
NetR
Language Reference

Mike Cowlishaw and RLA

Version 3.03 GA of June 11, 2014

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-1-3

Publication Data

©Copyright e Rexx Language Association, 2011-2014
All originalmaterial in this publication is published under theCreativeCommons - ShareAlike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

e responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of e Netherlands.

is edition is registered under ISBN 978-90-819090-1-3

9 789081 909013

ISBN 978-90-819090-1-3

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

List of Tables VIII

e NetR Programming Series i

Typographical conventions iii

1 Introduction 1

1.1 Language Objectives 1

1.2 Language Concepts 4

1.3 Acknowledgements 9

2 Introduction to the current edition 11

3 A Quick Tour of NetR 13

3.1 NetR programs 13

3.2 Expressions and variables 14

3.3 Control instructions 15

3.4 NetR arithmetic 16

3.5 Doing things with strings 17

3.6 Parsing strings 18

3.7 Indexed strings 19

3.8 Arrays 20

3.9 ings that aren’t strings 21

3.10 Extending classes 23

3.11 Tracing 24

3.12 Binary types and conversions 26

3.13 Exception and error handling 28

3.14 Summary and Information Sources 28

4 NetR Language Definition 29

5 Notations 31

III

6 Characters and Encodings 33

6.1 Character Sets 33

7 Structure and General Syntax 35

7.1 Blanks and White Space 35

7.2 Comments 35

7.3 Tokens 36

7.4 Implied semicolons and continuations 39

7.5 e case of names and symbols 40

7.6 Hexadecimal and binary numeric symbols 40

8 Types and Classes 43

8.1 Primitive types 43

8.2 Dimensioned types 44

8.3 Minor and Dependent classes 44

9 Terms 47

9.1 Simple terms 47

9.2 Compound terms 48

9.3 Evaluation of terms 48

9.4 Simple term evaluation 49

9.5 Stub evaluation 49

9.6 Continuation evaluation 51

9.7 Arrays in terms 52

10 Methods and Constructors 53

10.1 Method call instructions 54

10.2 Method resolution (search order) 54

10.3 Method overriding 56

10.4 Return Types 56

10.5 Constructor methods 57

11 Type conversions 59

11.1 Permitted automatic conversions 59

11.2 Permitted explicit conversions 61

11.3 Costs of conversions 61

12 Expressions and Operators 63

12.1 Operators 63

12.2 Numbers 67

12.3 Parentheses and operator precedence 68

IV

13 Clauses and Instructions 71

14 Assignments and Variables 73

14.1 e use and scope of variables 74

14.2 Terms on the le of assignments 76

15 Indexed strings and Arrays 77

15.1 Arrays 78

16 Keyword Instructions 81

17 Address instruction 83

18 Class instruction 85

18.1 Visibility 86

18.2 Modifier 86

18.3 Binary 87

18.4 Deprecated 87

18.5 Extends 87

18.6 Uses 88

18.7 Implements 88

19 Do instruction 89

20 Exit instruction 91

21 If instruction 93

22 Import instruction 95

23 Iterate instruction 97

24 Leave instruction 99

25 Loop instruction 101

25.1 Syntax notes: 102

25.2 Indefinite loops 102

25.3 Bounded loops 102

25.4 Label phrase 105

25.5 Protect phrase 106

25.6 Exceptions in loops 106

25.7 Programmer’s model - how a typical loop is executed 106

V

26 Method instruction 109
26.1 Arguments 110

26.2 Visibility 110

26.3 Modifier 111

26.4 Protect 112

26.5 Binary 112

26.6 Deprecated 112

26.7 Returns 113

26.8 Signals 113

26.9 Duplicate methods 113

27 Nop instruction 115

28 Numeric instruction 117

29 Options instruction 119

30 Package instruction 123

31 Parse instruction 125

32 Properties instruction 127
32.1 Visibility 128

32.2 Modifier 128

32.3 Deprecated 128

32.4 Unused 129

32.5 Properties in interface classes 129

33 Return instruction 131

34 Say instruction 133

35 Select instruction 135
35.1 Label phrase 136

35.2 Protect phrase 136

35.3 Case phrase 137

35.4 Exceptions in select constructs 138

36 Signal instruction 139

37 Trace instruction 141
37.1 Tracing clauses 142

37.2 Tracing variables 142

37.3 e format of trace output 143

VI

38 Program structure 147

38.1 Program defaults 148

39 Minor and Dependent classes 151

39.1 Minor classes 151

39.2 Dependent classes 152

39.3 Restrictions 154

40 Special names and methods 155

40.1 Special names 155

40.2 Special methods 157

41 Parsing templates 159

41.1 Introduction to parsing 159

41.2 Parsing definition 161

42 Numbers and Arithmetic 167

42.1 Introduction 167

42.2 Definition 168

43 Binary values and operations 177

43.1 Operations in binary classes and methods 177

43.2 Binary constructors 179

44 Exceptions 181

44.1 Syntax and example 182

44.2 Exceptions aer catch and finally clauses 183

44.3 Checked exceptions 183

45 Methods for NetR strings 185

45.1 General notes on the built-in methods: 185

45.2 e built-in methods 186

46 Appendix A - A Sample NetR Program 203

47 Appendix B - JavaBean Support 205

47.1 Indirect properties 205

VII

48 Appendix C - e netrexx.lang Package 209

48.1 Exception classes 209

48.2 e R class 210

48.3 R constructors 210

48.4 R arithmetic methods 211

48.5 R miscellaneous methods 214

48.6 e ROperators interface class 215

48.7 e RSet class 215

List of Figures 219

Index 221

VIII

List of Tables

1 Escape sequences 37

2 Concatenation operators 64

3 Arithmetic operators 64

4 Normal comparative operators 65

5 Strict comparative operators 65

6 Boolean operators 66

7 Operator precedence 68

8 Trace identifier tags 144

IX

e NetR Programming Series

is book is part of a library, the NetR Programming Series, documenting the
NetR programming language and its use and applications. is section lists the
other publications in this series, and their roles. ese books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide is guide is meant for an audience that has done some pro-
gramming and wants to start quickly. It starts with a quick
tour of the language, and a section on installing the NetR
translator and how to run it. It also contains help for trou-
bleshooting if anything in the installation does not work as
designed, and states current limits and restrictions of the
open source reference implementation.

Programming Guide e Programming Guide is the one manual that at the same
time teaches programming, shows lots of examples as they
occur in the real world, and explains about the internals of
the translator and how to interface with it.

Language Reference Referred to as the NRL, this is the formal definition for the
language, documenting its syntax and semantics, and pre-
scribing minimal functionality for language implementors.
It is the definitive answer to any question on the language,
and as such, is subject to approval of the NetR Architec-
ture Review Board on any release of the language (including
its NRL).

NJPipes Reference e Data Flow oriented companion to NetR, with its
CMSPipes compatible syntax, is documented in thismanual.
It discusses installing and running Pipes for NetR, and
has ample examples of defining your own stages in NetR.

i

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the con-

sole, are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing
1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� �
�

�visibility

�

�
�modifier

�

�
�deprecated

�� �

�

�
�unused

�� �

�

iii

1

Introduction

NetR is a general-purpose programming language inspired by two very different
programming languages, R™ and Java™. It is designed for people, not computers. In
this respect it follows R closely, with many of the concepts and most of the syn-
tax taken directly from R or its object-oriented version, Object R. From Java it
derives static typing, binary arithmetic, the object model, and exception handling. e
resulting language not only provides the scripting capabilities and decimal arithmetic
of R, but also seamlessly extends to large application development with fast binary
arithmetic.
e open source reference implementation (version 3 and later) of NetR produces
classes for the Java Virtual Machine, and in so doing demonstrates the value of that con-
crete interface between language and machine: NetR classes and Java classes are
entirely equivalent – NetR can use any Java class (and vice versa) and inherits the
portability and robustness of the Java environment.
is document is in three parts:

1. e objectives of the NetR language and the concepts underlying its design,
and acknowledgements.

2. An overview and introduction to the NetR language.
3. e definition of the language.

Appendices include a sample NetR program, a description of an experimental fea-
ture, and some details of the contents of the netrexx.lang package.

1.1 Language Objectives

is document describes a programming language, called NetR, which is derived
from both R and Java. NetR is intended as a dialect of R that can be as ef-
ficient and portable as languages such as Java, while preserving the low threshold to
learning and the ease of use of the original R language.

1.1.1 Features of R

e R programming language1 was designed with just one objective: to make pro-
gramming easier than it was before.e design achieved this by emphasizing readability
and usability, with a minimum of special notations and restrictions. It was consciously

1Cowlishaw, M. F., e REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.

1

designed to make life easier for its users, rather than for its implementers. One impor-
tant feature of R syntax is keyword safety. Programming languages invariably need
to evolve over time as the needs and expectations of their users change, so this is an
essential requirement for languages that are intended to be executed from source.
Keywords in R are not globally reserved but are recognized only in context. is
language attribute has allowed the language to be extended substantially over the years
without invalidating existing programs. Even so, some areas of R have proved dif-
ficult to extend – for example, keywords are reserved within instructions such as do.
erefore, the design for NetR takes the concept of keyword safety even further than
in R, and also improves extensibility in other areas.
e great strengths of R are its human-oriented features, including
. simplicity. coherent and uncluttered syntax. comprehensive stringhandling. case-insensitivity. arbitrary precision decimal arithmetic.

Care has been taken to preserve these. Conversely, its interpretive nature has always
entailed a lack of efficiency: excellent R compilers do exist, from IBM and other
companies, but cannot offer the full speed of statically-scoped languages such as C2 or
Java3.

1.1.2 Influence of Java

e system-independent design of Rmakes it an obvious and natural fit to a system-
independent execution environment such as that provided by the Java Virtual Machine
(JVM).e JVM, especially when enhanced with “just-in-time” bytecode compilers that
compile bytecodes into native code just before execution, offers an effective and attractive
target environment for a language like R.
Choosing the JVM as a target environment does, however, place significant constraints
on the design of a language suitable for that environment. For example, the semantics of
method invocation are in several ways determined by the environment rather than by
the source language, and, to a large extent, the object model (class structure, etc.) of the
Java environment is imposed on languages that use it.
Also, Java maintains the C concept of primitive datatypes; types (such as int, a 32-bit
signed integer) which allow efficient use of the underlying hardware yet do not describe
true objects. ese types are pervasive in classes and interfaces written in the Java lan-
guage; any language intending to use Java classes effectively must provide access to these
types.
Equally, the exception (error handling)model of Java is pervasive, to the extent thatmeth-
ods must check certain exceptions and declare those that are not handled within the
method. is makes it difficult to fit an alternative exception model.

2Kernighan, B. W., and Ritchie, D. M., e C Programming Language (second edition), ISBN 0-13-110362-8, Prentice- Hall,
1988.

3Gosling, J. A., et al. e Java Language Specification, ISBN 0-201-63451-1, Addison-Wesley, 1996.

2

e constraints of safety, efficiency, and environment necessitated that NetR would
have to differ in some details of syntax and semantics from R; unlike Object R,
it could not be a fully upwards-compatible extension of the language4. e need for
changes, however, offered the opportunity to make some significant simplifications and
enhancements to the language, both to improve its keyword safety and to strengthen
other features of the original R design5. Some additions fromObject R andANSI
R6 are also included.
Similarly, the concepts and philosophy of the R design can profitably be applied to
avoid many of the minor irregularities that characterize the C and Java language fam-
ily, by providing suitable simplifications in the programming model. For example, the
NetR looping construct has only one form, rather than three, and exception handling
can be applied to all blocks rather than requiring an extra construct. Also, as in R,
all NetR storage allocation and de-allocation is implicit – an explicit new operator
is not required.
Further, the human-oriented design features of R (case-insensitivity for identifiers,
type deduction from context, automatic conversions where safe, tracing, and a strong
emphasis on string representations of common values and numbers) make program-
ming for the Java environment especially easy in NetR.

1.1.3 A hybrid or a whole?

As in other mixtures, not all blends are a success; when first designing NetR, it was
not at all obvious whether the new language would be an improvement on its parents,
or would simply reflect the worst features of both.
e fulcrum of the design is perhaps the way in which datatyping is automated with-
out losing the static typing supported by Java. Typing in NetR is most apparent at
interfaces – where it provides most value – but within methods it is subservient and
does not obscure algorithms. A simple concept, binary classes, also lets the programmer
choose between robust decimal arithmetic and less safe (but faster) binary arithmetic
for advanced programming where performance is a primary consideration.
e “seamless” integration of types into what was previously an essentially typeless lan-
guage does seem to have been a success, offering the advantages of strong typing while
preserving the ease of use and speed of development that R programmers have en-
joyed.
e end result of adding Java typing capabilities to the R language is a single language
that has both the R strengths for scripting and for writing macros for applications
and the Java strengths of robustness, good efficiency, portability, and security for appli-
cation development.

4Nash, S. C.,Object-OrientedREXX in Goldberg, G, and Smith, P. H. III,eRHandbook, pp115-125, ISBN 0-07-023682-
8, McGraw-Hill, Inc., New York, 1992.

5See Cowlishaw, M. F., e Early History of REXX, IEEE Annals of the History of Computing, ISSN 1058-6180, Vol 16, No.
4, Winter 1994, pp15-24, and Cowlishaw, M. F., e Future of R, Proceedings of Winter 1993 Meeting/SHARE 80, Volume II,
p.2709, SHARE Inc., Chicago, 1993.

6See American National Standard for Information Technology – Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

3

1.2 Language Concepts

As described in the last section, NetR was created by applying the philosophy of the
R language to the semantics required for programming the Java Virtual Machine
(JVM). Despite the assumption that the JVM is a “target environment” for NetR, it is
intended that the language not be environment-dependent; the essentials of the language
do not depend on the JVM. Environment- dependent details, such as the primitive types
supported, are not part of the language specification.
e primary concepts of R have been described before, in e R Language, but
it is worth repeating them and also indicating where modifications and additions have
been necessary to support the concepts of statically-typed and object-oriented environ-
ments. e remainder of this section is therefore a summary of the principal concepts
of NetR.

1.2.1 Readability

One concept was central to the evolution of R syntax, and hence NetR syntax:
readability (used here in the sense of perceived legibility). Readability in this sense is a
somewhat subjective quality, but the general principle followed is that the tokens which
form a program can be written much as one might write them in Western European
languages (English, French, and so forth). Although NetR is more formal than a
natural language, its syntax is lexically similar to everyday text.
e structure of the syntax means that the language is readily adapted to a variety of
programming styles and layouts. is helps satisfy user preferences and allows a lexical
familiarity that also increases readability. Good readability leads to enhanced under-
standability, thus yielding fewer errors both while writing a program and while reading
it for information, debugging, or maintenance.
Important factors here are:

1. Punctuation and other special notations are required only when absolutely nec-
essary to remove ambiguity (though punctuation may oen be added according
to personal preference, so long as it is syntactically correct). Where notations are
used, they follow established conventions.

2. e language is essentially case-insensitive. A NetR programmer may choose
a style of use of uppercase and lowercase letters that he or she finds most helpful
(rather than a style chosen by some other programmer).

3. e classical constructs of structured and object-oriented programming are avail-
able inNetR, and can undoubtedly lead to programs that are easier to read than
they might otherwise be. e simplicity and small number of constructs also make
NetR an excellent language for teaching the concepts of good structure.

4. Loose binding between the physical lines in a program and the syntax of the lan-
guage ensures that even though programs are affected by line ends, they are not
irrevocably so. A clause may be spread over several lines or put on just one line;
this flexibility helps a programmer lay out the program in the style felt to be most
readable.

4

1.2.2 Natural data typing and decimal arithmetic

“Strong typing”, in which the values that a variable may take are tightly constrained, has
been an attribute of some languages formany years.e greatest advantage of strong typ-
ing is for the interfaces between program modules, where errors are easy to introduce
and difficult to catch. Errors within modules that would be detected by strong typing
(and which would not be detected from context) are much rarer, certainly when com-
pared with design errors, and in the majority of cases do not justify the added program
complexity.
NetR, therefore, treats types as unobtrusively as possible, with a simple syntax for
type description which makes it easy to make types explicit at interfaces (for example,
when describing the arguments to methods).
By default, common values (identifiers, numbers, and so on) are described in the form
of the symbolic notation (strings of characters) that a user would normally write to rep-
resent those values. is natural datatype for values also supports decimal arithmetic
for numbers, so, from the user’s perspective, numbers look like and are manipulated as
strings, just as they would be in everyday use on paper.
When dealing with values in this way, no internal or machine representation of charac-
ters or numbers is exposed in the language, and so the need for many data types is re-
duced. ere are, for example, no fundamentally different concepts of integer and real;
there is just the single concept of number. e results of all operations have a defined
symbolic representation, and will therefore act consistently and predictably for every
correct implementation.
is concept also underlies the BASIC7 language; indeed, Kemeny and Kurtz’s vision for
BASIC included many of the fundamental principles that inspired R. For example,
omas E. Kurtz wrote:

“Regarding variable types, we felt that a distinction between ‘fixed’ and ‘floating’ was less justified in 1964
than earlier ... to our potential audience the distinction between an integer number and a non-integer
number would seem esoteric. A number is a number is a number.”8

For R, intended as a scripting language, this approachwas ideal; symbolic operations
were all that were necessary.
For NetR, however, it is recognized that for some applications it is necessary to take
full advantage of the performance of the underlying environment, and so the language
allows for the use and specification of binary arithmetic and types, if available. A very
simple mechanism (declaring a class or method to be binary) is provided to indicate to
the language processor that binary arithmetic and types are to be used where applicable.
In this case, as in other languages, extra care has to be taken by the programmer to avoid
exceeding limits of number size and so on.

7Kemeny, J. G. and Kurtz, T. E., BASIC programming, John Wiley & Sons Inc., New York, 1967.
8Kurtz, T. E., BASIC in Wexelblat, R. L. (Ed), History of Programming Languages, ISBN 0-12-745040-8, Academic Press, New

York 1981.

5

1.2.3 Emphasis on symbolic manipulation

Many values that NetR manipulates are (from the user’s point of view, at least) in
the form of strings of characters. Productivity is greatly enhanced if these strings can be
handled as easily as manipulating words on a page or in a text editor. NetR therefore
has a rich set of charactermanipulation operators andmethods, which operate on values
of type Rexx (the name of the class of NetR strings).
Concatenation, the most common string operation, is treated specially in NetR. In
addition to a conventional concatenate operator (“||”), the novel blank operator from
R concatenates two data strings together with a blank in between. Furthermore, if
two syntactically distinct terms (such as a string and a variable name) are abutted, then
the data strings are concatenated directly.ese operatorsmake it especially easy to build
up complex character strings, andmay at any time be combinedwith the other operators.
For example, the say instruction consists of the keyword say followed by any expression.
In this instance of the instruction, if the variable n has the value “6” then

say ’Sorry,’ n*100/50’% were rejected’

would display the string

Sorry, 12% were rejected

Concatenation has a lower priority than the arithmetic operators. e order of evalu-
ation of the expression is therefore first the multiplication, then the division, then the
concatenate-with-blank, and finally the direct concatenation. Since the concatenation
operators are distinct from the arithmetic operators, very natural coercion (automatic
conversion) between numbers and character strings is possible. Further, explicit type-
casting (conversion of types) is effected by the same operators, at the same priority, mak-
ing for a very natural and consistent syntax for changing the types of results. For example,

i=int 100/7

would calculate the result of 100 divided by 7, convert that result to an integer (assuming
int describes an integer type) and then assign it to the variable i.

1.2.4 Nothing to declare

Consistent with the philosophy of simplicity, NetR does not require that variables
withinmethods be declared before use. Only the properties9 of classes – whichmay form
part of their interface to other classes – need be listed formally.
Within methods, the type of variables is deduced statically from context, which saves
the programmer the menial task of stating the type explicitly. Of course, if preferred,
variables may be listed and assigned a type at the start of each method.

9Class variables and instance variables.

6

1.2.5 Environment independence

e core NetR language is independent of both operating systems and hardware.
NetR programs, though, must be able to interact with their environment, which
implies some dependence on that environment (for example, binary representations of
numbersmay be required). Certain areas of the language are therefore described as being
defined by the environment.
Where environment-independence is defined, however, there may be a loss of efficiency
– though this can usually be justified in view of the simplicity and portability gained.
As an example, character string comparison inNetR is normally independent of case
and of leading and trailing blanks. (e string “ Yes ” means the same as “yes” in most
applications.) However, the influence of underlying hardware has oen subtly affected
this kind of design decision, so that many languages only allow trailing blanks but not
leading blanks, and insist on exact case matching. By contrast, NetR provides the
human-oriented relaxed comparison for strings as default, with optional “strict com-
parison” operators.

1.2.6 Limited span syntactic units

e fundamental unit of syntax in the NetR language is the clause, which is a piece
of program text terminated by a semicolon (usually implied by the end of a line). e
span of syntactic units is therefore small, usually one line or less. is means that the
syntax parser in the language processor can rapidly detect and locate errors, which in
turn means that error messages can be both precise and concise.
It is difficult to provide good diagnostics for languages (such as Pascal and its derivatives)
that have large fundamental syntactic units. For these languages, a small error can oen
have amajor or distributed effect on the parser, which can lead tomultiple errormessages
or even misleading error messages.

1.2.7 Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool must,
above all, be reliable. In the case of a language this means that it should do what the user
expects. User expectations are generally based on prior experience, including the use of
various programming and natural languages, and on the human ability to abstract and
generalize.
It is difficult to define exactly how to meet user expectations, but it helps to ask the
question “Could there be a high astonishment factor associated with this feature?”. If a
feature, accidentally misused, gives apparently unpredictable results, then it has a high
astonishment factor and is therefore undesirable.
Another important attribute of a reliable soware tool is consistency. A consistent lan-
guage is by definition predictable and is oen elegant. e danger here is to assume that
because a rule is consistent and easily described, it is therefore simple to understand. Un-
fortunately, some of the most elegant rules can lead to effects that are completely alien
to the intuition and expectations of a user who, aer all, is human.

7

ese constraints make programming language design more of an art than a science, if
the usability of the language is a primary goal. e problems are further compounded
for NetR because the language is suitable for both scripting (where rapid develop-
ment and ease of use are paramount) and for application development (where some pro-
grammers prefer extensive checking and redundant coding). ese conflicting goals are
balanced in NetR by providing automatic handling of many tasks (such as conver-
sions between different representations of strings and numbers) yet allowing for “strict”
options which, for example, may require that all types be explicit, identifiers be identical
in case as well as spelling, and so on.

1.2.8 Be adaptable

Wherever possible NetR allows for the extension of instructions and other language
constructs, building on the experience gained with R. For example, there is a useful
set of common characters available for future use, since only small set is used for the few
special notations in the language.
Similarly, the rules for keyword recognition allow instructions to be added whenever re-
quired without compromising the integrity of existing programs. ere are no reserved
keywords in NetR; variable names chosen by a programmer always take precedence
over recognition of keywords. is ensures that NetR programs may safely be exe-
cuted, from source, at a time or place remote from their original writing – even if in the
meantime new keywords have been added to the language.
A language needs to be adaptable because it certainly will be used for applications not fore-
seen by the designer. Like all programming languages, NetR may (indeed, probably
will) prove inadequate for certain future applications; room for expansion and change is
included to make the language more adaptable and robust.

1.2.9 Keep the language small

NetR is designed as a small language. It is not the sum of all the features of R and
of Java; rather, unnecessary features have been omitted. e intention has been to keep
the language as small as possible, so that users can rapidly grasp most of the language.
is means that:

. the language appears less formidable to the new user. documentation is smaller and simpler. the experienced user can be aware of all the abilities of the language, and so has the
whole tool at his or her disposal. there are few exceptions, special cases, or rarely used embellishments. the language is easier to implement.

Many languages have accreted “neat” features which make certain algorithms easier to
express; analysis shows that many of these are rarely used. As a rough rule-of-thumb,
features that simply provided alternative ways of writing code were added to R and
NetRonly if theywere likely to be usedmore oen thanonce in five thousand clauses.

8

1.2.10 No defined size or shape limits

e language does not define limits on the size or shape of any of its tokens or data (al-
though there may be implementation restrictions). It does, however, define a few min-
imum requirements that must be satisfied by an implementation. Wherever an imple-
mentation restriction has to be applied, it is recommended that it should be of such a
magnitude that few (if any) users will be affected.
Where arbitrary implementation limits are necessary, the language requires that the im-
plementer use familiar and memorable decimal values for the limits. For example 250
would be used in preference to 255, 500 to 512, and so on.

1.3 Acknowledgements

Much of NetR is based on earlier work, and I am indebted to the hundreds of people
who contributed to the development of R, Object R, and Java.
In the 1990s I gained many insights from the deliberations of the members of the X3J18
technical committee, which, under the remarkable chairmanship of Brian Marks, led to
the 1996ANSI Standard for R.Many of the committee’s suggestions are incorporated
in NetR.
Equally important have been the comments and feedback from the pioneering users of
NetR, and all those people who sent me comments on the language either directly or
in the NetR mailing list or forum. I would especially like to thank Ian Brackenbury,
Barry Feigenbaum, Davis Foulger, Norio Furukawa, Dion Gillard, Martin Lafaix, Max
Marsiglietti, and Trevor Turton for their insightful comments and encouragement.
I also thank IBM;my appointment as an IBMFellowmade it possible tomake the imple-
mentation of NetR a reality in months rather than years. IBM has also donated the
NetR implementation to the R Language Association, with special thanks due
to Matthew Emmons for piloting NetR through the convoluted legal and other pro-
cesses, and to René Jansen for massaging the NetR reference implementation into
shape for its Open Source release.
Finally, this document has relied on old but trusted technology for its creation: its GML
markup was processed using macros originally written by Bob O’Hara, and formatted
using SCRIPT/VS, the IBM Document Composition Facility. Geoff Bartlett provided
critical advice on character sets and fonts for the NetR book. is version uses a set
of R programs to translate that same GML markup to OpenOffice Document Text
format (XML files).

Mike Cowlishaw, 1997 and 2009

9

2

Introduction to the current edition

Aer the open sourcing of the NetR reference implementation in 2011 the RLA
NetR ARB (Architecture Review Board), in which Mike Cowlishaw takes part as
Language Architect, took responsibility for the definition of the language. 3.00Starting from
version 3.00, changes in the language definition10 in this publication will bemarked with
the introducing release number, in the form of a margin note.
For this version of the NetR Language Reference, a NetR program was used
to translate the original GML markup to X ELATEX. is edition describes the 3.03 GA
version of the language and supercedes all earlier versions.

René Vincent Jansen, June 11, 2014

10is publication is traditionally known as NRL, short for NetRexx Language Definition. is title however, has (for reasons of
clarity for new users) been changed in the filename of the PDF version of the book in favour of a longer and more descriptive name.

11

3

A Quick Tour of NetR

is chapter summarizes the main features of NetR, and is intended to help you
start using it quickly. It is assumed that you have some knowledge of programming in a
language such as Rexx, C, BASIC, or Java, but extensive experience with programming
is not needed.
is is not a complete tutorial, though – think of it more as a taster; it covers the main
points of the language and shows some examples you can try or modify. For full details
of the language, consult the NetR Programmer’s Guide and the NetR Language
Definition documents.

3.1 NetR programs

e structure of a NetR program is extremely simple. is sample program, “toast”,
is complete, documented, and executable as it stands:

Listing 3.1: Toast
1 /* This wishes you the best of health. */
2 say 'Cheers!'

is program consists of two lines: the first is an optional comment that describes the
purpose of the program, and the second is a say instruction. say simply displays the
result of the expression following it – in this case just a literal string (you can use either
single or double quotes around strings, as you prefer). To run this program using the
reference implementation of NetR, create a file called toast.nrx and copy or paste
the two lines above into it. You can then use the NetRC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:

java toast

You may also be able to use the netrexxc or nrc command to compile and run the pro-
gram with a single command (details may vary – see the installation and user’s guide
document for your implementation of NetR):

netrexxc toast –run

Of course, NetR can do more than just display a character string. Although the lan-
guage has a simple syntax, and has a small number of instruction types, it is powerful;
the reference implementation of the language allows full access to the rapidly grow-

13

ing collection of Java programs known as class libraries, and allows new class libraries
to be written in NetR. e rest of this overview introduces most of the features of
NetR. Since the economy, power, and clarity of expression in NetR is best ap-
preciated with use, you are urged to try using the language yourself.

3.2 Expressions and variables

Like say in the “toast” example, many instructions in NetR include expressions that
will be evaluated. NetR provides arithmetic operators (including integer division,
remainder, and power operators), several concatenation operators, comparison oper-
ators, and logical operators. ese can be used in any combination within a NetR
expression (provided, of course, that the data values are valid for those operations).
All the operators act upon strings of characters (known as NetR strings), which may
be of any length (typically limited only by the amount of storage available). Quotes (ei-
ther single or double) are used to indicate literal strings, and are optional if the literal
string is just a number. For example, the expressions:

’2’ + ’3’
’2’ + 3
2 + 3

would all result in ’5’.
e results of expressions are oen assigned to variables, using a conventional assign-
ment syntax:

Listing 3.2: Assignment
1 var1=5 /* sets var1 to '5' */
2 var2=(var1+2)*10 /* sets var2 to '70' */

You can write the names of variables (and keywords) in whatever mixture of uppercase
and lowercase that you prefer; the language is not case-sensitive. is next sample pro-
gram, “greet”, shows expressions used in various ways:

Listing 3.3: Greet
1 /* A short program to greet you. */
2 /* First display a prompt: */
3 say 'Please type your name and then press ENTER:'
4 answer=ask /* Get the reply into ANSWER */
5

6 /* If nothing was typed, then use a fixed greeting, */
7 /* otherwise echo the name politely. */
8 if answer='' then say 'Hello Stranger!'
9 else say 'Hello' answer'!'

Aer displaying a prompt, the program reads a line of text from the user (“ask” is a
keyword provided by NetR) and assigns it to the variable answer. is is then tested
to see if any characters were entered, and different actions are taken accordingly; for
example, if the user typed “Fred” in response to the prompt, then the program would
display:

Hello Fred!

14

As you see, the expression on the last say (display) instruction concatenated the string
“Hello” to the value of variable answer with a blank in between them (the blank is here
a valid operator, meaning “concatenate with blank”). e string “!” is then directly con-
catenated to the result built up so far. ese unobtrusive operators (the blank operator
and abuttal) for concatenation are very natural and easy to use, and make building text
strings simple and clear.
e layout of instructions is very flexible. In the “greet” example, for instance, the if
instruction could be laid out in a number of ways, according to personal preference.
Line breaks can be added at either side of the then (or following the else).
In general, instructions are ended by the end of a line. To continue a instruction to a
following line, you can use a hyphen (minus sign) just as in English:

Listing 3.4: Continuation
1 say 'Here we have an expression that is quite long,' –
2 'so it is split over two lines'

is acts as though the two lines were all on one line, with the hyphen and any blanks
around it being replaced by a single blank. e net result is two strings concatenated
together (with a blank in between) and then displayed. When desired, multiple instruc-
tions can be placed on one line with the aid of the semicolon separator:

Listing 3.5: Multiple Instructions
1 if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is
convenient).

3.3 Control instructions

NetR provides a selection of control instructions, whose form was chosen for read-
ability and similarity to natural languages. e control instructions include if... then...
else (as in the “greet” example) for simple conditional processing:

Listing 3.6: Conditional
1 if ask='Yes' then say "You answered Yes"
2 else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

Listing 3.7: select - when - otherwise
1 select
2 when a>0 then say 'greater than zero'
3 when a<0 then say 'less than zero'
4 otherwise say 'zero'
5 end
6 select case i+1
7 when 1 then say 'one'
8 when 1+1 then say 'two'
9 when 3, 4, 5 then say 'many'

10 end

15

do... end for grouping:

Listing 3.8: do - end
1 if a>3 then do
2 say 'A is greater than 3; it will be set to zero'
3 a=0
4 end

and loop... end for repetition:

Listing 3.9: loop - end
1 /* repeat 10 times; I changes from 1 to 10 */
2 loop i=1 to 10
3 say i end i

e loop instruction can be used to step a variable to some limit, by some increment,
for a specified number of iterations, and while or until some condition is satisfied. loop
forever is also provided, and loop over can be used to work through a collection of
variables.
Loop execution may be modified by leave and iterate instructions that significantly re-
duce the complexity of many programs. e select, do, and loop constructs also have
the ability to “catch” exceptions (see 3.13 on page 28.) that occur in the body of the
construct. All three, too, can specify a finally instruction which introduces instructions
which are to be executed when control leaves the construct, regardless of how the con-
struct is ended.

3.4 NetR arithmetic

Character strings in NetR are commonly used for arithmetic (assuming, of course,
that they represent numbers).e string representation of numbers can include integers,
decimal notation, and exponential notation; they are all treated the same way. Here are
a few:

’1234’
’12.03’
’–12’
’120e+7’

e arithmetic operations in NetR are designed for people rather than machines,
so are decimal rather than binary, do not overflow at certain values, and follow the rules
that people use for arithmetic.eoperations are completely defined by theANSIX3.274
standard for Rexx, so correct implementations always give the same results. An unusual
feature of NetR arithmetic is the numeric instruction: this may be used to select the
arbitrary precision of calculations. Youmay calculate to whatever precision that you wish
(for financial calculations, perhaps), limited only by available memory. For example:

Listing 3.10: Digits
1 numeric digits 50
2 say 1/7

which would display
16

0.14285714285714285714285714285714285714285714285714

e numeric precision can be set for an entire program, or be adjusted at will within
the program. e numeric instruction can also be used to select the notation (scientific
or engineering) used for numbers in exponential format. NetR also provides simple
access to the native binary arithmetic of computers. Using binary arithmetic offers many
opportunities for errors, but is useful when performance is paramount. You select binary
arithmetic by adding the instruction:

options binary

at the top of a NetR program. e language processor will then use binary arith-
metic (see page 26) instead of NetR decimal arithmetic for calculations, if it can,
throughout the program.

