method getAddress_() returns Rexx
return address_

method getHourly() returns float
return hourly

method getWork() returns int
return work

method getBool() returns boolean
return bool

-- end

16.3 Using the SAY instruction to write lines to a file

It used to be that a lot of programs started out with using say statements to
write to the console, and later, when output became too voluminous, needed to
be reworked to use output statements. Say has been extended to write to any
(and multiple) outputstream(s).

The setOutputStream() Method takes an OutputStream which from that moment
on is used for output. This can be System.out (which is the default) but also
System.err, to direct error messages to. This outputstream can also be directed
to a file, using a FileOutputStreanm.

In addition to the setOutputStream() operation, which replaces the previously
set OutputStream, there are also pushOutputStream() and popOutputStream(),

50

which add (push) and remove (pop) streams from a list. In this way, it is pos-
sible to direct output to, e.g. an System.out and System.err stream, and at the
same time to a number of files.

These operations are not a good fit for multithreaded programs. For use in the
heavily multithreaded Pipelines environment, the method RexxI0.pipeSay was
designed, which is used in the Pipelines source code, but can also be employed
in your own multithreaded programs.

Example

/*
* Illustrates how the say statement became a bit more flexible
* now able to direct to different output streams, or files
*x/

say 'this is stdout'
RexxI0.pushOutputStream(System.err)
say 'stdout and stderr'
RexxIO0.popOutputStream()

say 'only stdout'
RexxI0.popOQutputStream()

say 'only stdout'
RexxI0.popOutputStream()
RexxI0.popOutputStream()
RexxI0.popOutputStream()

RexxI0.setOutputStream(FileQutputStream('testfilel.txt"))
say 'this goes to testfilel.txt'
RexxI0.pushOutputStream(FileOutputStream('testfile2.txt'))
say 'this goes to testfile2.txt'

16.4 Using RexxIO.forEachLine

A pattern in which there is an action for every line in a file, is now supported
with the oneliner file handler, RexxIO.forEachLine. A Class that implements the
interface LineHandler can read lines from a file using the
RexxIO().File('filename’).forEachLine(x) idiom, whichisvery compact. The
LineHandler interface needs to implement the handle () method, which is fed the
line that has been read.

Example

class testLine implements LineHandler
method main(args=String[]) static

RexxIO().File("legenda.txt").forEachline(testLine())
RexxIO().File("legenda.txt").forEachline(testLine().testFile2())

method handle(1in)
say in

class testlLine.testFile2 dependent implements LineHandler

51

method handle(1in)
say in

52

17

Algorithms in NetREexx

17.1 Factorial

A factorial is the product of an integer and all the integers below it; the mathe-
matical symbol used is ! (the exclamation mark). For example 4! is equal to 24
(because 4*3*2*1=24). The following program illustrates a recursive (a method
calling itself) and an iterative approach to calculating factorials.

/* NetRexx x*/
options replace format comments java symbols nobinary

numeric digits 64 -- switch to exponential format when numbers become
larger than 64 digits

say 'Input a number: \-'

say

do
n_ = long ask -- Gets the number, must be an integer
say n_'! =' factorial(n_) '(using iteration)’
say n_'! ="' factorial(n_, 'r') '(using recursion)’

catch ex = Exception
ex.printStackTrace
end

return

method factorial(n_ = long, fmethod = 'I') public static returns Rexx
signals IllegalArgumentException

if n_ < ® then -
signal IllegalArgumentException('Sorry, but' n_ 'is not a
positive integer')

select
when fmethod.upper = 'R' then -
fact = factorialRecursive(n_)
otherwise -
fact = factoriallIterative(n_)
end

return fact

method factoriallterative(n_ = long) private static returns Rexx

53

fact = 1

loop i_ =1 to n_
fact = fact x i_
end i1_

return fact

method factorialRecursive(n_ = long) private static returns Rexx
if n_ > 1 then -
fact = n_ x factorialRecursive(n_ - 1)
else -
fact =1

return fact

Executing this program yields the following result:

===== Exec: RCFactorial =====
Input a number:

42! = 1405006117752879898543142606244511569936384000000000 (using iteration)

N
N
1l

As you can see, fortunately, both approaches come to the same conclusion about
the results. In the above program, both approaches are a bit intermingled; for
more clarity about how to use recursion, have a look at this:

class Factorial
numeric digits 64

method main(args=String[]) static
say factorial_(42)

method factorial_(number) static
if number = 0 then return 1
else return number x factorial_(number-1)

In this program we can clearly see that the factorial_ method, that takes an
argument number (which is of type Rexx if we do not specify it to be another
type), calls itself in the method body. This means that at runtime, another copy
of it is run, with as argument number that the first invocation returns (the result
of 42*41), and so on.

In general, a recursive algorithm is considered more elegant, while an iterative
approach has a better runtime performance. Some language environments are
optimized for recursion, which means that their processors can spot a recur-
sive algorithm and optimize it by not making many useless copies of the code.
Some day in the near future the JVM will be such an environment. Also, for
some problems, for example the processing of tree structures, using a recursive
algorithm seems much more natural, while an iterative algorithm seems com-
plicated or forced.

54

1405006117752879898543142606244511569936384000000000 (using recursion)

17.2 Fibonacci

/* NetRexx x/
options replace format comments java symbols

numeric digits 210000 /*prepare for some big ones.
*/

parse arg X y . /*allow a single number or
range.*/

if x == '' then do /*no input? Then assume
-30-->+30x/

x = -30

y = -X

end

if y=="" theny =x /*1f only one number, show fib(n)x*x/

loop k = x to y /*xprocess each Fibonacci request.x/

g = fib(k)

w = . length /x1f wider than 25 bytes, tell itx/

say 'Fibonacci' k"="qg

if w > 25 then say 'Fibonacci' k "has a length of" w
end k
exit

[K FIB subroutine (non-recursive)
___*/
method fib(arg) private static
parse arg n
na = n.abs

if na < 2 then return na /*handle special cases.
*/
a=20
b=1
loop j = 2 to na
s=a+b
a=>b
b=s
end j
if n>0 | na// 2 ==1 then return s /*xif positive or odd negative
cee %/

else return -s /xreturn a negative Fib
number. x/

55

18

Using Parse

The Parse statement is one of the stalwarts of the Rexx family of languages, and
allows one to easily split a string into parts without needing to resort to more
traditional techniques of string processing.

The syntax of a parse statement is
parse term template

where term is a string or a previously initialised variable. The template is a list
of instructions describing how to split the string.

18.1 Literal Parsing

The most common use of parse is to split a string up into parts separated with a

delimiter - whilst the most common delimiter is a simple space any string may

be used:-

log = "2014/05/15 21:35:47.012 - error in {{[findit]}}"

parse log year "/" month "/" day hour ":" minute ":" second "."
msecond "-" text

say "On day" day "of month" month "at about" hour":"minute "we got"
text

parse text "{{[" name "]}}"
say name

Here log is composed of a datestamp separated from a message by a hyphen.
The datestamp is composed of a date separated from a time by a space - within
the date the year month and day are delimited by a slash and within the date
the hour, minute and second fields by a colon. The millisecond field is separated
from the seconds by a decimal point.

The first parse divides these using the relevant delimiter - where there is no
delimiter then a space is used.

The term is the variable log and the template is

"o "m.on

year "/" month "/" day hour minute second "."” msecond "-" text

This first template may be read as the following sequence of actions

1. Assign the contents of log to the variable year until a / is encountered
(2014)

2. Following the / assign month with the sting found up until another / (05)

56

»

Place the contents following the / until a space into the variable day (15)

>

Following the space, assign the value found up until the : into the hour
variable (21)

Repeat for the variable minute (35)
Assign the second value up until the .
Take the value for msecond until a delimiter of - is seen

® N o @

Assign the remainder to variable text

The second parse statement shows how the delimiters can be more complex -
the template is

"31[" name "]%}%}”

and extracts the value between {{[and]}} to the variable (name)

Running the above example will produce the following output:-

At about 21:35 we got error in {i[findit]i}}
findit

As another example, consider

quote = "Now is the winter of our discontent”
loop forever

parse quote word quote

say word

if quote = "" then leave
end

This will take the first word from quote, and assign the remainder back into
quote, print the word taken and repeat until the variable quote is the empty
string. The output from this will be

Now

is

the
winter

of

our
discontent

18.1.1 The Placeholder (dummy) Variable

The first example assigns values to several variables that are not used - this is
unnecessary and can be avoided by the use of a placeholder variable which is
the . character.

If this is done, the first parse statement becomes
parse log . “/"” month "/" day hour ":" minute ":" . "." . "-" text

The output will remain the same.

57

18.2 Positional Parsing

Whilst the majority of parsing can be done using a fixed literal delimiter, the
parse instruction also allows parsing based on positional patterns. This is
achieved with the use of numerical values in the template - the values may
also take a prefix of +, - or =

no prefix or = indicates that the number is an absolute column value in the
string being parsed

+ indicates a relative position that starts from the specified position after the
position where the last match occurred

- indicates a relative position that starts from the specified position before the
last match

These points are best illustrated by example

guote = "Now is the winter of our discontent"
tens =" 11111111112222222222333333"
units = "12345678901234567890123456789012345"
say quote

say tens

say units

parse quote 10 strl 20 -8 str2 +6 str3

-- strl starts at column 10 and is 10 chars long

say strl "("strl.length")"

-- str2 steps back 8 chars and is 6 chars long

say str2 "("str2.length")"

-- str3 is the remainder of the string (as should be expected)
say str3

Running this gives the following

Now is the winter of our discontent
11111111112222222222333333
12345678901234567890123456789012345
e winter o (10)
winter (6)
of our discontent

Both 1literal and positional parsing can be combined. Keen-eyed readers will
have noted that the output from the first example contained an extra space be-
fore the word error

At about 21:35 we got error in ${[findit]}}
Extra space here AN

This is the result of assigning the remainder of the string to the variable text -
leading blanks are normally removed except in this special case.
One can use a positional pattern to eliminate this extra space:-

log = "2014/05/15 21:35:47.012 - error in {{[findit]}}"
parse log . "/" month "/" day hour ":" minute ":" . "." ., "-" +2 text

58

say "On day" day "of month" month "at about" hour":"minute "we got"
text

parse text "{{[" name "]}}"
say name

Note that the relative positional pattern used here is +2 - 0 is the position of the
last match which is the hyphen, +1 is the position of the following space and
thus +2 is the start of the target string.

18.3 Variable Templates

Variables may be used as the pattern in the templates in order to accommodate
the occasions when the pattern may need to be specified at runtime. An illus-
tration of this is the following evolution of the first example that will correctly
parse dates specified in two distinct ways

'Log = mn
log[1l] = "2014/05/15 21:35:47.012 - error in {{[findit]}}"
log[2] = "2014-05-15 21:35:47.012 - error in {{[findit]}}"

loop 1 =1 to 2
dtsep = log[i].substr(5,1)

parse log[i] . (dtsep) month (dtsep) day hour ":" minute ":" o
.= 42 text
say "On day" day "of month" month "at about" hour":"minute "we got
" text
end

Note that he date separator dtsep is determined and then used in the parse
pattern by enclosing it in parentheses, thus (dtsep). The output of this program
is

On day 15 of month 05 at about 21:35 we got error in {f[findit]#}

On day 15 of month 05 at about 21:35 we got error in {f[findit]#}

It can be seen that the date was successfully parsed in both cases.

It is important to note that any pattern specified by a variable will be assumed to

be literal unless it has a +, - or = prefix. Should one wish to use positional patterns

then the prefix must be used.

message = "this is a message that contains the number 10- just there,
see?"

pat - 1] 10 n

parse message partl 5 (pat) part2

say "literal:" partl part2

parse message partl 5 =(pat) part2

say "positional:" partl part2

When run this illustrates the difference between the two parse statements

literal: this - just there, see?
positional: this message that contains the number 10- just there, see?

59

19

Using Trace

The trace command is the inbuilt debugging facility of the Rexx family, and, as
might be expected from its name, allows one to trace the execution of your pro-
gram. It is possible to trace both program statements and the state of variables
within your code.

(Trace) is a compile-time option, and should be disabled once debugging as
been completed.

The syntax of the trace command is
trace traceitem

where traceitem defines the behaviour of the trace command. Only one traceitem
may be given, and only one of the program statement tracing options will be
in use at any time. Variable tracing options, however, are additive and such
statements may appear multiple times.

All trace output is headed by three hyphens followed by the source file name,
as follows

--- TerribleExample.nzxx

19.1 Tracing Program Statements

The traceoptions that affect the tracing of program statements are

all will display all statements as they are executed. Each line in the trace output
will be prefixed with x=x or a x-x should output span subsequent lines.
The trace all statement can be placed anywhere in the program source.

methods will show the each method as it is invoked, along with any parameters
to it. The trace output for method traces is prefixed by a x=x for the method
call itself and a >a> indicating the assignment of a value to a method pa-
rameter. No other program statements will be traced.
The trace methods statement should be placed before the first method is
defined in a class.

results acts as though the trace all statement had been given, and, if placed
before any method will also act as though trace methods was also specified.
In addition to the all and methods tracing implied by results the following
will also take place

60

Properties will have their assignments shown. These will be identified by
>p>

Local variables will also be traced, with assignments identified by >v>

Expressions will have their evaluations shown if not shown for as a part
of properties or local variable trace output. Such evaluations are in-
dicated by »>

off trace off disables tracing. No further tracing output will take place.

19.2 Tracing Variables

The all-or-nothing tracing offered by, for instance trace results can lead to a
deluge of trace information in many cases.

In these instances one may more finely control which variables one wishes to
monitor using the trace var statement. The syntax of the trace var statement
is

trace var varl [var2...]
or

trace var -varl [-var2...]

where the first form adds variables to the list that should be watched, and the
second removes them. The forms may be mixed to add some variables and re-
move others simultaneously, as here:-

trace var varl -var2 var3 -vard -varb

to monitor varl and var3 and remove var2, var5 and var5 from the list of
watched variables.

Multiple trace var statements may be used, as mentioned above.

It is not an error to specify a variable name that does not exist.

Each variable can appear only once in a trace statement.

A variable name may that of any type - including arrays (without the [1).

Program tracing options never alter the list of watched variables. If tracing has
previously been turned off then variable tracing may be resumed simply with a
trace var statement.

19.3 Examples

19.3.1 Program Trace

Trace All

Running the program below
trace all

61

class traceExample

properties
als
bIs
method traceExample(a, b)
als = a
bIs = b

method times
retturn aIs *x bIs

method main($cmdinl=String[]) static
arg=Rexx($cmdinl)
te = traceExample(2, 3)
fred = te.times
say fred

gives trace output of

--- traceExample.nrx
16 *=+« method main($cmdinl=String[]) static
>a> $cmdinl “[Ljava.lang.String;@72ebbf5c”
17 x=x arg=Rexx($cmdinl)
18 x=x te = traceExample(2, 3)
9 x=« method traceExample(a, b)
>a> a "2"
>a> b "3"
10 *x=% als
11 *=x DbIs = b
12 *x-%
19 *=x fred = te.times
13 *=x method times
14 *x=% return als * bIs
20 *x=x% say fred

1]
QO

This output may be read thus

— traceExample.nrx Identification of the program being traced. This is the

tracing context.

16 *=* method main($cmdin1=String[) static] The first line that is actually

executed is line 16.

>a> $cmdinl ”[Ljava.lang.String;@72ebbf5c” Variable $cmdini is assigned

a string value from the java virtual machine.
17 *=* arg=Rexx($cmdinl) Line 17 is executed next...
18 *=* te = traceExample(2, 3) followed by line 18

9 *=* method traceExample(a, b) Line 18 is a method call to a method on line

9...

>a> a ”2” which assigns a value of 2 to parameter a

>a> b ”3” and a value of 3 to parameter b

62

10 *=* als = a the following lines document only code execution
11*=*bls=Db

12 *_%

19 *=* fred = te.times

13 *=* method times

14 *=* return als * bls

20 *=* say fred

Trace Methods

Replacing the trace all from line 1 with trace methods gives trace output of

--- traceExample.nrx
16 %=+ method main($cmdinl1=String[]) static
>a> $cmdinl “[Ljava.lang.String;@8094cc7”
9 *x=x method traceExample(a, b)
>a> a "2"
>a> b "3"
13 *=x method times

As should be expected, this is a subset of the output provided when using trace
all.