3.5 Doing things with strings

A character string is the fundamental datatype of NetR, and so, as you might expect,
NetR provides many useful routines for manipulating strings. ese are based on
the functions of Rexx, but use a syntax that is more like Java or other similar languages:

Listing 3.11: Strings
1 phrase='Now is the time for a party'
2 say phrase.word(7).pos('r')

e second line here can be read from le to right as:
take the variable phrase, find the seventh word, and then find the position of the first “r” in that word.

is would display “3” in this case, because “r” is the third character in “party”.
(In Rexx, the second line above would have been written using nested function calls:

Listing 3.12: Rexx: Nested
1 say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from right
to le to work out exactly what’s going on.)
In the NetR syntax, at each point in the sequence of operations some routine is act-
ing on the result of what has gone before. ese routines are called methods, to make
the distinction from functions (which act in isolation). NetR provides (as methods)
most of the functions that were evolved for Rexx, including:
. changestr (change all occurrences of a substring to another). copies (make multiple copies of a string). lastpos (find rightmost occurrence). left and right (return lemost/rightmost character(s)). pos and wordpos (find the position of string or a word in a string). reverse (swap end-to-end). space (pad between words with fixed spacing)

17

. strip (remove leading and/or trailing white space). verify (check the contents of a string for selected characters). word, wordindex, wordlength, and words (work with words).

ese and the others like them, and the parsing described in the next section, make it
especially easy to process text with NetR.

3.6 Parsing strings

eprevious section described some of the string-handling facilities available; NetR
also provides string parsing, which is an easy way of breaking up strings of characters
using simple pattern matching.
A parse instruction first specifies the string to be parsed. is can be any term, but is
oen taken simply from a variable. e term is followed by a template which describes
how the string is to be split up, and where the pieces are to be put.

3.6.1 Parsing into words

e simplest form of parsing template consists of a list of variable names. e string
being parsed is split up into words (sequences of characters separated by blanks), and
each word from the string is assigned (copied) to the next variable in turn, from le to
right. e final variable is treated specially in that it will be assigned a copy of whatever
is le of the original string and may therefore contain several words. For example, in:

Listing 3.13: Parsing Strings
1 parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “is”, v2 would be assigned the value “is”,
and v3 would be assigned the value “a sentence.”.

3.6.2 Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

Listing 3.14: Parse
1 parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each
section is then treated in just the same way as the whole string was in the previous ex-
ample.
us, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and
“not”, and w4 would be assigned the remainder: “to be?”. Note that the pattern itself is
not assigned to any variable. e pattern may be specified as a variable, by putting the
variable name in parentheses. e following instructions:

Listing 3.15: Parse with comma

18

1 comma=','
2 parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

3.6.3 Positional patterns

e third kind of parsing mechanism is the numeric positional pattern. is allows
strings to be parsed using column positions.

3.7 Indexed strings

NetR provides indexed strings, adapted from the compound variables of Rexx. In-
dexed strings form a powerful “associative lookup”, or dictionary, mechanism which can
be used with a convenient and simple syntax.
NetR string variables can be referred to simply by name, or also by their name qual-
ified by another string (the index). When an index is used, a value associated with that
index is either set:

Listing 3.16: Index
1 fred=0 –– initial value
2 fred[3]='abc' ––indexed value

or retrieved:

Listing 3.17: Retrieving
1 say fred[3] ––would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index has not
been used to set a value. For example, the program:

Listing 3.18: Woof
1 bark='woof'
2 bark['pup']='yap'
3 bark['bulldog']='grrrrr'
4 say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used
inside the brackets; the resulting string is used as the index. Multiple dimensions may
be used, if required:

Listing 3.19: Multiple Dimensions
1 bark='woof'
2 bark['spaniel', 'brown']='ruff'
3 bark['bulldog']='grrrrr'
4 animal='dog'
5 say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

19

which would display

ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a function
(called a static method in NetR) that removes all duplicate words from a string of
words:
Listing 3.20: justonetest.nrx

1 /* justonetest.nrx ––test the justone function. */
2 say justone('to be or not to be') /* simple testcase */
3 exit
4 /* This removes duplicate words from a string, and */
5 /* shows the use of a variable (HADWORD) which is */
6 /* indexed by arbitrary data (words). */
7 method justone(wordlist) static
8 hadword=0 /* show all possible words as new */
9 outlist='' /* initialize the output list */

10 loop while wordlist\='' /* loop while we have data */
11 /* split WORDLIST into first word and residue */
12 parse wordlist word wordlist
13 if hadword[word] then iterate /* loop if had word */
14 hadword[word]=1 /* remember we have had this word */
15 outlist=outlist word /* add word to output list */
16 end
17 return outlist /* finally return the result */

Running this program would display just the four words “to”, “be”, “or”, and “not”.

3.8 Arrays

NetR also supports fixed-size arrays. ese are an ordered set of items, indexed by
integers. To use an array, you first have to construct it; an individual item may then be
selected by an index whose value must be in the range 0 through n–1, where n is the
number of items in the array:

Listing 3.21: Arrays
1 array=String[3] –– make an array of three Strings
2 array[0]='String one' ––set each array item
3 array[1]='Another string'
4 array[2]='foobar'
5 loop i=0 to 2 –– display the items
6 say array[i]
7 end

is example also shows NetR line comments; the sequence “––” (outside of literal
strings or “/*” comments) indicates that the remainder of the line is not part of the pro-
gram and is commentary.
NetR makes it easy to initialize arrays: a term which is a list of one or more expres-
sions, enclosed in brackets, defines an array. Each expression initializes an element of
the array. For example:

Listing 3.22: Initializing elements
1 words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string. So, for
example, the instruction:

20

Listing 3.23: Address Array Element
1 say words[1]

would then display

Ffynnon

3.9 ings that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and so on) were
expressed as a string of characters. Many things, however, can be expressed more easily
in some other way, so NetR allows variables to refer to other collections of data,
which are known as objects.
Objects are defined by a name that lets NetR determine the data and methods that
are associated with the object. is name identifies the type of the object, and is usually
called the class of the object.
For example, an object of class Oblong might represent an oblong to be manipulated
and displayed. e oblong could be defined by two values: its width and its height. ese
values are called the properties of the Oblong class.
Most methods associated with an object perform operations on the object; for example
a size method might be provided to change the size of an Oblong object. Other methods
are used to construct objects (just as for arrays, an object must be constructed before
it can be used). In NetR and Java, these constructor methods always have the same
name as the class of object that they build (“Oblong”, in this case).
Here’s how an Oblong class might be written in NetR (by convention, this would be
written in a file called Oblong.nrx; implementations oen expect the name of the file to
match the name of the class inside it):

Listing 3.24: Oblong
1 /* Oblong.nrx -- simple oblong class */
2 class Oblong
3

4 width -- size (X dimension)
5 height -- size (Y dimension)
6

7 /* Constructor method to make a new oblong */
8 method Oblong(new_width, new_height)
9 -- when we get here, a new (uninitialized) object has been

10 -- created. Copy the parameters we have been given to the
11 -- four properties of the object:
12 width=new_width; height=new_height
13

14 /* Change the size of a Oblong */
15 method size(new_width, new_height) returns Oblong
16 width=new_width; height=new_height
17 return this -- return the resized object
18

19 /* Change the size of a Oblong, relatively */
20 method sizerelative(rel_width, rel_height) returns Oblong
21 width=width+rel_width; height=height+rel_height
22 return this
23

24 /* 'Print' what we know about the oblong */
25 method print()
26 say 'Oblong' width 'x' height

21

To summarize:

1. A class is started by the class instruction, which names the class.
2. e class instruction is followed by a list of the properties of the object. ese can

be assigned initial values, if required.
3. e properties are followed by the methods of the object. Each method is intro-

duced by a method instruction which names the method and describes the argu-
ments that must be supplied to the method. e body of the method is ended by
the next method instruction (or by the end of the file).

e Oblong.nrx file is compiled just like any other NetR program, and should create
a class file called Oblong.class. Here’s a program to try out the Oblong class:

Listing 3.25: Try Oblong
1 /* tryOblong.nrx -- try the Oblong class */
2 first=Oblong(5,3) -- make an oblong
3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=Oblong(1,2) -- make another oblong
6 second.print -- and print it

When tryOblong.nrx is compiled, you’ll notice (if your compilermakes a cross-reference
listing available) that the variables first and second have type Oblong. ese variables
refer to Oblongs, just as the variables in earlier examples referred to NetR strings.
Once a variable has been assigned a type, it can only refer to objects of that type. is
helps avoid errors where a variable refers to an object that it wasn’t meant to.

3.9.1 Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact
classes (you may have noticed that compiling them with the reference implementation
creates xxx.class files, where xxx is the name of the source file). e environment un-
derlying the implementation will allow a class to run as a stand-alone application if it
has a static method called main which takes an array of strings as its argument.
If necessary (that is, if there is no class instruction) NetR automatically adds the nec-
essary class and method instructions for a stand-alone application, and also an instruc-
tion to convert the array of strings (each of which holds one word from the command
string) to a single NetR string.
e automatic additions can also be included explicitly; the “toast” example could there-
fore have been written:

Listing 3.26: New Toast
1 /* This wishes you the best of health. */
2 class toast
3 method main(argwords=String[]) static
4 arg=Rexx(argwords)
5 say 'Cheers!'

though in this program the argument string, arg, is not used.
22

3.10 Extending classes

It’s common, when dealing with objects, to take an existing class and extend it. One
way to do this is to modify the source code of the original class – but this isn’t always
available, and with many different people modifying a class, classes could rapidly get
overcomplicated.
Languages that deal with objects, like NetR, therefore allow new classes of objects to
be set up which are derived from existing classes. For example, if you wanted a differ-
ent kind of Oblong in which the Oblong had a new property that would be used when
printing the Oblong as a rectangle, you might define it thus:

Listing 3.27: charOblong.nrx
1 /* charOblong.nrx -- an oblong class with character */
2 class charOblong extends Oblong
3 printchar -- the character for display
4 /* Constructor to make a new oblong with character */
5 method charOblong(newwidth, newheight, newprintchar)
6 super(newwidth, newheight) -- make an oblong
7 printchar=newprintchar -- and set the character
8 /* 'Print' the oblong */
9 method print

10 loop for super.height
11 say printchar.copies(super.width)
12 end

ere are several things worth noting about this example:

1. e “extends Oblong” on the class instructionmeans that this class is an extension
of theOblong class.eproperties andmethods of theOblong class are inherited by
this class (that is, appear as though they were part of this class). Another common
way of saying this is that “charOblong” is a subclass of “Oblong” (and “Oblong” is
the superclass of “charOblong”).

2. is class adds the printchar property to the properties already defined for Ob-
long.

3. e constructor for this class takes a width and height (just like Oblong) and adds
a third argument to specify a print character. It first invokes the constructor of its
superclass (Oblong) to build an Oblong, and finally sets the printchar for the new
object.

4. e new charOblong object also prints differently, as a rectangle of characters, ac-
cording to its dimension. e print method (as it has the same name and argu-
ments – none – as that of the superclass) replaces (overrides) the print’ method
of Oblong.

5. e other methods of Oblong are not overridden, and therefore can be used on
charOblong objects.

e charOblong.nrx file is compiled just like Oblong.nrx was, and should create a file
called charOblong.class.
Here’s a program to try it out

Listing 3.28: tryCharOblong.nrx
1 /* trycharOblong.nrx -- try the charOblong class */
2 first=charOblong(5,3,'#') -- make an oblong

23

3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=charOblong(1,2,'*') -- make another oblong
6 second.print -- and print it

is should create the two charOblong objects, and print them out in a simple “char-
acter graphics” form. Note the use of the method relsize from Oblong to resize the
charOblong object.

3.10.1 Optional arguments

All methods in NetR may have optional arguments (omitted from the right) if de-
sired. For an argument to be optional, youmust supply a default value. For example, if the
charOblong constructor was to have a default value for printchar, its method instruction
could have been written
Listing 3.29: Default value X

1 method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then ’X’ should be used. A program
creating a charOblong could then simply write:

Listing 3.30: Default value
1 first=charOblong(5,3) -- make an oblong

which would have exactly the same effect as if ’X’ were specified as the third argument.

3.11 Tracing

NetR tracing is defined as part of the language. e flow of execution of programs
may be traced, and this trace can be viewed as it occurs (or captured in a file). e trace
can show each clause as it is executed, and optionally show the results of expressions,
etc. For example, the trace results in the program “trace1.nrx”:

Listing 3.31: Trace
1 trace results
2 number=1/7
3 parse number before '.' after
4 say after'.'before

would result in:

––– trace1.nrx
2 *=* number=1/7

>v> number ”0.142857143”
3 *=* parse number before ’.’ after

>v> before ”0”
>v> after ”142857143”

4 *=* say after’.’before
>>> ”142857143.0”

142857143.0

24

where the line marked with “–––” indicates the context of the trace, lines marked with
“*=*” are the instructions in the program, lines with “>v>” show results assigned to local
variables, and lines with “»>” show results of unnamed expressions.
Further, tracemethods lets you trace the use of all methods in a class, along with the val-
ues of the arguments passed to each method. Here’s the result of adding trace methods
to the Oblong class shown earlier and then running tryOblong:

––– Oblong.nrx
8 *=* method Oblong(newwidth, newheight)

>a> newwidth ”5”
>a> newheight ”3”

26 *=* method print
Oblong 5 x 3
20 *=* method relsize(relwidth, relheight)–

21 *–*
>a> relwidth ”1”
>a> relheight ”1”

26 *=* method print
Oblong 6 x 4
returns Oblong

10 *=* method Oblong(newwidth, newheight)
>a> newwidth ”1”
>a> newheight ”2”

26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.
It is oen useful to be able to find out when (and where) a variable’s value is changed.
e trace var instruction does just that; it adds names to or removes names from a list
of monitored variables. If the name of a variable in the current class or method is in the
list, then trace results is turned on for any assignment, loop, or parse instruction that
assigns a new value to the named variable.
Variable names to be added to the list are specified by listing them aer the var keyword.
Any name may be optionally prefixed by a – sign., which indicates that the variable is to
be removed from the list.
For example, the program “trace2.nrx”:

Listing 3.32: trace2.nrx
1 trace var a b -- now variables a and b will be traced
2 a=3
3 b=4
4 c=5
5 trace var –b c -- now variables a and c will be traced
6 a=a+1
7 b=b+1
8 c=c+1
9 say a b c

would result in:

--- trace2.nrx

25

3 *=* a=3
>v> a ”3”

4 *=* b=4
>v> b ”4”

8 *=* a=a+1
>v> a ”4”

10 *=* c=c+1
>v> c ”6”

4 5 6

3.12 Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive” bi-
nary types, which correspond closely to the binary operations usually available at the
hardware level in computers. For the reference implementation, these types are:

. byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits respec-
tively. float and double – signed floating point numbers that will fit in 32 or 64 bits respec-
tively.. char – an unsigned 16-bit quantity, holding a Unicode character. boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the covers”
in order to achieve maximum efficiency; in particular, they cannot be constructed like
other objects – their value is held directly.is distinction rarelymatters to the NetR
programmer: in the case of string literals an object is constructed automatically; in the
case of an int literal, an object is not constructed.
Further, NetR automatically allows the conversion between the various forms of
character strings in implementations11 and the primitive types. e “golden rule” that
is followed by NetR is that any automatic conversion which is applied must not lose
information: either it can be determined before execution that the conversion is safe (as
in int to String) or it will be detected at execution time if the conversion fails (as in
String to int).
e automatic conversions greatly simplify the writing of programs; the exact type of
numeric and string-like method arguments rarely needs to be a concern of the pro-
grammer. For certain applications where early checking or performance override other
considerations, the reference implementation of NetR provides options for different
treatment of the primitive types:

1. options strictassign – ensures exact type matching for all assignments. No con-
versions (including those from shorter integers to longer ones) are applied. is
option provides stricter type-checking thanmost other languages, and ensures that
all types are an exact match.

11In the reference implementation, these are String, char, char[] (an array of characters), and the NetR string type, Rexx.

26

2. options binary – uses implementation-dependent fixed precision arithmetic on
binary types (also, literal numbers, for example, will be treated as binary, and local
variables will be given “native” types such as int or String, where possible).

Binary arithmetic currently gives better performance thanNetR decimal arithmetic,
but places the burden of avoiding overflows and loss of information on the programmer.
e options instruction (which may list more than one option) is placed before the first
class instruction in a file; the binary keyword may also be used on a class or method
instruction, to allow an individual class or method to use binary arithmetic.

3.12.1 Explicit type assignment

You may explicitly assign a type to an expression or variable:

Listing 3.33: Assigning Type
1 i=int 3000000 -- 'i' is an 'int' with value 3000000
2 j=int 4000000 -- 'j' is an 'int' with value 4000000
3 k=int -- 'k' is an 'int', with no initial value
4 say i*j -- multiply and display the result
5 k=i*j -- multiply and assign result to 'k'

is example also illustrates an important difference between options nobinary and
options binary. With the former (the default) the say instruction would display the re-
sult “1.20000000E+13” and a conversion overflow would be reported when the same
expression is assigned to the variable k.
With options binary, binary arithmetic would be used for the multiplications, and so
no error would be detected; the say would display “–138625024” and the variable k takes
the incorrect result.

3.12.2 Binary types in practice

In practice, explicit type assignment is only occasionally needed inNetR.ose con-
versions that are necessary for using existing classes (or those that use options binary)
are generally automatic. For example, here is an Applet for use by Java-enabled browsers:

Listing 3.34: A Simple Applet
1 /* A simple graphics Applet */
2 class Rainbow extends Applet
3 method paint(g=Graphics) -- called to repaint window
4 maxx=size.–width1
5 maxy=size.–height1
6 loop y=0 to maxy
7 col=Color.getHSBColor(y/maxy, 1, 1) -- new colour
8 g.setColor(col) -- set it
9 g.drawLine(0, y, maxx, y) -- fill slice

10 end y

In this example, the variable col will have type Color, and the three arguments to the
method getHSBColor will all automatically be converted to type float. As no overflows
are possible in this example, options binary may be added to the top of the program
with no other changes being necessary.

27

3.13 Exception and error handling

NetR does not have a goto instruction, but a signal instruction is provided for ab-
normal transfer of control, such as when something unusual occurs. Using signal raises
an exception; all control instructions are then “unwound” until the exception is caught
by a control instruction that specifies a suitable catch instruction for handling the ex-
ception.
Exceptions are also raised when various errors occur, such as attempting to divide a
number by zero. For example:

Listing 3.35: Exception
1 say 'Please enter a number:'
2 number=ask
3 do
4 say 'The reciprocal of' number 'is:' 1/number
5 catch Exception
6 say 'Sorry, could not divide "'number'" into 1'
7 say 'Please try again.'
8 end

Here, the catch instruction will catch any exception that is raised when the division is
attempted (conversion error, divide by zero, etc.), and any instructions that follow it are
then executed. If no exception is raised, the catch instruction (and any instructions that
follow it) are ignored.
Any of the control instructions that end with end (do, loop, or select) may be modified
with one or more catch instructions to handle exceptions.

3.14 Summary and Information Sources

e NetR language, as you will have seen, allows the writing of programs for the
Java environment with aminimumof overhead and “boilerplate syntax”; usingNetR
for writing Java classes could increase your productivity by 30% or more. Further, by
simplifying the variety of numeric and string types of Java down to a single class that
follows the rules of Rexx strings, programming is greatly simplified. Where necessary,
however, full access to all Java types and classes is available.
Other examples are available, including both stand-alone applications and samples of
applets for Java-enabled browsers (for example, an applet that plays an audio clip, and
another that displays the time in English). You can find these from the NetR web
pages, at http://www.netrexx.org. Also at that location, you’ll find the NetR lan-
guage specification and other information, and downloadable packages containing the
NetR soware and documentation. ere is a large selection of NetR examples
available at http://www.rosettacode.org. e soware should run on any platform
that has a Java Virtual Machine (JVM) available.

28

http://www.netrexx.org
http://www.rosettacode.org

4

NetR Language Definition

is part of the document describes the NetR language, version 3.03. is version
includes the original NetR language 12 together with additions made from 1997
through 2000 and previously published in the NetR Language Supplement.
e language is described first in terms of the characters from which it is composed
and its low-level syntax, and then progressively through more complex constructions.
Finally, special sections describe the semantics of the more complicated areas.
Some features of the language, such as options keywords and binary arithmetic, are
implementation-dependent. Rather than leaving these important aspects entirely ab-
stract, this description includes summaries of the treatment of such items in the ref-
erence implementation of NetR. e reference implementation is based on the Java
environment and class libraries.
Paragraphs that refer to the reference implementation, and are therefore not strictly part of
the language definition, are shown in italics, like this one.

12 e NetR Language, M. F. Cowlishaw, ISBN 0-13-806332-X, Prentice-Hall, 1997

29

5

Notations

In this part of the book, various notations such as changes of font are used for clarity.
Within the text, a sans-serif bold font is used to indicate keywords, and an italic font is
used to indicate technical terms. An italic font is also used to indicate a reference to a
technical term defined elsewhere or a word in a syntax diagram that names a segment of
syntax.
Similarly, in the syntax diagrams in this book, words (symbols) in the sans-serif bold font
also denote keywords or sub-keywords, and words (such as expression) in italics denote
a token or collection of tokens defined elsewhere. e brackets [and] delimit optional
(and possibly alternative) parts of the instructions, whereas the braces { and } indicate
that one of a number of alternatives must be selected. An ellipsis (...) following a bracket
indicates that the bracketed part of the clause may optionally be repeated.
Occasionally in syntax diagrams (e.g., for indexed references) brackets are ”real” (that is,
a bracket is required in the syntax; it is not marking an optional part). ese brackets are
enclosed in single quotes, thus: ’[’ or ’]’.
Note that the keywords and sub-keywords in the syntax diagrams are not case-sensitive:
the symbols ”IF” ”If ” and ”iF” would all match the keyword shown in a syntax diagram
as if.
Note also that most of the clause delimiters (”;”) shown can usually be omitted as they
will be implied by the end of a line.

31

6

Characters and Encodings

In the definition of a programming language it is important to emphasize the distinc-
tion between a character and the coded representation 13 (encoding) of a character. e
character ”A”, for example, is the first letter of the English (Roman) alphabet, and this
meaning is independent of any specific coded representation of that character. Different
coded character sets (such as, for example, the ASCII 14 and EBCDIC 15 codes) use quite
different encodings for this character (decimal values 65 and 193, respectively). Except
where stated otherwise, this book uses characters to convey meaning and not to imply
a specific character code (the exceptions are certain operations that specifically convert
between characters and their representations). At no time is NetR concerned with
the glyph (actual appearance) of a character.

6.1 Character Sets

Programming in the NetR language can be considered to involve the use of two
character sets. e first is used for expressing the NetR program itself, and is the rel-
atively small set of characters described in the next section. e second character set is
the set of characters that can be used as character data by a particular implementation of
a NetR language processor. is character set may be limited in size (sometimes to a
limit of 256 different characters, which have a convenient 8-bit representation), or it may
be much larger. e Unicode 16 character set, for example, allows for 65536 characters,
each encoded in 16 bits.
Usually, most or all of the characters in the second (data) character set are also allowed
within a NetR program, but only within commentary or immediate (literal) data.
e NetR language explicitly defines the first character set, in order that programs
will be portable and understandable; at the same time it avoids restrictions due to the
language itself on the character set used for data. However, where the language itself
manipulates or inspects the data (as when carrying out arithmetic operations), theremay
be requirements on the data character set (for example, numbers can only be expressed
if there are digit characters in the set).

13 ese terms have the meanings as defined by the International Organization for Standardization, in ISO 2382 :cit.Data pro-
cessing - Vocabulary:ecit..

14 American Standard Code for Information Interchange.
15 Extended Binary Coded Decimal Interchange Code.
16 eUnicode Standard: Worldwide Character Encoding., Version 1.0. Volume 1, ISBN 0-201-56788-1, 1991, and Volume 2, ISBN

0-201-60845-6 1992, Addison-Wesley, Reading, MA.

33

7

Structure and General Syntax

A NetR program is built up out of a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (described in this section); zero
or more blanks (again ignored); and the delimiter ”;” (semicolon) which may be implied
by line-ends or certain keywords. Conceptually, each clause is scanned from le to right
before execution and the tokens composing it are resolved.
Identifiers (known as symbols) and numbers are recognized at this stage, comments (de-
scribed below) are removed, and multiple blanks (except within literal strings) are re-
duced to single blanks. Blanks adjacent to operator characters (see page 38) and special
characters (see page 39) are also removed.

7.1 Blanks and White Space

Blanks (spaces) may be freely used in a program to improve appearance and layout, and
most are ignored. Blanks, however, are usually significant

. within literal strings (see below). between two tokens that are not special characters (for example, between two sym-
bols or keywords). between the two characters forming a comment delimiter. immediately outside parentheses (”(” and ”)”) or brackets (”[” and ”]”).

For implementations that support tabulation (tab) and form feed characters, these char-
acters outside of literal strings are treated as if they were a single blank; similarly, if the
last character in aNetR program is the End-of-file character (EOF, encoded inASCII
as decimal 26), that character is ignored.

7.2 Comments

Commentary is included in a NetR program by means of comments. Two forms of
comment notation are provided: line comments are ended by the end of the line onwhich
they start, and block comments are typically used for more extensive commentary.

Line comments A line comment is started by a sequence of two adjacent hyphens (”–”);
all characters following that sequence up to the end of the line are then ignored by
the NetR language processor.
Example:

35

i=j+7 -- this line comment follows an assignment

Block comments A block comment is started by the sequence of characters ”/*”, and is
ended by the same sequence reversed, ”*/”. Within these delimiters any characters
are allowed (including quotes, which need not be paired). Block comments may
be nested, which is to say that ”/*” and ”*/” must pair correctly. Block comments
may be anywhere, and may be of any length. When a block comment is found, it
is treated as though it were a blank (which may then be removed, if adjacent to a
special character).
Example:
/* This is a valid block comment */

e two characters forming a comment delimiter (”/*” or ”*/”) must be adjacent
(that is, they may not be separated by blanks or a line-end).

Note: It is recommended that NetR programs start with a block comment that de-
scribes the program. Not only is this good programming practice, but some implemen-
tations may use this to distinguish NetR programs from other languages. Imple-
mentation minimum: Implementations should support nested block comments to a
depth of at least 10. e length of a comment should not be restricted, in that it should
be possible to ”comment out” an entire program.

7.3 Tokens

e essential components of clauses are called tokens.esemay be of any length, unless
limited by implementation restrictions, 17 and are separated by blanks, comments, ends
of lines, or by the nature of the tokens themselves.
e tokens are:

Literal strings A sequence including any characters that can safely be represented in
an implementation 18 and delimited by the single quote character (’) or the double-
quote (”). Use ”” to include a ” in a literal string delimited by ”, and similarly use two
single quotes to include a single quote in a literal string delimited by single quotes.
A literal string is a constant and its contents will never be modified by NetR.
Literal stringsmust be complete on a single line (thismeans that unmatched quotes
may be detected on the line that they occur). Any string with no characters (i.e., a
string of length 0) is called a null string.
Examples:
’Fred’
’Aÿ’
”Don’t Panic!”
”:x”

17 Wherever arbitrary implementation restrictions are applied, the size of the restriction should be a number that is readily mem-
orable in the decimal system; that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512, the number 250 is more
”natural” than 256, and so on. Limits expressed in digits should be a multiple of three.

18 Some implementations may not allow certain ”control characters” in literal strings. ese characters may be included in literal
strings by using one of the escape sequences provided.

36

TABLE 1: Escape sequences

\t the escape sequence represents a tabulation (tab) character

\n the escape sequence represents a new-line (line feed) character

\r the escape sequence represents a return (carriage return) character

\f the escape sequence represents a form-feed character

\” the escape sequence represents a double-quote character

\’ the escape sequence represents a single-quote character

\ the escape sequence represents a backslash character

- the escape sequence represents a ”null” character (the character whose encoding equals
zero), used to indicate continuation in a say instruction

0(zero) the escape sequence represents a ”null” character (the character whose encoding equals
zero); an alternative to \-

xhh the escape sequence represents a character whose encoding is given by the two hexadecimal
digits (”hh”) following the ”x”. If the character encoding for the implementation requires
more than two hexadecimal digits, they are padded with zero digits on the le.

uhhhh the escape sequence represents a character whose encoding is given by the four hexadecimal
digits (”hhhh”) following the ”u”. It is an error to use this escape if the character encoding
for the implementation requires fewer than four hexadecimal digits.

’You shouldn’’t’ /* Same as ”You shouldn’t” */
’’ /* A null string */

Within literal strings, characters that cannot safely or easily be represented (for ex-
ample ”control characters”) may be introduced using an escape sequence. An escape
sequence starts with a backslash (”\”), whichmust then be followed immediately by
one of the following (letters may be in either uppercase or lowercase):
Hexadecimal digits for use in the escape sequences above may be any decimal digit
(0-9) or any of the first six alphabetic characters (a-f), in either lowercase or up-
percase. Examples:
’You shouldn\’t’ /* Same as ”You shouldn’t” */
’\x6d\u0066\x63’ /* In Unicode: ’mfc’ */
’\\\u005C’ /* In Unicode, two backslashes */

Implementation minimum: Implementations should support literal strings of at
least 100 characters. (But note that the length of string expression results, etc.,
should have a much larger minimum, normally only limited by the amount of stor-
age available.)

Symbols Symbols are groups of characters selected from the Roman alphabet in upper-
case or lowercase (A-Z, a-z), the Arabic numerals (0-9), or the characters under-
score, dollar, and euro19 (”_$e”) Implementations may also allow other alphabetic
and numeric characters in symbols to improve the readability of programs in lan-
guages other than English. ese additional characters are known as extra letters
and extra digits. 20

Examples:
19 Note that only UTF8-encoded source files can currently use the euro character.
20 It is expected that implementations of NetR will be based on Unicode or a similarly rich character set. However, portability

to implementations with smaller character sets may be compromised when extra letters or extra digits are used in a program.

37

DanYrOgof
minx
Élan
$Virtual3D

A symbol may include other characters only when the first character of the symbol
is a digit (0-9 or an extra digit). In this case, it is a numeric symbol - it may include
a period (”.”) and it must have the syntax of a number. is may be simple number,
which is a sequence of digits with at most one period (which may not be the final
character of the sequence), or itmay be a hexadecimal or binary numeric symbol(see
page 40) , or it may be a number expressed in exponential notation.
A number in exponential notation is a simple number followed immediately by
the sequence ”E” (or ”e”), followed immediately by a sign (”+” or ”-”), 21 followed
immediately by one ormore digits (whichmay not be followed by any other symbol
characters).
Examples:
1
1.3
12.007
17.3E-12
3e+12
0.03E+9

When extra digits are used in numeric symbols, they must represent values in the
range zero through nine. When numeric symbols are used as numbers, any extra
digits are first converted to the corresponding character in the range 0-9, and then
the symbol follows the usual rules for numbers in NetR (that is, the most sig-
nificant digit is on the le, etc.).
In the reference implementation, the extra letters are those characters (excluding A-Z,
a-z, and underscore) that result in 1 when tested with
java.lang.Character.isJavaIdentifierPart.3.03 Similarly, the extra digits are those char-
acters (excluding 0-9) that result in 1when tested with java.lang.Character.isDigit.
e meaning of a symbol depends on the context in which it is used. For example,
a symbol may be a constant (if a number), a keyword, the name of a variable, or
identify some algorithm.
It is recommended that the dollar and euro only be used in symbols in mechan-
ically generated programs or where otherwise essential. Implementation mini-
mum: Implementations should support symbols of at least 50 characters. (But note
that the length of its value, if it is a string variable, should have amuch larger limit.)

Operator characters e characters + – * % |/ & \= < > are used (sometimes in
combination) to indicate operations (see page 63) in expressions. A few of these
are also used in parsing templates, and the equals sign is also used to indicate as-
signment. Blanks adjacent to operator characters are removed, so, for example, the
sequences:
345>=123
345 >=123
345 >= 123

21 e sign in this context is part of the symbol; it is not an operator.

38

345 > = 123

are identical in meaning. Some of these characters may not be available in all char-
acter sets, and if this is the case appropriate translations may be used. Note: e
sequences ”–”, ”/*”, and ”*/” are comment delimiters, as described earlier. e se-
quences ”++” and ”\\” are not valid in NetR programs.

Special characters e characters . , ;) (] [together with the operator characters have
special significance when found outside of literal strings, and constitute the set of
special characters. ey all act as token delimiters, and blanks adjacent to any of
these (except the period) are removed, except that a blank adjacent to the outside
of a parenthesis or bracket is only deleted if it is also adjacent to another special
character (unless this is a parenthesis or bracket and the blank is outside it, too).
Some of these characters may not be available in all character sets, and if this is the
case appropriate translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:

’REPEAT’ B + 3;

is is composed of six tokens: a literal string, a blank operator (described later), a sym-
bol (which is probably the name of a variable), an operator, a second symbol (a number),
and a semicolon. e blanks between the ”B” and the ”+” and between the ”+” and the
”3” are removed. However one of the blanks between the ’REPEAT’ and the ”B” remains
as an operator. us the clause is treated as though written:

’REPEAT’ B+3;

7.4 Implied semicolons and continuations

A semicolon (clause end) is implied at the end of each line, except if:

1. e line ends in the middle of a block comment, in which case the clause continues
at the end of the block comment.

2. e last token was a hyphen. In this case the hyphen is functionally replaced by a
blank, and hence acts as a continuation character.

ismeans that semicolons need only be included to separatemultiple clauses on a single
line.

Notes:

1. A comment is not a token, so therefore a comment may follow the continuation
character on a line.

2. Semicolons are added automatically byNetR aer certain instruction keywords
when in the correct context. e keywords that may have this effect are else,
finally, otherwise, then; they become complete clauses in their own right when
this occurs. ese special cases reduce program entry errors significantly.

39

7.5 e case of names and symbols

In general, NetR is a case-insensitive language. at is, the names of keywords, vari-
ables, and so on, will be recognized independently of the case used for each letter in a
name; the name ”Swildon” would match the name ”swilDon”.
NetR, however, uses names that may be visible outside the NetR program, and
these may well be referenced by case-sensitive languages. erefore, any name that has
an external use (such as the name of a property, method, constructor, or class) has a
defined spelling, in which each letter of the name has the case used for that letter when
the name was first defined or used.
Similarly, the lookup of external names is both case-preserving and case-insensitive. If
a class, method, or property is referenced by the name ”Foo”, for example, an exact-case
match will first be tried at each point that a search is made. If this succeeds, the search
for a matching name is complete. If it does not succeed, a case-insensitive search in the
same context is carried out, and if one item is found, then the search is complete. If more
than one item matches then the reference is ambiguous, and an error is reported.
Implementations are encouraged to offer an option that requires that all name matches
are exact (case-sensitive), for programmers or house-styles that prefer that approach to
name matching.

7.6 Hexadecimal and binary numeric symbols

A hexadecimal numeric symbol describes a whole number, and is of the form nXstring.
Here, n is a simple number with no decimal part (and optional leading insignificant
zeros) which describes the effective length of the hexadecimal string, the X (which may
be in lowercase) indicates that the notation is hexadecimal, and string is a string of one
or more hexadecimal characters (characters from the ranges ”a-f ”, ”A-F”, and the digits
”0-9”).
e string is taken as a signed number expressed in n hexadecimal characters. If neces-
sary, string is padded on the le with ”0” characters (note, not ”sign-extended”) to length
n characters.
If the most significant (le-most) bit of the resulting string is zero then the number is
positive; otherwise it is a negative number in twos-complement form. In both cases it
is converted to a NetR number which may, therefore, be negative. e result of the
conversion is a number comprised of the Arabic digits 0-9, with no insignificant leading
zeros but possibly with a leading ”-”.
e value n may not be less than the number of characters in string, with the single
exception that it may be zero, which indicates that the number is always positive (as
though n were greater than the the length of string).
Examples:

1x8 == -8
2x8 == 8
2x08 == 8

40

0x08 == 8
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF081 == -3967
8xF081 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except that
the identifying character is B or b, and the digits of string must be either 0 or 1, each
representing a single bit.
Examples:

1b0 == 0
1b1 == -1
0b10 == 2
0b100 == 4
4b1000 == -8
8B1000 == 8

Note: Hexadecimal and binary numeric symbols are a purely syntactic device for repre-
senting decimal whole numbers. at is, they are recognized only within the source of
a NetR program, and are not equivalent to a literal string with the same characters
within quotes.

41

8

Types and Classes

Programs written in the NetR language manipulate values, such as names, numbers,
and other representations of data. All such values have an associated type (also known
as a signature).
e type of a value is a descriptor which identifies the nature of the value and the oper-
ations that may be carried out on that value.
A type is normally defined by a class, which is a named collection of values (called prop-
erties) and procedures (called methods) for carrying out operations on the properties.
For example, a character string in NetR is usually of type R, which will be im-
plemented by the class called R. e class R defines the properties of the string
(a sequence of characters) and the methods that work on strings. is type of string may
be the subject of arithmetic operations as well as more conventional string operations
such as concatenation, and so the methods implement string arithmetic as well as other
string operations.
e names of types can further be qualified by the name of a package where the class is
held. See the package instruction for details of packages; in summary, a package name
is a sequence of one or more non-numeric symbols, separated by periods. us, if the
R class was part of the netrexx.lang package, 22 then its qualified type would be
netrexx.lang.R.
In general, only the class name need be specified to refer to a type. However, if a class
of the same name exists in more than one known (imported) package, then the name
should be qualified by the package name. at is, if the use of just the class name does
not uniquely identify the class then the reference is ambiguous and an error is reported.

8.1 Primitive types

Implementations may optionally provide primitive types for efficiency. Primitive types
are ”built-in” types that are not necessarily implemented as classes. ey typically repre-
sent concepts native to the underlying environment (such as 32-bit binary integer num-
bers) and may exhibit semantics that are different from other types. NetR, however,
makes no syntax distinction in the names of primitive types, and assumes binary con-
structors (see page 179) exist for primitive values.
Primitive types are necessary when performance is an overriding consideration, and so
this definition will assume that primitive types corresponding to the common binary
number formats are available and will describe how they differ from other types, where

22 is is in fact where it may be found in the reference implementation.

43

appropriate.
In the reference implementation, the names of the primitive types are:

boolean char byte short int long float double

where the first two describe a single-bit value and Unicode character respectively, and the
remainder describe signed numbers of various formats. e main difference between these
and other types is that the primitive types are not a subclass of Object, so they cannot be
assigned to a variable of type Object or passed to methods ”by reference”. To use them
in this way, an object must be created to ”wrap” them; Java provides classes for this (for
example, the class Long).

8.2 Dimensioned types

Another feature that is provided for efficiency is the concept of dimensioned types, which
are types (normal or primitive) that have an associated dimension (in the sense of the
dimensions of an array). Dimensioned values are described in detail in the section on
Arrays (see page 78) .
e dimension of a dimensioned type is represented in NetR programs by square
brackets enclosing zero or more commas, where the dimension is given by the number
of commas, plus one. A dimensioned type is distinct from the type of the same name but
with no dimensions.
Examples:

Rexx
int
Rexx[]
int[,,]

e examples show a normal type, a primitive type, and a dimensioned version of each
(of dimension 1 and 3 respectively). e latter type would result from constructing an
array thus:

myarray=int[10,10,10]

at is, the dimension of the type matches the count of indexes defined for the array.

8.3 Minor and Dependent classes

Aminor class in NetR is a class whose name is qualified by the name of another class,
called its parent. is qualification is indicated by the form of the name of the class: the
short name of the minor class is prefixed by the name of its parent class (separated by a
period). For example, if the parent is called Foo then the full name of a minor class Bar
would be written Foo.Bar.
A dependent class is a minor class that has a link to its parent class that allows a child
object simplified access to its parent object and its properties.

44

ese refinements of classes and are described in the section Minor and Dependent
classes (see page 151) .

45

9

Terms

A term inNetR is a syntactic unit which describes some value (such as a literal string,
a variable, or the result of some computation) that can be manipulated in a NetR
program.
Terms may be either simple (consisting of a single element) or compound (consisting of
more than one element, with a period and no other characters between each element).

9.1 Simple terms

A simple term may be:

. A literal string (see page 36) - a character string delimited by quotes, which is a
constant.. A symbol (see page 37) . A symbol that does not begin with a digit identifies a
variable, a value, or a type. One that does begin with a digit is a numeric symbol,
which is a constant.. A method call (see page 53) , which is of the form
symbol([expression[,expression]...])

. An indexed reference (see page 77) , which is of the form 23

symbol’[’[expression[,expression]...]’]’

. An array initializer (see page 79) , which is of the form
’[’expression[,expression]...’]’

. A sub-expression (see page 68) , which consists of any expression enclosed within a
le and a right parenthesis.

Blanks are not permitted between the symbol in a method call and the ”(”, or between
the symbol in an indexed reference and the ”[”.
Within simple terms, method calls with no arguments (that is, with no expressions be-
tween the parentheses) may be expressed without the parentheses provided that they
refer to a method in the current class (or to a static method in a class used by the current
class) and do not refer to a constructor (see page 57) . An implementationmay optionally
provide a mechanism that disallows this parenthesis omission.

23 e notations ’[’ and ’]’ indicate square brackets appearing in the NetR program.

47

9.2 Compound terms

Compound terms may start with any simple term, and, in addition, may start with a
qualified class name (see page 123) or a qualified constructor (see page 53) . ese last
two both start with a package name (a sequence of non-numeric symbols separated by
periods and ending in a period).
is first part of a compound term is known as the stub of the term. Example stubs:

”A string”
Arca
12.10
paint(g)
indexedVar[i+1]
(”A” ”string”)
java.lang.Math -- qualified class name
netrexx.lang.Rexx(1) -- qualified constructor

All stubs are syntactically valid terms (either simple or compound) and may optionally
be followed by a continuation, which is one or more additional non-numeric symbols,
method calls, or indexed references, separated from each other and from the stub by
connectors which are periods. Example compound terms:

”A rabbit”.word(2).pos(’b’)
Fluffy.left(3)
12.10.max(j)
paint(g).picture
indexedVar[i+1].length
(”A” ”string”).word(1)
java.lang.Math.PI
java.lang.Math.log(10)

Within compound terms, method calls with no arguments (that is, with no expressions
between the parentheses) may be expressed without the parentheses provided that they
do not refer to a constructor (see page 57) . For example, the term:

Thread.currentThread().suspend()

could be written:

Thread.currentThread.suspend

An implementation may optionally provide a mechanism that disallows this parenthesis
omission.

9.3 Evaluation of terms

Simple terms are evaluated as a whole, as described below. Compound terms are evalu-
ated from le to right. First the stub is evaluated according to the rules detailed below.
e type of the value of the stub then qualifies the next element of the term (if any) which

48

is then evaluated (again, the exact rules are detailed below).is process is then repeated
for each element in the term.
For instance, for the example above:

”A rabbit”.word(2).pos(’b’)

the evaluation proceeds as follows:

1. e stub (”A rabbit”) is evaluated, resulting in a string of type R.
2. Because that string is of type R, the R class is then searched for the word

method. is is then invoked on the string, with argument 2. In other words, the
wordmethod is invoked with the string ”A rabbit” as its current context (the prop-
erties of the R class when the method is invoked reflect that value).
is returns a new string of type R, ”rabbit” (the second word in the original
string).

3. In the same way as before, the pos method of the R class is then invoked on
the new string, with argument ”b”.
is returns a new string of type R, ”3” (the position of the first ”b” in the
previous result).

is value, ”3”, is the final value of the term.
e remainder of this section gives the details of term evaluation; it is best skipped on
first reading.

9.4 Simple term evaluation

All simple terms may also be used as stubs, and are evaluated in precisely the same way
as stubs, as described below. For example, numeric symbols are evaluated as though they
were enclosed in quotes; their value is a string of type R.
In binary classes (see page 87) , however, simple terms that are strings or numeric sym-
bols are given an implementation-defined string or primitive type respectively, as de-
scribed in the section on Binary values and operations (see page 177)

9.5 Stub evaluation

A term’s stub is evaluated according to the following rules:
. If the stub is a literal string, its value is the string, of type R, constructed from

that literal.. If the stub is a numeric symbol, its value is the string, of type R, constructed
from that literal (as though the literal were enclosed in quotes).. If the stub is an unqualified method or constructor call, or a qualified constructor
call, then its value and type is the result of invoking the method identified by the
stub, as described in Methods and Constructors (see page 53) .. If the stub is a (non-numeric) symbol, then its value and type will be determined
by whichever of the following is first found:

49

1. A local variable ormethod argument within the currentmethod, or a property
in the current class.

2. A method whose name matches the symbol, and takes no arguments, and that
is not a constructor, in the current class. 24 If the stub is part of a compound
symbol, then itmay also be in a superclass, searching upwards from the current
class.

3. A static or constant property, or a static method, 25 whose name matches the
symbol (and that takes no arguments, if a method) in a class listed in the
uses phrase of the class instruction. Each class from the list is searched for a
matching property or method, and then its superclasses are searched upwards
from the class in the same way; this process is repeated for each of the classes,
in the order specified in the list.

4. One of the allowed special words described in Special words and methods (see
page 155) , such as this or version.

5. e short name of a known class or primitive type (in which case the stub has
no value, just a type).. If the stub is an indexed reference, then its value and type will be determined by

whichever of the following is first found:
1. e symbol naming the reference is an undimensioned local variable or

method argument within the current method, or a property in the current
class, which has type R. In this case, the reference is to an indexed string
(see page 77) ; the expressions within the brackets must be convertible to type
R, and the type of the result will be R.

2. e symbol naming the reference is a dimensioned local variable or method
argument within the current method, or a property in the current class. In this
case, the reference is to an array (see page 78) , and the expressions within the
brackets must be convertible to whole numbers allowed for array indexes. e
type of the result will have the type of the array, with dimensions reduced by
the number of dimensions specified in the stub. For example, if the array foo
was of type Baa[„,] and the stub referred to foo[1,2], then the result would be
of type Baa[,]. It would have been an error for the stub to have specified more
than four dimensions.

3. e symbol naming the reference is the name of a static or constant property
in a class listed in the uses phrase of the class instruction. Each class from
the list is searched in the same way as for symbols, above. e reference may
be to an indexed string or an array, as for properties in the current class.

4. e symbol naming the reference is the name of a primitive type or the short
name of a known class, and there are no expressions within the brackets (just
optional commas). In this case, the stub describes a dimensioned type (see page
44).

5. e symbol naming the reference is the name of a primitive type or is the
short name of a known class, and there are one or more expressions within
the brackets. In this case, the reference is to an array constructor (see page 78) ;
the expressions within the brackets must be convertible to non-negative whole
numbers allowed for array indexes, and the value is an array of the specified

24 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.
25 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.

50

type, dimensions, and size.. If the stub is a sub-expression, then its value and type will be determined by eval-
uating the expression (see page 63) within the parentheses.

. If the stub starts with the name of a package, then it will either describe a qualified
type (see page 43) or a qualified constructor (see page 57) . Its type will be same
in either case, and if a constructor then its value will be the value returned by the
constructor.

If the stub is not followed by further segments, the final value and type of the term is the
value and type of the stub.

9.6 Continuation evaluation

Each segment of a term’s continuation is evaluated from le to right, according to the
type of the evaluation of the term so far (the continuation type) and the syntax of the new
segment:

. If the segment is a method call, then its value and type is the result of invoking
the matching method in the class defining the continuation type (or a superclass
or subclass of that class), as described in Methods and Constructors (see page 53) .
Note that method calls in term continuations cannot be constructors.

. If the stub is an indexed reference, then itwill refer to a property in the class defining
the continuation type (or a superclass of that class). at property will either be an
undimensionedNetR string (typeR) or a dimensioned array. In either case,
it is evaluated in the sameway as an indexed reference found in the stub, except that
it is not necessarily in the current class, cannot be an array constructor, and cannot
result in a dimensioned type.

. If the segment is a symbol, then it refers to either a property or a method in the
class defining the continuation type (or a superclass of that class). 26

e search for the property or method starts with the class defining the contin-
uation type. If a property name matches, it is used; if not, a method of the same
name and having no arguments (or only optional arguments) will match. If nei-
ther property nor method is found, then the same search is applied to each of the
continuation class’s superclasses in turn, starting with the class that it extends.
As a convenient special case, if the property or method is not found, then if the
segment is the final segment of the term and is the simple symbol length and the
continuation type is a single-dimensioned array, then the segment evaluates to the
size of the array. is will be a non-negative whole number of an appropriate prim-
itive type (or of type R if there is no appropriate type).

e final value and type of the term is the value and type determined by the evaluation
of the last segment of the continuation.

26 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs, in which case it can
only be a property.

51

9.7 Arrays in terms

If a partially-evaluated term results in a dimensioned array (see page 78) , its type is
treated as type Object so that evaluation of the term can continue. For example, in

ca=char[] ”tosh”
say ca.toString()

the variable ca is an array of characters; in the expression on the second line the method
toString() of the class Object will be found. 27

27 In the reference implementation, this would return an identifier for the object.

52

10

Methods and Constructors

Instructions in NetR are grouped into methods, which are named routines that al-
ways belong to (are part of) a class.
Methods are invoked by being referenced in a term (see page 47) , which may be part of
an expression or be a clause in its own right (a method call instruction). In either case,
the syntax used for a method invocation is:

symbol([expression[,expression]...])

e symbol, which must be non-numeric, is called the name of the method. It is impor-
tant to note that the name of the method must be followed immediately by the ”(”, with
no blank in between, or the construct will not be recognized as amethod call (a blank op-
erator would be assumed at that point instead). e expressions (separated by commas)
between the parentheses are called the arguments to themethod. Each argument expres-
sion may include further method calls. e argument expressions are evaluated in turn
from le to right and the resulting values are then passed to the method (the procedure
for locating the method is described below). e method then executes some algorithm
(usually dependent on any arguments passed, though arguments are not mandatory)
and will eventually return a value. is value is then included in the original expression
just as though the entire method reference had been replaced by the name of a variable
whose value is that returned data.
For example, the substr method is provided for strings of type R and could be used
as:

c=’abcdefghijk’
a=c.substr(3,7)
/* would set A to ”cdefghi” */

Here, the value of the variable c is a string (of typeR).e substr (substring)method
of the R class is then invoked, with arguments 3 and 7, on the value referred to by c.
at is, the the properties available to (the context of) the substrmethod are the proper-
ties constructed from the literal string ’abcdefghijk’. e method returns the substring
of the value, starting at the third character and of length seven characters.
A method may have a variable number of arguments: only those required need be spec-
ified. For example, ’ABCDEF’.substr(4) would return the string ’DEF’, as the substr
method will assume that the remainder of the string is to be returned if no length is
provided.

53

Method invocations that take no arguments may omit the (empty) parentheses in cir-
cumstances where this would not be ambiguous. See the section on Terms (see page 47)
for details.
Implementation minimum: At least 10 argument expressions should be allowed in a
method call.

10.1 Method call instructions

When a clause in a method consists of just a term, and the final part of the term is a
method invocation, the clause is a method call instruction:

symbol([expression[,expression]...]);

emethod is being called as a subroutine of the currentmethod, and any returned value
is discarded. In this case (and in this case only), the method invoked need not return a
value (that is, the return instruction that ends it need not specify an expression). 28

A method call instruction that is the first instruction in a constructor (see below) can
only invoke the special constructors this and super.

10.2 Method resolution (search order)

Method resolution in NetR proceeds as follows:
. If the method invocation is the first part (stub) of a term, then:

1. e current class is searched for the method (see below for details of search-
ing).

2. If not found in the current class, then the superclasses of the current class are
searched, starting with the class that the current class extends.

3. If still not found, then the classes listed in the uses phrase of the class instruc-
tion are searched for the method, which in this case must be a static method
(see page 111) . Each class from the list is searched for the method, and then
its superclasses are searched upwards from the class; this process is repeated
for each of the classes, in the order specified in the list.

4. If still not found, the method invocation must be a constructor (see below)
and so the method name, which may be qualified by a package name, should
match the name of a primitive type or a known class (type). e specified class
is then searched for a constructor that matches the method invocation.. If the method invocation is not the first part of the term, then the evaluation of the

parts of the term to the le of the method invocation will have resulted in a value
(or just a type), which will have a known type (the continuation type). en:
1. e class that defines the continuation type is searched for the method (see

below for details of searching).
28 A method call instruction is equivalent to the call instruction of other languages, except that no keyword is required.

54

2. If not found in that class, then the superclasses of that class are searched, start-
ing with the class that that class extends.

If the search did not find a method, an error is reported.
If the search did find a method, that is the method which is invoked, except in one
case:. If the evaluation so far has resulted in a value (an object), then that value may

have a typewhich is a subclass of the continuation type. If, within that subclass,
there is a method that exactly overrides (see page 56) the method that was
found in the search, then the method in the subclass is invoked.

is case occurs when an object is earlier assigned to a variable of a type which is
a superclass of the type of the object. is type simplification hides the real type
of the object from the language processor, though it can be determined when the
program is executed.

Searching for a method in a class proceeds as follows:

1. Candidate methods in the class are selected. To be a candidate method:. the method must have the same name as the method invocation (independent
of the case (see page 40) of the letters of the name). the method must have the same number of arguments as the method invoca-
tion (or more arguments, provided that the remainder are shown as optional
in the method definition). it must be possible to assign the result of each argument expression to the type
of the corresponding argument in the method definition (if strict type check-
ing is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the method was not
found.

3. If there is just one candidate method, that method is used; the search is complete.
4. If there is more than one candidate method, the sum of the costs of the conver-

sions (see page 61) from the type of each argument expression to the type of the
corresponding argument defined for the method is computed for each candidate
method.

5. e costs of those candidates (if any) whose names match the method invocation
exactly, including in case, are compared; if one has a lower cost than all others, that
method is used and the search is complete.

6. e costs of all the candidates are compared; if one has a lower cost than all others,
that method is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost, the method
invocation is ambiguous, and an error is reported.

Note: 3.02When a method that is not an exact match to a call is found in a class, superclasses
of that class are also searched for methods which may have a lower-cost of conversion
and the method with the lowest cost, hence the closest match, is used to resolve the
search.

55

e current method of method resolution has been chosen to maximize interoperability
with Java-language programs.29

10.3 Method overriding

A method is said to exactly override a method in another class if

1. the method in the other class has the same name as the current method
2. the method in the other class is not private
3. the other class is a superclass of the current class, or is a class that the current class

implements (or is a superclass of one of those classes).
4. the number and type of the arguments of the method in the other class exactly

match the number and type of the arguments of the currentmethod (where subsets
are also checked, if either method has optional arguments).

For example, the R class includes a substr (see page 197) method, which takes from
one to three strings of type R. In the class:

class mystring extends Rexx
method substr(n=Rexx, length=Rexx)
return this.reverse.substr(n, length)

method substr(n=int, length=int)
return this.reverse.substr(Rexx n, Rexx length)

the first method exactly overrides the substr method in the R class, but the second
does not, because the types of the arguments do not match.
A method that exactly overrides a method is assumed to be an extension of the overrid-
den method, to be used in the same way. For such a method, the following rules apply:
. It must return a value of the same type30 as the overridden method (or none, if the

overridden method returns none).. Itmust be at least as visible as the overridden routine. For example, if the overridden
routine is public then it must also be public.. If the overridden method is static then it must also be static.. If the overridden method is not static then it must not be static.. If the underlying implementation checks exceptions (see page 181) , only those
checked exceptions that are signalled by the overridden method may be le un-
caught in the current method.

10.4 Return Types

NetR allows covariant3.02 return types such as have been allowed in Java since the ver-
sion 1.5 release. Prior to Java 1.5, in order for a method to override or implement a

29is in contrast to all versions before 3.02, where this rule was: When a method is found in a class, superclasses of that class are
not searched for methods, even though a lower-cost method may exist in a superclass.. e latter was chosen to guard the program
optimally against changes in superclasses.

30observing what is stated in the next paragraph

56

method from another class, the return type of the methods had to be an exact match.
Since the Java 1.5 release, methods which override a superclass method or implement an
interface class method are allowed to have a return type which is a subclass of the return
type of the method replaced or implemented. An exact match is no longer required.

10.5 Constructor methods

As described above, methods are usually invoked in the context of an existing value or
type. A special kind of method, called a constructor method, is used to actually create a
value of a given type (an object).
Constructor methods always have the same short name as the class in which they are
found, and construct and return a value of the type defined by that class (sometimes
known as an instance of that class). If the class is part of a package, then the constructor
call may be qualified by the package name.
Example constructors:

File(’Dan.yr.Ogof’)
java.io.File(’Speleogroup.letter’)
Rexx(’some words’)
netrexx.lang.Rexx(1)

ere will always be at least one constructor if values can be created for a class. NetR
will add a default public constructor that takes no arguments if no constructors are pro-
vided, unless the components of the class are all static or constant, or the class is an
interface class.
All constructors follow the same rules as other methods, and in addition:

1. Constructor calls always include parentheses in the syntax, even if no arguments
are supplied.is distinguishes them froma reference to the type of the same name.

2. Constructors must call a constructor of their superclass (the class they extend) be-
fore they carry out any initialization of their own. is is so any initialization car-
ried out by the superclass takes place, and at the appropriate moment. Only aer
this call is complete can they make any reference to the special words this or super
(see page 155) .
erefore, the first instruction in a constructor must be either a call to the super-
class, using the special constructor super() (with optional arguments), or a call to
to another constructor in the same class, using the special constructor this() (with
optional arguments). In the latter case, eventually a constructor that explicitly calls
super() will be invoked and the chain of local constructor calls ends.
As a convenience, NetR will add a default call to super(), with no arguments,
if the first instruction in a constructor is not a call to this() or super().

3. e properties of a constructed value are initialized, in the order given in the pro-
gram, aer the call to super() (whether implicit or explicit).

4. By definition, constructors create a value (object) whose type is defined by the cur-
rent class, and then return that value for use. erefore, the returns keyword on
the method instruction (see page 109) that introduces the constructor is optional

57

(if given, the type specified must be that of the class). Similarly, the only possi-
ble forms of the return instruction used in a constructor are either ”return this;”,
which returns the value that has just been constructed, or just ”return;”, in which
case, the ”this” is assumed (this form will be assumed at the end of a method, as
usual, if necessary).

Here is an example of a class with two constructors, showing the use of this() and su-
per(), and taking advantage of some of the assumptions:

Listing 10.1: MyChars.nrx
1 class MyChars extends SomeClass
2

3 properties private
4 /* the data 'in' the object */
5 value=char[]
6

7 /* construct the object from a char array */
8 method MyChars(array=char[])
9 /* initialize superclass */

10 super()
11 value=array -- save the value
12

13 /* construct the object from a String */
14 method MyChars(s=String)
15 /* convert to char[] and use the above */
16 this(s.toCharArray())

Objects of type MyChars could then be created thus:

myvar=MyChars(”From a string”)

or by using an argument that has type char[].

58

11

Type conversions

As described in the section on Types and classes (see page 43), all values that are ma-
nipulated in NetR have an associated type. On occasion, a value involved in some
operationmay have a different type than is needed, and in this case conversion of a value
from one type to another is necessary.
NetR considerably simplifies the task of programming, without losing robustness, by
makingmany such conversions automatic. It will automatically convert values providing
that there is no loss of information caused by the automatic conversion (or if there is, an
exception would be raised).
Conversions can also be made explicit by concatenating a type to a value (see page 66)
and in this case less robust conversions (sometimes known as casts) may be effected. See
below for details of the permitted automatic and explicit conversions.
Almost all conversions carry some risk of failure, or have a performance cost, and so it is
expected that implementations will provide options to either report costly conversions
or require that programmers make all conversions explicit. 31 Such options might be
recommended for certain critical programming tasks, but are not necessary for general
programming.

11.1 Permitted automatic conversions

In general, the semantics of a type is unknown, and so conversion (from a source type to
a target type) is only possible in the following cases:
. e target type and the source type are identical (the trivial case).. e target type is a superclass of the source type, or is an interface class imple-

mented by the source type. is is called type simplification, and in this case the
value is not altered, no information is lost, and an explicit conversion may be used
later to revert the value to its original type.. e source type has a dimension, and the target type is Object.. e source type is null and the target type is not primitive.. e target and source types have known semantics (that is, they are ”well-known”
to the implementation) and the conversion can be effected without loss of infor-
mation (other than knowledge of the original type). ese are called well-known
conversions.

Necessarily, the well-known conversions are implementation-dependent, in that they
depend on the standard classes for the implementation and on the primitive types sup-

31 In the reference implementation, options strictassignmay be used to disallow automatic conversions.

59

ported (if any). Equally, it is this automatic conversion between strings and the primitive
types of an implementation that offer the greatest simplifications of NetR program-
ming.
For example, if the implementation supported an int binary type (perhaps a 32-bit in-
teger) then this can safely be converted to a NetR string (of type R). Hence a
value of type int can be added to a number which is a NetR string (resulting in a
NetR string) without concern over the difference in the types of the two terms used
in the operation.
Conversely, converting a long integer to a shorter one without checking for truncation
of significant digits could cause a loss of information and would not be permitted.
In the reference implementation, the semantics of each of the following types is known to
the language processor (the first four are all string types, and the remainder are known as
binary numbers):

. netrexx.lang.R - the NetR string class. java.lang.String - the Java string class. char - the Java primitive which represents a single character. char[] - an array of chars. boolean - a single-bit primitive. byte, short, int, long, - signed integer primitives (8, 16, 32, or 64 bits). float, double - floating-point primitives (32 or 64 bits)

Under the rules described above, the following well-known conversions are permitted:

. R to binary number, char[], String, or char. String to binary number, char[], R, or char. char to binary number, char[], String, or R. char[] to binary number, R, String, or char. binary number to R, String, char[], or char. binary number to binary number (if no loss of information can take place - no sign,
high order digits, decimal part, or exponent information would be lost)

Notes:

1. Some of the conversions can cause a run-time error (exception), as when a string
represents a number that is too large for an int and a conversion to int is attempted,
or when a string that does not contain exactly one character is converted to a char.

2. e boolean primitive is treated as a binary number that may only take the values
0 or 1. A boolean may therefore be converted to any binary number type, as well as
any of the string (or char) types, as the character ”0” or ”1”. Similarly, any binary
number or string can be converted to boolean (and must have a value of 0 or 1 for the
conversion to succeed).

3. e char type is a single-character string (it is not a number that represents the en-
coding of the character).

60

11.2 Permitted explicit conversions

Explicit conversions are permitted for all permitted automatic conversions and, in ad-
dition, when:
. e target type is a subclass of the source type, or implements the source type. is

conversion will fail if the value being converted was not originally of the target type
(or a subclass of the target type).. Both the source and target types are primitive and (depending on the implemen-
tation) the conversion may fail or truncate information.. e target type is R or a well-known string type (all values have an explicit
string representation).

11.3 Costs of conversions

All conversions are considered to have a cost, and, for permitted automatic conversions,
these costs are used to select a method for execution when several possibilities arise,
using the algorithm described in Methods and Constructors (see page 54) .
For permitted automatic conversions, the cost of a conversion from a source type to a
target type will range from zero through some arbitrary positive value, constrained by
the following rules:
. e cost is zero only if the source and target types are the same, or if the source

type is null and the target type is not primitive.. Conversions from a given primitive source type to different primitive target types
should have different costs. For example, conversion of an 8-bit number to a 64-bit
number might cost more than conversion of a 8-bit number to a 32-bit number.. Conversions that may require the creation of a new object cost more than those
that can never require the creation of a new object.. Conversions that may fail (raise an exception) cost more than those that may re-
quire the creation of an object but can never fail.

Within these constraints, exact costs are arbitrary, and (because they mostly involve
implementation-dependent primitive types) are necessarily implementation-dependent.
e intent is that the ”best performance” method be selected when there is a possibility
of more than one.

61

12

Expressions and Operators

Many clauses can include expressions. Expressions in NetR are a general mechanism
for combining one or more data items in various ways to produce a result, usually dif-
ferent from the original data. Expressions consist of one or more terms (see page 47) ,
such as literal strings, symbols, method calls, or sub-expressions, and zero or more oper-
ators that denote operations to be carried out on terms.Most operators act on two terms,
and there will be at least one of these dyadic operators between every pair of terms. 32

ere are also prefix (monadic) operators, that act on the term that is immediately to the
right of the operator. ere may be one or more prefix operators to the le of any term,
provided that adjacent prefix operators are different.
Evaluation of an expression is le to right, modified by parentheses and by operator
precedence (see page 68) in the usual ”algebraic” manner. Expressions are wholly eval-
uated, except when an error occurs during evaluation.
As each term is used in an expression, it is evaluated as appropriate and its value (and
the type of that value) are determined.
e result of any operation is also a value, which may be a character string, a data object
of some other type, or (in special circumstances) a binary representation of a charac-
ter or number. e type of the result is well-defined, and depends on the types of any
terms involved in an operation and the operation carried out. Consequently, the result
of evaluating any expression is a value which has a known type.
Note that the NetR language imposes no restriction on the maximum size of results,
but therewill usually be some practical limitation dependent upon the amount of storage
and other resources available during execution.

12.1 Operators

e operators in NetR are constructed from one or more operator characters (see
page 38). Blanks (and comments) adjacent to operator characters have no effect on the
operator, and so the operators constructed from more than one character may have em-
bedded blanks and comments. In addition, blank characters, where they occur between
tokens within expressions but are not adjacent to another operator, also act as an opera-
tor. e operators may be subdivided into five groups: concatenation, arithmetic, com-
parative, logical, and type operators.e first four groups work with terms whose type is
”well-known” (that is, strings, or known types that can be be converted to strings without
information loss).e operations in these groups are defined in terms of their operations
on strings.

32 One operator, direct concatenation, is implied if two terms abut (see page 64) .

63

TABLE 2: Concatenation operators

(blank) Concatenate terms with one blank in between.

|| Concatenate without an intervening blank.

(abuttal) Concatenate without an intervening blank.

TABLE 3: Arithmetic operators

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide. Divide and return the integer part of the result.

// Remainder. Divide and return the remainder (this is not modulo, as the result may be neg-
ative).

** Power. Raise a number to a whole number power.

Prefix - Same as the subtraction: ”0-number”.

Prefix + Same as the addition: ”0+number”.

12.1.1 Concatenation

e concatenation operators are used to combine two strings to form one string by ap-
pending the second string to the right-hand end of the first string. e concatenation
may occur with or without an intervening blank: Concatenation without a blank may
be forced by using the || operator, but it is useful to remember that when two terms
are adjacent and are not separated by an operator, 33 they will be concatenated in the
same way. is is the abuttal operation. For example, if the variable Total had the value
’37.4’, then Total’%’ would evaluate to ’37.4%’. Values that are not strings are first
converted to strings before concatenation.e concatenation operators are listed in table
2.

12.1.2 Arithmetic

Character strings that are numbers (see page 67) may be combined using the arithmetic
operators listed in table 3. e section on Numbers and Arithmetic (see page 167) de-
scribes numeric precision, the format of valid numbers, and the operation rules for arith-
metic. Note that if an arithmetic result is shown in exponential notation, then it is likely
that rounding has occurred.
In binary classes (see page 87) , the arithmetic operatorswill use binary arithmetic if both
terms involved have values which are binary numbers. e section on Binary values and
operations (see page 177) describes binary arithmetic.

33 is can occur when the terms are syntactically distinct (such as a literal string and a symbol).

64

TABLE 4: Normal comparative operators

= Equal (numerically or when padded, etc.).

\= Not equal (inverse of =).

> Greater than.