Trace Results

Replacing the trace all from line 1 with trace results would give

--- traceExample.nzrx
16 *=x method main($cmdinl=String[]) static
>a> $cmdinl “[Ljava.lang.String;@72ebbf5c”
17 *=% arg=Rexx($cmdinl)
>>> "[Ljava.lang.String;@72ebbf5c”
>v> arg """
18 *=% te = traceExample(2, 3)
>>> "2
>>> 3"
9 %=x method traceExample(a, b)
>a> a "2"
>a> b "3"
10 *=% als = a
>p> als "2"
11 *=* DbIs = b
12 *-%
11 >p> bIs "3”
18 >v> te "traceExample@53606bf5”
19 x=x fred = te.times
13 *=x method times

63

14 *=x% return als % bIs
>>> """

19 >v> fred "6"

20 *=% say fred
>>> """

Here is can be seen that more information is available. Noticeably, the values of
assignments are given. For instance

1444

Line 17 now has an entry of >v> arg
arg was set to the empty string

Line 18 now has the values of the specified parameters evaluated (»> ”2” and
»» 73"

Lines 10 and 11 show that values were assigned to parameters (>p> als ”2”
and >p> bls ”3”)

Line 18 then shows the assignment of the instantiated class to variable te

Line 14 shows the evaluation of the multiplication (»> ”6”), which is assigned
to variable fred in line 19 (>v> fred ”6”) on line 19.

Finally we see the evaluation of variable fred on line 20.

showing that hte value of the variable

19.3.2 Variable Tracing

Consider the following example:-

a="a"
b ="b"
c=1
d =2
e =3

trace var abcde fy

z=all| b
y=c¢c+d

f=y+2

e="°

trace var -a -c -d -e
y=yx*2

a=y

e =a

Running this will produce the output below

--- variableTraceExample.nrx

9 ¥=x y =c¢c +d
>v> y 3"

10 »=« £ =y + 2
>v> £ "5"

11 %=+ e = £
>v> e "5"

14 *=x y =y % 2
>v> y 6"

64

It can be seen that only the lines that contain watched variables are traced. This
the variable assignments on lines 9, 10 and 11 are displayed, since the variables
being watched from line 7 to line 12 area, b, ¢, d, e, fandy.

Following this, however only the assignment to variable y is shown, since
the variables a, b ,c d and e are removed from the list with the command
trace var -a -c -d -e.

19.4 Tracing Notes

One further prefix may be encountered in the trace outout +++ which signifies
an error.

Whenever tracing transfers to a different source file, a new tracing context,
identified by the — prefix is output.

Tracing is expensive, and may dramatically impact the run-time performance of
the program being traced. Judicious use may therefore be warranted.

65

20

Concurrency

20.1 Threads

Threads are a built-in multitasking feature of the JVM. Where earlier JVM im-
plementations sometime ran on so-called Green Threads, which is a library that
implements thread support for OS’ses that do not have this facility (an early
version of Java was called GreenTalk for this reason), modern versions all use
native OS thread support.

A new thread is created when we create an instance of the Thread class. We
cannot tell a thread which method to run, because threads are not references to
methods. Instead we use the Runnable interface to create an object that contains
the run method:

Every thread begins its concurrent life by executing the run method. The run
method does not have any parameters, does not return a value, and is not al-
lowed to signal any exceptions. Any class that implements the Runnable inter-
face can serve as a target of a new thread. An object of a class that implements
the Runnable interface is used as a parameter for the thread constructor.

Threads can be given a name that is visible when listing the threads in your sys-
tem. It is good practice to name every thread, because if something goes wrong
you can see which threads are still running. Additionally, threads are grouped
by thread groups. If you do not supply a thread group, the new thread is added
to the thread group of the currently executing thread. The threads of a group
and their subgroups can be destroyed, stopped, resumed, or suspended by us-
ing the ThreadGroup object.

The next two samples are used in the following programs that illustrate thread
usage.

/* thread/ThrdTstl.nrx */

hl
h2

Hellol('This is thread 1")
Hellol('This is thread 2')

Thread(hl, 'Thread Test Thread 1').start()
Thread(h2, 'Thread Test Thread 2').start()

class Hellol implements Runnable
Properties inheritable
message = String

method Hellol(s = String)
message = s

66

method run()

loop for 50
say message
end

/* thread/ThrdTst2.nrx x/

Hello2('This is thread 1'")
Hello2('This is thread 2'")

class Hello2 extends Thread
Properties inheritable
message = String

method Hello2(s = String)
super('Thread Test - Message' s)
message = s

method run()
loop for 50
say message
do
sleep(10)
catch InterruptedException
end
end

The second class, Hello2, does not implement the Runnable interface, but sub-
classes it, so it inherits its methods. This is a valid approach, and it is up to the
developer to choose an implementation and worry about the semantics of an
inherited thread interface. A newly created thread remains idle until the start
method is invoked. The thread then wakes up and executes the run method of
its target object. The start method can be called only once. The thread continues
running until the run method completes or the stop method of the thread is

called.

67

21

Using NetRexx for Web applets

Java Web applets are a deprecated application model, depending on web browser
plugins, and will be removed from the JDK. This chapter will be removed when
NetRexx support for Java versions that includes web applets ends. Note that,
for some time now, no mainstream web browser supports Java applets. Web
applets can be written one of two styles:

+ Lean and mean, where binary arithmetic is used, and only core Java classes
(such as java.lang.String) are used. This is recommended for World Wide
Web pages, which may be accessed by people using a slow internet connec-
tion. Several examples using this style are included in the NetRexx package

(eg., NervousTexxt.nrx or ArchText.nrx).

« Full-function, where decimal arithmetic is used, and advantage is taken of
the full power of the NetRexx runtime (Rexx) class. This is appropriate for
intranets, where most users will have fast connections to servers. An exam-
ple using this style is included in the NetRexx package (WordClock.nrx).

If you write applets which use the NetRexx runtime (or any other Java classes
that might not be on the client browser), the rest of this section may help in
setting up your Web server.

A good way of setting up an HTTP (Web) server for this is to keep all your ap-
plets in one subdirectory. You can then make the NetRexx runtime classes (that
is, the classes in the package known to the Java Virtual Machine as netrexx.lang)
available to all the applets by unzipping NetRexxR jar into a subdirectory ne-
trexx/lang below your applets directory.

For example, if the root of your server data tree is

D:\mydata
you might put your applets into
D:\mydata\applets

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the
directory

D:\mydata\applets\netrexx\lang

The same principle is applied if you have any other non-core Java packages
that you want to make available to your applets: the classes in a package called
iris.sort.quicksorts would go in a subdirectory below applets called iris/sort /quick-
sorts, for example.

68

Note that since Java 1.1 or later it is possible to use the classes direct from the
NetRexxR jar file. Please see the Java documentation for details.

69

22

Database Connectivity with JDBC

For interfacing with Relational Database Management Systems (RDBMS) NetRexx
uses the Java Data Base Connectivity (JDBC) model. This means that all impor-
tant database systems, for which a JDBC driver has been made available, can be
used from your NetRexx program. This is a large bonus when we compare this
to the other open source scripting languages, that have been made go by with
specific, nonstandard solutions and special drivers. In contrast, NetRexx pro-
grams can be made compatible with most database systems that use standard
SQL, and, with some planning and care, can switch database implementations
at will.

/* jdbc\JdbcQry.nrx

This NetRexx program demonstrate DB2 query using the JDBC API.
Usage: Java JdbcQry [<DB-URL>] [<userprefix>] */

import java.sql.

parse arg url prefix -- process arguments
if url = '' then
url = 'jdbc:db2:sample’
else do -- check for correct URL
parse url pl ':' p2 ':' rest
if pl \= "jdbc' | p2 \= 'db2' | rest = '' then do
say 'Usage: java JdbcQry [<DB-URL>] [<userprefix>]'
exit 8
end
end
if prefix = '' then prefix = 'userid’
do -- loading DB2 support

say 'Loading DB2 driver classes...'

Class.forName('COM. ibm.db2.jdbc.app.DB2Driver"').newInstance()

-- Class.forName('COM. ibm.db2. jdbc.net.DB2Driver').newInstance()
catch el = Exception

say 'The DB2 driver classes could not be found and loaded !'

say 'Exception (' el ') caught : \n' el.getMessage()

exit 1
end -- end : loading DB2 support

do -- connecting to DB2 host
say 'Connecting to:' url
jdbcCon = Connection DriverManager.getConnection(url, ‘userid', '
password')
catch e2 = SQLException
say 'SQLException(s) caught while connecting !’

70

loop while (e2 \= null)
say 'SQLState:' e2.getSQLState()
say 'Message: ' e2.getMessage()
say 'Vendor: ' e2.getErrorCode()
say
e2 = e2.getNextException()

end

exit 1

end -- end : connecting to DB2

host

-- get list of departments
with the managers
say 'Creating query...'
query = 'SELECT deptno, deptname, lastname, firstnme' -
"FROM' prefix'.DEPARTMENT dep,' prefix'.EMPLOYEE emp'-
'"WHERE dep.mgrno=emp.empno ORDER BY dep.deptno'’
stmt = Statement jdbcCon.createStatement()
say 'Executing query:'
loop 1=0 to (query.length()-1)%75
say ' ' query.substr(ix75+1,75)
end
rs = ResultSet stmt.executeQuery(query)
say 'Results:’
loop row=0 while rs.next()
say rs.getString('deptno') rs.getString('deptname') -
'is directed by' rs.getString('lastname') rs.getString('

firstnme')
end
rs.close() -- close the ResultSet
stmt.close() -- close the Statement
jdbcCon.close() -- close the Connection

say 'Retrieved' row 'departments.'

catch e3 = SQLException

say 'SQLException(s) caught !’
loop while (e3 \= null)
say 'SQLState:' e3.getSQLState()

say 'Message: ' e3.getMessage()
say 'Vendor: ' e3.getErrorCode()
say
e3 = e3.getNextException()
end
end -- end: get list of
departments

The first peculiarity of JDBC is the way the driver class is loaded. When most
classes are “pulled in’ by the translator, a JDBC driver traditionally is loaded
through the reflection API. This happens in line 22 with the Class. forName call.

This implies that the library containing this class must be on the classpath.

In previous versions of JDBC, to obtain a connection, one first had to initialize
the JDBC driver by calling the method Class.forName. Any JDBC 4.0 drivers
that are found on the class path are automatically loaded. (However, one must
manually load any drivers prior to JDBC 4.0 with the method Class.forName.)

71

In line 32 of the example we connect to the database using a url and a userid/-
password combination. This is an easy way to do and test, but for most serious
applications we do not want plaintext userids and passwords in the sourcecode,
so most of the time we would store the connection info in a file that we store in
encrypted form, or we use facilities of J2EE containers that can provide data
sources that take care of this, while at the same time decoupling your applica-
tion source from the infrastructure that it will run on.

In line 47 the query is composed by filling in variables in a Rexx string and
making a Statement out of it, in line 50. In line 55, the Statement is executed,
which yields a ResultSet. This has a cursor that moves forward with each next
call. The next call returns true as longs as there are rows from the resultset to
return.

The ResultSet interface implements getter methods for all JDBC Types. In the
above example, all returned results are of type String.

/* jdbc\JdbcUpd.nrx

This NetRexx program demonstrate DB2 update using the JDBC API.
Usage: Java JdbcUpd [<DB-URL>] [<userprefix>] [U] %/

import java.sql.

parse arg url prefix lowup -- process arguments
if url = "' then
url = 'jdbc:db2:sample’
else do -- check for correct URL
parse url pl ':' p2 ':' rest
if pl \= 'jdbc' | p2 \= 'db2"' | rest = '' then do
say 'Usage: java JdbcUpd [<DB-URL>] [<userprefix>] [U]'
exit 8
end
end
if prefix = '' then prefix = 'userid'
if lowup \= 'U' then lowup = 'L’
do -- loading DB2 support

say 'Loading DB2 driver classes...'

Class.forName('COM. ibm.db2. jdbc.app.DB2Driver').newInstance()

-- Class.forName('COM. ibm.db2. jdbc.net.DB2Driver').newInstance()
catch el = Exception

say 'The DB2 driver classes could not be found and loaded !’

say 'Exception (' el ') caught : \n' el.getMessage()

exit 1
end -- end : loading DB2 support

do -- connecting to DB2 host
say 'Connecting to:' url
jdbcCon = Connection DriverManager.getConnection(url, ‘'userid', '
password')
catch e2 = SQLException
say 'SQLException(s) caught while connecting !’
loop while (e2 \= null)
say 'SQLState:' e2.getSQLState()

72

say 'Message: ' e2.getMessage()

say 'Vendor: ' e2.getErrorCode()
say

e2 = e2.getNextException()
end
exit 1
end -- end : connecting to DB2
host

do -- retrieve employee, update
firstname

say 'Preparing update...' -- prepare
UPDATE

updateQ = 'UPDATE' prefix'.EMPLOYEE SET firstnme = ? WHERE empno =
7 1

updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)

say 'Creating query...' -- create
SELECT

query = 'SELECT firstnme, lastname, empno FROM' prefix'.EMPLOYEE'

stmt = Statement jdbcCon.createStatement()

rs = ResultSet stmt.executeQuery(query) -- execute
select
loop row=0 while rs.next() -- loop
employees
firstname = String rs.getString('firstnme")
if lowup = 'U' then firstname = firstname.toUpperCase()
else do
dChar = firstname.charAt(0)
firstname = dChar || firstname.substring(1l).toLowerCase()
end
updateStmt.setString(1l, firstname) -- parms for
update

updateStmt.setString(2, rs.getString('empno'))
say 'Updating' rs.getString('lastname') firstname ': \0'

say updateStmt.executeUpdate() 'row(s) updated' -- execute
update
end
rs.close() -- close the ResultSet
stmt.close() -- close the Statement
updateStmt.close() -- close the PreparedStatement
jdbcCon.close() -- close the Connection

say 'Updated' row 'employees.'
catch e3 = SQLException
say 'SQLException(s) caught !'
loop while (e3 \= null)
say 'SQLState:' e3.getSQLState()

say 'Message: ' e3.getMessage()
say 'Vendor: ' e3.getErrorCode()
say
e3 = e3.getNextException()
end
end -- end: empoyees

For database updates, we connect using the driver in the same way (line 23)

73

and now prepare the statement used for the database update (line 50). In this
example, we loop through the cursor of a select statement and update the row
in line 66. The executeUpdate method of PreparedStatement returns the number
of updated rows as an indication of success.

From JDBC 2.0 on, cursors are updateable (and scrollable, so they can move
back and forth), so we would not have to go through this effort - but it is a valid
example of an update statement.

74

23

WebSphere MQ

WebSphere MQ (also and maybe better known as MQ Series) is IBM’s messag-
ing and queing middleware, and is in use at a great many financial institutions
and other companies. It has, from a programming point of view, two API’s:
JMS (Java Messaging Services), a generic messaging API for the Java world,
and MQI, which is older and proprietary to IBM’s product. The below exam-
ples show the MQI; other examples might show JMS applications.

This is the sample Java application for MQ)I, translated (and a lot shorter) to
NetRexx.

import com.ibm.mqg.MQException

import com.1ibm.mq.MQGetMessageOptions
import com.1ibm.mqg.MQMessage

import com.1ibm.mqg.MQPutMessageOptions
import com.ibm.mg.MQQueue

import com.ibm.mqg.MQQueueManager

import com.1ibm.mqg.constants.MQConstants

class MQSample
properties private

gManager = "rjtestgm”;
gName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

method main(args=String[]) static binary
m = MQSample()
do
say "Connecting to queue manager: " m.gManager
gMgr = MQQueueManager(m.gManager)

openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF | MQConstants.
MQOO_OUTPUT

say "Accessing queue: " m.gName
queue = gMgr.accessQueue(m.qgName, openOptions)

msg = MQMessage()
msg.writeUTF("Hello, World!")

pmo = MQPutMessageOptions()

say "Sending a message..."
queue.put(msg, pmo)

rcvMessage = MQMessage()
gmo = MQGetMessageOptions()

75

say "...and getting the message back again
queue.get(rcvMessage, gmo)

msgText = rcvMessage.readUTF()
say "The message is: " msgText

say "Closing the queue"
queue.close()

say "Disconnecting from the Queue Manager"
gMgr.disconnect()
say "Done!"
catch ex=MQException
say "A WebSphere MQ Error occured : Completion Code " ex.
completionCode "Reason Code " ex.reasonCode
catch ex2=java.10.I0Exception
say "An IOException occured whilst writing to the message buffer
" ex2
end

This sample connects to the Queue Manager (called rjtestgm) in bindings mode,
as opposed to client mode. Bindings mode is only a connection possibility for
client programs that are running in the same OS image as the Queue Manager,
on the server. Note that the application connects (line 19), accesses a queue
(line 23), puts a message (line 32), gets it back (line 39) closes the queue (line
45) and disconnects (line 48) all without checking returncodes: the exception-
handler takes care of this, and all irregulaties will be reported from the catch
MOQException block starting at line 50).

The main method does in this case not follow the canonical form, but has "bi-
nary’ as an extra option. Option binary can be defined on the command line
as an option to the translator, as a program option, as a class option and as a
method option. Here the smallest scope is chosen. There is a good reason to
make this method a binary method: accessing a queue in MQ Series requires
some options that are set using a mask of binary flags - this works, in current
NetRexx versions, only in binary mode, because the operators have other se-
mantics in nobinary mode.

import com.ibm.mq.

class MessageReader
properties private

gManager = "rjtestgm";
gName = "TESTQUEUE1"

method main(args=String[]) static binary

m = MessageReader()
do

MQEnvironment.hostname = 'localhost'’
MQEnvironment.port = int 1414
MQEnvironment.channel = 'CHANNEL1'

-- exit assignment

76

exits = TimeoutChannelExit()
MQEnvironment.channelReceiveExit = exits
MQEnvironment.channelSendExit = exits
MQEnvironment.channelSecurityExit = exits

say "Connecting to QM: " m.gManager
gMgr = MQQueueManager(m.qgManager)

openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF

say "Accessing Queue : m.gName
queue = gMgr.accessQueue(m.qName, openOptions)

gmo = MQGetMessageOptions() -- essential here is that we have
MQGMO_WAIT; otherwise we cannot timeout

gmo.Options = MQConstants.MQGMO_WAIT | MQConstants.
MQGMO_FAIL_IF_QUIESCING | MQConstants.MQGMO_SYNCPOINT

gmo.WaitInterval = MQConstants.MQWI_UNLIMITED

loop forever
rcvMessage = MQMessage()
queue.get(rcvMessage, gmo)
msgText = rcvMessage.readUTF()
say "Got a message; the message is: " msgText
say

end

catch ex=MQException
say "A WebSphere MQ Error occured : Completion Code " ex.
completionCode "Reason Code " ex.reasonCode
say "Closing the queue"
queue.close()
say "Disconnecting from the Queue Manager"
gMgr.disconnect()
say "Done!"
end

In contrast to the previous sample the MessageReader sample only has one im-
port statement. This is always hotly debated in project teams, one school likes
the succinctness of including only the top level import, and only goes deeper
when there is ambiguity detected; another school spells out the all imports to
the bitter end.

The MessageReader sample connects to another queue, called TESTQUEUEL1
(specified in line 7) but here we connect in client mode, as indicated by lines 13-
15 which specify an MQEnvironment. Other options are using an MQSERVER
environment variable or a Channel Definition Table.

This program is also uncommon in that it uses MQConstants.MQGMO_WAIT as an
option instead of being triggered as a process by a message on a trigger queue.
Using this option means that the program waits (stays active, not really busy
polling but depending on an OS event) until a new message arrives, which will
be processed immediately.

In lines 18-21 a Channel Exit is specified. This exit is show in the following ex-
ample.

77

import com.ibm.mq.
import java.ntio.

class TimeoutChannelExit implements WMQSendExit, WMQReceiveExit,
WMQSecurityExit

properties

tTask = WatchdogTimer
t = java.util.Timer
timeout = long
initialized = boolean

method TimeoutChannelExit()
say "TimeoutChannelExit Constructor Called"
t = java.util.Timer()
timeout = long 15000

method channelReceiveExit(channelExitParms=MQCXP, -
channelDefinition=MQCD, -
agentBuffer=ByteBuffer) returns ByteBuffer
do
this.tTask.cancel() -- cancel the timer task whenever a message
is read
catch NullPointerException -- but catch the null pointer the
first time
end
this.tTask = WatchdogTimer()
this.t.schedule(this.tTask,this.timeout)
return agentBuffer

method channelSecurityExit(channelExitParms=MQCXP, -
channelDefinition=MQCD, -
agentBuffer=ByteBuffer) returns ByteBuffer
return agentBuffer

method channelSendExit(channelExitParms=MQCXP, -
channelDefinition=MQCD, -
agentBuffer=ByteBuffer) returns ByteBuffer
return agentBuffer

class WatchdogTimer extends TimerTask

method WatchdogTimer()
method run()
say 'WATCHDOG TIMER TIMEOUT: HPOpenView Alert Issued' Date()

MQ Series has traditional channel exits (programs that can look at the message
contents before the application gets to it). In the MQI Java environment there is
something akin to this functionality, but a Java channel exit for MQ Series has to
be defined in the application, as shown in the previous example. The function
of this particular exit is to implement a Watchdog timer - on a separate thread, as
shown in the sample that follows the sample channel exit. The timer threatens
here to have issues a HP OpenView alert, but that part has been left out.

This particular sample has been designed to do something that is normally a
bit harder to do: signal the operations department when something does NOT

78

happen - here the assumption is that there is a payment going over the queue
at least once every 20 minutes - when that does not happen, an alert is issued.
With every message that goes through, the timer thread is reset, and only when
it is allowed to time out, action is undertaken.

import com.ibm.mq.

class MQPubSubSample

properties inheritable
gueueManagerName = String

syncPoint = Object()
props = Hashtable
topicString = String
topicObject = String
subscribers = Thread[]
subscriberCount = int

properties volatile inheritable
readySubscribers = int @ --must be defined volatile

topicString null

topicObject System.getProperty("com.itbm.mqg.pubSubSample.
topicObject", "TESTTOPIC")

gueueManagerName = System.getProperty("com.ibm.mg.pubSubSample.
gueueManagerName","rjtestqm")

method MQPubSubSample()

subscriberCount = Integer.getInteger("com.ibm.mqg.pubSubSample.
subscriberCount", 100).intValue()
this.props = Hashtable()

this.props.put("hostname", "127.0.0.1")
this.props.put("port", Integer(1414))
this.props.put("channel", "SYSTEM.DEF.SVRCONN")

method main(agr=String[]) static binary
sample = MQPubSubSample()
sample.launchSubscribers()

/*

* walt until all the subscriber threads have finished the
subscription

*/

do protect sample.syncPoint
loop while sample.readySubscribers < sample.subscriberCount
do
sample.syncPoint.wait()
catch InterruptedException
end
end -- loop while sample
end -- do

sample.doPublish()

method launchSubscribers()
say "Launching the subscribers"
subscribers = Thread[subscriberCount]

threadNo = int 0

79

loop while threadNo < this.subscribers.length
this.subscribers[threadNo] = MQPubSubSample.Subscriber("
Subscriber" threadNo)
this.subscribers[threadNo].start()
threadNo = threadNo + 1
end

method doPublish() signals IOException
say "method doPublish started"
destinationType = int CMQC.MQOT_TOPIC
do
gueueManager = MQQueueManager(this.queueManagerName, this.
props)
messageForPut = MQMessage()
say "xxxPublishing *xx"
messageForPut.writeString("Hello world!")
gueueManager.put(destinationType, topicObject, messageForPut)
catch e=MQException
say "Exception while publishing " e
end

class MQPubSubSample.Subscriber binary dependent extends Thread

properties private

myName = String

openOptionsForGet = int CMQC.MQSO_CREATE | CMQC.
MQSO_FAIL_IF_QUIESCING | CMQC.MQSO_MANAGED | CMQC.
MQSO_NON_DURABLE

method Subscriber(subscriberName=String)
super(subscriberName)
myName = subscriberName

method run()
do

say myName " - s**xSubscribing*x*"

gqueueManager = MQQueueManager(parent.queueManagerName, parent.
props)

destinationForGet = queueManager.accessTopic(parent.topicString
, parent.topicObject, CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION,
openOptionsForGet)

do protect parent.syncpoint
parent.readySubscribers = parent.readySubscribers + 1
parent.syncPoint.notify()

end

mgmo = MQGetMessageOptions()
mgmo.options = CMQC.MQGMO_WAIT
mgmo.waitInterval = 30000

say myName " - sxxRetrievingssx"
messageForGet = MQMessage()

do protect getClass()
destinationForGet.get(messageForGet, mgmo)

end

messageDataFromGet = String messageForGet.readLine()

80

say myName " - Got [" messageDataFromGet "]"

catch e=Exception

say myName " " e
e.printStackTrace()
end

parent.readySubscribers = parent.readySubscribers - 1

This sample shows the publish-subscribe interfaces that at some time have been
added to the product. This specific sample shows some Java thread complexity
but is a good example of doing publish/subscribe work in a multithreaded way,
which is a natural fit for this type of work.

81

24

MOQTT

24.1 Pub/Sub with MQ Telemetry

Publish/subscribe (pub/sub) is a model that lends itself very well to a number
of one publisher, many subscriber type of applications; the tools to enter this
technology have never been as available as they are now. Also, MQTT is a small
protocol that needs to be taken seriously: Facebook has recently become one of
the largest users.

Designed as a low-overhead on-the-wire protocol for brokers in the Internet-
of-things age, MQTT is an exciting new development in the Messaging and
Queueing realm. It is a good choice for any broker functionality, as the mini-
mal message overhead is 2 bytes, but the maximum messages size, in one of the
more popular open source brokers is a good 250MB, which give you a message
size that is a lot higher than anything possible in the early years of MQ Series
back in the nineties. It is now possible to do development with an entry level,
entirely open source suite, and scale up to commercial, clustered and highly
available implementations when needed, since the protocol has is supported by
the base IBM WebSphere MQ product and is an added deliverable in WSMQ
7.5, after being available as an installable add-on for several years.

Here I will show how extremely straightforward it is to create a pub/sub appli-
cation using this technology. These examples use NetRexx, the Eclipse PAHO
Java client library and the open source Mosquitto broker; all these components
are completely free and open source. I have installed Mosquitto on my MacBook
using the brew system(fn), which makes it as much trouble as “sudo brew in-
stall mosquitto”. NetRexx is an excellent language for these examples, as it is
compact and avoids the C-inspired ceremony of Java language syntax; if your
project requires Java, you can just save the generated Java source (using the new
—keepasjava option).

Mosquitto(fn) is written by Roger Light as an open source equivalent of IBM’s
rsmb (real small message broker) example application, which is free but lacks
source code. It is a small broker application that nevertheless runs production
sized workloads. As MQTT, as opposed to the MQI or JMS API’s you use when
developing a messaging application, is an on-the-wire protocol (commercial
messaging systems tend to have their own, unpublished, on-the-wire proto-
cols), we need an API to use it. This API consists of a set of calls that do the
formatting of the messages to the requirements of the on-the-wire protocol for
you. The messages themselves are just byte-arrays, which gives you the ultimate

82

freedom in designing their content. It is not unusual for connected devices to
encode their information in a few bits; on the other hand, there is no reason not
to use extreme verbosity in messages; as long as you send the .getBytes that your
String yields, MQTT will send it. When encoding information in a compact way,
the protocol design will really pay off, because the protocol overhead, in com-
parison with http and other chatty protocols, is very low. A limited set of quality
of service options (qos) will indicate if you want send and pray, acknowledged
delivery or acknowledged one-time-only delivery.

The API library that was chosen for these examples is that from the Eclipse
PAHO project. This project, which is in its early stages, has C, Javascript and Java
client libraries available. I chose the Java client because the JVM environment is
where most of the organizations that I work for will use it. The PAHO Java client
library is donated by IBM and written by Dave Locke; it is in active development.
If you want to see how the protocol moves in packets over the network, I can
recommend Wireshark, which does a good job of recognizing them (if you run
on the standard port 1883) and showing you the message types (like ACK) and
their bytes.

After having put the NetRexx(.jar) and paho client jars on your classpath, you
are good to go. The first example here is the publisher — this is not a fragment,
but the complete code. For production code we might add some more checks, as
enterprise environments always are prone to suddenly run low on disk space
and suffer missing authorizations, but it works as it stands. Do note that you
do not have to define a message topic in advance — just think of one any use
it, at least if you are in your own environment. With Mosquitto, there wasn't
anything to define in advance, and the running Publisher (happily lifted from
the Java example) in NetRexx was actually the first time I talked to Mosquitto
on my MacBook.

import java.sql.Timestamp
import org.eclipse.paho.client.mqttv3.

class Publish implements MgttCallback

method Publish()
conOpt = MgttConnectOptions()
conOpt.setCleanSession(0)

tmpDir = System.getProperty("java.io.tmpdir")
dataStore = MgttDefaultFilePersistence(tmpDir)
clientId = MgttClient.generateClientId()
topicName = "/world"
payload = "hello".toString().getBytes()
qgos =2
do

broker = "localhost"

port = "1883"

brokerUrl = "tcp://"broker":"port

client = MqgttClient(brokerUrl,clientId, dataStore)

client.setCallback(this)
catch e=mqttException

say e.getMessage()

e.printStackTrace()

83

end -- do

client.connect()
log("Connected to "brokerUrl" with client ID "client.getClientId
()

-- Get an 1instance of the topic
topic = client.getTopic(topicName)

message = MgttMessage(payload)
message.setQos(qos)

-- Publish the message

time = Timestamp(System.currentTimeMillis()).toString()

log('Publishing at: 'time' to topic "'topicName'" with gos 'qos)
token = topic.publish(message)

-- Wait until the message has been delivered to the server
token.waitForCompletion()

-- Disconnect the client
client.disconnect()
log("Disconnected")

method log(line)
say line

method messageArrived(t=String,m=MqttMessage)
log("Message Arrived: " t m)

method deliveryComplete(t=IMqttDeliveryToken)
log("Delivery Complete: " t)

method connectionLost(t=Throwable)
log("Connection Lost:" t.getMessage())

method main(args=String[]) static
Publish()

Topics can have a hierarchical organization; this structure is put in by compos-
ing trees of topics, which are strings separated by ‘/’. In this way, it is easy to
compose a /news/economics/today topic string that gives some structure to the
publication. The classification is entirely up to the designer.

Messaging in its original form is an asynchronous technology, and for this rea-
son the API offers a callback option, where the callback receives the results of
your publish action in an asynchronous way. The broker assigns a message id
which you receive back.