< Less than.

><, <> Greater than or less than (same as ”Not equal”).

>=, \< Greater than or equal to, not less than.

<=, \> Less than or equal to, not greater than.

TABLE 5: Strict comparative operators

== Strictly equal (identical).

\== Strictly not equal (inverse of ==).

» Strictly greater than.

« Strictly less than.

»=, \« Strictly greater than or equal to, strictly not less than.

«=, \» Strictly less than or equal to, strictly not greater than.

12.1.3 Comparative

e comparative operators compare two terms and return the value ’1’ if the result of the
comparison is true, or ’0’ otherwise. Two sets of operators are defined: the strict compar-
isons (listed in table 5) and the normal comparisons (listed in table 4). e strict com-
parative operators all have one of the characters defining the operator doubled.e ”==”,
and ”\==” operators test for strict equality or inequality between two strings. Two strings
must be identical to be considered strictly equal. Similarly, the other strict compara-
tive operators (such as ”»” or ”«”) carry out a simple le-to-right character-by-character
comparison, with no padding of either of the strings being compared. If one string is
shorter than, and is a leading sub-string of, another then it is smaller (less than) the
other. Strict comparison operations are case sensitive, and the exact collating order may
depend on the character set used for the implementation. 34 For all the other compar-
ative operators, if both the terms involved are numeric, 35 a numeric comparison (in
which leading zeros are ignored, etc.) is effected; otherwise, both terms are treated as
character strings. For this character string comparison, leading and trailing blanks are
ignored, and then the shorter string is padded with blanks on the right. e character
comparison operation takes place from le to right, and is not case sensitive (that is,
”Yes” compares equal to ”yes”). As for strict comparisons, the exact collating order may
depend on the character set used for the implementation.
e equal and not equal operators (”=”, ”==”, ”\=”, and ”\==”) may be used to compare
two objects which are not strings for equality, if the implementation allows them to
be compared (usually they will need to be of the same type). e strict operators test

34 For example, in an ASCII or Unicode environment, the digits 0-9 are lower than the alphabetics, and lowercase alphabetics are
higher than uppercase alphabetics. In an EBCDIC environment, lowercase alphabetics precede uppercase, but the digits are higher
than all the alphabetics.

35 at is, if they can be compared numerically without error.

65

TABLE 6: Boolean operators

& And. Returns 1 if both terms are true.

| Inclusive or. Returns 1 if either term is true.

&& Exclusive or. Returns 1 if either (but not both) is true.

Prefix \ Logical not. Negates; 1 becomes 0 and vice versa.

whether the two objects are in fact the same object, 36 and the normal operators may
provide a more relaxed comparison, if available to the implementation. 37

In binary classes (see page 87) , all the comparative operators will use binary arithmetic
to effect the comparison if both terms involved have values which are binary numbers.
In this case, there is no distinction between the strict and the normal comparative op-
erators. e section on Binary values and operations (see page 177) describes the binary
arithmetic used for comparisons.

12.1.4 Boolean

A character string is taken to have the value ”false” if it is ’0’, and ”true” if it is ’1’. e
logical operators take one or two such values (values other than ’0’ or ’1’ are not allowed)
and return ’0’ or ’1’ as appropriate. e Boolean operators are listed in table 6. In binary
classes (see page 87) , the logical operators will act on all bits in the values if both terms
involved have values which are boolean or integers. e section on Binary values and
operations (see page 177) describes this in more detail.

12.1.5 Type

Several of the operators already described can be used to carry out operations related to
types. Specifically:
. Any of the concatenation operatorsmay be used for type concatenation, which con-

catenates a type to a value. All three operators (blank, ”||”, and abuttal) have the
same effect, which is to convert (see page 59) 38 the value to the type specified (if
the conversion is not possible, an error is reported or an exception is signalled).
e type must be on the le-hand side of the operator. Examples:
String ”abc”
int (a+1)
long 1
Exception e
InputStream myfile. A type on the le hand side of an operator that could be a prefix (+,- or \) type con-
catenation aer the prefix operator is applied to the right-hand operand, as though
an explicit concatenation operator were placed before the prefix operator.

36 Note that two distinct objects compared in this waymay contain values (properties) that are identical, yet they will not compare
equal as they are not the same object.

37 In the reference implementation, the equals method is used for normal comparisons. Where not provided by a type, this is imple-
mented by the Object class as a strict comparison.

38 is is sometimes known as casting

66

For example:
x=int -y

means that -y is evaluated, and then the result is converted to int before being
assigned to x. 39 e ”less than or equal” and the ”greater than or equal” operators
(”<=” and ”>=”) may be used with a type on either side of the operator, or on both
sides. In this case, they test whether a value or type is a subclass of, or is the same
as, a type, or vice versa. Examples:
if i<=Object then say ’I is an Object’
if String>=i then say ’I is a String’
if String<=Object then say ’String is an Object’

e precedence of these operators is not affected by their being used with types as
operands.

12.2 Numbers

e arithmetic operators above require that both terms involved be numbers; similarly
some of the comparative operators carry out a numeric comparison if both terms are
numbers. Numbers are introduced and defined in detail in the section on Numbers and
arithmetic (see page 167) . In summary, numbers are character strings consisting of one
or more decimal digits optionally prefixed by a plus or minus sign, and optionally in-
cluding a single period (”.”) which then represents a decimal point. A number may also
have a power of ten suffixed in conventional exponential notation: an ”E” (uppercase
or lowercase) followed by a plus or minus sign then followed by one or more decimal
digits defining the power of ten. Numbers may have leading blanks (before and/or aer
the sign, if any) and may have trailing blanks. Blanks may not be embedded among the
digits of a number or in the exponential part. Examples:

’12’
’-17.9’
’127.0650’
’73e+128’
’ + 7.9E-5 ’
’00E+000’

Note that the sequence -17.9 (without quotes) in an expression is not simply a number.
It is a minus operator (which may be prefix minus if there is no term to the le of it)
followed by a positive number. e result of the operation will be a number. A whole
number (see page 175) in NetR is a number that has a zero (or no) decimal part.
Implementation minimum: All implementations must support 9-digit arithmetic. In
unavoidable cases thismay be limited to integers only, and in this case the divide operator
(”/”)must not be supported. If exponents are supported in an implementation, then they
must be supported for exponents whose absolute value is at least as large as the largest
number that can be expressed as an exact integer in default precision, i.e., 999999999.

39 is could also have been written x=int (-y).

67

TABLE 7: Operator precedence

Prefix operators + - \
Power operator **
Multiplication and division * and /
Addition and subtraction + -
Concatenation (blank) || (abuttal)
Comparative operators = == > < <= >= « \» etc.

And &
Or, exclusive or | &&

12.3 Parentheses and operator precedence

Expression evaluation is from le to right; this is modified by parentheses and by oper-
ator precedence:

. When parentheses are encountered, other than those that identify method calls
(see page 53) , the entire sub-expression delimited by the parentheses is evaluated
immediately when the term is required.. When the sequence
term1 operator1 term2 operator2 term3
is encountered, and operator2 has a higher precedence than operator1, then the
operation (term2 operator2 term3) is evaluated first. e same rule is applied re-
peatedly as necessary. Note, however, that individual terms are evaluated from le
to right in the expression (that is, as soon as they are encountered). It is only the
order of operations that is affected by the precedence rules.

For example, ”*” (multiply) has a higher precedence than ”+” (add), so 3+2*5 will eval-
uate to 13 (rather than the 25 that would result if strict le to right evaluation occurred).
To force the addition to be performed before the multiplication the expression would be
written (3+2)*5, where the first three tokens have been formed into a sub-expression by
the addition of parentheses. e order of precedence of the operators is (highest at the
top) is listed in table 7.
If, for example, the symbol a is a variable whose value is ’3’, and day is a variable with
the value ’Monday’, then:

a+5 == ’8’
a-4*2 == ’-5’
a/2 == ’1.5’
a%2 == ’1’
0.5**2 == ’0.25’
(a+1)>7 == ’0’ /* that is, False */
’ ’=’’ == ’1’ /* that is, True */
’ ’==’’ == ’0’ /* that is, False */
’ ’\ ==’’ == ’1’ /* that is, True */
(a+1)*3=12 == ’1’ /* that is, True */

68

’077’>’11’ == ’1’ /* that is, True */
’077’>>’11’ == ’0’ /* that is, False */
’abc’>>’ab’ == ’1’ /* that is, True */
’If it is’ day == ’If it is Monday’
day.substr(2,3) == ’ond’
’!’day’!’ == ’!Monday!’

Note: e NetR order of precedence usually causes no difficulty, as it is the same as
in conventional algebra and other computer languages. ere are two differences from
some common notations; the prefixminus operator always has a higher priority than the
power operator, and power operators (like other operators) are evaluated le-to-right.
us

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

ese rules were found tomatch the expectations of themajority of users when the R
language was first designed, and NetR follows the same rules.

69

13

Clauses and Instructions

Clauses (see page 35) are recognized, and can usefully be classified, in the following
order:

Null clauses A clause that is empty or comprises only blanks, comments, and continua-
tions is a null clause and is completely ignored byNetR (except that if it includes
a comment it will be traced, if reached during execution).

Note: A null clause is not an instruction, so (for example) putting an extra semi-
colon aer the then or else in an if instruction is not equivalent to putting a
dummy instruction (as it would be in C or PL/I). e nop instruction is provided
for this purpose.

Assignments Single clauses within a class and of the form term=expression; are instruc-
tions known as assignments (see page 73) . An assignment gives a variable, identi-
fied by the term, a type or a new value.
In just one context, where property assignments are expected (before the first
method in a class), the ”=” and the expression may be omitted; in this case, the
term (and hence the entire clause) will always be a simple non-numeric symbol
which names the property

Method call instructions A method call instruction (see page 54) is a clause within a
method that comprises a single term that is, or ends in, a method invocation.

Keyword instructions A keyword instruction consists of one or more clauses, the first
of which starts with a non-numeric symbol which is not the name of a variable
or property in the current class (if any) and is immediately followed by a blank, a
semicolon (which may be implied by the end of a line), a literal string, or an opera-
tor (other than ”=”, which would imply an assignment). is symbol, the keyword,
identifies the instruction.
Keyword instructions control the external interfaces, the flow of control, and so
on. Some keyword instructions (see page 81) (do, if, loop, or select) can include
nested instructions.

71

14

Assignments and Variables

A variable is a named item whose value may be changed during the course of execution
of a NetR program.e process of changing the value of a variable is called assigning
a new value to it.
Each variable has an associated type, which cannot change during the execution of a
program; therefore, the values assigned to a given variable must always have a type that
can safely be assigned to that variable.
Variables may be assigned a new value by the method or parse instructions, but themost
common way of changing the value of a variable is by using an assignment instruction.
Any clause within a class and of the form:

assignment;

where assignment is:

term=expression

is taken to be an assignment instruction. e result of the expression becomes the new
value of the variable named by the term to the le of the equals sign. When the term is
simply a symbol, this is called the name of the variable. Example:

/* Next line gives FRED the value ’Frederic’ */
fred=’Frederic’

e symbol naming the variable cannot begin with a digit (0-9). 40

Within a NetR program, variable names are not case-sensitive (for example, the
names fred, Fred, and FRED refer to the same variable). Where public names are
exposed (for example, the names of properties, classes, and methods, and in cross-
reference listings) the case used for the name will be that used when the name was
first introduced (”first” is determined statically by position in a program rather than
dynamically).
Similarly, the type of a NetR variable is determined by the type of the value of the
expression that is first assigned to it. 41 For subsequent assignments, it is an error to assign
a value to a variable with a type mismatch unless the language processor can determine

40 Without this restriction on the first character of a variable name, it would be possible to redefine a number, in that for example
the assignment ”3=4;” would give a variable called ”3” the value ’4’.

41 Since NetR infers the type of a variable from usage, substantial programs can be written without introducing explicit type
declarations, although these are allowed.

73

that the value can be assigned safely to the type of the variable.
In practice, this means that the types must match exactly, be a simplification, or both
be ”well-known” types such as R, String, int, etc., for which safe conversions are
defined. e possibilities are described in the section on Conversions (see page 59) . 42

For example, if there are types (classes) called ibm.util.hex, RunKnown, and Window,
then:

hexy=ibm.util.hex(3) -- ’hexy’ has type ’ibm.util.hex’
rk=RunKnown() -- ’rk’ has type ’RunKnown’
fred=Window(10, 20) -- ’fred’ has type ’Window’
s=”Los Lagos” -- ’s’ has type ’Rexx’
j=5 -- ’j’ has type ’Rexx’

e first three examples invoke the constructor method for the type to construct a value
(an object). A constructor method always has the same name as the class to which it
belongs, and returns a new value of that type. Constructor methods are described in
detail in Methods and Constructors (see page 53) .
e last two examples above illustrate that, by default, the types of literal strings and
numbers are NetR strings (type R) and so variables tend to be of type R.
is simplifies the language and makes it easy to learn, as many useful programs can
be written solely using the powerful R type. Potentially more efficient (though less
human-oriented) primitive or built-in types for literals will be used in binary classes (see
page 87). If the examples above were in a binary class, then, in the reference implementa-
tion, the types of s and j would have been java.lang.String and int respectively.
A variable may be introduced (”declared”) without giving it an initial value by simply
assigning a type to it:

i=int
r=Rexx
f=java.io.File

Here, the expression to the right of the ”=” simply evaluates to a type with no value.

14.1 e use and scope of variables

NetR variables all follow the same rules of assignment, but are used in different con-
texts. ese are:

Properties Variables which name the values (the data) owned by an object of the type
defined by the class are called properties.When an object is constructed by the class,
its properties are created and are initialized to either a default value (null or, for
variables of primitive type, an implementation-defined value, typically 0) or to a
value provided by the programmer.
e attributes of properties can be changed by the properties instruction (see
page 127). For example, properties may also be constant, which means that they

42 Implementations may provide for a stricter rule for assignment (where the types must be identical), controlled by the options
instruction.

74

are initialized when the class is first loaded and do not change thereaer.
Method arguments When a method is invoked, arguments may be passed to it. ese

method arguments are assigned to the variables named on the method instruction
(see page 109) that introduces the method.

Local variables Variables that are knownonlywithin amethod are called local variables;
each time a method is invoked a distinct set of local variables is available. Local
variables are normally given an initial value by the programmer. If they are not,
they are initialized to a default value (null or, for variables of primitive type, an
implementation-defined value, typically 0).

In order for types to be determined and type-checking to be possible at ”compile-time”,
and easily determined by inspection, the use and type of every variable is determined by
its position in the program, not by the order in which assignments are executed. at is,
variable typing is static.
e visibility of a variable depends on its use. Properties are visible to all methods in a
class; method arguments and local variables are only visible within the method in which
they appear. In particular:

. Within a class, properties have unique names (they cannot be overridden by
method arguments or by local variables within methods); this avoids error-prone
ambiguity.

. Within a method, a method argument acts like a local variable (that is, it is in the
same name-space as local variables, and can be assigned new values); it can be con-
sidered to be a local variable that is assigned a value just before the body of the
method is executed. ere cannot be both a method argument and a local variable
in a method with the same name.

. Within methods, variables can take only one type, the type assigned to them when
first encountered in the method (in a strict ”physical” sense, that is, as parsed from
top to bottom of the program and from le to right on each line). Since methods
tend to be small, there is no local scoping of variables inside the constructs within
a method. 43

us, in this example:

method iszero(x)
if x=0 then qualifier=’is zero’

else qualifier=’is not zero’
say ’The argument’ qualifier’.’

the variable qualifier is known throughout the method and hence has a known
type and value when the say instruction is executed.

To summarize: a symbol that names a variable in the current class either refers to a prop-
erty (and in any use of it within the class refers to that property), or it refers to a variable
that is unique within a method (and any use of the name within that method refers to
the same variable).

43 Unlike the block scoping of PL/I, C, or Java.

75

Note: A variable is just a name, or ”handle” for a value. It is possible for more than one
variable to refer to the same value, as in the program:

first=’A string’
second=first

Here, both variables refer to the same value. If that value is changeable then a change
to the value referred to by one of the variable names would also be seen if the value is
referred to by the other. For example, sub-values of a NetR string can be changed,
using Indexed references (see page 77) , so a change to a sub-value of first would also be
seen in an identical indexed reference to second.

14.2 Terms on the le of assignments

In an assignment instruction, the term to the le of the equals sign is most commonly
a simple non-numeric symbol, which always names a variable in the current class. e
other possibilities, as seen in the example below, are:

1. e term is an indexed reference (see page 77) , to an existing variable that refers to
a string of type R or an array (see page 78) . e variable may be in the current
class, or be a property in a class named in the uses phrase of the class instruction
for the current class.

2. e term is a compound term (see page 48) that ultimately refers to a property (see
above) in some class (which may be the current class). is property cannot be a
constant.

Examples:

r=Rexx ’’
r[’foo’]=’?’ -- indexed string assignment
s=String[3]
s[0]=’test’ -- array assignment
Sample.value=1 -- property assignment
this.value=1 -- property assignment
super.value=1 -- property assignment

e last two examples show assignments to a property in the current class or in a super-
class of the current class, respectively. Note that references to properties in other classes
must alway be qualified in some way (for example, by the prefix super.). e use of the
prefix this. for properties in the current class is optional.

76

15

Indexed strings and Arrays

Any NetR string (that is, a value of type R), has the ability to have sub-values,
values (also of type R) which are associated with the original string and are indexed
by an index string which identifies the sub-value. Any string with such sub-values is
known as an indexed string.
e sub-values of a NetR string are accessed using indexed references, where the
name of a variable of type R is followed immediately by square brackets enclosing
one or more expressions separated by commas: 44

symbol’[’[expression[, expression]...]’]’

It is important to note that the symbol that names the variable must be followed imme-
diately by the ”[”, with no blank in between, or the construct will not be recognized as
an indexed reference. e expressions (separated by commas) between the brackets are
called the indexes to the string. ese index expressions are evaluated in turn from le
to right, and each must evaluate to a value is of type R or that can be converted to
type R.
e resulting index strings are taken ”as-is” - that is, they must match exactly in content,
case, and length for a reference to find a previously-set item. ey may have any length
(including the null string) and value (they are not constrained to be just those strings
which are numbers, for example).
If a reference does not find a sub-value, then a copy of the non-indexed value of the
variable is used. Example:

surname=’Unknown’ -- default value
surname[’Fred’]=’Bloggs’
surname[’Davy’]=’Jones’
try=’Fred’
say surname[try] surname[’Bert’]

would say ”Bloggs Unknown”.
When multiple indexes are used, they indicate accessing a hierarchy of strings. A single
NetR string has a single set of indexes and subvalues associated with it. e sub-
values, however, are also NetR strings, and so may in turn have indexes and sub-
values. When more than one index is specified in an indexed reference, the indexes are
applied in turn from le to right to each retrieved sub-value.

44 e notations ’[’ and ’]’ indicate square brackets appearing in the NetR program.

77

For example, in the sequence:

x=’?’
x[’foo’, ’bar’]=’OK’
say x[’foo’, ’bar’]
y=x[’foo’]
say y[’bar’]

both say instructions would display the string ”OK”. Indexed strings may be used to set
up ”associative arrays”, or dictionaries, in which the subscript is not necessarily numeric,
and thus offer great scope for the creative programmer. A useful application is to set up
a variable in which the subscripts are taken from the value of one or more variables, so
effecting a form of associative (content addressable) memory. e justone program (see
page 20) is an example of this technique. Notes:

1. A variable of typeRmust have been assigned a value before indexing is used on
it. is is the value that is used as the default value whenever an indexed reference
finds no sub-value.

2. e indexes, and hence the sub-values, of a R object can be retrieved in turn
using the over (see page 104) keyword of the loop instruction.

3. e exists method (see page 192) of the R class may be used to test whether an
indexed reference has an explicitly-set value.

4. Assigningnull to an indexed reference (for example, the assignment switch[7]=null;)
drops the sub-value; until set to a new value, any reference to the sub-value (in-
cluding use of the exists method) will return the same result as when it had never
been set.

15.1 Arrays

In addition to indexed strings, NetR also includes the concept of fixed-size arrays,
which may be used for indexing values of any type (including strings).
Arrays are used with the same syntax and in the same manner as indexed strings, but
with important differences that allow for compact implementations and access to equiv-
alent data structures constructed using other programming languages:

1. e indexes for arrays must be whole numbers that are zero or positive. ere will
usually be an implementation restriction on the maximum value of the index (typ-
ically 999999999 or higher).

2. e elements of an array are considered to be ordered; the first element has index
0, the second 1, and so on.

3. An array is of fixed size; it must be constructed before use.
4. Variables that are assigned arrays can only be assigned arrays (of the same dimen-

sion, see below) in the future. at is, being an array changes the type of a value; it
becomes a dimensioned type (see page 44) .

Array references use the NetR indexed reference syntax defined above. e same
syntax is used for constructing arrays, except that the symbol before the le bracket

78

describes a type (and hence may be qualified by a package name). e expression or
expressions between the brackets indicate the size of the array in each dimension, and
must be a positive whole number or zero:

arg=String[4] -- makes an array for four Strings
arg=java.io.File[4] -- makes an array for four Files
i=int[3] -- makes an array for three ’int’s

(Another way of describing this is that array constructors look just like other object con-
structors, except that brackets are used instead of parentheses.)
Once an array has been constructed, its elements can be referred to using brackets and
expressions, as before:

i[2]=3 -- sets the ’2’-indexed value of ’i’
j=i[2] -- sets ’j’ to the ’2’-indexed value of ’i’

Regular multiple-dimensioned arrays may be constructed and referenced by using mul-
tiple expressions within the brackets:

i=int[2,3] -- makes a 2x3 array of ’int’ type objects
i[1,2]=3 -- sets the ’1,2’-indexed value of ’i’
j=i[1,2] -- sets ’j’ to the ’1,2’-indexed value of ’i’

As with indexed strings, when multiple indexes are used, they indicate accessing a hier-
archy of arrays (the underlying model is therefore of a hierarchy of single-dimensioned
arrays). When more than one index is specified in an indexed reference to an array, the
indexes are applied in turn from le to right to each array.
As described in the section on Types (see page 43) , the type of a variable that refers to an
array can be set (declared) by assignment of the type with array notation that indicates
the dimension of an array without any sizes:

k=int[] -- one-dimensional array of ’int’ objects
m=float[,,] -- 3-dimensional array of ’float’ objects

e same syntax is also used when describing an array type in the arguments of a method
instruction or when converting types. For example, aer:

gg=char[] ”Horse”

the variable gg has as its value an array of type char[] containing the five characters H,
o, r, s, and e.

15.1.1 Array initializers

An array initializer is a simple termwhich is recognized if it does not immediately follow
(abut) a symbol, and has the form 45

’[’expression[,expression]...’]’

45 e notations ’[’ and ’]’ indicate square brackets appearing in the NetR program.

79

An array initializer therefore comprises a list of one or more expressions, separated by
commas, within brackets.When an array initializer is evaluated, the expressions are eval-
uated in turn from le to right, and all must result in a value. An array is then con-
structed, with a number of elements equal to the number of expressions in the list, with
each element initialized by being assigned the result of the corresponding expression.
e type of the array is derived by adding one dimension to the type of the result of the
first expression in the list, where the type of that expression is determined using the same
rules as are used to select the type of a variable when it is first assigned a value(see page
73). All the other expressions in the list must have types that could be assigned to the
chosen type without error.
For example, in

var1=[’aa’, ’bb’, ’cc’]
var2=[char ’a’, ’b’, ’c’]
var3=[String ’a’, ’bb’, ’c’]
var4=[1, 2, 3, 4, 5, 6]
var5=[[1,2], [3,4]]

the types of the variables would be R[], char[], String[], R[], and R[,] re-
spectively. In a binary class in the reference implementation, the types would be String[],
char[], String[], int[], and int[,].
Array initializers are most useful for initializing properties and variables, but like other
simple terms, they may start a compound term.
So, for example

say [1,1,1,1].length

would display 4. Note that an array of length zero cannot be constructed with an ar-
ray initializer, as its type would be undefined. An explicitly typed array constructor (for
example, int[0]) must be used.

80

16

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. Some keyword instructions affect the flow of control; the
remainder just provide services to the programmer. Some keyword instructions (do, if,
loop, or select) can include nested instructions. Appendix A (see page 203) includes
an example of a NetR program using many of the instructions available. As can be
deduced from the syntax rules described earlier, a keyword instruction is recognized
only if its keyword is the first token in a clause, and if the second token is not an ”=”
character (implying an assignment). It would also not be recognized if the second token
startedwith ”(”, ”[”, or ”.” (implying that the first token starts a term). Further, if a current
local variable, method argument, or property has the same name as a keyword then the
keyword will not be recognized. is important rule allows NetR to be extended
with new keywords in the future without invalidating existing programs.
us, for example, this sequence in a program with no say variable:

say ’Hello’
say(’1’)
say=3
say ’Hello’

would be a say instruction, a call to some say method, an assignment to a say variable,
and an error. In NetR, therefore, keywords are not reserved; they may be used as the
names of variables (though this is not recommended, where known in advance). Certain
other keywords, known as sub-keywords, may be known within the clauses of individual
instructions - for example, the symbols to and while in the loop instruction. Again,
these are not reserved; if they had been used as names of variables, they would not be
recognized as sub-keywords. Blanks adjacent to keywords have no effect other than that
of separating the keyword from the subsequent token. For example, this applies to the
blanks next to the sub-keyword while in

loop while a=3

Here at least one blank was required to separate the symbols forming the keywords and
the variable name, a. However the blank following the while is not necessary in

loop while ’Me’=a

though it does aid readability.

81

17

Address instruction

address [environment] [expression]

where environment is one of

shell
bash
cmd

ekeyword address temporarily or permanently changes the destination of commands.
Commands are strings sent to aan external environment. You can send commands by
specifying clauses consisting of only an expression or by using the ADDRESS instruc-
tion.
To send a single command to a specified environment, code an environment, a literal
string or a single symbol, which is taken to be a constant, followed by an expression.
e environment name is the name of an external procedure or process that can process
commands. e expression is evaluated to produce a character string value, and this
string is routed to the environment to be processed as a command. Aer execution of
the command, environment is set back to its original state, thus temporarily changing
the destination for a single command.

83

18

Class instruction

class name [visibility] [modifier] [binary] [deprecated]
[extends classname]
[uses useslist]
[implements interfacelist];

where visibility is one of:

private
public
shared

and modifier is one of:

abstract
adapter
final
interface

and useslist and interfacelist are lists of one or more classnames,
separated by commas.

e class instruction is used to introduce a class, as described in the sections Types and
Classes (see page 43) and Program structure (see page 147) , and define its attributes. e
class must be given a name, which must be different from the name of any other classes
in the program. e name, which must be a non-numeric symbol, is known as the short
name of the class.
A classname can be either the short name of a class (if that is unambiguous in the context
in which it is used), or the qualified name of the class - the name of the class prefixed
by a package name and a period, as described under the package instruction (see page
123).
e body of the class consists of all clauses following the class instruction (if any) until
the next class instruction or the end of the program.
e visibility, modifier, and binary keywords, and the extends, uses, and implements
phrases, may appear in any order.

85

18.1 Visibility

Classes may be public, private, or shared:
. A public class is visible to (that is, may be used by) all other classes.. A private class is visible only within same program and to classes in the same pack-

age (see page 123) .. A shared class is also visible only within same program and to classes in the same
package. 46

A program may have only one public class, and if no class is marked public then the first
is assumed to be public (unless it is explicitly marked private).

18.2 Modifier

Most classes are collections of data (properties) and the procedures that can act on that
data (methods); they completely implement a datatype (type), and are permitted to be
subclassed. ese are called standard classes. e modifier keywords indicate that the
class is not a standard class - it is special in some way. Only one of the followingmodifier
keywords is allowed:

abstract An abstract class does not completely implement a datatype; one ormore of the
methods that it defines (or which it inherits from classes it extends or implements)
is abstract - that is, the name of the method and the types of its arguments are
defined, but no instructions to implement the method are provided.
Since somemethods are not provided, an object cannot be constructed from an ab-
stract class. Instead, the classmust be extended and anymissingmethods provided.
Such a subclass can then be used to construct an object.
Abstract classes are useful wheremany subclasses can share common data ormeth-
ods, but each will have some unique attribute or attributes (data and/or methods).
For example, some set of geometric objects might share dimensions in X and Y, yet
need unique methods for calculating the area of the object.

adapter An adapter class is a class that is guaranteed to implement all unimplemented
abstract methods of its superclasses and interface classes that it inherits or lists as
implemented on the class instruction.
If any unimplemented methods are found, they will be automatically generated by
the language processor. Methods generated in this way will have the same visibil-
ity and signature as the abstract method they implement, and if a return value is
expected then a default value is returned (as for the initial value of variables of the
same type: that is, null or, for values of primitive type, an implementation-defined
value, typically 0). Other than possibly returning a value, these methods are empty;
that is, they have no side-effects.
An adapter class provides a concrete representation of its superclasses and the in-
terface classes it implements. As such, it is especially useful for implementing event

46 e shared keyword on the class instruction means exactly the same as the keyword private, and is accepted for consistency
with the other meanings of shared.

86

handlers and the like, where only a small number of event-handling methods are
needed but many more might be specified in the interface class that describes the
event model. 47

An adapter class cannot have any abstract methods.
final A final class is considered to be complete; it cannot be subclassed (extended), and

all its methods are considered complete. 48

interface An interface class is an abstract class that contains only abstract method def-
initions and/or constants. at is, it defines neither instructions that implement
methods nor modifiable properties, and hence cannot be used to construct an ob-
ject.
Interface classes are used by classes that claim to implement them (see the implements
keyword, described below). e difference between abstract and interface classes
is that the former may have methods which are not abstract, and hence can only
be subclassed (extended), whereas the latter are wholly abstract and may only be
implemented.

18.3 Binary

e keyword binary indicates that the class is a binary class. In binary classes, literal
strings and numeric symbols are assigned native string or binary (primitive) types,
rather than NetR types, and native binary operations are used to implement oper-
ators where possible. When binary is not in effect (the default), terms in expressions
are converted to NetR types before use by operators. e section Binary values and
operations (see page 177) describes the implications of binary classes in detail.
Individual methods in a class which is not binary can bemade into binarymethods using
the binary keyword on the method instruction (see page 109) .

18.4 Deprecated

ekeyword deprecated indicates that the class isdeprecated, which implies that a better
alternative is available and documented. A compiler can use this information to warn of
out-of-date or other use that is not recommended.

18.5 Extends

Classes form a hierarchy, with all classes (except the top of the tree, the Object 49 class)
being a subclass of some other class. e extends keyword identifies the classname of
the immediate superclass of the new class - that is, the class immediately above it in the
hierarchy. If no extends phrase is given, the superclass is assumed to be Object (or null,
in the case where the current class is Object).

47 For example, see the ”Scribble” sample in the NetR package.
48 is modifier is provided for consistency with other languages, and may allow compilers to improve the performance of classes

that refer to the final class. In many cases it will reduce the reusability of the class, and hence should be avoided.
49 In the reference implementation, java.lang.Object.

87

18.6 Uses

e uses keyword introduces a list of the names of one or more classes that will be used
as a source of constant (or static) properties and/or methods.
When a term (see page 47) starts with a symbol, method call, or indexed reference that
is not known in the current context, each class in the useslist and its superclasses are
searched (in the order specified in theuseslist) for a constant or staticmethod or property
that matches the item. If found, the method or property is used just as though explicitly
qualified by the name of the class in which it was found.
e usesmechanism affects only the syntax of terms in the current class; it is not inher-
ited by subclasses of the current class.

18.7 Implements

e implements keyword introduces a list of the names of one or more interface classes
(see above). ese interface classes are then known to (inherited by) the current class, in
the order specified in the interfacelist. eir methods (which are all abstract) and con-
stant properties act as though part of the current class, unless they are overridden (hid-
den) by a method or constant of the same name in the current class.
If the current class is not an interface class then it must implement (provide non-abstract
methods for) all the methods inherited from the interface classes in the implements list.
Interface classes, therefore, can be used to:

1. Define a common set of methods (possibly with associated constants) that will be
implemented by other classes.

2. Conveniently package collections of constants for use by other classes.

e implements list may not include the superclass of the current class.

88

19

Do instruction

do [label name] [protect term];
instructionlist

[catch [vare =] exception;
instructionlist]...

[finally[;]
instructionlist]

end [name];

where name is a non-numeric symbol

and instructionlist is zero or more instructions

e do instruction is used to group instructions together for execution; these are exe-
cuted once. e group may optionally be given a label, and may protect an object while
the instructions in the group are executed; exceptional conditions can be handled with
catch and finally.
e most common use of do is simply for treating a number of instructions as group.
Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
if a=3 then do

a=a+2
say ’Smile!’
end

Here, only the first instructionlist is used. is forms the body of the group.
e instructions in the instructionlists may be any assignment, method call, or keyword
instruction, including any of the more complex constructions such as loop, if, select,
and the do instruction itself.

19.0.1 Label phrase

If label is used to specify a name for the group, then a leave which specifies that name
may be used to leave the group, and the end that ends the group may optionally specify
the name of the group for additional checking.

89

Example:

do label sticky
x=ask
if x=’quit’ then leave sticky
say ’x was’ x
end sticky

19.0.2 Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is not just
a type and is not of a primitive type; while the do construct is being executed, the value
(object) is protected - that is, all the instructions in the do construct have exclusive access
to the object.
Both label and protect may be specified, in any order, if required.

19.0.3 Exceptions in do groups

Exceptions that are raised by the instructions within a do groupmay be caught using one
or more catch clauses that name the exception that they will catch. When an exception
is caught, the exception object that holds the details of the exception may optionally be
assigned to a variable, vare.
Similarly, a finally clause may be used to introduce instructions that will always be
executed at the end of the group, even if an exception is raised (whether caught or not).
e Exceptions section (see page 181) has details and examples of catch and finally.

90

20

Exit instruction

exit [expression];

exit is used to unconditionally leave a program, and optionally return a result to the
caller. e entire program is terminated immediately.
If an expression is given, it is evaluated and the result of the evaluation is then passed back
to the caller in an implementation-dependent manner when the program terminates.
Typically this value is expected to be a small whole number; most implementations will
accept values in the range 0 through 250. If no expression is given, a default result (which
depends on the implementation, and is typically zero) is passed back to the caller.
Example:

j=3
exit j*4
/* Would exit with the value ’12’ */

”Running off the end” of a program is equivalent to the instruction return;. In the case
where the program is simply a stand-alone application with no class or method instruc-
tions, this has the same effect as exit;, in that it terminates thewhole program and returns
a default result.

91

21

If instruction

if expression[;]
then[;] instruction

[else[;] instruction]

e if construct is used to conditionally execute an instruction or group of instructions.
It can also be used to select between two alternatives. e expression is evaluated and
must result in either 0 or 1. If the result was 1 (true) then the instruction aer the then
is executed. If the result was 0 (false) and an else was given then the instruction aer
the else is executed. Example:

if answer=’Yes’ then say ’OK!’
else say ’Why not?’

Remember that if the else clause is on the same line as the last clause of the then part,
then you need a semicolon to terminate that clause. Example:

if answer=’Yes’ then say ’OK!’; else say ’Why not?’

e else binds to the nearest then at the same level.ismeans that any if that is used as
the instruction following the then in an if construct that has an else clause, must itself
have an else clause (which may be followed by the dummy instruction, nop). Example:

if answer=’Yes’ then if name=’Fred’ then say ’OK, Fred.’
else say ’OK.’

else say ’Why not?’

To includemore than one instruction following then or else, use a grouping instruction
(do, loop, or select). Example:

if answer=’Yes’ then do
say ’Line one of two’
say ’Line two of two’
end

In this instance, both say instructions are executed when the result of the if expression
is 1.
Multiple expressions, separated by commas, can be given on the if clause, which then
has the syntax:

93

if expression[, expression]... [;]

In this case, the expressions are evaluated in turn from le to right, and if the result of any
evaluation is 1 then the test has succeeded and the instruction following the associated
then clause is executed. If all the expressions evaluate to 0 and an else was given then
the instruction aer the else is executed.
Note that once an expression evaluation has resulted in 1, no further expressions in the
clause are evaluated. So, for example, in:

-- assume ’name’ is a string
if name=null, name=’’ then say ’Empty’

then if name does not refer to an object it will compare equal to null and the say instruc-
tion will be executed without evaluating the second expression in the if clause.

Notes:

1. An instruction may be any assignment, method call, or keyword instruction, in-
cluding any of the more complex constructions such as do, loop, select, and the
if instruction itself. A null clause is not an instruction, however, so putting an extra
semicolon aer the then or else is not equivalent to putting a dummy instruction.
e nop instruction is provided for this purpose.

2. e keyword then is treated specially, in that it need not start a clause. is allows
the expression on the if clause to be terminated by the then, without a ”;” being
required - were this not so, people used to other computer languages would be
inconvenienced. Hence the symbol then cannot be used as a variable name within
the expression. 50

94

22

Import instruction

import name;

where name is one or more non-numeric symbols separated by periods,
with an optional trailing period.

e import instruction is used to simplify the use of classes from other packages. If a
class is identified by an import instruction, it can then be referred to by its short name,
as given on the class instruction (see page 85) , as well as by its fully qualified name.
ere may be zero or more import instructions in a program. ey must precede any
class instruction (or any instruction that would start the default class).
In the following description, a package name names a package as described under the
package instruction (see page 123). e import name must be one of:
. A qualified class name, which is a package name immediately followed by a period

which is immediately followed by a short class name - in this case, the individual
class identified is imported.. A package name - in this case, all the classes in the specified package are imported.
e name may have a trailing period.. A partial package name (a package name with one or more parts omitted from the
right, indicated by a trailing period aer the parts that are present) - in this case,
all classes in the package hierarchy below the specified point are imported.

Examples:

import java.lang.String
import java.lang
import java.

e first example above imports a single class (which could then be referred to simply as
”String”). e second example imports all classes in the ”java.lang” package. e third
example imports all classes in all the packages whose name starts with ”java.”.
When a class is imported explicitly, for example, using

import java.awt.List

this indicates that the short name of the class (List, in this example) may be used
to refer to the class unambiguously. at is, using this short name will not report an
ambiguous reference warning (as it would without the import instruction, because a

95

java.util.List class was added in Java 1.2).
It follows that:
. Two classes imported explicitly cannot have the same short name.. No class in a program being compiled can have the same short name as a class that

is imported explicitly.

because in either of these situations a use of the short name would be ambiguous.
Note also that an explicit import does not import the minor or dependent classes associ-
ated with a name; they each require their own explicit import (unless the entire package
is imported).
In the reference implementation, the fundamental NetR and Java package hierarchies
are automatically imported by default, as though the instructions:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.
import javax.swing.3.02

had been executed before the program begins. In addition, classes in the current (working)
directory are imported if no package instruction is specified. If a package instruction is
specified then all classes in that package are imported.

96

23

Iterate instruction

iterate [name];

where name is a non-numeric symbol.

iterate alters the flow of control within a loop construct. It may only be used in the
body (the first instructionlist) of the construct.
Execution of the instruction list stops, and control is passed directly back up to the loop
clause just as though the last clause in the body of the construct had just been executed.
e control variable (if any) is then stepped (iterated) and termination conditions tested
as normal and the instruction list is executed again, unless the loop is terminated by the
loop clause.
If no name is specified, then iterate will step the innermost active loop.
If a name is specified, then it must be the name of the label, or control variable if there
is no label, of a currently active loop (which may be the innermost), and this is the loop
that is iterated. Any active do, loop, or select constructs inside the loop selected for
iteration are terminated (as though by a leave instruction).
Example:

loop i=1 to 4
if i=2 then iterate i
say i
end

/* Would display the numbers: 1, 3, 4 */

Notes:

1. A loop is active if it is currently being executed. If a method (even in the same
class) is called during execution of a loop, then the loop becomes inactive until the
method has returned. iterate cannot be used to step an inactive loop.

2. e name symbol, if specified, must exactly match the label (or the name of the
control variable, if there is no label) in the loop clause in all respects except case.

97

24

Leave instruction

leave [name];

where name is a non-numeric symbol.

leave causes immediate exit from one or more do, loop, or select constructs. It may
only be used in the body (the first instructionlist) of the construct.
Execution of the instruction list is terminated, and control is passed to the end clause of
the construct, just as though the last clause in the body of the construct had just been
executed or (if a loop) the termination condition had been met normally, except that on
exit the control variable (if any) will contain the value it had when the leave instruction
was executed.
If no name is specified, then leave must be within an active loop and will terminate the
innermost active loop.
If a name is specified, then it must be the name of the label (or control variable for a
loop with no label), of a currently active do, loop, or select construct (which may be
the innermost). at construct (and any active constructs inside it) is then terminated.
Control then passes to the clause following the end clause that matches the do, loop, or
select clause identified by the name.
Example:

loop i=1 to 5
say i
if i=3 then leave
end i

/* Would display the numbers: 1, 2, 3 */

Notes:

1. If any construct being le includes a finally clause, the instructionlist following
the finally will be executed before the construct is le.

2. A do, loop, or select construct is active if it is currently being executed. If amethod
(even in the same class) is called during execution of an active construct, then the
construct becomes inactive until the method has returned. leave cannot be used
to leave an inactive construct.

3. e name symbol, if specified, must exactly match the label (or the name of the
control variable, for a loop with no label) in the do, loop, or select clause in all

99

respects except case.

100

25

Loop instruction

loop [label name] [protect termp] [repetitor] [conditional];
instructionlist

[catch [vare =] exception;
instructionlist]...

[finally[;]
instructionlist]

end [name];

where repetitor is one of:

varc = expri [to exprt] [by exprb] [for exprf]
varo over termo
for exprr
forever

and conditional is either of:

while exprw
until expru

and name is a non-numeric symbol

and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

e loop instruction is used to group instructions together and execute them repeti-
tively. e loop may optionally be given a label, and may protect an object while the
instructions in the loop are executed; exceptional conditions can be handled with catch
and finally. loop is the most complicated of the NetR keyword instructions. It can
be used as a simple indefinite loop, a predetermined repetitive loop, as a loop with a
bounding condition that is recalculated on each iteration, or as a loop that steps over the
contents of a collection of values.

101

25.1 Syntax notes:
. e label and protect phrases may be in any order.eymust precede any repeti-
tor or conditional.. e first instructionlist is known as the body of the loop.. e to, by, and for phrases in the first form of repetitor may be in any order, if
used, and will be evaluated in the order they are written.. Any instruction allowed in a method is allowed in an instructionlist, including as-
signments, method call instructions, and keyword instructions (including any of
the more complex constructions such as if, do, select, or the loop instruction
itself).. If for or forever start the repetitor and are followed by an ”=” character, they are
taken as control variable names, not keywords (as for assignment instructions).. e expressions expri, exprt, exprb, or exprf will be ended by any of the keywords
to, by, for, while, or until (unless the word is the name of a variable).. e expressions exprw or expru will be ended by either of the keywords while or
until (unless the word is the name of a variable).

25.2 Indefinite loops

If neither repetitor nor conditional are present, or the repetitor is the keyword forever,
then the loop is an indefinite loop. It will be ended only when some instruction in the
first instructionlist causes control to leave the loop.
Example:

/* This displays ”Go caving!” at least once */
loop forever

say ’Go caving!’
if ask=’’ then leave
end

25.3 Bounded loops

If a repetitor (other than forever) or conditional is given, the first instructionlist forms
a bounded loop, and the instruction list is executed according to any repetitor phrase,
optionally modified by a conditional phrase.

Simple bounded loops When the repetitor starts with the keyword for, the expression
exprr is evaluated immediately (with 0 added, to effect any rounding) to give a
repetition count, which must be a whole number that is zero or positive. e loop
is then executed that many times, unless it is terminated by some other condition.
Example:
/* This displays ”Hello” five times */
loop for 5
say ’Hello’

102

end

A controlled loop begins with an assignment, which can be identified by the ”=”
that follows the name of a control variable, varc. e control variable is assigned an
initial value (the result of expri, formatted as though 0 had been added) before the
first execution of the instruction list.e control variable is then stepped (by adding
the result of exprb) before the second and subsequent times that the instruction list
is executed.
e name of the control variable, varc, must be a non-numeric symbol that names
an existing or new variable in the current method or a property in the current class
(that is, it cannot be element of an array, the property of a superclass, or a more
complex term). It is further restricted in that itmust not already be used as the name
of a control variable or label in a loop (or do or select construct) that encloses the
new loop.
e instruction list in the body of the loop is executed repeatedly while the end
condition (determined by the result of exprt) is not met. If exprb is positive or zero,
then the loopwill be terminated when varc is greater than the result of exprt. If neg-
ative, then the loop will be terminated when varc is less than the result of exprt.e
expressions exprt and exprb must result in numbers. ey are evaluated once only
(with 0 added, to effect any rounding), in the order they appear in the instruction,
and before the loop begins and before expri (which must also result in a number)
is evaluated and the control variable is set to its initial value.
e default value for exprb is 1. If no exprt is given then the loop will execute in-
definitely unless it is terminated by some other condition. Example:

Controlled bounded loops loop i=3 to -2 by -1
say i
end

/* Would display: 3, 2, 1, 0, -1, -2 */
Note that the numbers do not have to be whole numbers: Example:
x=0.3
loop y=x to x+4 by 0.7
say y
end

/* Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 */

e control variable may be altered within the loop, and this may affect the itera-
tion of the loop. Altering the value of the control variable in this way is normally
considered to be suspect programming practice, though it may be appropriate in
certain circumstances. Note that the end condition is tested at the start of each it-
eration (and aer the control variable is stepped, on the second and subsequent
iterations). It is therefore possible for the body of the loop to be skipped entirely
if the end condition is met immediately. e execution of a controlled loop may
further be bounded by a for phrase. In this case, exprf must be given and must
evaluate to a non-negative whole number. is acts just like the repetition count
in a simple bounded loop, and sets a limit to the number of iterations around the
loop if it is not terminated by some other condition.
exprf is evaluated along with the expressions exprt and exprb.at is, it is evaluated
once only (with 0 added), when the loop instruction is first executed and before

103

the control variable is given its initial value; the three expressions are evaluated in
the order in which they appear. Like the to condition, the for count is checked at
the start of each iteration, as shown in the programmer’s (see page 106) model:ea..
Example:
loop y=0.3 to 4.3 by 0.7 for 3
say y
end

/* Would display: 0.3, 1.0, 1.7 */

In a controlled loop, the symbol that describes the control variablemay be specified
on the end clause (unless a label is specified, see below). NetR will then check
that this symbol exactly matches the varc of the control variable in the loop clause
(in all respects except case). If the symbol does not match, then the program is in
error - this enables the nesting of loops to be checked automatically. Example:
loop k=1 to 10
...
...
end k /* Checks this is the END for K loop */

Note: e values taken by the control variable may be affected by the numeric set-
tings, since normal NetR arithmetic rules apply to the computation of stepping
the control variable.

Over When the second token of the repetitor is the keyword over, the control variable,
varo, is used to work through the sub-values in the collection of indexed strings
identified by termo. In this case, the loop instruction takes a ”snapshot” of the in-
dexes that exist in the collection at the start of the loop, and then for each iteration
of the loop the control variable is set to the next available index from the snapshot.
e number of iterations of the loopwill be the number of indexes in the collection,
unless the loop is terminated by some other condition. Example:
mycoll=’’
mycoll[’Tom’]=1
mycoll[’Dick’]=2
mycoll[’Harry’]=3
loop name over mycoll
say mycoll[name]
end

/* might display: 3, 1, 2 */

Notes:
1. e order in which the values are returned is undefined; all that is known is

that all indexes available when the loop started will be recorded and assigned
to varo in turn as the loop iterates.

2. e same restrictions apply to varo as apply to varc, the control variable for
controlled loops (see above).

3. Similarly, the symbol varomay be used as a name for the loop and be specified
on the end clause (unless a label is specified, see below).

In the reference implementation, the over form of repetitor may also be used to step
though the contents of any object that is of a type that is a subclass of java.util.Dictionary,

104

such as an object of type java.util.Hashtable. In this case, termo specifies the dictio-
nary, and a snapshot (enumeration) of the keys to the Dictionary is taken at the start
of the loop. Each iteration of the loop then assigns a new key to the control variable
varo which must be (or will be given, if it is new) the type java.lang.Object.

Conditional phrases Any of the forms of loop syntax can be followed by a conditional
phrase which may cause termination of the loop.
If while is specified, exprw is evaluated, using the latest values of all variables in
the expression, before the instruction list is executed on every iteration, and aer
the control variable (if any) is stepped. e expression must evaluate to either 0 or
1, and the instruction list will be repeatedly executed while the result is 1 (that is,
the loop ends if the expression evaluates to 0). Example:
loop i=1 to 10 by 2 while i<6
say i
end

/* Would display: 1, 3, 5 */

If until is specified, expru is evaluated, using the latest values of all variables in
the expression, on the second and subsequent iterations, and before the control
variable (if any) is stepped. 51 e expression must evaluate to either 0 or 1, and
the instruction list will be repeatedly executed until the result is 1 (that is, the loop
ends if the expression evaluates to 1). Example:
loop i=1 to 10 by 2 until i>6
say i
end

/* Would display: 1, 3, 5, 7 */

Note that the execution of loops may also be modified by using the iterate or leave
instructions.

25.4 Label phrase

e label phrasemay used to specify a name for the loop.e name can then optionally
be used on
. a leave instruction, to specify the name of the loop to leave. an iterate instruction, to specify the name of the loop to be iterated. the end clause of the loop, to confirm the identity of the loop that is being ended,

for additional checking.

Example:

loop label pooks i=1 to 10
loop label hill while j<3
...
if a=b then leave pooks
...

51 us, it appears that the until condition is tested aer the instruction list is executed on each iteration. However, it is the loop
clause that carries out the evaluation.

105

end hill
end pooks

In this example, the leave instruction leaves both loops.
If a label is specified using the label keyword, it overrides any name derived from the
control variable name (if any). at is, the variable name cannot be used to refer to the
loop if a label is specified.

25.5 Protect phrase

e protect phrase may used to specify a term, termp, that evaluates to a value that is
not just a type and is not of a primitive type; while the loop construct is being executed,
the value (object) is protected - that is, all the instructions in the loop construct have
exclusive access to the object. Example:

loop protect myobject while a<b
...
end

Both label and protect may be specified, in any order, if required.

25.6 Exceptions in loops

Exceptions that are raised by the instructions within a loop construct may be caught
using one or more catch clauses that name the exception that they will catch. When
an exception is caught, the exception object that holds the details of the exception may
optionally be assigned to a variable, vare.
Similarly, a finally clause may be used to introduce instructions that will always be
executed when the loop ends, even if an exception is raised (whether caught or not).
e Exceptions section (see page 181) has details and examples of catch and finally.

25.7 Programmer’s model - how a typical loop is executed

is model forms part of the definition of the loop instruction. For the following loop:

loop varc = expri to exprt by exprb while exprw
...
instruction list
...
end

NetR will execute the following:

$tempt=exprt+0 /* ($variables are internal and */
$tempb=exprb+0 /* are not accessible.) */
varc=expri+0

106

Transfer control to the point identified as $start:

$loop:
/* An UNTIL expression would be tested here, with: */
/* if expru then leave */
varc=varc + $tempb

$start:
if varc > $tempt then leave /* leave quits a loop */
/* A FOR count would be checked here */
if \ exprw then leave

...
instruction list
...

Transfer control to the point identified as $loop:

Notes:

1. is example is for exprb >= 0. For a negative exprb, the test at the start point of the
loop would use ”<” rather than ”>”.

2. e upwards transfer of control takes place at the end of the body of the loop, im-
mediately before the end clause (or any catch or finally clause). e end clause
is only reached when the loop is finally completed.

107

26

Method instruction

method name[([arglist])]
[visibility] [modifier] [protect] [binary] [deprecated]
[returns termr]
[signals signallist];

where arglist is a list of one or more assignments, separated by commas

and visibility is one of:

inheritable
private
public
shared

and modifier is one of:

abstract
constant
final
native
static

and signallist is a list of one or more terms, separated by commas.

e method instruction is used to introduce a method within a class, as described in
Program structure (see page 147), and define its attributes. e method must be given a
name, which must be a non-numeric symbol. is is its short name.
If the short name of a method matches the short name of the class in which it appears, it
is a constructor method. Constructor methods are used for constructing values (objects),
and are described in detail in Methods and Constructors (see page 53).
e body of the method consists of all clauses following the method instruction (if any)
until the next method or class instruction, or the end of the program.
e visibility, modifier, and protect keywords, and the returns and signals phrases,
may appear in any order.

109

26.1 Arguments

e arglist on a method instruction, immediately following themethod name, is optional
and defines a list of the arguments for the method. An argument is a value that was
provided by the caller when the method was invoked.
If there are no arguments, this may optionally be indicated by an ”empty” pair of paren-
theses.
In the arglist, each argument has the syntax of an assignment (see page 73) , where the
”=” and the following expression may be omitted. e name in the assignment provides
the name for the argument (which must not be the same as the name of any property in
the class). Each argument is also optionally assigned a type, or type and default value, fol-
lowing the usual rules of assignment. If there is no assignment, the argument is assigned
the NetR string type, R.
If there is no assignment (that is, there is no ”=”) or the expression to the right of the ”=”
returns just a type, the argument is required (that is, it must always be specified by the
caller when the method is invoked).
If an explicit value is given by the expression then the argument is optional; when the
caller does not provide an argument in that position, then the expression is evaluated
when the method is invoked and the result is provided to the method as the argument.
Optional arguments may be omitted ”from the right” only. at is, arguments may not
be omitted to the le of arguments that are not omitted. Examples:

method fred
method fred()
method fred(width, height)
method fred(width=int, height=int 10)

In these examples, the first two method instructions are equivalent, and take no argu-
ments. e third example takes two arguments, which are both strings of type R.
e final example takes two arguments, both of type int; the second argument is op-
tional, and if not supplied will default to the value 10 (note that any valid expression
could be used for the default value).

26.2 Visibility

Methods may be public, inheritable, private, or shared:

. A public method is visible to (that is, may be used by) all other classes to which the
current class is visible.. An inheritable method is visible to (that is, may be used by) all classes in the same
package and also those classes that extend (that is, are subclasses of) the current
class.. A private method is visible only within the current class.. A shared method is visible within the current package but is not visible outside the
package. Shared methods cannot be inherited by classes outside the package.

110

By default (i.e., if no visibility keyword is specified), methods are public.

26.3 Modifier

Most methods consist of instructions that follow the method instruction and implement
the method; the method is associated with an object constructed by the class. ese are
called standard methods. e modifier keywords define that the method is not a stan-
dard method - it is special in some way. Only one of the following modifier keywords is
allowed:

abstract An abstract method has the name of the method and the types (but not values)
of its arguments defined, but no instructions to implement themethod are provided
(or permitted).
If a class contains any abstract methods, an object cannot be constructed from it,
and so the class itself must be abstract; the abstract keyword must be present on
the class instruction (see page 85) .
Within an interface class, the abstract keyword is optional on the methods of the
class, as all methods must be abstract. No othermodifier is allowed on the methods
of an interface class.

constant A constant method is a static method that cannot be overridden by a method
in a subclass of the current class. at is, it is both final and static (see below).

final A final method is considered to be complete; it cannot be overridden by a subclass
of the current class. private methods are implicitly final. 52

native A native method is a method that is implemented by the environment, not by
instructions in the current class. Such methods have no NetR instructions to
implement the method (and none are permitted), and they cannot be overridden
by a method in a subclass of the current class.
Native methods are used for accessing primitive operations provided by the under-
lying operating system or by implementation-dependent packages.

static A static method is a method that is not a constructor and is associated with the
class, rather than with an object constructed by the class. It cannot use properties
directly, except those that are also static (or constant).
Static methods may be invoked in the following ways:
1. Within the initialization expression of a static or constant property (such

methods are invoked when the class is first loaded).
2. By qualifying the name of the method with the name of its class (qualified

by the package name if necessary), for example, using ”Math.Sin(1.3)” or
”java.lang.Math.Sin(1.3)”. Methods called in this way are in effect functions.

3. By implicitly qualifying the name by including the name of its class in the uses
phrase in the class instruction for the current class. Static methods in classes
listed in this way can be used directly, without qualification, for example, as
”Sin(1.3)”. ey may be still be qualified, if preferred.

In the reference implementation, stand-alone applications are started by the java
command invoking a static method called main which takes a single argument (of

52 is modifier may allow compilers to improve the performance of methods that are final, but may also reduce the reusability
of the class.

111

type java.lang.String[]) and returns no result.

26.4 Protect

e keyword protect indicates that the method protects the current object (or class,
for a static method) while the instructions in the method are executed. at is, the in-
structions in the method have exclusive access to the object; if some other method (or
construct) is executing in parallel with the invocation of the method and is protecting
the same object then the method will not start execution until the object is no longer
protected.
Note that if a method or construct protecting an object invokes a method (or starts a
new construct) that protects the same object then execution continues normally. e
inner method or construct is not prevented from executing, because it is not executing
in parallel.

26.5 Binary

e keyword binary indicates that the method is a binary method.
In binary methods, literal strings and numeric symbols are assigned native string or
binary (primitive) types, rather than NetR types, and native binary operations are
used to implement operators where possible. When binary is not in effect (the default),
terms in expressions are converted toNetR types before use by operators.e section
Binary values and operations (see page 177) operations:ea. describes the implications of
binary methods and classes in detail. Notes:

1. Only the instructions inside the body of the method are affected by the binary
keyword; any arguments and expressions on the method instruction itself are not
affected (this ensures that a single rule applies to all the method signatures in a
class).

2. All methods in a binary class are binary methods; the binary keyword on methods
is provided for classes in which only the occasional method needs to be binary
(perhaps for performance reasons). It is not an error to specify binary on amethod
in a binary class.

26.6 Deprecated

e keyword deprecated indicates that the method is deprecated, which implies that a
better alternative is available and documented. A compiler can use this information to
warn of out-of-date or other use that is not recommended.
Note that individual methods in interface classes cannot be deprecated; the whole class
should be deprecated in this case.

112

26.7 Returns

e returns keyword is followed by a term, termr, thatmust evaluate to a type.is type
is used to define the type of values returned by return instructions within the method.
e returns phrase is only required if the method is to return values of a type that is not
NetR strings (class R). If returns is specified, all return instructions (see page
131) within the method must specify an expression. Example:

method filer(path, name) returns File
return File(path||name)

is method always returns a value which is a File object.

26.8 Signals

e signals keyword introduces a list of terms that evaluate to types that are Exceptions
(see page 181) . is list enumerates and documents the exceptions that are signalled
within the method (or by a method which is called from the current method) but are
not caught by a catch clause in a control construct. Example:

method soup(cat) signals IOException, DivideByZero

It is considered good programming practice to use this list to document ”unusual” ex-
ceptions signalled by a method. Implementations that support the concept of checked
exceptions(see page 183) must report as an error any checked exception that is incor-
rectly included in the list (that is, if the exception is never signalled or would always be
caught). Such implementations may also offer an option that enforces the listing of all
or some checked exceptions.

26.9 Duplicate methods

Methods may not duplicate properties or other methods in the same class. Specifically:
. e short name of a method must not be the same as the name of any property in

the same class.. e number (zero or more) and types of the arguments of a method (or any subset
permitted by omitting optional arguments) must not be the same as those of any
other method of the same name in the class (also checking any subset permitted by
omitting optional arguments).

Note that the second rule does allow multiple methods with the same name in a class,
provided that the number of arguments differ or at least one argument differs in type.

113

27

Nop instruction

nop;

nop is a dummy instruction that has no effect. It can be useful as an explicit ”do nothing”
instruction following a then or else clause. Example:

select
when a=b then nop -- Do nothing
when a>b then say ’A > B’
otherwise say ’A < B’
end

Note: Putting an extra semicolon instead of the nop would merely insert a null clause,
which would just be ignored by NetR. e second when clause would then immedi-
ately follow the then, and hence would be reported as an error. nop is a true instruction,
however, and is therefore a valid target for the then clause.

115

28

Numeric instruction

numeric digits [exprd];
form [scientific];

[engineering];

e numeric instruction is used to change the way in which arithmetic operations are
carried out by a program. e effects of this instruction are described in detail in the
section on Numbers and Arithmetic (see page 167) .

numeric digits controls the precision under which arithmetic operations will be evalu-
ated (see page 169) .
If no expression exprd is given then the default value of 9 is used. Otherwise the
result of the expression is rounded, if necessary, according to the current setting of
numeric digits before it is used.e value usedmust be a positive whole number.
ere is normally no limit to the value for numeric digits (except the constraints
imposed by the amount of storage and other resources available) but note that high
precisions are likely to be expensive in processing time. It is recommended that the
default value be used wherever possible.
Note that small values of numeric digits (for example, values less than 6) are gen-
erally only useful for very specialized applications. e setting of numeric digits
affects all computations, so even the operation of loops may be affected by round-
ing if small values are used.
If an implementation does not support a requested value for numeric digits then
the instruction will fail with an exception (which may, as usual, be caught with the
catch clause of a control construct).
e current setting of numeric digits may be retrieved with the digits special
word (see page 155) .

numeric form controls which form of exponential notation (see page 174) is to be used
for the results of operations. is may be either scientific (in which case only one,
non-zero, digit will appear before the decimal point), or engineering (in which case
the power of ten will always be a multiple of three, and the part before the decimal
point will be in the range 1 through 999). e default notation is scientific. e
form is set directly by the sub-keywords scientific or engineering; if neither
sub-keyword is given, scientific is assumed.e current setting of numeric form
may be retrieved with the form special word (see page 155) .
If an implementation does not support a requested value for numeric form then
the instruction will fail with an exception (which may, as usual, be caught with the

117

catch clause of a control construct).

e numeric instruction may be used where needed as a dynamically executed instruc-
tion in a method.
It may also appear, more than once if necessary, before the first method in a class, in
which case it forms the default setting for the initialization of subsequent properties in
the class and for all methods in the class. In this case, any exception due to the numeric
instruction is raised when the class is first loaded.
Further, one or more numeric instructions may be placed before the first class instruc-
tion in a program; they do not imply the start of a class. e numeric settings then apply
to all classes in the program (except interface classes), as though the numeric instruc-
tions were placed immediately following the class instruction in each class (except that
they will not be traced).

118

29

Options instruction

options wordlist;

where wordlist is one or more symbols separated by blanks.

e options instruction is used to pass special requests to the language processor (for
example, an interpreter or compiler).
Individual words, known as option words, in the wordlist which are meaningful to the
language processorwill be obeyed (thesemight control optimizations, enforce standards,
enable implementation-dependent features, etc.); those which are not recognized will be
ignored (they are assumed to be instructions to a different language processor). Option
words in the list that are known will be recognized independently of case.
ere may be zero or more options instructions in a program. ey apply to the whole
program, andmust come before the first class instruction (or any instruction that starts
a class).
In the reference implementation, the known option words are:

binary All classes in this programwill be binary (see page 87) classes:ea.. In binary classes,
literals are assigned binary (primitive) or native string types, rather than NetR
types, and native binary operations are used to implement operators where appropri-
ate, as described in ”Binary values and operations” (see page 177) . In classes that
are not binary, terms in expressions are converted to the NetR string type, R,
before use by operators.

comments Comments from the NetR source programwill be passed through to the the
Java output file (which may be saved with a .java.keep extension by using the -keep
command option).
Line comments become Java line comments (introduced by ”//”). Block comments be-
come Java block comments (delimited by ”/*” and ”*/”), with nested block comments
having their delimiters changed to ”(-” and ”-)”).

classpath 3.02e -classpath operand allows dynamic specification of the classpath used by
the NetRexxC compiler without having to depend on the CLASSPATH environment
variable. ere is no -noclasspath counterpart.

compact Requests that warnings and error messages be displayed in compact form. is
format ismore easily parsed than the default format, and is intended for use by editing
environments.
Each error message is presented as a single line, prefixed with the error token iden-

119

tification enclosed in square brackets. e error token identification comprises three
words, with one blank separating the words. e words are: the source file specifica-
tion, the line number of the error token, the column in which it starts, and its length.
For example (all on one line):
[D:
test
test.nrx 3 8 5] Error: The external name
’class’ is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null (’
0’) character. Additional words could be added to the error token identification later.

console Requests that compilermessages bewritten to console (the default). Use -noconsole
to prevent messages being written to the console.
is option only has an effect as a compiler option, and applies to all programs being
compiled.

crossref Requests that cross-reference listings of variables be prepared, by class.
decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the

language processor will report operations that use (or, like normal string comparison,
might use) decimal arithmetic as an error. is option is intended for performance-
critical programs where the overhead of inadvertent use of decimal arithmetic is un-
acceptable.

diag Requests that diagnostic information (for experimental use only) be displayed. e
diag option word may also have side-effects.

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. is option is intended to
permit the enforcement of ”house styles” (but note that the NetR compiler always
checks for variables which are referenced before their first assignment, and warns of
variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for im-
proved readability. Note that if this option is in effect, line numbers from the input
file will not be preserved (so run-time errors and exception trace-backs may show
incorrect line numbers).

java Requests that Java source code be produced by the translator. If nojava is specified, no
Java source code will be produced; this can be used to save a little time when checking
of a program is required without any compilation or Java code resulting.

keepasjava Requests that Java source code is kept as [programfile].java. Implies -replace.
is option only has an effect as a compiler option, and applies to all programs being
compiled.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

replace Requests that replacement of the translator output (.java) file be allowed. e de-
fault, noreplace, prevents an existing .java file being accidentally overwritten.

savelog Requests that compiler messages be written to the file NetRC.log in the cur-
rent directory. e messages are also displayed on the console, unless -noconsole is
specified.

120

is option only has an effect as a compiler option, and applies to all programs being
compiled.

sourcedir Requests that all .classfiles be placed in the same directory as the source file from
which they are compiled. Other output files are already placed in that directory. Note
that using this option will prevent the -run command option from working unless the
source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when no ar-
guments are supplied. Also, if strictargs is in effect, method arguments are checked
for usage - a warning is given if no reference to the argument is made in the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). is also applies to the matching of arguments in
method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical to
match).

strictimport Requires that all imported packages and classes be imported explicitly using
import instructions. at is, if in effect, there will be no automatic imports (see page
95) , except those related to the package instruction.
is option only has an effect as a compiler option, and applies to all programs being
compiled.

strictprops Requires that all properties, including those local to the current class, be qual-
ified in references. at is, if in effect, local properties cannot appear as simple names
butmust be qualified by this. (or equivalent) or the class name (for static properties).

strictsignal Requires that all checked exceptions (see page 183) signalled within a method
but not caught by a catch clause be listed in the signals phrase of the method in-
struction.

symbols Symbol table information (names of local variables, etc.) will be included in any
generated .class file. is option is provided to aid the production of classes that are
easy to analyse with tools that can understand the symbol table information. e use
of this option increases the size of .class files.

trace, traceX If given as trace, trace1, or trace2, then trace instructions are accepted.
e trace output is directed according to the option word: trace1 requests that trace
output is written to the standard output stream, trace or trace2 imply that the out-
put should be written to the standard error stream (the default).
If notrace is given, then trace instructions are ignored. e latter can be useful to
prevent tracing overheads while leaving trace instructions in a program.

utf8 If given, clauses following the options instruction are expected to be encoded using
UTF-8, so all Unicode characters may be used in the source of the program.
In UTF-8 encoding, Unicode characters less than ’\u0080’ are represented using
one byte (whose most-significant bit is 0), characters in the range ’\u0080’ through
’\u07FF’ are encoded as two bytes, in the sequence of bits:
110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of the character,
and characters in the range ’\u0800’ through ’\uFFFF’ are encoded as three bytes, in
the sequence of bits:
1110xxxx 10xxxxxx 10xxxxxx

121

where the sixteen digits shown as x are the sixteen bits of the character.
If noutf8 is given, following clauses are assumed to comprise only Unicode characters
in the range ’\x00’ through ’\xFF’, with the more significant byte of the encoding of
each character being 0.