The second source fragment (and again, it is no fragment but the entire appli-
cation program) shows the subscriber.

import java.sql.Timestamp
import org.eclipse.paho.client.mqttv3.

class Subscribe implements MgttCallback
properties private

84

client = MgttClient

conOpt = MgttConnectOptions()

tmpDir = System.getProperty("java.io.tmpdir")
clientId = MgttClient.generateClientId()
topicName = "/world"

gos =2

method Subscribe()
do
connectAndSubscribe()
catch mgx=MqgttException
log(mgx.getMessage())
end
-- Block until Enter 1is pressed
log("Press <Enter> to exit");
do
System.in.read()
catch IOException
end

-- Disconnect the client
client.disconnect()
log("Disconnected")

method connectAndSubscribe() signals MqgttSecurityException,
MgttException
conOpt.setCleanSession(1)
dataStore = MgttDefaultFilePersistence(tmpDir)

do
broker = "localhost"
port = "1883"
brokerUrl = "tcp://"broker":"port

client = MgttClient(brokerUrl,clientId, dataStore)
client.setCallback(this)
catch e=mqttException
say e.getMessage()
e.printStackTrace()
end -- do

this.client.connect()
log("Connected to "brokerUrl" with client ID "client.getClientId
()

-- Subscribe to the topic
log('Subscribing to topic "'topicName'" qos 'qos)
this.client.subscribe(topicName, qos)

method log(line)
say line

method messageArrived(t=String,m=MqgttMessage)
log("Message Arrived: " t m)

method deliveryComplete(t=IMqttDeliveryToken)
log("Delivery Complete: " t)

method connectionLost(t=Throwable)
do

85

connectAndSubscribe()
catch mgx=MqttException

log(mgx.getMessage())
end

method main(args=String[]) static
Subscribe()

Security is outside of the scope of this introduction which shows you the source-
code of a simple pub/sub application, but in Mosquitto the traffic can be secured
using SSL certificates and userid/password combinations; also, the access to
topics can be limited. In terms of availability, the Mosquitto configuration file
offers an opportunity to send all messages for a defined set of topics to another
connected broker, which might be in a different part of the world, or your home,
to enable a redundant setup. While the broker does not offer the queue — trans-
mission queue - channel setup with retrying channels that MQ does, the client
APT has some facilities to locally save the messages and retry if the communi-
cation was lost. Also, the last-will-and-testament facility is something that tra-
ditional MQ does not have.

86

25

Component Based Programming: Beans

JavaBeans is the name for the Java component model. It consists of two con-
ventions, for the naming of getter and setter methods for properties, and the
event mechanism for sending and receiving events. NetRexx adds support for
the automatic generation of getter and setter methods, throught the properties
indirect option on the properties statement.

87

26

Interfacing to Scripting Languages

NetRexx contains standardized Java Scripting support, and the NetRexxC jar
tile is a self-contained JSR223 scripting engine. This facility opens up a num-
ber of possibilities to interface in a standardized manner with several scripting
languages and other infrastructure, and offers an easy way for including inter-
preted NetRexx code in JVM applications. JSR223 is a standard for interacting
with scripting languages that consists of:

1. A mechanism to find out for which scripting languages support is available
2. A way to choose one of them

3. An eval() call to dynamically specify and execute a program

4

. A bindings mechanism to bind variable names to values, to exchange objects
with scripts

5. Optionally, a way to execute methods, functions or routines from larger
programs

6. Optionally, a way to keep already compiled scripts around for repeated
execution (with associated higher performance)

The JSR223 specification details the calls that are available in the javax.scripting
package. To use the J[SR223 interface, Java 6 or higher is required. The JAR file
specification defines a service as a well-known set of interfaces and (usually)
abstract classes. A service provider is a specific implementation of such a ser-
vice. For scripting, the service consists of javax.script.ScriptEngineFactory.
All classes that implement this interface are service providers. Service providers
identify themselves by placing a so-called provider-configuration file in META-
INF/services. Its filename corresponds to the fully qualified name of the ser-
vice class, which is javax.script.ScriptEngineFactory. Each line of this file
contains the fully qualified name of a service provider. The factory class of the
NetRexx connector is org.netrexx.jsr223.NetRexxScriptEngineFactory. So the
file META-INF/services/javax.script.ScriptEngineFactory contains one line
with exactly this class name.

26.1 Which JSR223 engines are on my system?

The number of JSR223 engines available varies per JVM implementation. The
following code can be used to list these.

Bhttp://www.jcp.org/en/isr/detail?id=223

88

http://www.jcp.org/en/jsr/detail?id=223

import javax.script.ScriptEngine
import javax.script.ScriptEngineFactory
import javax.script.ScriptEngineManager

method main(args=String[]) static

manager = ScriptEngineManager()

factories = manager.getEngineFactories()

it=factories.iterator()

loop while it.hasNext()
factory=ScriptEngineFactory it.next()
f=ScriptEngine factory.getScriptEngine()
say "className = " f.getClass.getName
engineName = factory.getEngineName()
engineVersion = factory.getEngineVersion()
if engineVersion = null then engineVersion = '
langName = factory.getLanguageName()
langVersion = factory.getLanguageVersion()
say "engineName = " engineName engineVersion langName

langVersion

say

end

For example, the Java 8 SE version by Oracle on macOS delivers out of the
box:

className = Jjdk.nashorn.api.scripting.NashornScriptEngine

engineName = Oracle Nashorn 1.8.0_312-b07 ECMAScript ECMA - 262
Edition 5.1

className = org.netrexx.jsr223.NetRexxScriptEngine

engineName = NetRexx Script Engine V1.0.0 NetRexx 4.02

As one can see, the name of the engine, the language and its release are stan-
dard features for this query. The NetRexxC jar file on the classpath adds the
NetRexx implementation. There can be any number of additional jar archives
on the classpath to deliver engines for different JSR223 implementations for dif-
ferent languages.

26.2 Selecting an engine

When developing a program one is probably interested in using a specific im-
plementation, and it is possible to request the loading of a specific JSR223 engine
by name.

import javax.script.

manager = ScriptEngineManager()
nrEngine = manager.getEngineByName("NetRexx")

The language engine can be selected by its short name, so there is no need to
specify the longer name or its version.

89

26.3 Evaluating a script

This example shows how to do a simple thing that illustrates the value of being
able to do this from other environments: calculating some number with numeric
precision set to some value that other languages cannot handle.

/* simple script invocation x/
nrEngine.eval('numeric digits 17; say 111111111 * 111111111")

The output from this script would be:

12345678987654321

26.4 Bindings

Bindings are name-value pairs whose keys are strings - they can be of Rexx type.
Their behavior is defined through the javax.script.Bindings interface. As for
ScriptContext, a basic implementation is provided called SimpleBindings. Al-
though bindings belong to script contexts, ScriptEngine provides createBindings (),
which returns an uninitialized binding. Another method, getBindings(), ex-
ists to return the bindings of a certain scope. There are at least two scopes,
ScriptContext.GLOBAL_SCOPEarmiScriptContext.ENGINE_SCOPEfTheyrepresent
key-value pairs that are either visible to all instances of a script engine that have
been created by the same ScriptengineManager, or visible only during the life-
time of a certain script engine instance. The following program illustrates the
use of bindings to store a value, 42, into the binding called answer and then
using its retrieved value in the evaluation of the statement 'say “the answer
is” answer '. The next action uses the handle one for a value of 1, and uses
its retrieved value to add it to the value previously contained in the binding
answer.

import javax.script.
nrEngine = ScriptEngineManager().getEngineByName("NetRexx")

/* simple script invocation */
nrEngine.eval('numeric digits 17; say 111111111 * 111111111")

/* script invocation with bindings */

answer = 42

nrEngine.put("answer", answer)
nrEngine.eval('say '‘'the answer is ''answer')

one =1
nrEngine.put("onemore",one)
nreEngine.eval('say '‘'one more is ''answer+onemore')

Note that in line two, the invocation is shortened a bit by getting rid of the in-
termediate manager object for instantiation of the language interface. Also note
that in line 10, we chose, for illustration purposes, to store the one object into the
bindings structure using a different name, onemore. This shows that the string

90

used as identifier for the object is just a handle to it, and nothing more. This
would yield:

12345678987654321
the answer is 42
one more is 43

The different possibilities and language combinations will be discussed in the
paragraphs below.

26.4.1 Obtaining a returncode

The variable binding used for the return code from the NetRexx program is
called returnobject. This program illustrates its use:

import javax.script.
nrEngine = ScriptEngineManager().getEngineByName("NetRexx")

/* check returncode */
say nrEngine.eval('NetRexxScriptEngine.instance.put("returnobject",
II99II)I)

99

26.5 Interpreted execution of NetRexx scripts from jrunscript

Another way of calling any NetRexx program, for interpretation, is to use the
standard jrunscript executable that is included in Java 1.6 and beyond. For ex-
ample, in the examples/rosettacode directory, one could specify:

jrunscript -1 netrexx -cp $CLASSPATH -f RCSortingHeapsort.nrx

The -1 option instructs the jrunscript handler to choose NetRexx as its stan-
dard scripting language. For NetRexx to be eligible as a scripting language, Net-
RexxC.jar must be on the jrunscript classpath, which is a separate classpath from
the standard one. In this setup, even NetRexx programs with a filename that is
not valid as a classname, can be executed as an interpreted script.

26.6 Using JavaScript from NetRexx programs

JavaScript support is built in from Java 1.6 onwards, and using it does not require
placing another library on the classpath. Using JavaScript from NetRexx can
have benefits, for example when using types native to JavaScript, like the JSON
data interchange format.

import javax.script.
jsEngine = ScriptEngineManager().getEngineByName("JavaScript")

91

jsEngine.eval('var foo = {};")
jsEngine.eval('foo.foundation = "RexxLA";"')
jsEngine.eval(' foo.model = "open";"')
jsEngine.eval('foo.week = 42;")
jsEngine.eval('foo.transport = "car";")
jsEngine.eval('foo.month = 7;")

jsEngine.eval('bar = JSON.stringify(foo);")

jsonString = jsEngine.get('bar')
say jsonString

which yields the following result:

” o

{”foundation”:"RexxLA"”, "model”:"open”, "week”:42, "transport”:"car”,
month”:7%

26.7 Using AppleScript on macOS

On macOS you can run an AppleScript using NetRexx.

import javax.script.
-- does not work in recents macos versions

/%

Instead of ScriptEngine engine = mgr.getEngineByName("AppleScript");
you must use:

ScriptEngine engine = mgr.getEngineByName("AppleScriptEngine");

In your src directory create directory META-INF

In your src directory create directory META-INF/services
Create file META-INF/services/javax.script.ScriptEngineFactory
In this file is one line:
apple.applescript.AppleScriptEngineFactory

*/

appleEngine = ScriptEngineManager().getEngineByName("
AppleScriptEngine")

context = appleEngine.getContext()

bindings = context.getBindings(ScriptContext.ENGINE_SCOPE)

bindings.put("javax_script_function", "getName")

bindings.put(ScriptEngine.ARGV, 'Stranger')

appleScript = 'on getName(default_) \n'-
‘tell application "Finder" \n'-
'display dialog "What is your name?" default answer default_
with icon note \n'-
'set myName to the text returned of the result \n'-
'delay 0.5 \n'-
'display dialog "Hi there, " & myName & "! Welcome to
AppleScript!" with icon note \n'-
‘end tell\n'-
"‘return myName\n'-
"end getName'

92

result = appleEngine.eval(appleScript,context)
say result

The AppleScript interpreter expects end-of-line characters at the end of every
line, so make sure to include them in your script. The above script shows it is
fairly straightforward to put a dialog box with a question on the screen. The
example shows how to give an argument (ARGV) to a method, and how to
put the method name in the bindings object in order to return the result upon
evaluation.

26.8 Execution of NetRexx scripts from ANT tasks

The jsr223 engine enables us to execute NetRexx scripts from the antf® building
tool using the <script> tag. This was already possible using the BSF library,
where NetRexx was one of the originally supported languages, but has become
more straightforward with jsr223 scripting.

<project name="MyProject" basedir=".">
<description>
demonstration of ant jsr223 netrexx scripting
</description>

<property name="divider" value="81" />
<script language="netrexx" manager="javax">
say "100/"divider '= ' 100/divider
</script>
</project>

Note that properties can be set in other parts of the ant xml file and used in the
ant script. This script yields the following output:

Buildfile: /Users/rvjansen/apps/netrexx-code/documentation/pg/
antscript.xml
[script] 100/81 = 1.2345679

BUILD SUCCESSFUL
Total time: O seconds

The task may use the BSF scripting manager or the JSR 223 manager that is
included in JDK6 and higher. This is controlled by the manager attribute. The
JSR 223 scripting manager is indicated by “javax”, as shown on line 7.

All items (tasks, targets, etc) of the running project are accessible from the
script, using either their name or id attributes (as long as their names are consid-
ered valid Java identifiers, that is). This is controlled by the “setbeans” attribute
of the task. The name “project” is a pre-defined reference to the Project, which
can be used instead of the project name. The name “self” is a pre-defined ref-
erence to the actual <script>-Task instance. From these objects you have access
to the Ant Java APL

16http://ant.apache.org

93

http://ant.apache.org

A classpath for execution of the script can be set using the classpath attribute.
A script contained in a separate file can be executed using the src attribute.

26.9 Integration of NetRexx scripting in applications

Several applications offer a facility to script functionality using the javax.scripting
interface, akin to the way applications use the RexxSAA interface for this pur-
pose.

26.10 Interfacingbetween ooRexx and NetRexx using BSF4ooRexx

BSF is a system for language interaction that originated in a research project
at IBM, and predates JSR223 (and certainly its implementation in Java 6) for a
number of years. BSF 2.x has its own interface, while modern BSF versions are
an implementation of the JSR223 interfaces. BSF4ooRexx enables a bidirectional
interface between ooRexx and Java, and enables one to use the large class library
support for Java in ooRexx programs, but likewise the execution of ooRexx code
from Java (including NetRexx) programs. BSF4ooRexx contains some special
support for JVM programs written in NetRexx.

26.11 General jsr-223 Implementation Notes

This section describes some notes pertaining to specific jsr223 for NetRexx de-
sign and implementation decisions.

« All engine scope bindings are passed to the script as variables - note that
binding names containing periods have the periods changed to under-
scores to be legal variable names.

+ The NetRexx script engine is reused unless the script returned via an ”“exit”
statement and the bindings are persistent which means that scripts will see
the bindings (Objects) created by previous scripts

« Arguments are passed both as the normal arg string and as the array bind-
ing javax.script.argv i.e. script variable javax_script_argv.

« Scripts are executed via the NetRexxA API for interpreting a program from
a string so they are not written to files.

« The current version of the engine has no other optimization and only
support for bare minimum JSR223 features (No compilable, invokeable,
preparse or caching or user profiles or console, etc.).

» When running as an Ant Script task, properties whose names contain peri-
ods are not passed to the bindings and must be accessed via project.getProperty ('some.name’
The workaround is to define a local Ant property as a global first and the
scriptengine will overlay the global value with the local value in the bind-
ings map

94

» When running as an Ant Script task, properties can be set via project.setProperty ('some.name
‘some value”)
+ Script parms can be passed in an “arg” binding. Parse flags can be passed
with a "netrexxflags” binding or in Ant with the usual “ant.netrexx.verbose”,
etc properties.
 Ant scripts can use the nested classpath facility - It is automatically added
to the classpath that NetRexx scans. Likewise any path segments from a
thread context URLclassloader are added.
+ The engine will run programs (ie that have a main class) as well as scripts
but bindings cannot then be auto added to the program namespace so pro-
grams have to load bindings like this: NetRexxScriptEngine.getObject("objectname”)

95

27

NetRexx Tools

27.1 Editor support

This chapter lists editors that have plugin support for NetRexx, ranging from
syntax coloring to full IDE support (specified), and Rexx friendly editors, that
are extensible using Rexx as a macro language (which can be the first step to
provide NetRexx editing support).

27.1.1 JVM - All Platforms

JEdit Full support for NetRexx source code editing, to be found at
http://www.jedit.org.

NetRexxDE A revisions with additions of the NetRexx plugin for jEdit,
moving to a full IDE for NetRexx. http://kenai.com/projects/
netrexx-misc

Eclipse Eclipse has a NetRexx plugin that provides a complete IDE en-
vironment for the development of NetRexx programs (in alpha
release) by Bill Fenlason. The project is situated at SourceForge
(http://eclipsenetrexx.sourceforge.net/).

27.1.2 Linux

Emacs netrexx-mode.el (in the NetRexx package in the tools directory)
runs on GNU Emacs, which is installed by default on most Linux
developer distributions.

vim vi with extensions

27.1.3 MS Windows

Emacs netrexx-mode.el (in the NetRexx package in the tools directory)
runs on GNU Emacs for Windows. http://www.gnu.org/software/
emacs/windows/faq.htmll.

vim vi with extensions

96

http://www.jedit.org
http://kenai.com/projects/netrexx-misc
http://kenai.com/projects/netrexx-misc
http://eclipsenetrexx.sourceforge.net/
http://www.gnu.org/software/emacs/windows/faq.html
http://www.gnu.org/software/emacs/windows/faq.html

27.1.4 macOS

Aquamacs A version of Emacs that is integrated with the macOS Aqua look
and feel. (http://www.aquamacs.org). NetRexx mode is included
in the NetRexx package in the tools directory.

Emacs netrexx-mode.el (in the NetRexx package) runs on GNU Emacs
for macOS. http://www.gnu.org/software/emacs.

Vim Vi with extensions

27.2 Java to Nrx (java2nrx)

When working on a piece of Java code, or an example written in the language,
sometimes it would be good if we could see the source in NetRexx to make it
more readable. This is exactly what java2nrx by Marc Remes does. It has a Java
1.5 parser and an Abstract Syntax Tree that delivers a translation to NetRexx, to
the extend of what is currently supported under NetRexx.

At the moment it is to be found at gitclonegit://git.code.sf.net/p/netrexx/
codenetrexx-code in the tools directory.

It is started by the java2nrx.sh script; for convenience, place java2nrx.sh and
java2nrx.jar in the same directory. NetRexxC and java must be available on the
path.

Usage: Alternatively:
FIGURE 2: Java2nrx 1

java2nrx

4444<Eava -jar java2nrx.ja%>4+infﬂejava%

FIGURE 3: Java2nrx 2

javaZnrx

————(Eavaanx.sh/.ba{)

] filename.java ’7

-stdout

options other NetRexxC options

97

http://www.aquamacs.org
http://www.gnu.org/software/emacs
git clone git://git.code.sf.net/p/netrexx/code netrexx-code
git clone git://git.code.sf.net/p/netrexx/code netrexx-code

-nrc runs NetRexxC compiler on output nrx file
-stdout prints NetRexx file on stdout
-run runs generated translated NetRexx output file

98

28

Using Eclipse for NetRexx Development

This is a guide for first time Eclipse users to set up a NetRexx development
project. It is not a beginners guide to Eclipse, but is intended to explain how
to download the NetRexx compiler source from SVN to be able to modify and
build it using Eclipse™.

It is detailed and hopefully foolproof for someone who has never used Eclipse.
It assumes a Windows user, but if you are a Linux or Mac user, you will no doubt
understand what to do.

This guide is for Eclipse 4.2 (Juno), written August, 2012. New Eclipse releases
occur every 4 months, so there may be differences depending on what the cur-
rent version is.

28.1 Downloading Eclipse

There are many different preconfigured versions of Eclipse. As you become
more experienced with it you may wish to use a different distribution, but the
one specified here makes some things simple. It does contain some things that
you may never use.

1. Make a new folder for the project. Name it appropriately (e.g. EclipseNe-
tRexx)

2. Browse to eclipse.org, and click on “Download”.

3. Download the version named ECLIPSE IDE FOR JAVA DEVELOPERS for
your your operating system.

4. The download is about 150 MB.
5. Unzip the downloaded file into your project folder.

28.2 Setting up the workspace

There are different strategies for managing Eclipse workspaces. Eclipse defaults
to putting the workspace in your Windows documents folder - probably not
what you want to do. The following is perhaps the most simple way:.

1. Open the project folder. It will now contain a folder named eclipse.

171f you have questions or comments, feel free to contact Bill Fenlason at billfen@hvc.rr.com.

99

2. Add anew folder named “workspace” in the project folder to go along with
the eclipse folder.

Open the eclipse folder, and create a shortcut to eclipse.exe.

Move the shortcut to the desktop and rename it to something like “Eclipse
NetRexx”.

Close the project folder, and double click the shortcut to start Eclipse.
The “Select a workspace” dialog comes up - don’t use the default.

Browse to the workspace folder that you just created and select it.
Click (check) the “Use this as the default” box, and click OK.

i

® NG

28.3 Shellshock

If you have never used Eclipse, it can be a bit overwhelming. It is rather com-
plicated, and has endless options, etc. In addition there are at least a thousand
different plugins.

You will be greeted by a Welcome screen - you may find it interesting or bor-
ing. Exit from it via tback to the welcome screen from: Main Menu -> Help ->
Welcome.

28.4 Installing Git

Modern versions of Eclipse come with Git support built in. If not, install it from
the Eclipse Marketplace.

28.5 Downloading the NetRexx project from the Git repository

The Git repository on SourceForge contains the NetRexx compiler/translator,
documentation, examples, etc. These instructions assume you want only the
compiler project.

1. The NetRexx Git repository clobe command is: gitclonegit://git.code.
sf.net/p/netrexx/codenetrexx-code

2. Copy it (for pasting) from above, or get it from the kenai or netrexx.org
site.

28.6 Setting up the builds

Ant support is built into Eclipse, but it must be configured to be able to access
the bootstrap NetRexx compiler.

1. Double click on the build.xml file name in the package explorer. Note that
its icon is an ant.

100

git clone git://git.code.sf.net/p/netrexx/code netrexx-code
git clone git://git.code.sf.net/p/netrexx/code netrexx-code

11.

12.
13.

The build file will open in an editor window.

Right click in the window to bring up a context menu, and select Run As
-> 2 Ant Build

Do NOT select 1 Ant Build.

The Ant configuration dialog comes up - it will show you all the targets,
etc.

Click on the Classpath tab, and then click on User Entries.
Now click on Add External Jars to bring up the Jar Selection dialog.

Navigate to the lib folder in the project folder. Make sure you are not in the
build folder.

. Double click on NetRexxC jar to select it.
10.

Click on the Refresh tab, and check the Refresh resources on completion
box.

Click Run to build the distribution. The messages will appear in the console
listing below.

The java doc step may fail.
Close the build.xml file (X on the tab).

You can configure the ant build by using the configuration dialog in Run As ->
2 Ant Build. You may want to check “compile” and “jars” to run those steps.
Use Apply to save the configuration.

There are two different builds. The second build.xml file is in the project -> tools
-> ant-task folder. Open it up and repeat the above steps for that build.xml file.
Each build file has its own ant configuration, and once set selecting Run As ->
1 Ant Build will run it. Or just hit F11.

28.7 Using the NetRexx version of the NetRexx Ant task

The above process uses the standard NetRexx Ant task, not the new one. To use
the new one:

1.

A N

Main Menu -> Window -> Preferences -> Ant -> Runtime.

Open up and select Ant Home Entries. Then click on Add External Jars
Navigate to the lib folder in the project and select ant-netrexx.jar

The jar will appear at the bottom of the list.

Use the UP button to move it up (ahead) of the apache ant version, click
OK

28.8 Setting up the Eclipse NetRexx Editor Plugin (Optional)

The NetRexx Editor plugin provides syntax coloring and error checking for nrx
files, as well as one click compiling and translating.

1.

Click on Main Menu -> Help -> Eclipse MarketPlace.

101

w

Type NetRexx in the search box and hit enter.

Click the Install button next to the Eclipse NetRexx package.

Click Next, Accept the License, Finish, OK to unsigned content, and Yes to
restart Eclipse.

Click Main Menu -> Window -> Preferences -> NetRexx Editor to explore
it

102

29

Platform dependent issues

29.1 Mobile Platforms

Android™is a version of Linux with a runtime consisting of a variant of Java,
and is friendly to NetRexx programs. Indeed, with NetRexx performing so much
better than the closest competition (jRuby, jython) on these devices, there might
be a bright future for NetRexx in these environments.

However, there are some drawbacks, caused by the security architecture put
in place. Free, unfettered programming like one can do on a desktop machine
is a rare occurrence on these devices, and to get programs running on them
requires some knowledge of the security architecture that has been put in place
for mobile operating systems.

While Apple development still employs a closed model that allows program-
ming only by buying a license with accompanying certificates, and vetting by
the App Store employees, and an assumption you will program in Objective-
C, Android allows programming but not as straightforward as we know it. To
make simple command-line NetRexx programs, both device types need to be
rooted to allow optimal access. Android allows the installation of applications
without vetting by third parties, but dictates a programming model that incurs
some overhead - which is a drawback for the occasional scripter.

29.1.1 Android

The security model of Android is based on least needed privilege and is imple-
mented by assigning each application a different userid, so that applications on
the same device (be it a phone or a tablet) cannot get to each others data. The
consequence of this is that simple NetRexx programming and scripting

29.1.2 Apple I0S

There is a number of ways NetRexx can be run on Apple 10S devices (iPhone
and iPad). Both have drawbacks. With ISH, a 32-bit version of Linux is started
on an emulated X86 processor; this has dire consequences for performance. The
"Jailbreak” solution runs with much better performance, but this approach is
rather volatile and cannot be guaranteed to be feasible in the future, because
Apple is actively fixing the holes that allow it.

103

ISH

The ISH application delivers a Linux shell on emulated hardware. The Net-
RexxC.jar can be transferred with scp to the storage of ISH, from where it can
be run. It needs higher memory heap allocations than the standard; -Xms128M
-Xmx128M is recommended here. Do not expect performance corresponding to
the native ARM hardware in your device.

Jailbreak

Note: this chapter is out of date. Nonewithstanding the current intention of
Apple to only allow Swift an d Objective-C as programming languages on the
iPhone and iPad, NetRexx on IOS works fine. This is what one should do to
make it work:

1. Jailbreak® the device. This is necessary until a more sensible setup is used.
I used Spirit; it synchs the phone with the hack and then Cydia is installed,
an application that does package management the Debian way

2. Choose the “developer profile” on Cydia when asked. This applies a filter
to the packages shown (or rather it doesn’t) - but you need to do it in order
to see the prerequisites

3. OpenTerminal will help you to do command line operations on the phone
itself

4. The prerequisites are a Java VM (JamVM installs a VM and ClassPath, the
open Java implementation) and Jikes, the Java compiler written in C and
compiled to the native instruction set of the phone, which is ARM - most
processors implementing this have Jazelle, a specials instructionset to accel-
erate Java bytecode. However, this feature is seldom used.

The phone can also be logged on to using ssh from your desktop. Do not forget to
change the password for the 'root” user and the ‘'mobile” user, as instructed in the
Cydia package. Note that this type of information will can be made inaccurate
very swiftly.

When this is done, NetRexxC jar can be copied to the phone. I did this using scp
NetRexxC.jar mobile@10.0.0.76:" (use the password you just set for this userid)
(and because my router assigned 10.0.0.76 to the phone today). I crafted a small
‘nrc’ script that does a translate and then a Java compile using jikes (and I ac-
tually wrote this on the phone using an application called “iEdit” - nano, vim
and other editors are also available but I found the keyboard scheme to type in
ctrl-characters a bit tedious - you type a ‘ball” character and then the desired ctrl
char, while shifting the virtual keyboard through different modes):

nrc:

java -cp ~/NetRexxC.jar COM.ibm.netrexx.process.NetRexxC $x

8Note that jailbreaking an iPhone is against Apple’s End Use License Agreement) and might be illegal in some
jurisdictions.

104

Now we can do a compile of the customary hello.nrx with ". /nrc -keep -nocompile
hello” (notice that this is all in the home directory of the ‘mobile” user, just like
the jar that I just copied. The resulting hello.java.keep can then be mv’ed to
hello.java and compiled with ‘jikes hello.java’. This produces a class that can be
run with ‘java -cp NetRexxC jar hello’

29.2 IBM Mainframe: Using NetRexx programs in z/OS batch

Traditionally the mainframe was a batch oriented environment, and much of
the workload that counts still executes in this way. To be able to use NetRexx
with Job Control Language (JCL) in batch address spaces, accessing traditional
datasets and interacting with the console when needed, we need to know a bit
more. This will be explained in these paragraphs.

A standard component of z/OS since version 1.8 or so is jzos, which acts as
glue between the unix-like abstractions the JVM works with and the time tested
way of working on z/OS, with its SAM and VSAM datasets, its Partitioned Data
Set (PDS) file organization, the ICF Catalogs and console address space; all of
which in existence long before Java reared its head in our IT environments.

The manuals will teach you that there are several ways to interact with HF-
S/OMVS resources in JCL, but the alternatives to jzos have so many drawbacks
that it is the only sensible way to run NetRexx programs in the batch environ-
ment.

29.2.1 Example

//AB2217N1 JOB (7355,710,TC78JAN), 'PGM' ,MSGCLASS=X,NOTIFY=AB2217
//JAVA EXEC PROC=JVMPRC60,
// JAVACLS='HelloWorld"
//STDENV DD x
. /etc/profile
export JAVA_HOME=/usr/lpp/java/l]6.0
export PATH=/bin:"${JAVA_HOME}"/bin
LIBPATH=/1ib:/usr/1ib:"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH" : "${JAVA HOME}"/1ib/s390
LIBPATH="$LIBPATH" : "${JAVA_HOME}"/1ib/s390/j9vm
LIBPATH="$LIBPATH" :"${JAVA_HOME}"/bin/classic
export LIBPATH="$LIBPATH":
APP_HOME=$JAVA_HOME
CLASSPATH=$APP_HOME: "${JAVA_HOME}"/1lib:"${JAVA_HOME}"/1ib/ext
for 1 in "${APP_HOME}"/x*.jar; do
CLASSPATH="$CLASSPATH" : "$1"
done
export CLASSPATH="$CLASSPATH":
IJ0="-Xmsl6m -Xmx128m"
export IBM_JAVA_OPTIONS="$IJO "
//

105

30

Building the NetRexx translator

It is easy to build the NetRexx translator from source. Prerequisites are:

1. A Java Virtual Machine
2. A Git client

NetRexx can be built on all platforms that it runs on. NetRexx has been boot-
strapped since 1996 and subsequently has been used to compile itself. Every
checkout of the source code contains the ‘bootstrap’ compiler, which is normally
the previous release version. Only the official release branches contain the same
release of the compiler - to prove that it still can compile itself on release. Theo-
retically, it is possible to break things by introducing changes that preclude the
compiler to compile itself - it is our job that these changes are not released to a
wider audience, but rolled back in time.

30.1 Repository

The NetRexx source code repository is hosted at the SourceForge Git repository.
To get the code on your system, you should register at the NetRexx project at
SourceForce and clone the repository using Git. For this version management
package there are many graphical user interfaces, but what is shown here, is the
command line version. Choose a suitable place as working directory - you can
later move it around as you please.

git clone git://git.code.sf.net/p/netrexx/code netrexx-code
Note: This will checkout the whole repository to your local system; including

previous versions, experimental branches and personal sandboxes of other de-
velopers.

The master branch contains the most current version of the source code, includ-
ing the documentation, examples and test cases.

30.2 The buildfile

The official buildfile is called build.xml and the ant utility is used for building
NetRexx from source. This file contains a number of tasks. To build the transla-

106

tor, make sure that the top level directory that is cloned from git is the current
directory, and issue the command:

java -jar ant/ant-launcher.jar compile
followed by
java -jar ant/ant-launcher.jar jars

This will build the compiler from source and create a build directory in the
current directory. In build/1ib the NetRexxC and NetRexxR jars are put by the
archiving process that is started by the jar task. These new jars can be used
immediately, by having them (INetRexxC will suffice) on the classpath.

30.3 Testing

Currently, there are two locations that contain the tests. The first is the org. netrexx.process.diag
package, which currently is being integrated into the trunk/test directory.

This directory contains, in addition to the traditional “diag” tests that have

been modified to run under jUnit, some of the tests for the newer functionality.

These tests are accessible using a make process that uses makefile as its build

build file. The command

make test

will compile and run the tests; jUnit will report on progress and results.

107

31

The NetRexx Workspace - nrws

A read-evaluate-print loop, or REPL, is a very popular way for users to famil-
iarize themselves with the language™ and design and/or prototype programs.
Martin Lafaix has contributed such a facility already in the year 2000, but the
inclusion of his Workspace for NetRexx took some time. The JSR-199 scripting fa-
cility, which was added to the distribution earlier, could do something akin to
this, but could not remember variable values over executions. The requirement
to fix this issue, and the wish to have some facility that can execute Pipes for
NetRexx in the fastest possible way, led to the resurrection of this nearly 20-
year old code, with some updates for command history (up- down arrowing
through it) and -editing, included multiline-editing. The NetRexx workspace
has a requirement of Java 8.