Note: this option only has an effect as a compiler option, and applies to all programs
being compiled. If present on an options instruction, it is checked andmust match
the compiler option (this allows processing with or without utf8 to be enforced).

verbose, verboseX Sets the ”noisiness” of the language processor. e digit Xmay be any
of the digits 0 through 5; if omitted, a value of 3 is used. e options noverbose and
verbose0 both suppress all messages except errors and warnings.

warnexit0 Exit the translator with returncode 0 even if warnings are issued. is option
only has an effect as a compiler option, and applies to all programs being compiled.

Prefixing any of the above with ”no” turns the selected option off. Example:

options binary nocrossref nostrictassign strictargs

e default settings of the various options are:

nobinary nocomments nocompact console crossref decimal nodiag noexplicit
noformat java logo noreplace nosavelog nosourcedir nostrictargs
nostrictassign nostrictcase nostrictimport nostrictprops nostrictsignal
nosymbols trace2 noutf8 verbose3

When an option word is repeated (in the same options instruction or not), or conflicting
option words are specified, then the last use determines the state of the option.
All option words may also be set as command line options when invoking the processor, by
prefixing them with ”-”: Example:

java COM.ibm.netrexx.process.NetRexxC -format foo.nrx

In this case, any options may come before, aer, or between file specifications.
With the except of the utf8 option (see above), options set with the options instruction
override command-line settings, following the ”last use” rule.
For more information, see the installation and user documentation for your implementa-
tion.

122

30

Package instruction

package name;

where name is one or more non-numeric symbols separated by periods.

e package instruction is used to define the package to which the class or classes in the
current program belong. Classes that belong to the same package have privileged access
to other classes in the same package, in that each class is visible to all other classes in the
same package, even if not declared public. Packages also conveniently group classes for
use by the import instruction (see page 95) .
e name must specify a package name, which is one or more non-numeric symbols,
separated by periods, with no blanks.
ere must be at most one package instruction in a program. It must precede any class
instruction (or any instruction that would start the default class).
If a program contains no package instruction then its package is implementation-
defined. Typically it is grouped with other programs in some implementation-defined
logical collection, such as a directory in a file system. Examples:

package testpackage
package com.ibm.venta

When a class is identified as belonging to a package, it has a qualified class name, which
is its short name, as given on the class instruction (see page 85) , prefixed with the
package name and a period. For example, if the short name of a class is ”RxLanguage”
and the package name is ”com.ibm.venta” then the qualified name of the class would be
”com.ibm.venta.RxLanguage”.
In the reference implementation, packages are kept in a hierarchy derived from the Java
classpath, where the segments of a package name correspond to a path in the hierarchy.
e hierarchy is typically the directories in a file system, or some equivalent (such as a
”Zip” archive file), and so package names should be considered case-sensitive (as some Java
implementations use case-sensitive file systems).

123

31

Parse instruction

parse term template;

where template is one or more non-numeric symbols
separated by blanks and/or patterns, and a pattern is one of:

literalstring
[indicator] number
[indicator] (symbol)

and indicator is one of +, -, or =.

e parse instruction is used to assign characters (froma string) to one ormore variables
according to the rules and templates described in the section Parsing templates (see page
159).
e value of the term is expected to be a string; if it is not a string, it will be converted to
a string.
Any variables used in the template are named by non-numeric symbols (that is, they
cannot be an array reference or other term); they refer to a variable or property in the
current class. Any values that are used in patterns during the parse are converted to
strings before use.
Any variables set by the parse instruction must have a known string type, or are given
the NetR string type, R, if they are new.
e term itself is not changed unless it is a variable which also appears in the template
and whose value is changed by being in the template.
Example:

parse wordlist word1 wordlist

In this idiomatic example, the first word is removed fromwordlist and is assigned to the
variable word1, and the remainder is assigned back to wordlist.
Notes:

1. e special words ask, source, and version, as described in the section Special
names and methods(see page 155), allow:

parse ask x -- parses a line from input stream

125

parse source x -- parses ’Java method filename’
parse version x -- parses ’NetRexx version date’

ese special words may also be used within expressions.
2. Similarly, it is recommended that the initial (main) method in a stand-alone appli-

cation place the command string passed to it in a variable called arg. 53

If this is done, the instruction:
parse arg template

will work, in a stand-alone application, in the same way as in R (even though
arg is not a keyword in this case). 54

53 In the reference implementation, this is automatic if themainmethod is generated by the NetR language processor.
54 Note, though, that the command string may have been edited by the environment; certain characters may not be allowed,

multiple blanks may have been reduced to single blanks, etc.

126

32

Properties instruction

properties [visibility] [modifier] [deprecated] [unused];

where visibility is one of:

inheritable
private
public
shared

and modifier is one of:

constant
static
transient
volatile

and there must be at least one visibility or modifier keyword.

e properties instruction is used to define the attributes of following property vari-
ables, and therefore must precede the first method instruction in a class. A properties
instruction replaces any previous properties instruction (that is, the attributes speci-
fied on properties instructions are not cumulative).
e visibility, modifier, deprecated, and unused keywords may be in any order.

Note: An unqualified properties statement (one that has no visibility or modifier key-
word), is not in error, but generates a variable properties, which is most probably not
the intention of the programmer.3.03 e reference implementation issues a warning but al-
lows this practice.

An example of the use of properties instructions may be found in the Program Struc-
ture section (see page 147) .

127

32.1 Visibility

Properties may be public, inheritable, private, or shared: 55

. A public property is visible to (that is, may be used by) all other classes to which the
current class is visible.. An inheritable property is visible to (that is, may be used by) all classes in the same
package and also those classes that extend (that is, are subclasses of) the current
class, and which qualify the property using an object of the subclass, or either this
or super.. A private property is visible only within the current class.. A shared property is visible within the current package but is not visible outside the
package. Shared properties cannot be inherited by classes outside the package.

By default, if no properties instruction is used, or visibility is not specified, properties
are inheritable (but not public). 56

32.2 Modifier

Properties may also be constant, static, transient, or volatile:

. A constant property is associated with the class, rather than with an instance of the
class (an object). It is initialized when the class is loaded and may not be changed
thereaer.. A static property is associatedwith the class, rather thanwith an instance of the class
(an object). It is initialized when the class is loaded, andmay be changed thereaer.. A transient property is a property which should not be saved when an instance of
the class is saved (made persistent).. A volatile property may change asynchronously, outside the control of the class,
even when no method in the class is being executed. If an implementation does
not allow asynchronous modification of properties, it should ignore this keyword.

Constant and static properties exist from when the class is first loaded (used), even if
no object is constructed by the class, and there will only be one copy of each property.
Other properties are constructed and initialized only when an object is constructed by
the class; each object then has its own copy of such properties.
By default, if no properties instruction is used, or modifier is not specified, properties
are associated with an object constructed by the class.

32.3 Deprecated

e keyword deprecated indicates that any property introduced by this instruction is
deprecated, which implies that a better alternative is available and documented. A com-

55 An experimental option for visibility, indirect, is described in Appendix B (see page 205) .
56 e default, here, was chosen to encourage the ”encapsulation” of data within classes.

128

piler can use this information to warn of out-of-date or other use that is not recom-
mended.

32.4 Unused

ekeyword unused indicates that the private properties which follow are not referenced
explicitly in the code for the class, and so a language processor should not warn that they
exist but have not been used. If a visibility keyword is specified it must be private.
For example:

properties private constant unused
-- Serialization version
serialVersionUID=long 8245355804974198832

32.5 Properties in interface classes

In interface classes (see page 87) , propertiesmust be both public and constant. In such
classes, these attributes for properties are the default and the properties instruction
must not be used.

129

33

Return instruction

return [expression];

return is used to return control (and possibly a result) from a NetR program or
method to the point of its invocation.
e expression (if any) is evaluated, active control constructs are terminated (as though
by a leave instruction), and the value of the expression is passed back to the caller.
e result passed back to the caller is a string of type R, unless a different type was
specified using the returns keyword on the method instruction (see page 109) for the
current method. In this case, the type of the value of the expression must match (or be
convertible to, as by the rules for assignment) the type specified by the returns phrase.
Within a method, the use of expressions on return must be consistent. at is, either
all return instructions must specify a expression, or none may. If a returns phrase is
given on the method instruction for the current method then all return instructions
must specify an expression.

131

34

Say instruction

say [expression];

say writes a string to the default output character stream. is typically causes it to be
displayed (or spoken, or typed, etc.) to the user.
Example:

data=100
say data ’divided by 4 =>’ data/4
/* would display: ”100 divided by 4 => 25” */

e result of evaluating the expression is expected to be a string; if it is not a string,
it will be converted to a string. is result string is written from the program via an
implementation-defined output stream.

By default, the result string is treated as a ”line” (an implementation-dependent mech-
anism for indicating line termination is effected aer the string is written). If, however,
the string ends in the NUL character (’\-’ or ’\0’) then that character is removed and line
termination is not indicated.

e result string may be of any length. If no expression is specified, or the expression
result is null, then an empty line is written (that is, as though the expression resulted in
a null string).

133

35

Select instruction

select [label name] [protect term] [case expression];
whenlist
[otherwise[;] instructionlist]

[catch [vare =] exception;
instructionlist]...

[finally[;]
instructionlist]

end [name];

where name is a non-numeric symbol

and whenlist is one or more whenconstructs

and whenconstruct is:

when expression[, expression]... [;] then[;] instruction

and instructionlist is zero or more instructions.

select is used to conditionally execute one of several alternatives. e construct may
optionally be given a label, and may protect an object while the instructions in the con-
struct are executed; exceptional conditions can be handled with catch and finally,
which follow the body of the construct.
Starting with the first when clause, each expression in the clause is evaluated in turn from
le to right, and if the result of any evaluation is 1 (or equals the case expression, see
below) then the test has succeeded and the instruction following the associated then
(which may be a complex instruction such as if, do, loop, or select) is executed and
control will then pass directly to the end.
If the result of all the expressions in a when clause is 0, control will pass to the next when
clause.
Note that once an expression evaluation in a when clause has resulted in a successful test,
no further expressions in the clause are evaluated.
If none of the when expressions result in 1, then control will pass to the instruction list (if
any) following otherwise. In this situation, the absence of an otherwise is a run-time

135

error. 57 Notes:

1. An instruction may be any assignment, method call, or keyword instruction, in-
cluding any of themore complex constructions such as do, loop, if, and the select
instruction itself. A null clause is not an instruction, however, so putting an extra
semicolon aer the then is not equivalent to putting a dummy instruction (as it
would be in C or PL/I). e nop instruction is provided for this purpose.

2. e keyword then is treated specially, in that it need not start a clause. is allows
the expression on the when clause to be terminated by the then, without a ”;” being
required - were this not so, people used to other computer languages would be
inconvenienced. Hence the symbol then cannot be used as a variable name within
the expression. 58

35.1 Label phrase

If label is used to specify a name for the select group, then a leave instruction (see page
99) which specifies that name may be used to leave the group, and the end that ends the
group may optionally specify the name of the group for additional checking. Example:

select label roman
when a=b then say ’same’
when a<b then say ’lo’
otherwise
say ’hi’
if a=0 then leave roman
say ’a non-0’

end roman

In this example, if the variable a has the value 0 and b is negative then just ”hi” is dis-
played.

35.2 Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is not
just a type and is not of a primitive type; while the select construct is being executed,
the value (object) is protected - that is, all the instructions in the select construct have
exclusive access to the object.
Both label and protect may be specified, in any order, if required.

57 In the reference implementation, a NoOtherwiseException is raised.
58 Strictly speaking, then should only be recognized if not the name of a variable. In this special case, however, NetR language

processors are permitted to treat then as reserved in the context of a when clause, to provide better performance and more useful
error reporting.

136

35.3 Case phrase

If case is given it must follow any label or protect phrase, and must be followed by an
expression.
When case is used, the expression following it is evaluated at the start of the select con-
struct. e result of the expression is then compared, using the strict equality operator
(==), to the result of evaluating the expression or expressions in each of the when clauses
in turn until a match is found. As usual, if no match is found then control will pass to
the instruction list (if any) following otherwise, and in this situation the absence of an
otherwise is a run-time error. For example, in:

select case i+1
when 1 then say ’one’
when 1+1 then say ’two’
when 3, 4, 5 then say ’many’

end

then if i had the value 1 then the message displayed would be ”two”.
e third when clause in the example demonstrates the use of themultiple expressions in
a when clause in this context. Similar to a selectwithout case, each expression is evalu-
ated in turn from le to right and is then compared to the result of the case expression.
As soon as one matches that result, execution of the when clause stops (any further ex-
pressions are not evaluated) and the instruction following the associated then clause is
executed.
Notes:

1. When case is used, the result of evaluating the expression following each when no
longer has to be 0 or 1. Instead, it must be possible to compare each result to the
result of the case expression.

2. e case expression is evaluated only on entry to the select construct; it is not
re-evaluated for each when clause.

3. An exception raised during evaluation of the case expression will be caught by a
suitable catch clause in the construct, if one is present. Similarly, evaluation of the
case expression is protected by the protect phrase, if one is present.

4. In the reference implementation, a select case construct will be translated into a
Java switch construct provided that it meets the following criteria:. e type of the case expression is byte, char, int, or short.. e value of all the expressions on the when clauses are primitive constants (that

is, they consist of only constants of primitive types and operators valid for them
and so may be evaluated at compile time).. No two expressions on the when clauses evaluate to the same value.. It is not subject to tracing.

Under these conditions the semantics of the switch construct match those defined for
select. e example shown above would be translated to a switch construct if i
had type int and options binary were in effect.

137

35.4 Exceptions in select constructs

Exceptions that are raised by the instructions within the body of the group, or during
evaluation of the case expression, may be caught using one or more catch clauses that
name the exception that they will catch. When an exception is caught, the exception
object that holds the details of the exception may optionally be assigned to a variable,
vare.
Similarly, a finally clause may be used to introduce instructions that will always be
executed at the end of the select group, even if an exception is raised (whether caught or
not).
e Exceptions section (see page 181) has details and examples of catch and finally.

138

36

Signal instruction

signal term;

e signal instruction causes an ”abnormal” change in the flow of control, by raising
an exception.
e exception termmaybe a term that constructs or evaluates to an exception object, or it
may be expressed as the name of an exception type (inwhich case the default constructor,
with no arguments, for that type is used to construct an exception object).e exception
object then represents the exception and is available, if required, when the exception is
handled.
e handling of exceptions is detailed in the Exceptions section (see page 181). In sum-
mary, when an exception is signalled, all active pending do groups, loop loops, if con-
structs, and select constructs may be ended. For each one in turn, from the innermost:

1. No further clauses within the body of the construct will be executed (in this respect,
signal acts like a leave for the construct).

2. e instructionlist following the first catch clause that matches the exception, if
any, is executed.

3. e instructionlist following the finally clause for the construct, if any, is executed.

If a catch matched the exception the exception is deemed handled, and execution re-
sumes as though the construct ended normally (unless a new exception was signalled
in the catch or finally instruction lists, in which case it is processed). Otherwise, any
enclosing construct is ended in the samemanner. If there is no enclosing construct, then
the current method is ended and the exception is signalled in the caller.
Examples:

signal RxErrorTrace
signal DivideException(’Divide by zero’)

In the reference implementation, the term must either
. evaluate to an object that is assignable to the typerowable (for example, a subclass
of Exception or RuntimeException).. be a type that is a subclass ofrowable, in which case the default constructor (with
no arguments) for the given type is used to construct the exception object.

139

37

Trace instruction

trace traceoption;

where traceoption is one of:
tracesetting
var [varlist]

where tracesetting is one of:

all
methods
off
results

and varlist is one or more variable names, optionally prefixed with a + or -

e trace instruction is used to control the tracing of the execution of NetR meth-
ods, and is primarily used for debugging. It may change either the general trace setting
or may select or deselect the tracing of individual variables.
Within methods, the trace instruction changes the trace setting or variables tracing
when it is executed, and affects the tracing of all clauses in the method which are then
executed (until changed by a later trace instruction).
One or more trace instructions may appear before the first method in a class, one of
which may set the initial trace setting for all methods in the class (the default is off)
and others may set up variables tracing that applies to all the methods in the class. ese
act as though the trace instructions were placed immediately following the method in-
struction in each method (except that they will not be traced).
Similarly, one or more trace instructions may be placed before the first class instruc-
tion in a program; they do not imply the start of a class. One of these may set the initial
trace setting and others may set up variables tracing for all classes in the program (ex-
cept interface classes) and act as though the trace instructions were placed immediately
following the class instruction in each class.

141

37.1 Tracing clauses

e trace setting controls the tracing of clauses in a program, and may be one of the
following:

all All clauses (except null clauses without commentary) which are in methods and
which are executed aer the trace instructionwill be traced. If trace all is placed
before the first method in the current class, the method instructions in the class, to-
gether with the values of the arguments passed to eachmethod, will be traced when
the method is invoked (that is, trace all implies trace methods).

methods All method clauses in the class will be traced when the method they introduce
is invoked, together with the values of the arguments passed to each method; no
other clauses, or results, will be traced. e trace methods instruction must be
placed before the first method in the current class (as otherwise it would have no
effect).

off Turns tracing off; no following clauses, variables, or results will be traced.
results All clauses (except null clauses without commentary) which are in methods and

which are executed aer the trace instruction will be traced, as though trace all
had been requested. In addition, the results of all expression evaluations and any
results assigned to a variable by an assignment, loop, or parse instruction are also
traced.
If trace results is placed before the first method in the current class, the method
instructions in the class will be traced when the method is invoked, together with
the values of the arguments passed to each method.

Notes:

1. Tracing of clauses shows the data from the source of the program, starting at the
first character of the first token of the clause and including any commentary from
that point until the end of the clause.

2. When a loop is being traced, the loop clause itself will be traced on every iteration
of the loop, as indicated by the programmer’s model (see page 106) ; the end clause
is only traced once, when the loop completes normally.

3. With trace results, an expression is not traced if it is immediately used for an
assignment (in an assignment instruction, orwhen the control variable is initialized
in a loop instruction). e assignment will trace the result of the expression.

37.2 Tracing variables

e var option adds names to a list of monitored variables; it can also remove names
from the list. If the name of a variable in the current class or method is in the list, then
trace results is turned on for any assignment, loop, or parse clause that assigns a
new value to the named variable.
Variable names are specified by listing them aer the var keyword. Each name may be
optionally prefixed by a + or a - sign. A + sign indicates that the variable is to be added
to the list of monitored variables (the default), and a - sign indicates that the variable is

142

to be removed from the list. Blanks may be added before and aer variable names and
signs to separate the tokens and to improve readability. For example:

trace var a b c
-- now variables a, b, and c will be traced
trace var -b -c d
-- now variables a and d will be traced

Notes:

1. Names in the list following the var keyword are simple symbols that name variables
in the current class or current method. e variables may be properties, method
arguments, or local variables, and may be of any type, including arrays. e names
are not case-sensitive; any variables whose names match, independent of case, will
be monitored.

2. No variable name can appear more than once in the list on one trace var instruc-
tion. However, it is not an error to add the name of a variable which does not exist
or is not then assigned a value. Similarly, it is not an error to remove a name which
is not currently being monitored.

3. One or more trace var instructions (along with one other trace instruction) are
allowed before the first method in a class. ey all modify an initial list of mon-
itored variables which is then used for all methods in the class. Similarly, trace
var instructions are allowed before the first class in a program, in which case they
apply to all classes (except interface classes).

4. Other trace instructions do not affect the list of monitored variables. e trace
off instruction may be used to turn off tracing completely; in this case trace var
(with or without any variable names) will then turn the tracing of variables back
on, using the current (or modified) variable list.

5. For a parse instruction, only monitored variables have their assignments traced
(unless trace results is already in effect).

37.3 e format of trace output

Trace output is either clauses from the program being traced, or results (such as the
results from expressions).
e first clause or result traced on any line will be preceded by its line number in the
program; this is right-justified in a space which allows for the largest line number in the
program, plus one blank. Following clauses or results from the same line are preceded
by white space of the same width; however, any change of line number causes the line
number to be included.
Clauses that are traced will be displayed with the formatting (indention) and layout used
in the original source stream for the program, starting with the first character of the first
token of the clause.
Results (if requested) are converted to a string for tracing if necessary, are not indented,
and have a double quote prefixed and suffixed so that leading and trailing blanks are ap-
parent; if, however, the result being traced is null (see page 156) then the string ”[null]”

143

TABLE 8: Trace identifier tags

=
identifies the first line of the source of a single clause, i.e., the data actually in the program.

-
identifies a continuation line from the source of a single clause. Continuations may be due to
the use of a continuation character (see page 39) or to the use of a block comment (see page 36)
which spans more than one line.

>a>
Identifies a value assigned to a method argument of the current method. e name of the argu-
ment is included in the trace.

>p>
Identifies a value assigned to a property. e name of the property is included in the trace if the
property is in the current class.

>v>
Identifies a value assigned to a local variable in the current method. e name of the variable is
included in the trace.

»>
Identifies the result of an expression evaluation that is not used for an assignment (for example,
an argument expression in a method call).

+++
Reserved for error messages that are not supplied by the environment underlying the imple-
mentation.

is shown (without quotes). For results with an associated name (the values assigned to
local variables, method arguments, or properties in the current class), the name of the
result precedes the data, separated by a single blank.
For clarity, implementations may replace ”control codes” in the encoding of results (for
example, EBCDIC values less than ’\x40’, or Unicode values less than ’\x20’) by a ques-
tion mark (”?”). All lines displayed during tracing have a three character tag to identify
the type of data being traced. is tag follows the line number (or the space for a line
number), and is separated from the line number by a single blank. e traced clause or
result follows the tag, aer another blank. e identifier tags are listed in table 8.
If a trace line is produced in a different context (program or thread) from the preceding
trace line (if any) then a trace context line is shown. is shows the name of the program
that produced the trace line, and also the name of the thread (and thread group) of the
context.
e thread group name is not shown if it is main, and in this case the thread name is
then also suppressed if its name is main.
Examples: If the following instructions, starting on line 53 of a 120-line program, were
executed:

trace all
if i=1 then say ’Hello’

else say ’i<>1’
say -
’A continued line’

the trace output (if i were 1) would be:
144

54 *=* if i=1
= then
= say ’Hello’

56 *=* say -
57 *-* ’A continued line’

Similarly, for the 3-line program:

trace results
number=1/7
parse number before ’.’ after

the trace output would be:

2 *=* number=1/7
>v> number ”0.142857143”

3 *=* parse number before ’.’ after
>v> before ”0”
>v> after ”142857143”

Notes:

1. Trace output is written to an implementation-defined output stream (typically the
”standard error” output stream, which lets it be redirected to a destination separate
from the default destination for output which is used by the say instruction).

2. In some implementations, the use of trace instructions may substantially increase
the size of classes and the execution time of methods affected by tracing. 59

3. With some implementations it may be possible to switch tracing on externally,
without requiring modification to the program.

59 In the reference implementation, options notrace may be used to disable all trace instructions and hence ensure that tracing
overhead is not accidentally incurred.

145

38

Program structure

A NetR program is a collection of clauses (see page 35) derived from a single
implementation-defined source stream (such as a file). When a program is processed
by a language processor 60 it defines one or more classes. Classes are usually introduced
by the class instruction (see page 85), but if the first is a standard class, intended to be
run as a stand-alone application, then the class instruction can be omitted. In this case,
NetR defines an implied class and initialization method that will be used.
e implied class and method permits the writing of ”low boilerplate” programs, with
a minimum of syntax. e simplest, documented, NetR program that has an effect
might therefore be:
Example:

Listing 38.1: hello.nrx
1 /* This is a very simple NetRexx program */
2 say 'Hello World!'

In more detail, a NetR program consists of:

1. Anoptional prolog (package, import, and options instructions).Only one package
instruction is permitted per program.

2. One or more class definitions, each introduced by a class instruction.

A class definition comprises:

1. e class instruction which introduces the class (which may be inferred, see be-
low).

2. Zero or more property variable assignments, along with optional properties in-
structions that can alter their attributes, and optional numeric and trace instruc-
tions. Property variable assignments take the form of an assignment (see page 73) ,
with an optional ”=” and expression, which may:. just name a property (by omitting the ”=” and expression of the assignment),

in which case it refers to a string of type R. assign a type to the property (when the expression evaluates to just a type). assign a type and initial value to the property (when the expression returns a
value).

3. Zero or more method definitions, each introduced by a method instruction (which
may be inferred if the class instruction is inferred, see below).

A method definition comprises:
60 Such as a compiler or interpreter.

147

. AnyNetR instructions, except the class, method, and properties instructions
and those allowed in the prolog (the package, import, and options instructions).

Example:

Listing 38.2: testclass.nrx
1 /* A program with two classes */
2 import java.applet. -- for example
3

4 class testclass extends Applet
5 properties public
6 state -- property of type 'Rexx'
7 i=int -- property of type 'int'
8 properties constant
9 j=int 3 -- property initialized to '3'

10

11 method start
12 say 'I started'
13 state='start'
14

15 method stop
16 say 'I stopped'
17 state='stop'
18

19 class anotherclass
20 method testing
21 loop i=1 to 10
22 say '1, 2, 3, 4...'
23 if i=7 then return
24 end
25 return
26

27 method anothertest
28 say '1, 2, 3, 4'

is example shows a prolog (with just an import instruction) followed by two classes.
e first class includes two public properties, one constant property, and two methods.
e second class includes no properties, but also has two methods.
Note that a return instruction implies no static scoping; the content of a method is
ended by a method (or class) instruction, or by the end of the source stream.e return
instruction at the end of the testing method is, therefore, unnecessary.

38.1 Program defaults

e following defaults are provided for NetR programs:

1. If, while parsing prolog instructions, some instruction that is not valid for the pro-
log and is not a class instruction is encountered, then a default class instruction
(with an implementation-provided short name, typically derived from the name
of the source stream) is inserted. If the instruction was not a method instruction,
then a default method instruction (with a name and attributes appropriate for the
environment, such as main) is also inserted.
In this latter case, it is assumed that execution of the program will begin by invo-
cation of the default method. In other words, a ”stand-alone” application can be
written without explicitly providing the class and method instructions for the first
method to be executed. An example of such a program is given in Appendix A (see
page 203) .

148

In the reference implementation, the main method in a stand-alone application
is passed the words forming the command string as an array of strings of type
java.lang.String (one word to each element of the array). When the NetR ref-
erence implementation provides the main method instruction by default, it also
constructs a NetR string of type R from this array of words, with a blank
added between words, and assigns the string to the variable arg.
e command string may also have been edited by the underlying operating system
environment; certain characters may not be allowed, multiple blanks or whitespace
may have been reduced to single blanks, etc.

2. If a method ends and the last instruction at the outer level of the method scope is
not return then a return instruction is added if it could be reached. In this case, if
a value is expected to be returned by the method (due to other return instructions
returning values, or there being a returns keyword on the method instruction), an
error is reported.

Language processors may provide options to prevent, or warn of, these defaults being
applied, as desired.

149

39

Minor and Dependent classes

Aminor class in NetR is a class whose name is qualified by the name of another class,
called its parent, and a dependent class is a minor class that has a link to its parent class
that allows a child object simplified access to its parent object and its properties.

39.1 Minor classes

Aminor class in NetR is a class whose name is qualified by the name of another class,
called its parent. is qualification is indicated by the form of the name of the class: the
short name of the minor class is prefixed by the name of its parent class (separated by a
period). For example, if the parent is called Foo then the full name of a minor class Bar
would be written Foo.Bar. e short name, Bar, is used for the name of any constructor
method for the class; outside the class it can only be used to identify the class in the
context of the parent class (or from children of the minor class, see below).
e names of minor classes may be used in exactly the same way as other class names
(types) in programs. For example, a property might be declared and initialized thus:

abar=Foo.Bar null -- this has type Foo.Bar

or, if the class has a constructor, perhaps:

abar=Foo.Bar() -- constructs a Foo.Bar object

Minor classes must be in the same program (and hence in the same package) as their
parent. ey are introduced by a class instruction that specifies their full name, for
example:

class Foo.Bar extends SomeClass

Minor classes must immediately follow their parent class. 61

Minor classes may have a parent which is itself a minor class, to any depth; the name
and the positioning rules are extended as necessary. For example, the following classes
might exist in a program:

class Foo
class Foo.Bar
class Foo.Bar.Nod
class Foo.Bar.Pod

class Foo.Car
61 is allows compilers that generate Java source code to preserve line numbering.

151

As before, the children of Foo.Bar immediately follow their parent. e list of children
of Foo can be continued aer the children of Foo.Bar have all been specified.
Note that the short name (last part of the name) of a minor class may not be the same as
the short name of any of its parents (a class Foo.Bar.Foo or a class Foo.Bar.Bar would
be in error, for example).is allowsminor classes to refer to their parent classes by their
short name without ambiguity.

39.1.1 Constructing objects in minor classes

A parent class can construct an object of a child class in the usual manner, by simply
specifying its constructor (identified by its short name, full name, or qualified name).
For example, a method in the Foo.Bar class above could construct an object of type
Foo.Bar.Nod using:

anod=Nod()

(assuming the Foo.Bar.Nod class has a constructor that takes no arguments).
Similarly, minor classes can refer to the types and constructors of any of its parents by
simply using their short names. Hence, the Foo.Bar.Nod class could construct objects
of its parents’ types thus:

abar=Bar()
afoo=Foo()

(again assuming the parent classes have constructors that take no arguments).
Classes other than the parent or an immediate childmust use the full name (if necessary,
qualified by the package name) to refer to a minor class or its constructor.

39.2 Dependent classes

As described in the last section, minor classes provide an enhanced packaging (naming)
mechanism for classes, allowing classes to be structuredwithin packages. A stronger link
between a child class and its parent is indicated by the modifier keyword dependent on
the child class, which indicates that the child is a dependent class. For example:

class Foo.Dep dependent extends SomeClass
method Dep -- this is the constructor

An object constructed from a dependent class (a dependent object) is linked to the con-
text of an object of its parent type (its parent object). e linkage thus provided allows
the child object simplified access to the parent object and its properties.
In the example, an object of type Foo.Dep can only be constructed in the context of a
parent object, which must be of type Foo.

152

39.2.1 Constructing dependent objects

A parent class can construct a dependent object in the same way as when constructing
objects of other child types; that is, by simply specifying its constructor. In this case,
however, the current object (this) becomes the parent object of the newly constructed
object. For example, a method in the Foo class above could construct a dependent object
of type Foo.Dep using:

adep=Dep()

(assuming the Dep class has a constructor that takes no arguments).
In general, for a class to construct an object from a dependent class, it must have a ref-
erence to an object of the parent class (which will become the parent of the new object),
and the constructor must be called (by its short name) in the context of that parent ob-
ject. For example:

parentObject=Foo()
adep=parentObject.Dep()

(In the same way, the first example could have been written:

adep=this.Dep()

within the parent class the this. is implied.)
In order to subclass a dependent class, the constructor of the dependent class must be
invoked by the subclass constructor in a similar manner. In this case, a qualified call to
the usual special constructor super is used, for example:

class ASub extends Foo.Dep
method Asub(afoo=Foo)
afoo.super()

e qualifier (afoo in the example) must be either the name of an argument to the con-
structor, or the special word parent (if the classes share a common parent class), or the
short name of a parent class followed by .this (see below).e call to supermust be the
first instruction in the method, as usual, and it must be present (it will not be generated
automatically by the compiler).

39.2.2 Access to parent objects and their properties

Dependent classes have simplified access to their parent objects and their properties. In
particular:

. e special word parent may be used to refer to the parent object of the current
object. It may appear alone in a term, or at the start of a compound term. It can
only be used in non-static contexts in a dependent class.. In general, any of the objects in the chain of parents of a dependent object may be
referred to by qualifying the special word this with the short name of the parent
class. For example, extending the previous example, if the class Foo.Dep.Ent was a
dependent class it could contain references to Foo.this (the parent of its parent)

153

or Dep.this (the latter being the same as specifying parent). If preferred, the full
name or the fully qualified name of the parent classmay be used instead of the short
name.
Like parent, this construct can only be used at the start of a term in non-static
contexts in a dependent class.. As usual, properties external to the current class must always be qualified in some
way (for example, the prefix parent. can be used in a term such as parent.aprop).

39.3 Restrictions

Minor classes may have any of the attributes (public, interface, etc.) of other classes,
and behave in every way like other classes, with the following restrictions:
. If a class is a static class (that is, it contains only static or constant properties and

methods) then any children cannot be dependent classes (because no object of the
parent class can be constructed). Similarly, interface classes and abstract classes
cannot have dependent classes.. Dependent classes may not be interfaces.. Dependent classes may not contain static or constant properties (or methods). 62

ese must be placed in a parent which is not a dependent class.. Minor classes may be public only if their parent is also public. (Note that this is the
only case where more than one public class is permitted in a program.) In general:
a minor class cannot be more visible than its parent.

62 is restriction allows compilation for the Java platform.

154

40

Special names and methods

For convenience, NetR provides some special names for naming commonly-used
concepts within terms.ese are only recognized if there is no variable of the same name
previously seen in the current scope, as described in the section on Terms (see page 47)
. is allows the set of special words to be expanded in the future, if necessary, without
invalidating existing variables.erefore, these names are not reserved; theymay be used
as variable names instead, if desired.
ere are also two ”special methods” that are used when constructing objects.