31.1 Installation

nrws is included in both NetRexxFjar and NetRexxC.jar. Wherever NetRexx
works, its workspace will work. It is advisable to have a shortcut for starting
it. In the bin directory (for windows users) a nrws.bat batchfile can be found.
In that same directory a .bash_aliases file can be found, which adds a nrws
command for unixlike systems like Linux and macOS. Both are short forms of
running java org.vpad.extra.workpad. Workspace.

31.2 Starting nrws

To begin using Workspace for NetRexx, issue the command nrws to the operat-
ing system shell. There is a brief pause, some start-up messages, and then the
first frame appears.

The standard prompt (which can be modified in various ways, through the
nrws.properties file in the home directory) has a left and a right component. On
the left side, the default is nrws>. On the right side, the default is that that
current computation step in the current frame is indicated. The concepts of com-
putation step and frame will be explained shortly. It is also possible to have an
indication of the elapsed time for the last command in the righthand prompt.

When you want to enter input to Workspace for NetRexx, you do so on the same
line after the left prompt. The ”1” in the right prompt is that computation step

Pfor example, Python, Ruby, Swift and Elixir have them, and there are used in all introductory literature

108

number and is incremented after you enter Workspace for NetRexx statements.
Note, however, that a system command such as)clear all may change the step
number in other ways.

31.3 Exit nrws

To exit from Workspace for NetRexx, type)quit at the input prompt and press
the Enter key. It is possible to configure this to display the following message:

mon

Please enter "y"” or "yes” if you really want to leave the interactive
environment and return to the operating system.
You should enter yes, for example, to exit Workspace for \nri}.

The is also a)pquit system command that always protects your exit from the
workspace.

Because Workspace for NetRexx runs on a number of different machines and
platforms, operating system shells and windowing environments, there is no
standard appearance. You are to experiment with profiles and schemes for
shells; one favourite is dark solarized (shown). You can also change the way
that Workspace for NetRexx behaves via system commands described later in
this chapter and in Appendix A. System commands are special commands, like
)set, that begin with a closing parenthesis and are used to change your environ-
ment. For example, you can set a system variable so that you are not prompted
for confirmation when you want to leave Workspace for NetRexx.

You are ready to begin your journey into the world of Workspace for NetRexx.
Let’s proceed to the first step.

31.4 Exploring the NetRexx language

The NetRexx language is a rich language for performing interactive computa-
tions and for building components for the Java libraries. For a full description,
please consult the The NetRexx Language definition.

31.5 Arithmetic Expressions

For arithmetic expressions, use the "+” and ”-” operators as in mathematics.
Use ”*” for multiplication, ”/” for division, and "**” for exponentiation. When
an expression contains several operators, those of highest precedence are eval-
uated first. For arithmetic operators, ”**” has highest precedence, ”*” and ”/”
have the next highest precedence, and “+” and ”-” have the lowest precedence.

say 1 + 2 -3 /4 %3 %% 2 -1
-4.75

109

NetRexx puts implicit parentheses around operations of higher precedence, and
groups those of equal precedence from left to right. The above expression is
equivalent to this.

say ((1 +2) - ((3/4) x (3*x2))) -1
-4.75

If an expression contains subexpressions enclosed in parentheses, the parenthe-
sized subexpressions are evaluated first (from left to right, from inside out).

say 1 + 2 -3/ (4 % 3 %% (2 - 1))
2.75

31.6 Some Types

Everything in NetRexx has a type. The type determines what operations can
be performed on an object and how the object can be used. For the following,
please keep in mind that sometimes a variable needs to be assigned a type first.

31.7 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like keywords, the name of
variables or to identify some algorithm.

A symbol has a name beginning with an uppercase or lowercase alphabetic

7

character, '$’, "(Euro)’, or ’_". Successive characters (if any) can be any of the
above, or digits. Case is by default undistinguished : the symbol points is no
different from the symbol Points.

A symbol can be used in Workspace for NetRexx as a variable. A variable refers
to a value. To assign a value to a variable, the operator “=" is used. A variable
initially has no restriction on the kinds of values to which it can refer.

This assignment gives the value 4 to a variable names x:

X =4

To restrict the type of objects that can be assigned to a variable, use a declaration:
y = int

The declaration for y forces values assigned to y to be converted to integer val-
ues. If no such conversion is possible, NetRexx refuses to assign a value to y:

y = 2/3
java.lang.NumberFormatException: Decimal part non-zero: 0.666666667

A type declaration can also be given together with an assignment. The declara-
tion can assist NetRexx in choosing the correct operations to apply:

f = float 2/3

110

Any number of expressions can be given on input line. Just separate them by
semicolons.

These two expressions have the same effect as the previous single expression:

f = float; £ = 2/3

31.8 Conversion

Objects of one type can usually be “converted” to objects of several other types.
To convert an object to a new type, prefix the expression with the desired type.

say int sin(PI)
0

Some conversions can be performed automatically when NetRexx tries to eval-
uate input. Other conversions must be explicitly requested.

31.9 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the
arithmetic operator ”+” or ”-” between the two arguments denoting the values.
To use most of other NetRexx operations, however, you use another syntax: write
the name of the operation first, then an open parenthesis, then each arguments
separated by commas, and, finally, a closing parenthesis.

This calls the operation sqrt with the single integer argument 120:

say sqrt(120)
10.95445115010332

This is a call to max with the two integer arguments 125 and 7:

say max (125, 7)
125

This calls an hypothetical quatern operation with four floating-point arguments:
quatern(3.4, 5.6, 2.9, 0.1)

If the operation has no arguments, you can omit the parenthesis. That is, these
two expressions are equivalent:

say random()
and

say random

111

31.10 Long Lines

When you enter expressions from your keyboard, there will be time when they
are too long to fit on one line. Workspace for NetRexx does not care how long
your lines are, so you can let them continue from the right margin to the left
side of the next line.

Alternatively, you may want to enter several shorter lines and have Workspace
for NetRexx glue them together. To get this glue, put an hyphen (-) at the end
of each line you wish to continue.

say 2 -
+ -
3

is the same as if you had entered
say 2 + 3

Comment statements begin with two consecutive hyphens and continue until
the end of the line.

say 2 + 3 -- this is rather simple, no?

The third way to accomplish this is to use the built-in multiline editing facility.
Just press [Esq]-[Enter] to continue with the next line of a multiline block - with
the first [Enter]| key the whole block will be passed to the Workspace. These
multiline blocks can also be recalled and edited with arrow-up.

31.11 Numbers

Workspace for NetRexx distinguishes very carefully between different kinds of
numbers, how they are represented and what their properties are.

31.12 Data Structures

Workspace for NetRexx has a large variety of data structures available. Many
data structures are particularly useful for interactive computation and others are
useful for building applications. The data structures of Workspace for NetRexx
are organized into class hierarchies.

A one-dimensional array is the most commonly used data structure in Workspace
for NetRexx for holding objects all of the same type. One-dimensional arrays
are inflexible—they are implemented using a fixed block of storage. They give
equal access time to any element.

Write an array of elements using square brackets with commas separating the
elements:

a = [11 -71 11]

112

The index of the first element is zero. This is the value of the third element:

say a[2]
11

An important point about arrays is that they are mutable: their constituent ele-
ments can be changed in place:

a[2] = 5; say a[0] a[1] a[2]
1-75

Examples of datatypes similar to one-dimensional arrays are: StringBuffer (ar-
rays of characters), and BitSet (represented by array of bits).

say BitSet(32)
i3

A list is another data structure used to hold objects. Unlike arrays, lists can con-
tain elements of different non-primitive types. Also, lists are usually flexible.

A simple way to create a list is to apply the operation asList to an array of ele-
ments.

A vector is a cross between a list and a one-dimensional array. Like a one-
dimensional array, a vector occupies a fixed block of storage. Its block of storage,
however, has room to expand! When it gets full, it grows (a new, larger block
of storage is allocated); when it has too much room, it contracts.

This creates a vector of three elements:
f = Vector(asList([2, 7, -5]))

The addAll method inserts a list at a specified point. To insert some elements
between the second and third elements, use:

f.addAl1(2, aslList([11, -3])); say £
[2, 7, 11, -3, -5]

Vectors are used to implement “stacks”. A stack is an example of a data structure
where elements are ordered with respect to one another.

An easy way to create a stack is to first create an empty stack and then to push
elements on it:

s = Stack(); s.push(”elementl”); s.push(”element2”); s.push(”element3"”)

This loop extracts elements one-at-a-time from s until the stack is exhausted,
displaying the elements starting from the top of the stack and going down to
the bottom:

loop while \ s.empty; say s.pop; end
element3
element2
elementl

("! to be continued)

113

31.13 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggre-
gates with elements that are themselves aggregates, for example, arrays of ar-
rays, vectors of sets, and so on.

(1! to be continued)

31.14 Writing Your Own Functions

Java provides you with a very large library of predefined operations and ob-
jects to compute with. You can use the Java Class Libraries to create new objects
dynamically of quite arbitrary complexity. Moreover, the libraries provides a
wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some
NetRexx programs to tackle your application. Workspace for NetRexx allows
you to write functions interactively, thereby effectively extending the system
library. Here I give a few simple examples, leaving the details to The NetRexx
Language reference manual and related publications.

We begin by looking at several ways that the factorial function can be defined.
The first way is to use an if-then-else instruction.

method fact(n) static; if n < 3 then return n; else return nxfact(n-1)

say fact(50)
30414093201713378043612608166064768844377641568960512000000000000

A second definition directly uses iteration.

method fac(n) static; a = 1; loop i =2 ton; a =a % i; end; return a

say fac(50)
30414093201713378043612608166064768844377641568960512000000000000

(""'to be continued)

31.15 A Typical Session

(12) ->)clear all

(1) -> £ = Frame()

(2) -> f.setTitle("Hello world!")
(3) -> f.setSize (200, 300)

(4) -> f.setPosition(20, 20)

2 +++ f.setPosition(20, 20)

+4++ NANNNNNNNNNN

+++ Error: The method 'setPosition(byte,byte)’ cannot be found in

114

class 'java.awt.Frame' or a superclass
(5) -> f.setlLocation(20, 20)

(6) -> f.setVisible(1)

(7) -> 1 = Label('Hi there')

(8) -> say f.getlLayout
java.awt.BorderlLayout[hgap=0,vgap=0]
(9) -> f.add(1, BorderLayout.CENTER)
(10) -> f.dolayout

(11) ->

(12) -> 1l.setForeground(Color.zred)
(13) -> f.dispose

(14) ->)quit

31.16 Running Pipelines

When an input is not a NetRexx clause, or prefixed by an)" (and it is a system
command, see next section) the only allowed command is ‘pipe’. This enables
us to run a pipeline exactly as one would do in z/VM CMS. The built-in NetRexx
Pipelines component is used to execute a pipeline like one can do in the com-
mand shell of the operating system, but with quotes. More about Pipelines can
be found in the Pipelines Guide and Reference. If you are used to running pipelines
on CMS, you can just go ahead and try a few things.

31.17 System Commands

We conclude our tour of Workspace for NetRexx with a brief discussion of sys-
tem commands. System commands are special statements that start with a clos-
ing parenthesis (”)”). They are used to control or display your Workspace for
NetRexx environment, start operating system commands and leave Workspace
for NetRexx. For example,) system is used to issue commands to the operating
system from Workspace for NetRexx. Here is a brief description of some of these
commands.

Perhaps the most important user command is the) clear all command thatini-
tializes your environment. Every section and subsection in this document has
an invisible)clear all that is read prior to the examples given in the section.
)clear all gives you a fresh, empty environment with no user variables defined
and the step number reset to 1. The) clear command can also be used to selec-
tively clear values and properties of system variables.

Another useful system command is) read. A preferred way to develop an ap-
plication in Workspace for NetRexx is to put your interactive commands into a
file, say my.input file. To get Workspace for NetRexx to read this file, you use
the system command)read my.input. If you need to make changes to your ap-
proach or definitions, go into your favorite editor, change my.input, then issue
tge command again.

115

Other system commands include:)history, to display previous input lines;
)display, to display properties and values of workspace variables; and)what.

This conclude your tour of Workspace for NetRexx. To disembark, issue the sys-
tem command) quit to leave Workspace for NetRexx and return to the operating
system.

31.18 Input Files and NetRexx Files

This section discusses how to collect Workspace for NetRexx statements and
commands into files and then read the contents into the workspace. I also dis-
cuss NetRexx files, which are a variation of input files.

31.19 Input Files

In this section it is explained what an input file is and why you would want to
know about it. It is shown where Workspace for NetRexx looks for input files
and how you can direct it to look elsewhere, and also how to read the contents
of an input file into the workspace and how to use the history facility to generate
an input file from the statements you have entered directly into the workspace.

An input file contains NetRexx expressions and system commands. Anything
that you can enter directly to Workspace for NetRexx can be put into an input
tile. This is how input functions and expressions can be saved that you wish to
read into Workspace for NetRexx more than one time.

To read an input file into Workspace for NetRexx, use the)read system com-
mand. For example, you can read a file in a particular directory by issuing
)read /nrws/src/input/matrix.input

The ”.input” is optional; this also works:

)read /nrws/src/input/matrix

What happens if you just enter)read matrix.input or even)read matrix? Workspace
for NetRexx looks in your current working directory for input files that are not
qualified by a directory name. Typically, this directory is the directory from
which you invoked Workspace for NetRexx. To change the current working di-
rectory, use the)cd system command. The command)cd by itself shows the
current working directory. To change it to the src/input subdirectory for user
"bar”, issue

)cd /user/bar/src/input

Workspace for NetRexx looks first in this directory for an input file. If it is not
found, it looks in the system’s directories, assuming you meant some input file
that was provided with Workspace for NetRexx.

If you have the Workspace for NetRexx history facility turned on (which it is

116

by default), you can save all the lines you have entered into the workspace by
entering

)Yhistory)write

Workspace for NetRexx tells you what input file to edit to see your statements.
The file is in your home directory or in the directory you specified with)cd.

31.20 The workspace.input File

When Workspace for NetRexx starts up, it tries to read the input file workspace.input
from your home directory. If there is no workspace.input in your home direc-
tory, it reads the copy located in its own src/input directory. The file usually
contains system commands to personalize your Workspace for NetRexx envi-
ronment. In the remainder of this section I mention a few things that users
frequently place in their workspace.input files.

If you do not want to be prompted for confirmation when you issue the)quit
system command, place)set quit unprotected in workspace.input. If you then
decide that you do want to be prompted, issue)set quit protected. This is the
default setting so that new users do not leave Workspace for NetRexx inadver-
tently.

To see the other system variables you can set, issue)set.

31.21 The nrws.properties File

In this file, that is looked for in the home directory, a few parameters can be
specified. For example,

settings.prompt=nrws>
settings.timer=on
settings.quit=unprotected

indicates that the prompt will be nrws>, and the right side of the screen shows
the command exection time instead of the frame name. Further more, the)quit
system command (see next) quits immediately instead of prompting.

31.22 The nrws.history file(s)

For easy command history retrieval (using the arrow keys) the Workspace for
NetRexx stores executed commands in a nrws.history file in the current direc-
tory. This is buy design not a user global file, but is written to (and read from)
the current directory because it is plausible that different projects call for differ-
ent command history.

117

31.23 Workspace for NetRexx System Commands

This chapter describes system commands, the command-line facilities used to
control the Workspace for NetRexx environment. The first section is an intro-
duction and discusses the common syntax of the commands available.

31.24 Introduction

System commands are used to perform Workspace for NetRexx environment
management. Among the commands are those that display what has been de-
fined or computed, set up multiple logical Workspace for NetRexx environ-
ments (frames), clear definitions, read files of expressions and command, show
what functions are available, and terminate Workspace for NetRexx.

Each command listing begins with one or more syntax pattern descriptions plus
examples of related commands. The syntax descriptions are intended to be easy
to read and do not necessarily represents the most compact way of specifying
all possible arguments and options; the descriptions may occasionally be redun-
dant.

All system commands begin with a right parenthesis which should be in the first
available column of the input line (that is, immediately after the input prompt,
if any). System commands may be issued directly to Workspace for NetRexx or
be included in .input files.

A system command argument is a word that directly follows the command
name and is not followed or preceded by a right parenthesis. A system com-
mand option follows the command and is directly preceded by a right parenthe-
sis. Options may have arguments: they directly follow the option. This example
may make it easier to remember what is an option and what is an argument:

)syscmd argl arg2)optl optlargl opt2arg2)opt2 optargl ...

In the system command descriptions, optional arguments and options are en-
closed in brackets (”[” and ”]”). If an argument or option name is in italics, it is
meant to be a variable and must have some actual value substituted for it when
the system command call is made. For example, the syntax pattern description

Jread fileName [)quietly]

would imply that you must provide an actual file name for fileName but need
not to use the)quietly option. Thus

)Jread foo.input

is a valid instance of the above pattern.

System commands names and options may be abbreviated and may be in upper
or lower case. The case of actual arguments may be significant, depending on
the particular situation (such as in file names). System command names and
options may be abbreviated to the minimum number of starting letters so that

118

the name or option is unique. Thus
)s Integer

is not a valid abbreviation for the)set command, because both)set and)show
begin with the letter ”s”. Typically, two or three letters are sufficient for disam-
biguating names. In my descriptions of the commands, I have used no abbrevi-
ations for either command names or options.
In some syntax descriptions I use a vertical line ”|”
specify one of the listed choices. For example, in

to indicate that you must

)set foobar on | off

only on and off are acceptable words for following foobar. I also sometimes use
”...” to indicate that additional arguments or options of the listed form are al-
lowed. Finally, in the syntax descriptions I may also list the syntax of related
commands.

31.25)cd

Command Syntax:

)cd
)cd directory
Command Description:

This command sets the Workspace for NetRexx working directory. The current
directory is used for looking for input files (for)read) and for writing history
input files (for)history)write).

If used with no argument, this command shows the current working directory.
If an argument is used, it must be a valid directory name. Except for the ”)” at
the beginning of the command, this has the same syntax as the operating system
cd command.

Also See: ")history’, and ")read’.

31.26)clear

Command Syntax:

Jclear all
)clear properties all
)clear properties objl [obj2 ...]

Command Description:

This command is used to remove functions and variable declarations, defini-
tions and values from the workspace. To empty the entire workspace and reset
the step counter to 1, issue

119

)clear all

To remove everything in the workspace but not reset the step counter, issue
)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and {, issue

)clear properties x y f

77 4

The word properties may be abbreviated to the single letter "p”.

)clear p all
Jclear p x
Jclear p x y £

The)display names and)display properties commands may be used to see what
is currently in the workspace.

Also See: ")display’, “)history’.

31.27)display

Command Syntax:

)display all

)display properties

)display properties all

)display properties [objl [obj2 ...]]
)display type all

)display type [objl [obj2 ...]1]
)display names

Command Description:

This command is used to display the contents of the workspace and signatures
of functions with a given name.

The command
)display names

list the names of all user-defined objects in the workspace. This is useful if you
do not wish to see everything about the objects and need only be reminded of
their names.

The commands
)display all

)display properties
)display properties all

120

all do the same thing: show the values and types of all variables in the workspace.
If you have defined functions, their signatures and definitions will also be dis-
played.

To show all information about a particular variable or user functions, for exam-
ple, something named d, issue
)display properties d

77 4

The word properties may be abbreviated to the single letter "p”.

)display p all
)display p
)display p d

To just show the declared type of d, issue

)display type d
)display t d

Also See: ")clear’, ") history’,)set’, ")show’, “ywhat'".

31.28)frame

Command Syntax:

)frame new frameName

)frame drop [frameName]

Yframe next

Yframe last

)frame names

)frame import frameName [objectNamel [objectName2 ...]]
)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that
you get when you start the system. You can have as many frames as you want,
within the limits of your computer’s storage, paging space, and so on. Each
frame has its own step number, environment and history. You can have a vari-
able named a in one frame and it will have nothing to do with anything that
might be called a in any other frame.

To find out the names of all frames, issue
)frame names

It will indicate the name of the current frame.

You can create a new frame ”quark” by issuing
)frame new quark

If you wish to go back to what you were doing in the “initial” frame, use

121

Yframe next
or
)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue
)frame drop quark

If you omit the name, the current frame is dropped.

You can bring things from another frame by using)frame import. For example,
to bring the f and g from the frame ”"quark” to the current frame, issue

)frame import quark f g
If you want everything from the frame “quark”, issue
)frame import quark

You will be asked to verify that you really want everything.
There is one)set flag to make it easier to tell were you are.

)set message prompt frame
will give a prompt that looks like
initial (1) -> _

when you start up. In this case, the frame name and step make up the prompt.
Also See: ")history’,) set’

31.29)help

Command Syntax:

)help
Yhelp commandName

Command Description:
This command displays help information about system commands. If you issue

Yhelp

a list of possible commands will be shown. You can also give the name or ab-
breviation of a system command to display information about it. For example,

Yhelp clear

will display the description of the)clear system command.

122

31.30)history

Command Syntax:

)Yhistory)on

)Yhistory)off

Yhistory)show [n]

Yhistory)write historyInputFileName

)set history on | off

)set history write protected | unprotected

Command Description:

The history facility within Workspace for NetRexx allows you to restore your
environment to that of another session and recall previous computational re-
sults. Additional commands allow you to create an .input file of the lines typed
to Workspace for NetRexx.

Workspace for NetRexx saves your input if the history facility is turned on
(which is the default). This information is saved if either of

)set history on
Yhistory)on

has been issued. Issuing either

)set history off

Yhistory)off

will discontinue the recording of information.

Each frame has its own history database.

The options to the)history commands are as follows:

)on

will start the recording of information. If the workspace is not empty, you will
be asked to confirm this request. If you do so, the workspace will be cleared and
history data will begin being saved. You can also turn the facility on by issuing
)set history on.

Joff

will stop the recording of information. The)history)show command will not
work after issuing this command. Note that this command may be issued to save
time, as there is some performance penalty paid for saving the environment
data. You can also turn the facility off by issuing)set history off.

Yshow [n]

can show previous input lines.)show will display up to twenty of the last input
lines (fewer if you haven’t typed in twenty lines).)show n will display up to n of
the last input lines.)write historyInputFile creates an .input file with the input
typed since the start of the session/frame or the last)clear all. If historyInputFile

123

1”7

does not contain a period (”.”) in the filename, .input is appended to it. For
example,)history)write chaos and)history)write chaos.input both write the
input lines to a file called chaos.input in your current working directory. You
can edit this file and then use)read to have Workspace for NetRexx process the
contents. Also See: ")frame’, ")read’, ")set’.

31.31)import

Command Syntax:

)import query
)import package packageName
)import class fullClassName
)import drop packageOrFullClassName
Command Description:
This command is used to query, set and remove imported packages.

When used with the query argument, this command may be used to list the
names of all imported packages and classes.

The following command lists all imported packages and classes.
)import query

To remove an imported package or class, the remove argument is used. This is
usually only used to correct a previous command that imported a package or a
class. If, in fact, the imported package or class does exist, you are prompted for
confirmation of the removal request. The following command will remove the
imported package com.foo.bar from the system:

)import drop com.foo.bar

Also See: ")set’

31.32)numeric

Command Syntax:

Ynumeric

ynumeric digits number

ynumeric form scientific | engineering
)set numeric digits number

)set numeric form scientific | engineering

Command Description:

(!!!'just like the numeric instruction)

124

31.33)options

Command Syntax:

)options

)Joptions)default

)Joptions option [)off]

)set option option on | off

Command Description:

This command is used to specify the options in use while interpreting state-
ments.

To list all active options, simply issue
)options To restore options to their defaults settings, issue

)Joptions)default
The possible value for option are

binary
decimal
explicit
strictargs
strictassign
strictcase
strictsignal
default :

nobinary
decimal
noexplicit
nostrictargs
nostrictassign
nostrictcase
nostrictsignal

Also See: ")set’

31.34)package

Command Syntax:

)package

)package)default

)package packageName

)set package default | packageName

Command Description:

125

(1! just like the package instruction)

31.35)pquit

Command Syntax:
)pquit

Command Description:

This command is used to terminate Workspace for NetRexx and return to the
operating system. Other than by redoing all your computations, you cannot re-
turn to Workspace for NetRexx in the same state.

)pquit differs from the)quit in that it always asks for confirmation that you

want to terminate Workspace for NetRexx (the “p” is for “protected”). When
you enter the)quit command, Workspace for NetRexx responds

7 1

Please enter “y” or “yes” if you really want to leave the interactive environment
and return to the operating system. If you respond with y or yes, Workspace for
NetRexx will terminate and return you to the operating system (or the environ-
ment from which you invoked the system). If you responded with something
other that y or yes, then Workspace for NetRexx would still be running.

Also See: ")history’, ") quit’, ")system’.

31.36)quit

Command Syntax:

Jquit
)set quit protected | unprotected
Command Description:

This command is used to terminate Workspace for NetRexx and return to the
operating system. Other than by redoing all your computations, you cannot re-
turn to Workspace for NetRexx in the same state.

)quit differs from the)pquit in that it asks for confirmation only if the command
)set quit protected

has been issued. Otherwise,)quit will make Workspace for NetRexx terminate
and return you to the operating system (or the environment from which you
invoked the system).

The default setting is)set quit protected so that)quit and)pquit behave the
same way. If you do issue

)set quit unprotected

I suggest that you do not (somehow) assign)quit to be executed when you

126

press, say, a function key.

Also See: ")history’, ") pquit’,) system’.

31.37)read

Command Syntax:

)read [fileName]

Jread [fileName] [)quiet] [)ifthere]
Command Description:
This command is used to read .input files into Workspace for NetRexx. The com-
mand

)read matrix.input

will read the contents of the file matrix.input into Workspace for NetRexx. The
”.input” file extension is optional. See Section 3.1 for more information about
.input files.

This command remembers the previous file you read. If you do not specify a
file name, the previous file will be read.

The)ifthere option checks to see whether the .input file exists. If it does not, the
)read command does nothing. If you do not use this option and the file does not
exist, you are asked to give the name of an existing .input file.

The)quiet option suppresses output while the file is being read.
Also See: ")history’

31.38)set

Command Syntax:

)set

)set labell [... labelN]

)set labell [... labelN] newValue
Command Description:

The)set command is used to view or set system variables that control what
messages are displayed, the type of output desired, the status of the history
facility, and so on.

The following arguments are possible:
)set diag on | off

enables or disables verbose reporting of some run-time errors. (Used for debug-
ging purpose.)
)set display depth depth

127

specify the maximum number of elements to display when showing an array:.
(Default value is 10.)

)set display depth
show the current display depth.
)set display level number

specify the maximum number of nested arrays to display when showing an ar-
ray. (Default value is 4.)

)set display level
show the current display level.
)set history write protected | unprotected

specify whether or not to prompt for confirmation when attempting to overwrite
an existing file with)history)write.

)set history on | off
enables or disables history.

)set import add class className
)set import add package packageName
)set import drop class className
)set import drop package packageName

adds or removes specified class or package from import list.
)set import

shows the currently imported statements.

)set interpreter on | off

set the interpreter status. If on, then valid statements will be executed. If off,
then no execution will be attempted. (Mostly used for debugging purpose, or if
you want to use Workspace for NetRexx on a pre-java2 platform.)

)set message prompt default
)set message prompt frame
)set message prompt label label

set the prompt status (frame displays the current frame name).
)set message prompt

shows the current prompt status.

)set numeric digits number

set the default numeric digits (i.e., for the current frame and all subsequent
frames).

)set numeric digits

128

shows the current default numeric digits value.
)set numeric form scientific | engineering

set the default numeric form (i.e., for the current frame and all subsequent
frames).

)set numeric form
shows the current default numeric form.
)set option option on | off

set the default activity of option option (i.e., for the current frame and all sub-
sequent frames). option being one of : binary, decimal, explicit, strictargs, stric-
tassign, strictcase, or strictsignal.

)set option option
shows the current option status.

)set package default
)set package packageName

set the current package name.
)set package

shows the current package name.
)set parser quiet | verbose

disables or enables verbose output from the parser. (Used for debugging pur-
poses.)

)set quit protected | unprotected
set the quit status.

)set quit

shows the current quit status.

)set screen width number

set the screen width (in character).
)set screen width

shows the screen width.

)set show all | declared

set the amount of information displayed by the)show command.
)set show

shows the current show status.

129

)set trace
)set trace all | off | methods | results

set the default trace level (i.e., for the current frame and all subsequent frames).

)set use add className
)set use drop className

adds or removes specified class name from use list.
)set use

shows the current use list. Also See: ")quit’, ")show’

31.39)show

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev)operations

)show nameOrAbbrev)attributes

)set show all | declared
Command Description:
This commands displays information about classes. If no options are given, the
)operations option is assumed. For example,

)show Rectangle

)show Rectangle)operations

)show java.awt.Rectangle

)show java.awt.Rectangle)operations

each display basic information about the java.awt.Rectangle class constructors
and then provide a listing of operations.

The basic information displayed includes the signature of the constructors and
the operations.

Also See: ")display’,)set’

3140)synonym

Command Syntax:

)synonym
)synonym synonym fullCommand
Jwhat synonyms
Command Description:
This command is used to create short synonyms for system command expres-

130

sions. For example, the following synonyms might simplify commands you of-
ten use.

)synonym prompt set message prompt
)synonym mail system mail
)synonym 1ls system 1s

Once defined, synonyms can be used in place of the longer command expres-
sions. Thus

Yprompt frame

is the same as the longer

)set message prompt frame

To list all defined synonym:s, issue either of

)synonym
Jwhat synonym

To list, say, all synonyms that contain the substring “ap”, issue
Jwhat synonym ap

Also See: ")set’, ‘'what’

3141)system

Command Syntax:
)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while
remaining in Workspace for NetRexx. The cmdExpression is passed to the op-
erating system for execution.

If you execute programs that misbehave you may not be able to return to
Workspace for NetRexx. If this happens, you may have no other choice than
to restart Workspace for NetRexx and restore the environment via)history)re-
store, if possible.

Also See: ") pquit’, ") quit’

31.42)trace

Command Syntax:

)trace
)Ytrace off
)trace all

131

)Ytrace methods
)trace results
)trace var [varl [var2 ...]]

Command Description:

This command is used to trace the execution of statements and functions defined
by users.

To list all currently enabled trace functions, simply issue
)trace

To untrace everything that is traced, issue

)trace off

(! to be continued, just like the trace instruction)

31.43)use

Command Syntax:

)Juse query
Juse add className
Juse drop className

Command Description:

(!!! like the uses phrase in class instruction)

3144)what

Command Syntax:

Jwhat commands patternl [pattern2 ...]
Jwhat synonym patternl [pattern2 ...]
Jwhat things patternl [pattern2 ...]
)apropos patternl [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are
all strings and, if present, restrict the contents of the lists. Only those items that
contain one or more of the strings as substrings are displayed. For example,

Jwhat synonyms
displays all command synonyms,
)what synonyms ver

displays all command synonyms containing the substring “ver”,

132

Jwhat synonyms ver pr
displays all command synonyms containing the substring “ver” or the substring
“pr”. Output similar to the following will be displayed

System Command Synonyms

user-defined synonyms satisfying patterns: ver pr

= o Jwhat things
)APTOPOS t it e e e Jwhat things
yprompt ... e)set message prompt

Several other things can be listed with the)what command:

commands displays a list of system commands available. To get a description
of a particular command, such as ”)what”, issue)help what. synonyms lists
system command synonyms. things displays all of the above types for items
containing the pattern strings as substrings. The command synonym)apropos
is equivalent to)what things. Also See: ")display’, ")set’, and ")show’

133

32

Using NetRexx for Web applets

Java Web applets are a deprecated application model, depending on web browser
plugins, and will be removed from the JDK. This chapter will be removed when
NetRexx support for Java versions that includes web applets ends. Note that,
for some time now, no mainstream web browser supports Java applets. Web
applets can be written one of two styles:

+ Lean and mean, where binary arithmetic is used, and only core Java classes
(such as java.lang.String) are used. This is recommended for World Wide
Web pages, which may be accessed by people using a slow internet connec-
tion. Several examples using this style are included in the NetRexx package

(eg., NervousTexxt.nrx or ArchText.nrx).