40.1 Special names

e following special names are allowed in NetR programs, and are recognized in-
dependently of case. 63 With the exception of length and class, these may only be used
alone as a term or at the start of a compound term.

ask Returns a string of type R, read as a line from the implementation-defined de-
fault input stream (oen the user’s ”console”).
Example:
if ask=’yes’ then say ’OK’

ask can only appear alone, or at the start of a compound term. 64

class eobject of typeClass that describes a specific type.is word is only recognized
as the second part of a compound term, where the evaluation of the first part of the
term resulted in a type or qualified type.
Example:
obj=String.class
say obj.isInterface /* would say ’0’ */

digits ecurrent setting of numeric digits (see page 117) , returned as a string of type
R. is will be one or more Arabic numerals, with no leading blanks, zeros, or
sign, and no trailing blanks or exponent. digits can only appear alone, or at the
start of a compound term.

form e current setting of numeric form (see page 117) , returned as a string of type
R. is will have either the value ”scientific” or the value ”engineering”. form
can only appear alone, or at the start of a compound term.

length e length of an array (see page 78) , returned as an implementation-dependent
binary type or string. is word is only recognized as the last part of a compound

63 Unless options strictcase is in effect.
64 In the reference implementation, ask is simply a shorthand for RIO.Ask().

155

term, where the evaluation of the rest of the term resulted in an array of dimension
1.
Example:
foo=char[7]
say foo.length /* would say ’7’ */

Note that you can get the length of a NetR string with the same syntax. 65

In that case, however, a length() method is being invoked.
null e empty reference. is is a special value that represents ”no value” and may be

assigned to variables (or returned from methods) except those whose type is both
primitive and undimensioned. It may also be be used in a comparison for equality
(or inequality) with values of suitable type, and may be given a type. Examples:
blob=int[3] -- ’blob’ refers to array of 3 ints
blob=null -- ’blob’ is still of type int[],

-- but refers to no real object
mob=Mark null -- ’mob’ is type ’Mark’

e null value may be considered to represent the state of being uninitialized. It
can only appear as simple symbol, not as a part of a compound term.

source Returns a string of type R identifying the source of the current class. e
string consists of the following words, with a single blank between the words and
no trailing or leading blanks:
1. the name of the underlying environment (e.g., Java)
2. eithermethod (if the term is being used within a method) or class (if the term

is being used within a property assignment, before the first method in a class)
3. an implementation-dependent representation of the nameof the source stream

for the class (e.g., Fred.nrx).
source can only appear alone, or at the start of a compound term.

sourceline e line number of the first token of the current clause in the NetR pro-
gram, returned as a string of typeR. is will be one or more Arabic numerals,
with no leading blanks, zeros, or sign, and no trailing blanks or exponent. source-
line can only appear alone, or at the start of a compound term.

super Returns a reference to the current object, with a type that is the type of the class
that the current object’s class extends. is means that a search for methods or
properties which super qualifies will start from the superclass rather than in the
current class. is is used for invoking a method or property (in the superclass or
one of its superclasses) that has been overridden in the current class. Example:
method printit(x)
say ’it’ -- modification
super.printit(x) -- now the usual processing

If a property being referenced is in fact defined by a superclass of the current class,
then the prefix ”super.” is perhaps the clearest way to indicate that name refers to
a property of a superclass rather than to a local variable. (You could also qualify
it by the name of the superclass.) super can only appear alone, or at the start of a
compound term.

65Unless options strictargs is in effect.

156

this Returns a reference to the current object. When a method is invoked, for example
in:
word=Rexx ”hello” -- ’word’ refers to ”hello”
say word.substr(3) -- invokes substr on ”hello”

then the method substr in the class R is invoked, with argument ’3’, and with
the properties of the value (object) ”hello” available to it. ese properties may be
accessed simply by name, or (more explicitly) by prefixing the name with ”this.”.
Using ”this.” can make a method more readable, especially when several objects of
the same type are being manipulated in the method. this can only appear alone, or
at the start of a compound term.

trace e current trace (see page 141) setting, returned as a NetR string. is will
be one of the words:
off var methods all results

(var is returnedwhen clause tracing is off but variable tracing has then been turned
on using a trace var instruction.) trace can only appear alone, or at the start of a
compound term.

version Returns a string of type R identifying the version of the NetR language
in effect when the current class was processed. e string consists of the following
words, with a single blank between the words and no trailing or leading blanks:
1. A word describing the language. e first seven letters will be the characters

NetR, and the remainder may be used to identify a particular implemen-
tation or language processor. is word may not include any periods.

2. e language level description, which must be a number with no sign or ex-
ponential part. For example, ”3.03” is the language level of this definition.

3. ree words describing the language processor release date in the same format
as the default for the R ”date()” function. 66 For example, ”22 May 2009”.

version can only appear alone, or at the start of a compound term.

40.2 Special methods

Constructors (methods used for constructing objects) in NetR must invoke a con-
structor of their superclass before making any modifications to the current object (or
invoke another constructor in the current class).
is is simplified and made explicit by the provision of the special method names su-
per and this, which refer to constructors of the superclass and current class respectively.
ese special methods are only recognized when used as the first, method call, instruc-
tion in a constructor, as described in Methods and constructors (see page 53) . eir
names will be recognized independently of case. 67

In addition, NetR provides special constructor methods for the primitive types that
allow binary construction of primitives. ese are described in Binary values and arith-
metic (see page 179).

66 As defined in :cit.AmericanNational Standard for Information Technology - Programming Language REXX, X3.274-1996:ecit.,
American National Standards Institute, New York, 1996.

67 Unless options strictcase is in effect.

157

41

Parsing templates

e parse instruction allows a selected string to be parsed (split up) and assigned to
variables, under the control of a template.
e variousmechanisms in the template allow a string to be split up by explicit matching
of strings (called patterns), or by specifying numeric positions (positional patterns - for
example, to extract data from particular columns of a line read from a character stream).
Once split into parts, each segment of the string can then be assigned to variables as a
whole or by words (delimited by blanks).
is section first gives some informal examples of how the parsing template can be used,
and then defines the algorithms in detail.

41.1 Introduction to parsing

esimplest formof parsing template consists of a list of variable names.e string being
parsed is split up into words (characters delimited by blanks), and each word from the
string is assigned to a variable in sequence from le to right. e final variable is treated
specially in that it will be assignedwhatever is le of the original string andmay therefore
contain several words. For example, in the parse instruction:

parse ’This is a sentence.’ v1 v2 v3

the term (in this case a literal string) following the instruction keyword is parsed, and
then: the variable v1 would be assigned the value ”is”, v2 would be assigned the value
”is”, and v3 would be assigned the value ”a sentence.”.
Leading blanks are removed from each word in the string before it is assigned to a vari-
able, as is the blank that delimits the end of the word. us, variables set in this manner
(v1 and v2 in the example) will never have leading or trailing blanks, though v3 could
have both leading and trailing blanks. Note that the variables assigned values in a tem-
plate are always given a new value and so if there are fewer words in the string than
variables in the template then the unused variables will be set to the null string. e sec-
ond parsing mechanism uses a literal string in a template as a pattern, to split up the
string. For example:

parse ’To be, or not to be?’ w1 ’,’ w2

would cause the string to be scanned for the comma, and then split at that point; the
variable w1 would be set to ”To be”, and w2 is set to ” or not to be?”. Note that the
pattern itself (and only the pattern) is removed from the string. Each section of the string
is treated in just the same way as the whole string was in the previous example, and so

159

either section could be split up into words. us, in:

parse ’To be, or not to be?’ w1 ’,’ w2 w3 w4

w2 and w3 would be assigned the values ”or” and ”not”, and w4 would be assigned the
remainder: ”to be?”.
If the string in the last example did not contain a comma, then the pattern would effec-
tively ”match” the end of the string, so the variable to the le of the pattern would get
the entire input string, and the variables to the right would be set to a null string. e
pattern may be specified as a variable, by putting the variable name in parentheses. e
following instructions therefore have the same effect as the last example:

c=’,’
parse ’To be, or not to be?’ w1 (c) w2 w3 w4

e third parsing mechanism is the numeric positional pattern. is works in the same
way as the string pattern except that it specifies a column number. So:

parse ’Flying pigs have wings’ x1 5 x2

would split the string at the fih column, so x1 would be ”Flyi” and x2 would start
at column 5 and so be ”ng pigs have wings”. More than one pattern is allowed, so for
example:

parse ’Flying pigs have wings’ x1 5 x2 10 x3

would split the string at columns 5 and 10, so x2 would be ”ng pi” and x3 would be ”gs
have wings”. e numbers can be relative to the last number used, so:

parse ’Flying pigs have wings’ x1 5 x2 +5 x3

would have exactly the same effect as the last example; here the +5 may be thought of
as specifying the length of the string to be assigned to x2. As with literal string patterns,
the positional patterns can be specified as a variable by putting the name of a variable,
in parentheses, in place of the number. An absolute column number should then be
indicated by using an equals sign (”=”) instead of a plus or minus sign. e last example
could therefore be written:

start=5
length=5
data=’Flying pigs have wings’
parse data x1 =(start) x2 +(length) x3

String patterns and positional patterns can be mixed (in effect the beginning of a string
pattern just specifies a variable column number) and some very powerful things can be
done with templates. e next section describes in more detail how the various mecha-
nisms interact.

160

41.2 Parsing definition

is section describes the rules that govern parsing. In its most general form, a template
consists of alternating pattern specifications and variable names. Blanks may be added
between patterns and variable names to separate the tokens and to improve readabil-
ity. e patterns and variable names are used strictly in sequence from le to right, and
are used once only. In practice, various simpler forms are used in which either variable
names or patterns may be omitted; we can therefore have variable names without pat-
terns in between, and patterns without intervening variable names. In general, the value
assigned to a variable is that sequence of characters in the input string between the point
that is matched by the pattern on its le and the point that is matched by the pattern on
its right. If the first item in a template is a variable, then there is an implicit pattern on
the le that matches the start of the string, and similarly if the last item in a template
is a variable then there is an implicit pattern on the right that matches the end of the
string. Hence the simplest template consists of a single variable name which in this case
is assigned the entire input string. Setting a variable during parsing is identical in ef-
fect to setting a variable in an assignment. e constructs that may appear as patterns
fall into two categories; patterns that act by searching for a matching string (literal pat-
terns), and numeric patterns that specify an absolute or relative position in the string
(positional patterns). Either of these can be specified explicitly in the template, or al-
ternatively by a reference to a variable whose value is to be used as the pattern. For the
following examples, assume that the following sample string is being parsed; note that
all blanks are significant - there are two blanks aer the first word ”is” and also aer the
second comma:

’This is the text which, I think, is scanned.’

41.2.1 Parsing with literal patterns

Literal patterns cause scanning of the data string to find a sequence that matches the
value of the literal. Literals are expressed as a quoted string. e null string matches the
end of the data. e template:

w1 ’,’ w2 ’,’ w3

when parsing the sample string, results in:

w1 has the value ”This is the text which”
w2 has the value ” I think”
w3 has the value ” is scanned.”

Here the string is parsed using a template that asks that each of the variables receive a
value corresponding to a portion of the original string between commas; the commas
are given as quoted strings. Note that the patterns themselves are removed from the data
being parsed. A different parse would result with the template:

w1 ’,’ w2 ’,’ w3 ’,’ w4

which would result in:
161

w1 has the value ”This is the text which”
w2 has the value ” I think”
w3 has the value ” is scanned.”
w4 has the value ”” (null string)

is illustrates an important rule. When a match for a pattern cannot be found in the
input string, it instead ”matches” the end of the string. us, no match was found for the
third ’,’ in the template, and so w3 was assigned the rest of the string. w4 was assigned a
null string because the pattern on its le had already reached the end of the string. Note
that all variables that appear in a template in this way are assigned a new value.

41.2.2 Parsing strings into words

If a variable is directly followed by one ormore other variables, then the string selected by
the patterns is assigned to the variables in the following manner. Each blank-delimited
word in the string is assigned to each variable in turn, except for the last variable in the
group (which is assigned the remainder of the string). e values of the variables which
are assigned words will have neither leading nor trailing blanks. us the template:

w1 w2 w3 w4 ’,’

would result in:

w1 has the value ”This’
w2 has the value ”is”
w3 has the value ”the”
w4 has the value ”text which”

Note that the final variable (w4 in this example) could have had both leading blanks and
trailing blanks, since only the blank that delimits the previous word is removed from
the data. Also observe that this example is not the same as specifying explicit blanks as
patterns, as the template:

w1 ’ ’ w2 ’ ’ w3 ’ ’ w4 ’,’

would in fact result in:

w1 has the value ”This’
w2 has the value ”is”
w3 has the value ”” (null string)
w4 has the value ”the text which”

since the third pattern would match the third blank in the data. In general, when a vari-
able is followed by another variable then parsing of the input into individual words is
implied. e parsing process may be thought of as first splitting the original string up
into other strings using the various kinds of patterns, and then assigning each of these
new strings to (zero or more) variables.

162

41.2.3 Use of the period as a placeholder

A period (separated from any symbols by at least one blank) acts as a placeholder in a
template. It has exactly the same effect as a variable name, except that no variable is set.
It is especially useful as a ”dummy variable” in a list of variables, or to collect (ignore)
unwanted information at the end of a string. us the template:

. . . word4 .

would extract the fourth word (”text”) from the sample string and place it in the variable
word4. Blanks between successive periods in templates may be omitted, so the template:

... word4 .

would have the same result as the last template.

41.2.4 Parsing with positional patterns

Positional patterns may be used to cause the parsing to occur on the basis of position
within the string, rather than on its contents. ey take the form of whole numbers,
optionally preceded by a plus, minus, or equals sign which indicate relative or absolute
positioning. ese may cause the matching operation to ”back up” to an earlier position
in the data string, which can only occur when positional patterns are used. Absolute
positional patterns: A number in a template that is not preceded by a sign refers to a
particular (absolute) character column in the input, with 1 referring to the first column.
For example, the template:

s1 10 s2 20 s3

results in:

s1 has the value ”This is ”
s2 has the value ”the text w”
s3 has the value ”hich, I think, is scanned.”

Here s1 is assigned characters from the first through the ninth character, and s2 receives
input characters 10 through 19. As usual the final variable, s3, is assigned the remainder
of the input.
An equals sign (”=”) may be placed before the number to indicate explicitly that it is to
be used as an absolute column position; the last template could have been written:

s1 =10 s2 =20 s3

A positional pattern that has no sign or is preceded by the equals sign is known as an
absolute positional pattern. Relative positional patterns:Anumber in a template that is
preceded by a plus orminus sign indicatesmovement relative to the character position at
which the previous pattern match occurred. is is a relative positional pattern. If a plus
or minus is specified, then the position used for the next match is calculated by adding
(or subtracting) the number given to the lastmatchedposition.e lastmatchedposition
is the position of the first character of the last match, whether specified numerically or
by a string.

163

For example, the instructions:

parse ’123456789’ 3 w1 +3 w2 3 w3

result in

w1 has the value ”345”
w2 has the value ”6789”
w3 has the value ”3456789”

e +3 in this case is equivalent to the absolute number 6 in the same position, and may
also be considered to be specifying the length of the data string to be assigned to the
variable w1. is example also illustrates the effects of a positional pattern that implies
movement to a character position to the le of (or to) the point at which the last match
occurred.e variable on the le is assigned characters through the end of the input, and
the variable on the right is, as usual, assigned characters starting at the position dictated
by the pattern. A useful effect of this is that multiple assignments can be made:

parse x 1 w1 1 w2 1 w3

is results in assigning the (entire) value of x tow1,w2, andw3. (efirst ”1” here could
be omitted as it is effectively the same as the implicit starting pattern described at the
beginning of this section.) If a positional pattern specifies a column that is greater than
the length of the data, it is equivalent to specifying the end of the data (i.e., no padding
takes place). Similarly, if a pattern specifies a column to the le of the first column of the
data, this is not an error but instead is taken to specify the first column of the data. Any
pattern match sets the ”last position” in a string to which a relative positional pattern
can refer. e ”last position” set by a literal pattern is the position at which the match
occurred, that is, the position in the data of the first character in the pattern. e literal
pattern in this case is not removed from the parsed data. us the template:

’,’ -1 x +1

will:

1. Find the first comma in the input (or the end of the string if there is no comma).
2. Back up one position.
3. Assign one character (the character immediately preceding the comma or end of

string) to the variable x.

One possible application of this is looking for abbreviations in a string.us the instruc-
tion:

/* Ensure options have a leading blank and are
in uppercase before parsing. */

parse (’ ’opts).upper ’ PR’ +1 prword ’ ’

will set the variable prword to the first word in opts that starts with ”PR” (in any case),
or will set it to the null string if no such word exists. Notes:

1. e positional patterns +0 and -0 are valid, have the same effect, and may be used
to include the whole of a previous literal (or variable) pattern within the data string
to be parsed into any following variables.

164

2. As illustrated in the last example, patterns may follow each other in the template
without intervening variable names. In this case each pattern is obeyed in turn from
le to right, as usual.

3. ere may be blanks between the sign in a positional pattern and the number, be-
cause NetR defines that blanks adjacent to special characters are removed.

41.2.5 Parsing with variable patterns

It is sometimes desirable to be able to specify a pattern by using the value of a variable
instead of a fixed string or number. is may be achieved by placing the name of the
variable to be used as the pattern in parentheses (blanks are not necessary either inside or
outside the parentheses, but may be added if desired). is is called a variable reference;
the value of the variable is converted to string before use, if necessary. If the parenthesis
to the le of the variable name is not preceded by an equals, plus, or minus sign (”=”, ”+”,
or ”-”) the value of the variable is then used as though it were a literal (string) pattern.
e variable may be one that has been set earlier in the parsing process, so for example:

input=”L/look for/1 10”
parse input verb 2 delim +1 string (delim) rest

will set:

verb to ’L’
delim to ’/’
string to ’look for’
rest to ’1 10’

If the le parenthesis is preceded by an equals, plus, or minus sign then the value of the
variable is used as an absolute or relative positional pattern (instead of as a literal string
pattern). In this case the value of the variablemust be a non-negative whole number, and
(as before) it may have been set earlier in the parsing process.

165

42

Numbers and Arithmetic

NetR arithmetic attempts to carry out the usual operations (including addition, sub-
traction, multiplication, and division) in as ”natural” a way as possible. What this really
means is that the rules followed are those that are conventionally taught in schools and
colleges. However, it was found that unfortunately the rules used vary considerably (in-
deed much more than generally appreciated) from person to person and from applica-
tion to application and in ways that are not always predictable. e NetR arithmetic
described here is therefore a compromise which (although not the simplest) should pro-
vide acceptable results in most applications.

42.1 Introduction

Numbers can be expressed in NetR very flexibly (leading and trailing blanks are
permitted, exponential notation may be used) and follow conventional syntax. Some
valid numbers are:

12 /* A whole number */
’-76’ /* A signed whole number */
12.76 /* Some decimal places */

’ + 0.003 ’ /* Blanks around the sign, etc. */
17. /* Equal to 17 */
’.5’ /* Equal to 0.5 */

4E+9 /* Exponential notation */
0.73e-7 /* Exponential notation */

(Exponential notation means that the number includes a sign and a power of ten fol-
lowing an ”E” that indicates how the decimal point will be shied. us 4E+9 above is
just a short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.) e
arithmetic operators include addition (indicated by a ”+”), subtraction (”-”), multiplica-
tion (”*”), power (”**”), and division (”/”). ere are also two further division operators:
integer divide (”%”) which divides and returns the integer part, and remainder (”//”)
which divides and returns the remainder. Prefix plus (”+”) and prefix minus (”-”) op-
erators are also provided. When two numbers are combined by an operation, NetR
uses a set of rules to define what the result will be (and how the result is to be represented
as a character string). ese rules are defined in the next section, but in summary:

. Results will be calculated with up to some maximum number of significant digits.
at is, if a result required more than 9 digits it would normally be rounded to 9
digits. For instance, the division of 2 by 3 would result in 0.666666667 (it would

167

require an infinite number of digits for perfect accuracy).
You can change the default of 9 significant digits by using the numeric digits
instruction. is lets you calculate using as many digits as you need - thousands, if
necessary.. Except for the division and power operators, trailing zeros are preserved (this is
in contrast to most electronic calculators, which remove all trailing zeros in the
decimal part of results). So, for example:
2.40 + 2 => 4.40
2.40 - 2 => 0.40
2.40 * 2 => 4.80
2.40 / 2 => 1.2

is preservation of trailing zeros is desirable for most calculations (and especially
financial calculations). If necessary, trailing zeros may be easily removed with the
strip method (see page 197) , or by division by 1.. A zero result is always expressed as the single digit ’0’.. Exponential form is used for a result depending on its value and the setting of
numeric digits (the default is 9 digits). If the number of places needed before
the decimal point exceeds this setting, or the absolute value of the number is less
than 0.000001, then the number will be expressed in exponential notation; thus
1e+6 * 1e+6

results in ”1E+12” instead of ”1000000000000”, and
1 / 3E+10

results in ”3.33333333E-11” instead of ”0.0000000000333333333”.. Anymixture of Arabic numerals (0-9) and Extra digits (see page 37) can be used for
the digits in numbers used in calculations. e results are expressed using Arabic
numerals.

42.2 Definition

is definition describes arithmetic for NetR strings (type R). e arithmetic
operations are identical to those defined in the ANSI standard for R. 68

42.2.1 Numbers

A number inNetR is a character string that includes one ormore decimal digits, with
an optional decimal point. e decimal point may be embedded in the digits, or may be
prefixed or suffixed to them. e group of digits (and optional point) thus constructed
may have leading or trailing blanks, and an optional sign (”+” or ”-”) which must come
before any digits or decimal point. e sign may also have leading or trailing blanks.
us:

68 :cit.American National Standard for Information Technology - Programming Language REXX, X3.274-1996:ecit., American
National Standards Institute, New York, 1996.

168

sign ::= + | -
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ::= digit [digit]...
numeric ::= digits . [digits]

| [.] digits
number ::= [blank]... [sign [blank]...]

numeric [blank]...

where if the implementation supports extra digits (see page 37) these are also accepted
as digits, providing that they represent values in the range zero through nine. In this case
each extra digit is treated as though it were the corresponding character in the range 0-9.
Note that a single period alone is not a valid number.

42.2.2 Precision

e maximum number of significant digits that can result from an arithmetic operation
is controlled by the digits keyword on the numeric instruction (see page 117) :

numeric digits [expression];

e expression is evaluated and must result in a positive whole number. is defines the
precision (number of significant digits) to which arithmetic calculations will be carried
out; results will be rounded to that precision, if necessary. If no expression is specified,
then the default precision is used. e default precision is 9, that is, all implementations
must support at least nine digits of precision. An implementation-dependent maximum
(equal to or larger than 9)may apply: an attempt to exceed this will cause execution of the
instruction to terminate with an exception. us if an algorithm is defined to use more
than 9 digits then if the numeric digits instruction succeeds then the computation will
proceed and produce identical results to any other implementation. Note that numeric
digits may set values below the default of nine. Small values, however, should be used
with care - the loss of precision and rounding thus requested will affect all NetR
computations, including (for example) the computation of new values for the control
variable in loops.
In the remainder of this section, the notation digits refers to the current setting of
numeric digits. is setting may also be referred to in expressions in programs by
using the digits special word (see page 155) .

42.2.3 Arithmetic operators

NetR arithmetic is effected by the operators ”+”, ”-”, ”*”, ”/”, ”%”, ”//”, and ”**” (add,
subtract, multiply, divide, integer divide, remainder, and power) which all act upon two
terms, together with the prefix operators ”+” and ”-” (plus andminus) which both act on
a single term. e result of all these operations is a NetR string, of type R. is
section describes the way in which these operations are carried out. Before every arith-
metic operation, the term or terms being operated upon have any extra digits converted
to the corresponding Arabic numeral (the digits 0-9). ey then have leading zeros re-
moved (noting the position of any decimal point, and leaving just one zero if all the digits

169

in the number are zeros) and are then truncated to digits+1 significant digits 69 (if neces-
sary) before being used in the computation. e operation is then carried out under up
to double that precision, as described under the individual operations below. When the
operation is completed, the result is rounded if necessary to the precision specified by
the numeric digits instruction. Rounding is done in the ”traditional” manner, in that
the extra (guard) digit is inspected and values of 5 through 9 are rounded up, and values
of 0 through 4 are rounded down. 70 A conventional zero is supplied preceding a deci-
mal point if otherwise there would be no digit before it. Trailing zeros are retained for
addition, subtraction, andmultiplication, according to the rules given below, except that
a result of zero is always expressed as the single character ’0’. For division, insignificant
trailing zeros are removed aer rounding.
e format method (see page 192) is defined to allow a number to be represented in
a particular format if the standard result provided by NetR does not meet require-
ments.

42.2.4 Arithmetic oprtation rules - basic operators

e basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows:

Addition and subtraction If either number is zero then the other number, rounded to
digits digits if necessary, is used as the result (with sign adjustment as appropriate).
Otherwise, the two numbers are extended on the right and le as necessary up to
a total maximum of digits+1 digits.
e number with smaller absolute value may therefore lose some or all of its dig-
its on the right. 71 e numbers are then added or subtracted as appropriate. For
example:
xxxx.xxx + yy.yyyyy

becomes:
xxxx.xxx00

+ 00yy.yyyyy

zzzz.zzzzz

.sumadde result is then rounded to digits digits if necessary, taking into account
any extra (carry) digit on the le aer an addition, but otherwise counting from the
position corresponding to the most significant digit of the terms being added or
subtracted. Finally, any insignificant leading zeros are removed.e prefix operators
are evaluated using the same rules; the operations ”+number” and ”-number” are
calculated as ”0+number” and ”0-number”, respectively.

Multiplication e numbers are multiplied together (”long multiplication”) resulting
in a number which may be as long as the sum of the lengths of the two operands.
For example:

69 at is, to the precision set by numeric digits, plus one extra ”guard” digit.
70 Even/odd rounding would require the ability to calculate to arbitrary precision (that is, to a precision not governed by the

setting of numeric digits) at any time and is therefore not the mechanism defined for NetR.
71 In the example, the number yy.yyyyy would have three digits truncated if digits were 5.

170

xxx.xxx * yy.yyyyy

becomes:

zzzzz.zzzzzzzz

and the result is then rounded to digits digits if necessary, counting from the first
significant digit of the result.

Division For the division:

yyy / xxxxx

the following steps are taken: first, the number ”yyy” is extended with zeros on the
right until it is larger than the number ”xxxxx” (with note being taken of the change
in the power of ten that this implies). us in this example, ”yyy” might become
”yyy00”. Traditional long division then takes place, which can be written:

zzzz
.------

xxxxx | yyy00

e length of the result (”zzzz”) is such that the rightmost ”z” will be at least as
far right as the rightmost digit of the (extended) ”y” number in the example. Dur-
ing the division, the ”y” number will be extended further as necessary, and the ”z”
number (which will not include any leading zeros) may increase up to digits+1
digits, at which point the division stops and the result is rounded. Following com-
pletion of the division (and rounding if necessary), insignificant trailing zeros are
removed.

Examples:

/* With ’numeric digits 5’ */
12+7.00 == 19.00
1.3-1.07 == 0.23
1.3-2.07 == -0.77
1.20*3 == 3.60
7*3 == 21
0.9*0.8 == 0.72
1/3 == 0.33333
2/3 == 0.66667
5/2 == 2.5
1/10 == 0.1
12/12 == 1
8.0/2 == 4

Note: With all the basic operators, the position of the decimal point in the terms being
operated upon is arbitrary. e operations may be carried out as integer operations with
the exponent being calculated and applied aerwards. erefore the significant digits of
a result are not in any way dependent on the position of the decimal point in either of
the terms involved in the operation.

171

42.2.5 Arithmetic operation rules - additional operators

e operation rules for the power (”**”), integer division (”%”), and remainder (”//”)
operators are as follows:

Power e”**” (power) operator raises a number (on the le of the operator) to a power
(on the right of the operator). e term on the right is rounded to digits digits
(if necessary), and must, aer any rounding, be a whole number, which may be
positive, negative, or zero. If negative, the absolute value of the power is used, and
then the result is inverted (divided into 1).
For calculating the power, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are removed
(as though the result were divided by one). In practice (see note below for the rea-
sons), the power is calculated by the process of le-to-right binary reduction. For
”x**n”: ”n” is converted to binary, and a temporary accumulator is set to 1. If ”n”
has the value 0 then the initial calculation is complete. Otherwise each bit (starting
at the first non-zero bit) is inspected from le to right. If the current bit is 1 then
the accumulator is multiplied by ”x”. If all bits have now been inspected then the
initial calculation is complete, otherwise the accumulator is squared by multipli-
cation and the next bit is inspected. When the initial calculation is complete, the
temporary result is divided into 1 if the power was negative.
e multiplications and division are done under the normal arithmetic operation
rules, detailed earlier in this section, using a precision of digits+elength+1 digits.
Here, elength is the length in decimal digits of the integer part of the whole number
”n” (i.e., excluding any sign, decimal part, decimal point, or insignificant leading
zeros, as though the operation n%1 had been carried out and any sign removed).
Finally, the result is rounded to digits digits, if necessary, and insignificant trailing
zeros are removed.

Integer division e ”%” (integer divide) operator divides two numbers and returns
the integer part of the result. e result returned is defined to be that which would
result from repeatedly subtracting the divisor from the dividendwhile the dividend
is larger than the divisor. During this subtraction, the absolute values of both the
dividend and the divisor are used: the sign of the final result is the same as that
which would result if normal division were used. e result returned will have no
fractional part (that is, no decimal point or zeros following it). If the result can-
not be expressed exactly within digits digits, the operation is in error and will fail
- that is, the result cannot have more digits than the current setting of numeric
digits. For example, 10000000000%3 requires ten digits to express the result ex-
actly (3333333333) and would therefore fail if digits were 9 or smaller.

Remainder e ”//” (remainder) operator will return the remainder from integer di-
vision, and is defined as being the residue of the dividend aer the operation of
calculating integer division as just described. e sign of the remainder, if non-
zero, is the same as that of the original dividend. is operation will fail under the
same conditions as integer division (that is, if integer division on the same two
terms would fail, the remainder cannot be calculated).

Examples:
172

/* Again with ’numeric digits 5’ */
2**3 == 8
2**-3 == 0.125
1.7**8 == 69.758
2%3 == 0
2.1//3 == 2.1
10%3 == 3
10//3 == 1
-10//3 == -1
10.2//1 == 0.2
10//0.3 == 0.1
3.6//1.3 == 1.0

Notes:

1. A particular algorithm for calculating powers is described, since it is efficient
(though not optimal) and considerably reduces the number of actual multipli-
cations performed. It therefore gives better performance than the simpler defini-
tion of repeated multiplication. Since results could possibly differ from those of
repeated multiplication, the algorithm must be defined here so that different im-
plementations will give identical results for the same operation on the same values.
Other algorithms for this (and other) operations may always be used, so long as
they give identical results to those described here.

2. e integer divide and remainder operators are defined so that they may be cal-
culated as a by-product of the standard division operation (described above). e
division process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

42.2.6 Numeric comparisons

Any of the comparative operators (see page 65) may be used for comparing numeric
strings. However, the strict comparisons (for example, ”==” and ”»”) are not numeric
comparative operators and should not normally be used for comparing numbers, since
they compare from le to right and leading and trailing blanks (and leading zeros) are
significant for these operators. Numeric comparison, using the normal comparative op-
erators, is effected by subtracting the two numbers (calculating the difference) and then
comparing the result with ’0’ - that is, the operation:

A ? B

where ”?” is any normal comparative operator, is identical to:

(A - B) ? ’0’

It is therefore the difference between two numbers, when subtracted under NetR
subtraction rules, that determines their equality.

173

42.2.7 Exponential notation

e definition of numbers above (see page 168) describes ”pure” numbers, in the sense
that the character strings that describe numbers can be very long. Examples:

say 10000000000 * 10000000000
/* would display: 100000000000000000000 */

say 0.00000000001 * 0.00000000001
/* would display: 0.0000000000000000000001 */

For both large and small numbers some form of exponential notation is useful, both
to make such long numbers more readable and to make evaluation possible in extreme
cases. In addition, exponential notation is used whenever the ”pure” form would give
misleading information. For example:

numeric digits 5
say 54321*54321

would display ”2950800000” if long form were to be used. is is misleading, as it ap-
pears that the result is an exact multiple of 100000, and so NetR would express the
result in exponential notation, in this case ”2.9508E+9”. e definition of number (see
above) is therefore extended by replacing the description of numeric by the following:

mantissa ::= digits . [digits]
| [.] digits

numeric ::= mantissa [E sign digits]

In other words, the numeric part of a number may be followed by an ”E” (indicating
an exponential part), a sign, and an integer following the sign that represents a power
of ten that is to be applied. e ”E” may be in uppercase or lowercase. Note that no
blanks are permitted within this part of a number, but the integer may have leading
zeros. Examples:

12E+11 = 1200000000000
12E-5 = 0.00012
12e+4 = 120000

All valid numbers may be used as data for arithmetic. e results of calculations will be
returned in exponential form depending on the setting of numeric digits. If the num-
ber of places needed before the decimal point exceeds digits, or if the absolute value of
the result is less than 0.000001, then exponential form will be used. e exponential
form generated by NetR always has a sign following the ”E”. If the exponent is 0 then
the exponential part is omitted - that is, an exponential part of ”E+0” will never be gen-
erated. If the default format for a number is not satisfactory for a particular application,
then the format method may be used to control its format. Using this, numbers may be
explicitly converted to exponential form or even forced to be returned in ”pure” form.
Different exponential notations may be selected with the numeric form instruction (see
page 117) . is instruction allows the selection of either scientific or engineering nota-
tion. Scientific notation adjusts the power of ten so there is a single non-zero digit to the
le of the decimal point. Engineering notation causes powers of ten to be expressed as a

174

multiple of three - the integer part may therefore range from 1 through 999. Examples:

numeric form scientific
say 123.45 * 1e11
/* would display: 1.2345E+13 */

numeric form engineering
say 123.45 * 1e11
/* would display: 12.345E+12 */

e default exponential notation is scientific.