« Full-function, where decimal arithmetic is used, and advantage is taken of
the full power of the NetRexx runtime (Rexx) class. This is appropriate for
intranets, where most users will have fast connections to servers. An exam-
ple using this style is included in the NetRexx package (WordClock.nrx).

If you write applets which use the NetRexx runtime (or any other Java classes
that might not be on the client browser), the rest of this section may help in
setting up your Web server.

A good way of setting up an HTTP (Web) server for this is to keep all your ap-
plets in one subdirectory. You can then make the NetRexx runtime classes (that
is, the classes in the package known to the Java Virtual Machine as netrexx.lang)
available to all the applets by unzipping NetRexxR jar into a subdirectory ne-
trexx/lang below your applets directory.

For example, if the root of your server data tree is

D:\mydata
you might put your applets into
D:\mydata\applets

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the
directory

D:\mydata\applets\netrexx\lang

The same principle is applied if you have any other non-core Java packages
that you want to make available to your applets: the classes in a package called
iris.sort.quicksorts would go in a subdirectory below applets called iris/sort /quick-
sorts, for example.

134

Note that since Java 1.1 or later it is possible to use the classes direct from the
NetRexxR jar file. Please see the Java documentation for details.

135

33

Translator inner workings

This chapter includes all documentation on the inner workings of the translator
that is available. Its purpose is to assist with debugging serious problems or
ease the introduction to the toolset for programmers who want to help the open
source effort forwards.

33.1 Translator source files

The translator source is part of the package org.netrexx.process. The runtime
support, including the Rexx type, is in the package netrexx.lang.

The source files in table 3 all correspond to a specific NetRexx clause, all created
by RxParser, and all implementing RxClauseParser. Each is responsible for syn-
tax checking, semantic processing, and code generation for the corresponding
clause. RxClass and RxMethod are the critical classes. RxNop is the simplest.
Method-term instructions are currently handled in RxParser but should have a
separate class in this list.

136

TABLE 1: Translator source files

NetRexxC.nrx The 'main program’

nre.prp Error messages (becomes NetRexxC.properties resource bundle)
RxArray.nrx Parsed array reference

RxClasser.nrx The class “factory’; finds classes and packages, loads classes, finds

fields in packages, etc.

RxClassImage.nrx

Loads and parses a .class file (from zip or directory byte stream)

RxClassInfo.nrx

Known information about a class

RxClassPool.nrx

Collection of known classes (maintained by RxClasser)

RxClause.nrx

The tokens and object corresponding to a clause

RxClauseParser.nrx Interface: all clause objects implement this
RxClauser.nrx Tokenizer (lexical analysis/parse)
RxCode.nrx Represents encoded piece of program (e.g., an expression or clause).

Holds information about the source of the code, and the code itself
(currently only Java source code). At present, RxCode is only used
for terms and expressions; clauses will probably evolve to use RxCode
objects too.

RxConvert.nrx

Holds the cost and type of a conversion

RxConverter.nrx

Determines and costs a conversion/coercion, and effects a particular
conversion

RxError.nrx

Handle an Error (see also RxQuit and RxWarn)

RxException.nrx

Represents a Java exception

RxExprParser.nrx

Parse and generate RxCode for an expression

RxField.nrx

Represents a field (property or method)

RxFixup.nrx

Changes the sourcefile attribute in a .class file to point to Foo.nrx con-
stant instead of Foo.java

RxFlag.nrx

Represents option flags

RxLanguage.nrx

Language version and date, and major change list

RxLevel.nrx

Represents a level of semantic nesting. O=class, 1=method, 2 is
method body (do groups, etc.)

RxMessage.nrx

Displays/queues an error or warning message. (Offspring of RxError,
RxQuit, RxWarn)

RxPackageInfo.nrx

Describes a known package

RxParser.nrx

NetRexx-specific program/clause parser

RxProgram.nrx

Represents a compilation unit (==Program)

RxQuit.nrx

Handles severe errors (see also RxError, RxWarn)

RxSignature.nrx

Represents a type

RxStreamer.nrx

Handles input and output streams (files), including formatting of
output Java source

RxTermParser.nrx

Parses terms in expressions

RxToken.nrx

Represents a lexical token (see RxClauser)

RxTracer.nrx

Generates code for tragging of various types

RxTranslator.nrx

"top-level’ controller for parsing and compilation.

TABLE 2: Translator source files -2

RxVariable.nrx

Represents a local or class variable, and its cross-reference list

RxVarpool.nrx

Collection of known RxVariables

RxWarn.nrx

Handles Warnings

RxChunk.nrx

A chunk of Java sourcecode, destined for the output file (planned to be
replaced by RxCode objects, long term)

TABLE 3: Translator source files -3

RxAssign.nrx

handles all assignment clauses

RxCatch.nrx

RxClass.nrx

RxDo.nrx

RxElse.nrx

RxEnd.nrx

RxExit.nrx

RxFinally.nrx

RxIf.nrx

RxImport.nrx

RxIterate.nrx

RxLeave.nrx

RxLoop.nrx

RxMethod.nrx

RxNop.nrx

RxNumeric.nrx

RxOptions.nrx

RxOtherwise.nrx

RxPackage.nrx

RxParse.nrx

RxProperties.nrx

RxReturn.nrx

RxSay.nrx

RxSelect.nrx

RxSignal.nrx

RxThen.nrx

RxTrace.nrx

RxWhen.nrx

138

33.2 Method resolution

Method resolution in NetRexx proceeds as follows:

« If the method invocation is the first part (stub) of a term, then:

1.

2.

3.

The current class is searched for the method (see below for details of
searching).

If not found in the current class, then the superclasses of the current
class are searched, starting with the class that the current class extends.
If still not found, then the classes listed in the uses phrase of the class
instruction are searched for the method, which in this case must be a
static method. Each class from the list is searched for the method, and
then its superclasses are searched upwards from the class; this process
is repeated for each of the classes, in the order specified in the list.

. If still not found, the method invocation must be a constructor (see

below) and so the method name, which may be qualified by a pack-
age name, should match the name of a primitive type or a known
class (type). The specified class is then searched for a constructor that
matches the method invocation.

« If the method invocation is not the first part of the term, then the evalua-
tion of the parts of the term to the left of the method invocation will have
resulted in a value (or just a type), which will have a known type (the con-
tinuation type). Then:

1.

2.

The class that defines the continuation type is searched for the method
(see below for details of searching).

If not found in that class, then the superclasses of that class are searched,
starting with the class that that class extends. If the search did not find
a method, an error is reported. If the search did find a method, that is
the method which is invoked, except in one case:

. If the evaluation so far has resulted in a value (an object), then that

value may have a type which is a subclass of the continuation type.
If, within that subclass, there is a method that exactly overrides the
method that was found in the search, then the method in the subclass
is invoked.

This case occurs when an object is earlier assigned to a variable of a type which
is a superclass of the type of the object. This type simplification hides the real
type of the object from the language processor, though it can be determined
when the program is executed. Searching for a method in a class proceeds as

follows:

1. Candidate methods in the class are selected. To be a candidate method:
+ the method must have the same name as the method invocation (inde-

pendent of the case (see page 44) of the letters of the name)

+ the method must have the same number of arguments as the method

invocation (or more arguments, provided that the remainder are shown
as optional in the method definition)

« it must be possible to assign the result of each argument expression to

139

the type of the corresponding argument in the method definition (if
strict type checking is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the method
was not found.

3. If there is just one candidate method, that method is used; the search is
complete.

4. If there is more than one candidate method, the sum of the costs of the
conversions from the type of each argument expression to the type of the
corresponding argument defined for the method is computed for each can-
didate method.

5. The costs of those candidates (if any) whose names match the method in-
vocation exactly, including in case, are compared; if one has a lower cost
than all others, that method is used and the search is complete.

6. The costs of all the candidates are compared; if one has a lower cost than
all others, that method is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost, the
method invocation is ambiguous, and an error is reported. Note: When a
method is found in a class, superclasses of that class are not searched for
methods, even though a lower-cost method may exist in a superclass.

Note that until version 3.01 of the NetRexx translator a slightly different way
of method resolution was used. There is a very small (and almost improbable)
chance of encountering differences when recompiling very old sources.

140

Index

NetRexxA, API, P4

NetRexxA, class, 4

NetRexxC, class,

NetRexxC, scripts,

class, B4, fd, 2

Options, ﬁ

Properties, @ @ @

Rexx, 9, k1, kd, Bd, B3, B4, k3

arg, 7, Bd, g, E,@,E,E

binary, E b4, 8. 4. 4.

catch, pg-Bd, B3, B4, B3, b1, Fd-73,
EEﬂI Bd, Bd, Bd

lass, B, iid, Ld, kg, Bl, B, Bd, B2,

B9-51, B4, b1, b4, k7. 4. Fd, Fd-Bd.
B3, B4

constant, @

dependent, E1,

digits, B, E3-E3

do, p7, pd, Bd, B9, k3, kd-hd, B3, B3, E7
E_Er E' Er E_' Er E

elseVEE' E’ E' @V E' EV E' EV E'

end, B, B, b9, R7-Bd, Bd, k1-B3, B4-hd,
El E_Er Er Er Er E_Er E_@r
B3, B3, B4, Bd

exit, B4, b4, [8, B3, 303

extends, E, @, @, E, E,

finally, §ig

for, B, B3, B4,

foreveé E, @, E,

form

if, @, B, k7-Bd, Bd, B2, kd-kd, F3-d, F7
fa, f2. 3. Bd

implements, B, B4, B2, Bd, B, k4, 9
B3, B4

import EE' @r @' E E' E_E E @

indirect, E, @

inheritable, B4, b7, 4

interface, EI

leave, E E E

loop, B, B, k3, b7, B9, Bd, kd, B3, B3,
%—% B4, b5, b1, B9, b1, d-73, 7,

method, B, fid, pg-B1, Bd, B, kI, Bd-B1,
B3-B9, b4, kd, b1, [, 4. F8-a,

141

B3-Bd, Bd
nop,
numeric, E—E
options, f, b4, B3, BH,

otherwise, B3

over, E

package, E, E

parent, @

parse%@l@@@@@@@

private, pd, Bd, ki, Bd, B3B3, 3, Fd,
Bd, B4

properties, pd, B, BJ, b, B4, k3, 3

Fa-Bd. B4

protect, @, @, E,

public, E, @, E

queue E—ﬂ

return, E' Er E' @r E' Er E_E' E

returns, pg, pd, bd, BY, Bd, F3, B4, Frd

say, B, f-id, b7-B1, hi-hd, pd-kd, B1-Ed

, b1, Fd-73, 73-B1, B3-Bd. BY. B4-b3

select B3

signal, B3

signals, EEI@I B3, B3, Bd, B3

sourceline

static, fid, B9, k1, Bd, B1, B3-B9, B2, 3
74, 4. B4, Bd, Bd

super, [, B, b1,

thenr Er Er E_r E' @r @_@r E_E
b7, fd. 4, P4, Bd

this, B, p3-Bl, A1, A3, F3-Ed, B3, B3

to, B, B, B4, Bd, B4, B4, B9,

trace, B, b1, b4

until, B9, kg

upper, E

volatile, E

when, E

while, p7, B9, Bd, Z1-F3. £d. Bd, Bd

ant,

applets for the Web, writing, @,

application programming interface, for
interpreting, E

ArchText example, @, 134

binary arithmetic, used for Web applets,

kd. 34

build systems, E

command, for compiling, Eﬂ

compiling, NetRexx programs, Ea
compiling,multiple programs, Ea
compiling,options, Ej

compiling, packages, Ea

completion codes, from translator, Ez
constructor, in NetRexxA API, EE

file specifications, E
flags, [17

getClassObject method, in NetRexxA API, E

HTTP server setup, E,

interpreting, API, @
interpreting,using the NetRexxA API, @
interpreting/API example, @

NervousTexxt example, pBg,
NetRexxA/constructor, E
nrc scripts, E

option words, ﬁ

packages, compiling, E
parse method, in NetRexxA API, E
projects, compiling, @

ref /API/application programming
interface,

return codes, from translator, E

runtime/web server setup, g,

RxModel, [i4

scripts, NetRexxC, E
scripts, nrc,

using the translator, E

using the translator, as a Compiler, E
Web applets, writing, E,

Web server setup, @,

WordClock example, E,

142

ISBN 978-90-819090-0-6

97789081

909006

143

	The NetRexx Programming Series
	Introduction
	Meet the Rexx Family
	Once upon a Virtual Machine
	Once upon another Virtual Machine
	Features of NetRexx

	Learning to program
	Console Based Programs
	Comments in programs
	Strings
	Clauses
	When does a Clause End?
	Long Lines
	Loops
	Special Variables

	NetRexx as a Scripting Language
	NetRexx as an Interpreted Language
	Source Code Formatting
	RxModel
	Beyond RxModel

	Using the translator
	Using the translator as a compiler
	The translator command
	Compiling multiple programs and using packages

	Using build systems - ANT
	In-source, no packages
	With package structure

	Using the NetRexxA API
	The NetRexxA constructor
	The parse method
	The getClassObject method

	Calling non-JVM programs
	Using NetRexx classes from Java
	Classes
	Classes
	Dependent Classes
	Properties

	Using Packages
	The package statement
	Translator performance consequences
	Some NetRexx package history

	JPMS, The Java Platform Module System
	CLASSPATH

	Programming Patterns
	Singleton
	Observable and Events
	Recursive Parse
	More Observer/Observable

	Incorporating Class Libraries
	A Word About Java Generics
	The Collection Classes

	Input and Output
	The File Class
	Object Oriented I/O using Serialization
	Using the SAY instruction to write lines to a file
	Using RexxIO.forEachLine

	Algorithms in NetRexx
	Factorial
	Fibonacci

	Using Parse
	Literal Parsing
	Positional Parsing
	Variable Templates

	Using Trace
	Tracing Program Statements
	Tracing Variables
	Examples
	Tracing Notes

	Concurrency
	Threads

	Using NetRexx for Web applets
	Database Connectivity with JDBC
	WebSphere MQ
	MQTT
	Pub/Sub with MQ Telemetry

	Component Based Programming: Beans
	Interfacing to Scripting Languages
	Which JSR223 engines are on my system?
	Selecting an engine
	Evaluating a script
	Bindings
	Interpreted execution of NetRexx scripts from jrunscript
	Using JavaScript from NetRexx programs
	Using AppleScript on macOS
	Execution of NetRexx scripts from ANT tasks
	Integration of NetRexx scripting in applications
	Interfacing between ooRexx and NetRexx using BSF4ooRexx
	General jsr-223 Implementation Notes

	NetRexx Tools
	Editor support
	Java to Nrx (java2nrx)

	Using Eclipse for NetRexx Development
	Downloading Eclipse
	Setting up the workspace
	Shellshock
	Installing Git
	Downloading the NetRexx project from the Git repository
	Setting up the builds
	Using the NetRexx version of the NetRexx Ant task
	Setting up the Eclipse NetRexx Editor Plugin (Optional)

	Platform dependent issues
	Mobile Platforms
	IBM Mainframe: Using NetRexx programs in z/OS batch

	Building the NetRexx translator
	Repository
	The buildfile
	Testing

	The NetRexx Workspace - nrws
	Installation
	Starting nrws
	Exit nrws
	Exploring the NetRexx language
	Arithmetic Expressions
	Some Types
	Symbols, Variables, Assignments, and Declarations
	Conversion
	Calling Functions
	Long Lines
	Numbers
	Data Structures
	Expanding to Higher Dimensions
	Writing Your Own Functions
	A Typical Session
	Running Pipelines
	System Commands
	Input Files and NetRexx Files
	Input Files
	The workspace.input File
	The nrws.properties File
	The nrws.history file(s)
	Workspace for NetRexx System Commands
	Introduction
)cd
)clear
)display
)frame
)help
)history
)import
)numeric
)options
)package
)pquit
)quit
)read
)set
)show
)synonym
)system
)trace
)use
)what

	Using NetRexx for Web applets
	Translator inner workings
	Translator source files
	Method resolution

	Index