42.2.8 Whole numbers

Within the set of numbers understood by NetR it is useful to distinguish the subset
defined as whole numbers.
A whole number in NetR is a number that has a decimal part which is all zeros (or
that has no decimal part).

42.2.9 Numbers used directly by NetR

As discussed above, the result of any arithmetic operation is rounded (if necessary) ac-
cording to the setting of numeric digits. Similarly, when a number (which has not
necessarily been involved in an arithmetic operation) is used directly by NetR then
the same rounding is also applied, just as though the operation of adding the number to
0 had been carried out. Aer this operation, the integer part of the number must have
no more digits than the current setting of numeric digits.
In the following cases, the number usedmust be awhole number and an implementation
restriction on the largest number that can be used may apply:
. positional patterns, including variable positional patterns, in parsing templates (see

page 159). the power value (right hand operand) of the power operator (see page 172).. the values of exprr and exprf (following the for keyword) in the loop instruction
(see page 101). the value of exprd (following the digits keyword) in the numeric instruction (see
page 117) .

Implementationminimum: A minimum length of 9 digits must be supported for these
uses of whole numbers by a NetR language processor.

42.2.10 Implementation independence

e NetR arithmetic rules are defined in detail, so that when a given program is run
the results of all computations are sufficiently defined that the same answer will result
for all correct implementations. Differences due to the underlying machine architecture
will not affect computations. is contrasts with most other programming languages,

175

and with binary arithmetic (see page 177) in NetR, where the result obtained may
depend on the implementation because the precision and algorithms used by the lan-
guage processor are defined by the implementation rather than by the language.

42.2.11 Exceptions and errors

e following exceptions and errors may be signalled during arithmetic:
. Divide exception is exception will be signalled if division by zero was attempted,

or if the integer result of an integer divide or remainder operation had too many
digits.. Overflow/Underflow exception is exception will be signalled if the exponential
part of a result (from an operation that is not an attempt to divide by zero) would
exceed the range that can be handled by the language processor, when the result
is formatted according to the current settings of numeric digits and numeric
form. e language defines a minimum capability for the exponential part, namely
exponents whose absolute value is at least as large as the largest number that can be
expressed as an exact integer in default precision.us, since the default precision is
nine, implementations must support exponents in the range -999999999 through
999999999.. Insufficient storage Storage is needed for calculations and intermediate results, and
on occasion an arithmetic operation may fail due to lack of storage. is is consid-
ered an operating environment error as usual, rather than an arithmetical excep-
tion.

In the reference implementation, the exceptions and error types used for these three cases are
DivideException, ExponentOverflowException, and OutOfMemoryError, respectively.

176

43

Binary values and operations

By default, arithmetic and string operations in NetR are carried out using the
NetR string class, R, which offers the robust set of operators described in Ex-
pressions and operators (see page 63).
NetR implementations, however, may also provide primitive datatypes, as described
in Types and Classes (see page 43). ese primitive types are used for compact storage
of numbers and for fast binary arithmetic, features which are built-in to the hardware of
most computers.
To make use of binary arithmetic, a class is declared to be a binary class (see page 87)
by using the binary keyword on the class instruction. In such a class, literal strings
and numeric symbols are assigned native string or primitive types, rather than NetR
types, where appropriate, and native binary operations are used to implement operators
where possible, as detailed below. Implementations may also provide a keyword on the
options (see page 119) instruction that indicates that all classes in a program are binary
classes. 72

Alternatively, individual methods within a class may be declared to be a binary method
(see page 112) by using the binary keyword on the method instruction.
Binary classes and methods should be used with care. Although binary arithmetic can
have a considerable performance advantage over arithmetic that is not implemented in
hardware, it can give incorrect or unexpected results. In particular, whole numbers (in-
tegers) are oen held in fixed-sized data areas (of 8, 16, 32, or 64 bits), and overflowing
the data area during a calculation can result in a positive number becoming negative
and vice versa. Similarly, binary numbers that are not whole numbers (floating-point
numbers) cannot exactly represent common numbers in the decimal system (0.1, 0.2,
etc.), and hence can give unexpected results.

43.1 Operations in binary classes and methods

In a binary class or method, the following (and only the following) rules differ from the
usual rules:

Dyadic operations in expressions If the operands of a dyadic operator both have prim-
itive numeric types 73 then binary operations are carried out. e type of the result
is implementation defined, and is typically the type of the more precise of the two

72 In the reference implementation, options binary is used.
73 In the reference implementation, boolean is considered to be a numeric type (having the values 0 or 1) but char is not. Characters,

and strings or arrays of characters, always use the rules defined for NetR strings.

177

operands, or of someminimumprecision. 74 Arithmetic operations follow the usual
rules of binary arithmetic, as defined for the underlying environment of the imple-
mentation.
Note that NetR provides both divide and integer divide operators; in a binary
class or method, the divide operator (”/”) converts its operands to floating-point
types and returns a floating-point result, whereas the integer divide operator (”%”)
converts its operands to integer types and returns an integer result. e remainder
operator must accept both integer and floating-point types.
Logical operations (and, or, and exclusive or) apply to all the bits of the operands,
and are not permitted on floating-point types.

Prefix operations in expressions If the operand of a prefix operator has a primitive nu-
meric type, then the type of the result is the type of the operand, subject to the same
minimumas dyadic operations. Prefix plus andminus follow the rules of dyadic op-
erators (because they are defined as being zero plus or minus the operand) with the
additional rule that if acting on a literal number (a constant in the program) then
the result is also considered to be a literal constant. Logical not (prefix ”\”) does not
apply to all the bits of its operand; instead, it changes a 0 to 1 and vice versa.

Assignments In assignments where the value being assigned is the result of an expres-
sion which comprises a string or number literal constant, the type of the result is
defined as follows:
1. Strings are given the native string type, even for a single-character literal. 75

2. Numbers are given the smallest possible primitive numeric type that will con-
tain the literal without loss of information (or minimal loss of information
for numbers with decimal or exponential parts). If this is smaller than the
implementation-defined minimum precision used for the result of adding the
literal to 0, then the type of that minimum precision is used.
If the constant is an integer, and no primitive integer binary type has suffi-
cient precision to hold the number without loss of information, then the num-
ber is treated as a literal string (that is, as though it were enclosed in quotes).
NetR arithmetic would then be used if it were involved in an arithmetic
operation.

ese rules can apply in assignment instructions, the initial assignment to the con-
trol variable in the loop instruction, or the assignment of a default value to the
argument of a method; the result type may define the type of the variable (if new,
or a method argument).

Control variables in loops In the loop instruction, if the control variable has a prim-
itive integer type, and the increment (by value) has a primitive integer type, then
binary arithmetic will be used for stepping the control variable, following the rules
for binary arithmetic in expressions described above.
Similarly, if the control variable has a primitive integer type, and the end (to) value
has a primitive integer type, then binary arithmetic will be used for the comparison
that tests for loop termination.

Numeric instruction e numeric instruction does not affect binary operations. It has
the usual effects on operations carried out using NetR arithmetic.

74 In the reference implementation, the minimum precision is 32 bits, so an int is returned for results that would otherwise be byte or
short. If both operands are boolean, however, and the operation is a logical operation, then the type of the result is boolean.

75 In the reference implementation, this type is java.lang.String.

178

Note: At all times (whether in binary classes, binary methods, or anywhere else) imple-
mentations may use primitive types and operations, and techniques such as late binding
of types, as an optimization providing that the results obtained are identical to those
defined in this language definition.

43.2 Binary constructors

NetR provides special constructors for implementation-defined primitive types that
allow bit-wise construction of primitives. ese binary constructors are especially useful
for manipulating the binary encodings of individual characters.
e binary constructors follow the same syntax as other constructors, with the name
being that of a primitive type. All binary constructors take one argument, which must
have a primitive type.
e bits of the value of the argument are extended or truncated on the le to the same
length as the bits required for the type of the constructor (following the usual binary
rules of sign extension if the argument type is a signed numeric type), and a value with
the type of the constructor is then constructed directly from those bits and returned.
Example: is example illustrates types from the reference implementation, with 32-bit
signed integers of type int and 16-bit Unicode characters of type char.

i=int 77 -- i is now the integer 77
c=char(i) -- c is now the character ’M’
j=int(c) -- j is now the integer 77

Note that the conversion

j=int c

would have failed, as ”M” is not a number.

179

44

Exceptions

Exceptional conditions, including errors, inNetR are handled by amechanism called
Exceptions. When an exceptional condition occurs, a signal takes place which may op-
tionally be caught by an enclosing control construct, as detailed below.
An exception can be signalled by:

1. the program’s environment, when some processing error occurs (such as running
out of memory, or a problem discovered when reading or writing a file)

2. a method called by a NetR program (if, for example, it is passed incorrect ar-
guments)

3. the signal instruction (see page 139) .

In all cases, the signal is handled in exactly the same way. First, execution of the cur-
rent clause ceases; no further operations within the clause will be carried out.76 Next, an
object that represents the exception is constructed. e type of the exception object is
implementation-dependent, as described for the signal instruction (see page 139) , and
defines the type of the exception. e object constructed usually contains information
about the Exception (such as a descriptive string).
Once the object has been constructed, all active do groups, loop loops, if constructs,
and select constructs in the activemethod are ”unwound”, starting with the innermost,
until the exception is caught by a control construct that specifies a suitable catch clause
(see below) for handling the exception.
is unwinding takes place as follows:

1. No further clauses within the body of the construct will be executed (in this respect,
the signal acts like a leave for the construct).

2. If a catch clause specifies a type to which the exception object can be assigned (that
is, it matches or is a superclass of the type of exception object), then the instruction-
list following that clause is executed, and the exception is considered to be handled
(no further control constructs will be unwound). If more than one catch clause
specifies a suitable type, the first is used.

3. e instructionlist following the finally clause for the construct, if any, is executed.
4. e end clause is executed, hence completing execution of the construct. (e only

effect of this is that it is seen when tracing.)
5. If the exceptionwas handled, then execution resumes as though the construct com-

pleted normally. If it was not handled, then the process is repeated for any enclosing
constructs.

76 is is the only case in which an expression will not be wholly evaluated, for example.

181

If the exception is not caught by any of the control constructs enclosing the original point
of the exception signal, then the current active method is terminated, without returning
any data, and the exception is then signalled at the point where the method was invoked
(that is, in the caller).
e process of unwinding control constructs and terminating the method is then re-
peated in each calling method until the exception is caught or the initial program invo-
cationmethod (themainmethod) is terminated, inwhich case the program ends and the
environment receives the signal (it would usually then display diagnostic information).

44.1 Syntax and example

e constructs that may be used to handle (catch) an exception are do groups, loop
loops, and select constructs. Specifically, as shown in the syntax diagrams (q.v.), where
the end clause can appear in these constructs, zero or more catch clauses can be used to
define exception handlers, followed by zero or one finally clauses that describe ”clean-
up” code for the construct. e whole construct continues to be ended by an end clause.
e syntax of a catch clause is shown in the syntax diagrams. It always specifies an ex-
ception type, which may be qualified. It may optionally specify a symbol, vare, which
is followed by an equals sign. is indicates that when the exception is caught then the
object representing the exception will be assigned to the variable vare. If new, the type
of the variable will be exception. Here is an example of a program that handles some of
the exceptions signalled by methods in the R class; the trace results instruction
is included to show the flow of execution:

trace results
do -- could be LOOP i=1 to 10, etc.

say 1/arg
catch DivideException

say ’Divide exception’
catch ex=NumberFormatException

/* ’ex’ is assigned the exception object */
say ’Bad number for division:’ ex.getMessage

finally
say ’Done!’

end

In this example, if the argument passed to the program (and hence placed in arg) is a
valid number, then its inverse is displayed. If the argument is 0, then ”Divide exception”
would be displayed. If the argument were an invalid number, the message describing the
bad number would be displayed. For any other exception (such as an ExponentOver-
flowException), the program would end and the environment would normally report
the exception.
In all cases, the message ”Done!” would be displayed; this would be true even if the
body of the do construct executed a return, leave, or iterate instruction.Only an exit
instruction (see page 91) would cause immediate termination of the construct (and the
program).

182

Note: e finally keyword, like otherwise in the select construct, implies a semi-
colon aer it, so the last say instruction in the example could have appeared on the
same line as the finally without an intervening semicolon.

44.2 Exceptions aer catch and finally clauses

If an exception is signalled in the instructionlist following a catch or finally clause, then
the current exception is considered handled, the instructionlist is terminated, and the
new exception is signalled. It will not be caught by catch clauses in the current construct.
If it occurs in the instructionlist following a catch clause, then any finally instructions
will be executed, as usual.
Similarly, executing a return or exit instruction within either of the instructionlists
completes the handling of any pending signal.

44.3 Checked exceptions

NetR implementations may define certain exceptions as checked exceptions. ese
are exceptions that the implementation considers it useful to check; the checked ex-
ceptions that each method may signal are recorded. Within do groups, loop loops, and
select constructs, for example, it is then possible to report if a catch clause tries to
catch a checked exception that is not signalled within the body of the construct.
Checked exceptions that are signalled within a method (by a signal instruction or
a method invocation) but not caught by a catch clause in the method are automati-
cally added to the signals list for a method. Implementations that support checked
exceptions are encouraged to provide options that list the uncaught checked exceptions
for methods or enforce the explicit inclusion of some or all checked exceptions in the
signals list on the method instruction.
In the reference implementation, all exceptions are checked except those that are subclasses
of java.lang.RuntimeException or java.lang.Error. ese latter are considered so ubiq-
uitous that almost all methods would signal them.
Expressions assigned as the initial values of properties must not invoke methods that may
signal checked exceptions.
e strictsignal option on the options instruction may be used to enforce the inclusion
of all uncaught checked exceptions in methods’ signals lists; this may be used to assure
that any uncaught checked exceptions are intentional.

183

45

Methods for NetR strings

is section describes the set of methods defined for the NetR string class, R.
ese are called built-in methods, and include character manipulation, word manipula-
tion, conversion, and arithmetic methods.
Implementations will also provide other methods for the R class (for example, to
implement theNetRoperators or to provide constructorswith primitive arguments),
but these are not part of the NetR language. 77

45.1 General notes on the built-in methods:

1. Allmethodswork on aNetR string of typeR; this is referred to by the name
string in the descriptions of the methods. For example, if the word method were
invoked using the term:
”Three word phrase”.word(2)

then in the description of word the name string refers to the string ”ree word
phrase”, and the name n refers to the string ”2”.

2. All method arguments are of type R and all methods return a string of type
R; if a number is returned, it will be formatted as though 0 had been added
with no rounding.

3. e first parenthesis in a method call must immediately follow the name of the
method, with no space in between.

4. e parentheses in a method call can be omitted if no arguments are required and
the method call is part of a compound term (see page 48) . 78

5. A position in a string is the number of a character in the string, where the first
character is at position 1, etc.

6. Where arguments are optional, commas may only be included between arguments
that are present (that is, trailing commas in argument lists are not permitted).

7. A pad argument, if specified, must be exactly one character long.
8. If amethod has a sub-option selected by the first character of a string, that character

may be in upper or lowercase.
9. Conversion between character encodings and decimal or hexadecimal is depen-

dent on the machine representation (encoding) of characters and hence will return
appropriately different results for Unicode, ASCII, EBCDIC, and other implemen-
tations.

77 Details of the methods provided in the reference implementation are included in Appendix C (see page 209) .
78 Unless an implementation-provided option to disallow parenthesis omission is in force.

185

45.2 e built-in methods

abbrev(info [,length]) returns 1 if info is equal to the leading characters of string and
info is not less than the minimum length, length; 0 is returned if either of these
conditions is not met. length must be a non-negative whole number; the default is
the length of info. Examples:
’Print’.abbrev(’Pri’) == 1
’PRINT’.abbrev(’Pri’) == 0
’PRINT’.abbrev(’PRI’,4) == 0
’PRINT’.abbrev(’PRY’) == 0
’PRINT’.abbrev(’’) == 1
’PRINT’.abbrev(’’,1) == 0

Note: A null string will always match if a length of 0 (or the default) is used. is
allows a default keyword to be selected automatically if desired. Example:
say ’Enter option:’; option=ask
select /* keyword1 is to be the default */
when ’keyword1’.abbrev(option) then ...
when ’keyword2’.abbrev(option) then ...

...
otherwise ...
end

abs() returns the absolute value of string, which must be a number. Any sign is removed
from the number, and it is then formatted by adding zero with a digits setting that
is either nine or, if greater, the number of digits in the mantissa of the number
(excluding leading insignificant zeros). Scientific notation is used, if necessary.
Examples:
’12.3’.abs == 12.3
’ -0.307’.abs == 0.307
’123.45E+16’.abs == 1.2345E+18
’- 1234567.7654321’.abs == 1234567.7654321

b2d([n]) 3.02Binary to decimal. Converts string, a string of at least one binary (0 and/or 1)
digits, to an equivalent string of decimal characters (a number), without rounding.
e returned string will use digits, and will not include any blanks. If the number
of binary digits in the string is not a multiple of four, then up to three ’0’ digits will
be added on the le before conversion to make a total that is a multiple of four. If
string is the null string, 0 is returned. If n is not specified, string is taken to be an
unsigned number.
Examples:
’01110’.b2d == 14
’10000001’.b2d == 129
’111110000001’.b2d == 3969
’1111111110000001’.b2d == 65409
’1100011011110000’.b2d == 50928

If n is specified, string is taken as a signed number expressed in n binary characters.
If the most significant (le-most) bit is zero then the number is positive; otherwise

186

it is a negative number in twos-complement form. In both cases it is converted to a
NetRexx number which may, therefore, be negative. If n is 0, 0 is always returned.
If necessary, string is padded on the le with ’0’ characters (note, not “signex-
tended”), or truncated on the le, to length n characters; (that is, as though
string.right(n, ’0’) had been executed.)
Examples:
’10000001’.b2d(8) == -127
’10000001’.b2d(16) == 129
’1111000010000001’.b2d(16) == -3967
’1111000010000001’.b2d(12) == 129
’1111000010000001’.b2d(8) == -127
’1111000010000001’.b2d(4) == 1
’0000000000110001’.b2d(0) == 0

b2x() Binary to hexadecimal. Converts string, a string of at least one binary (0 and/or 1)
digits, to an equivalent string of hexadecimal characters. e returned string will
use uppercase Roman letters for the values A-F, and will not include any blanks. If
the number of binary digits in the string is not a multiple of four, then up to three
’0’ digits will be added on the le before conversion tomake a total that is amultiple
of four.
Examples:
’11000011’.b2x == ’C3’
’10111’.b2x == ’17’
’0101’.b2x == ’5’
’101’.b2x == ’5’
’111110000’.b2x == ’1F0’

center(length [,pad]) or
centre(length [,pad]) returns a string of length length with string centered in it, with

pad characters added as necessary to make up the required length. length must
be a non-negative whole number. e default pad character is blank. If the string
is longer than length, it will be truncated at both ends to fit. If an odd number
of characters are truncated or added, the right hand end loses or gains one more
character than the le hand end.
Examples:
’ABC’.centre(7) == ’ ABC ’
’ABC’.center(8,’-’) == ’--ABC---’
’The blue sky’.centre(8) == ’e blue s’
’The blue sky’.center(7) == ’e blue ’

Note: is method may be called either centre or center, which avoids difficulties
due to the difference between the British and American spellings.

changestr(needle, new) returns a copy of string in which each occurrence of the needle
string is replaced by the new string. Each unique (non-overlapping) occurrence of
the needle string is changed, searching from le to right and starting from the first
(lemost) position in string. Only the original string is searched for the needle, and
each character in string can only be included in one match of the needle.
If the needle is the null string, the result is a copy of string, unchanged.

187

Examples:
’elephant’.changestr(’e’,’X’) == ’XlXphant’
’elephant’.changestr(’ph’,’X’) == ’eleXant’
’elephant’.changestr(’ph’,’hph’) == ’elehphant’
’elephant’.changestr(’e’,’’) == ’lphant’
’elephant’.changestr(’’,’!!’) == ’elephant’

e countstr method (see page 189) can be used to count the number of changes
that could be made to a string in this fashion.

compare(target [,pad]) returns 0 if string and target are the same. If they are not, the
returned number is positive and is the position of the first character that is not
the same in both strings. If one string is shorter than the other, one or more pad
characters are added on the right to make it the same length for the comparison.
e default pad character is a blank.
Examples:
’abc’.compare(’abc’) == 0
’abc’.compare(’ak’) == 2
’ab ’.compare(’ab’) == 0
’ab ’.compare(’ab’,’ ’) == 0
’ab ’.compare(’ab’,’x’) == 3
’ab-- ’.compare(’ab’,’-’) == 5

returns n directly concatenated copies of string. n must be positive or 0; if 0, the
null string is returned.
Examples:

copies(n) ’abc’.copies(3) == ’abcabcabc’
’abc’.copies(0) == ’’
’’.copies(2) == ’’

copyindexed(sub) copies the collection of indexed sub-values (see page 77) of sub into
the collection associated with string, and returns the modified string. e resulting
collection is the union of the two collections (that is, it contains the indexes and
their values from both collections). If a given index exists in both collections then
the sub-value of string for that index is replaced by the sub-value from sub.
e non-indexed value of string is not affected.
Example: Following the instructions:
foo=’def’
foo[’a’]=1
foo[’b’]=2
bar=’ghi’
bar[’b’]=’B’
bar[’c’]=’C’
merged=foo.copyIndexed(bar)

then:
merged[’a’] == ’1’
merged[’b’] == ’B’
merged[’c’] == ’C’
merged[’d’] == ’def’

188

countstr(needle) returns the count of non-overlapping occurrences of the needle string
in string, searching from le to right and starting from the first (lemost) position
in string.
If the needle is the null string, 0 is returned.
Examples:
’elephant’.countstr(’e’) == ’2’
’elephant’.countstr(’ph’) == ’1’
’elephant’.countstr(’’) == ’0’

e changestr method (see page 187) can be used to change occurrences of needle
to some other string.

c2d() Coded character to decimal. Converts the encoding of the character in string
(which must be exactly one character) to its decimal representation. e returned
string will be a non-negative number that represents the encoding of the character
and will not include any sign, blanks, insignificant leading zeros, or decimal part.
Examples:
’M’.c2d == ’77’ -- ASCII or Unicode
’7’.c2d == ’247’ -- EBCDIC
’\r’.c2d == ’13’ -- ASCII or Unicode
’\0’.c2d == ’0’

e c2x method (see page 189) can be used to convert the encoding of a character
to a hexadecimal representation.

c2x() Coded character to hexadecimal. Converts the encoding of the character in string
(whichmust be exactly one character) to its hexadecimal representation (unpacks).
e returned string will use uppercase Roman letters for the values A-F, and will
not include any blanks. Insignificant leading zeros are removed.
Examples:
’M’.c2x == ’4D’ -- ASCII or Unicode
’7’.c2x == ’F7’ -- EBCDIC
’\r’.c2x == ’D’ -- ASCII or Unicode
’\0’.c2x == ’0’

e c2d method (see page 189) can be used to convert the encoding of a character
to a decimal number.

datatype(option) returns 1 if string matches the description requested with the option,
or 0 otherwise. If string is the null string, 0 is always returned.
Only the first character of option is significant, and it may be in either uppercase or
lowercase. e following option characters are recognized:
A (Alphanumeric); returns 1 if string only contains characters from the ranges ”a-

z”, ”A-Z”, and ”0-9”.
B (Binary); returns 1 if string only contains the characters ”0” and/or ”1”.
D (Digits); returns 1 if string only contains characters from the range ”0-9”.
L (Lowercase); returns 1 if string only contains characters from the range ”a-z”.
M (Mixed case); returns 1 if string only contains characters from the ranges ”a-z”

and ”A-Z”.
N (Number); returns 1 if string is a syntactically valid NetR number that could

be added to ’0’ without error,
189

S (Symbol); returns 1 if string only contains characters that are valid in non-
numeric symbols (the alphanumeric characters and underscore), and does
not start with a digit. Note that both uppercase and lowercase letters are per-
mitted.

U (Uppercase); returns 1 if string only contains characters from the range ”A-Z”.
W (Whole Number); returns 1 if string is a syntactically valid NetR number

that can be added to ’0’ without error, and whose decimal part aer that ad-
dition, with no rounding, is zero.

X (heXadecimal); returns 1 if string only contains characters from the ranges ”a-f ”,
”A-F”, and ”0-9”.

Examples:
’101’.datatype(’B’) == 1
’12.3’.datatype(’D’) == 0
’12.3’.datatype(’N’) == 1
’12.3’.datatype(’W’) == 0
’LaArca’.datatype(’M’) == 1
’’.datatype(’M’) == 0
’Llanes’.datatype(’L’) == 0
’3 d’.datatype(’s’) == 0
’BCd3’.datatype(’X’) == 1
’BCgd3’.datatype(’X’) == 0

Note: e datatype method tests the meaning of the characters in a string, inde-
pendent of the encoding of those characters. Extra letters and Extra digits cause
datatype to return 0 except for the number tests (”N” and ”W”), which treat extra
digits whose value is in the range 0-9 as though they were the correspondingArabic
numeral.

delstr(n [,length]) returns a copy of string with the sub-string of string that begins at the
nth character, and is of length length characters, deleted. If length is not specified,
or is greater than the number of characters from n to the end of the string, the rest
of the string is deleted (including the nth character). lengthmust be a non-negative
whole number, and n must be a positive whole number. If n is greater than the
length of string, the string is returned unchanged.
Examples:
’abcd’.delstr(3) == ’ab’
’abcde’.delstr(3,2) == ’abe’
’abcde’.delstr(6) == ’abcde’

delword(n [,length)]
returns a copy of string with the sub-string of string that starts at the nthword, and
is of length length blank-delimited words, deleted. If length is not specified, or is
greater than number of remaining words in the string, it defaults to be the remain-
ing words in the string (including the nth word). length must be a non-negative
whole number, and n must be a positive whole number. If n is greater than the
number of words in string, the string is returned unchanged. e string deleted
includes any blanks following the final word involved, but none of the blanks pre-
ceding the first word involved.
Examples:

190

’Now is the time’.delword(2,2) == ’Now time’
’Now is the time ’.delword(3) == ’Now is ’
’Now time’.delword(5) == ’Now time’

d2b([n])3.02 Decimal to binary. Returns a string of binary characters of length as needed
or of length n, which is the binary representation of the decimal number. e re-
turned string will use 0 and 1 characters for binary values. string must be a whole
number, and must be non-negative unless n is specified, or an error will result. If n
is not specified, the length of the result returned is such that there are no leading 0
characters, unless string was equal to 0 (in which case ’0’ is returned).
If n is specified it is the length of the final result in characters; that is, aer conver-
sion the input string will be sign-extended to the required length (negative num-
bers are converted assuming twos-complement form). If the number is too big to
fit into n characters, it will be truncated on the le. n must be a nonnegative whole
number.
Examples:
’0’.d2b == 0
’9’.d2b == 1001
’19’.d2b == 10011
’129’.d2b == 10000001
’129’.d2b(1) == 1
’129’.d2b(8) == 10000001
’127’.d2b(12) == 000001111111
’129’.d2b(16) == 0000000010000001
’257’.d2b(8) == 00000001
’-127’.d2b(8) == 10000001
’-127’.d2b(16) == 1111111110000001
’12’.d2b(0) ==

d2c() Decimal to coded character. Converts the string (a NetR number) to a single
character, where the number is used as the encoding of the character.
string must be a non-negative whole number. An error results if the encoding de-
scribed does not produce a valid character for the implementation (for example, if
it has more significant bits than the implementation’s encoding for characters).
Examples:
’77’.d2c == ’M’ -- ASCII or Unicode
’+77’.d2c == ’M’ -- ASCII or Unicode
’247’.d2c == ’7’ -- EBCDIC
’0’.d2c == ’\ 0’

d2x([n)]
Decimal to hexadecimal. Returns a string of hexadecimal characters of length as
needed or of length n, which is the hexadecimal (unpacked) representation of the
decimal number. e returned string will use uppercase Roman letters for the val-
ues A-F, and will not include any blanks. string must be a whole number, and must
be non-negative unless n is specified, or an error will result. If n is not specified, the
length of the result returned is such that there are no leading 0 characters, unless
string was equal to 0 (in which case ’0’ is returned).

191

If n is specified it is the length of the final result in characters; that is, aer conver-
sion the input string will be sign-extended to the required length (negative num-
bers are converted assuming twos-complement form). If the number is too big to
fit into n characters, it will be truncated on the le. nmust be a non-negative whole
number.
Examples:
’9’.d2x == ’9’
’129’.d2x == ’81’
’129’.d2x(1) == ’1’
’129’.d2x(2) == ’81’
’127’.d2x(3) == ’07F’
’129’.d2x(4) == ’0081’
’257’.d2x(2) == ’01’
’-127’.d2x(2) == ’81’
’-127’.d2x(4) == ’FF81’
’12’.d2x(0) == ’’

returns 1 if index names a sub-value (see page 77) of string that has explicitly been
assigned a value, or 0 otherwise.
Example: Following the instructions:

exists(index) vowel=0
vowel[’a’]=1
vowel[’b’]=1
vowel[’b’]=null -- drops previous assignment
then:
vowel.exists(’a’) == ’1’
vowel.exists(’b’) == ’0’
vowel.exists(’c’) == ’0’

format([before [,aer])]
formats (lays out) string, which must be a number.
e number, string, is first formatted by adding zero with a digits setting that is
either nine or, if greater, the number of digits in the mantissa of the number (ex-
cluding leading insignificant zeros). If no arguments are given, the result is precisely
that of this operation.
e arguments before and aermaybe specified to control the number of characters
to be used for the integer part and decimal part of the result respectively. If either
of these is omitted (with no arguments specified to its right), or is null, the number
of characters used will be as many as are needed for that part.
beforemust be a positive number; if it is larger than is needed to contain the integer
part, that part is padded on the le with blanks to the requested length. If before is
not large enough to contain the integer part of the number (including the sign, for
negative numbers), an error results.
aermust be a non-negative number; if it is not the same size as the decimal part of
the number, the number will be rounded (or extended with zeros) to fit. Specifying
0 for aer will cause the number to be rounded to an integer (that is, it will have no
decimal part or decimal point).
Examples:

192

’ - 12.73’.format == ’-12.73’
’0.000’.format == ’0’
’3’.format(4) == ’ 3’
’1.73’.format(4,0) == ’ 2’
’1.73’.format(4,3) == ’ 1.730’
’-.76’.format(4,1) == ’ -0.8’
’3.03’.format(4) == ’ 3.03’
’ - 12.73’.format(null,4) == ’-12.7300’

Further arguments may be passed to the format method to control the use of ex-
ponential notation. e full syntax of the method is then:
format([before[,after[,explaces[,exdigits[,exform]]]]]) e first two
arguments are as already described. e other three (explaces, exdigits, and ex-
form) control the exponent part of the result. e default for any of the arguments
may be selected by omitting them (if there are no arguments to be specified to their
right) or by using the value null.
explaces must be a positive number; it sets the number of places (digits aer the
sign of the exponent) to be used for any exponent part, the default being to use as
many as are needed. If explaces is specified and is not large enough to contain the
exponent, an error results. If explaces is specified and the exponent will be 0, then
explaces+2 blanks are supplied for the exponent part of the result.
exdigits sets the trigger point for use of exponential notation. If, aer the first for-
matting, the number of places needed before the decimal point exceeds exdigits,
or if the absolute value of the result is less than 0.000001, then exponential form
will be used, provided that exdigits was specified. When exdigits is not specified,
exponential notation will never be used. e current setting of numeric digits
may be used for exdigits by specifying the special word digits (see page 155) . If
0 is specified for exdigits, exponential notation is always used unless the exponent
would be 0.
exform sets the form for exponential notation (if needed). exform may be either
’Scientific’ (the default) or ’Engineering’. Only the first character of exform is sig-
nificant and it may be in uppercase or in lowercase. e current setting of numeric
formmay be used by specifying the special word form (see page 155) . If engineer-
ing form is in effect, up to three digits (plus sign) may be needed for the integer
part of the result (before).
Examples:
’12345.73’.format(null,null,2,2) == ’1.234573E+04’
’12345.73’.format(null,3,null,0) == ’1.235E+4’
’1.234573’.format(null,3,null,0) == ’1.235’
’123.45’.format(null,3,2,0) == ’1.235E+02’
’1234.5’.format(null,3,2,0,’e’) == ’1.235E+03’
’1.2345’.format(null,3,2,0) == ’1.235 ’
’12345.73’.format(null,null,3,6) == ’12345.73 ’
’12345e+5’.format(null,3) == ’1234500000.000’

Implementation minimum: If exponents are supported in an implementation,
then they must be supported for exponents whose absolute value is at least as large
as the largest number that can be expressed as an exact integer in default precision,

193

i.e., 999999999. erefore, values for explaces of up to 9 should also be supported.
insert(new [,n [,length [,pad]]]) inserts the string new, padded or truncated to length

length, into a copy of the target string aer the nth character; the string with any
inserts is returned. length and n must be a non-negative whole numbers. If n is
greater than the length of the target string, padding is added before the new string
also. e default value for n is 0, which means insert before the beginning of the
string. e default value for length is the length of new. e default pad character
is a blank.
Examples:
’abc’.insert(’123’) == ’123abc’
’abcdef’.insert(’ ’,3) == ’abc def’
’abc’.insert(’123’,5,6) == ’abc 123 ’
’abc’.insert(’123’,5,6,’+’) == ’abc++123+++’
’abc’.insert(’123’,0,5,’-’) == ’123--abc’

lastpos(needle [,start]) returns the position of the last occurrence of the string needle in
string (the ”haystack”), searching from right to le. If the string needle is not found,
or is the null string, 0 is returned. By default the search starts at the last character of
string and scans backwards. is may be overridden by specifying start, the point
at which to start the backwards scan. start must be a positive whole number, and
defaults to the value string.length if larger than that value or if not specified (with
a minimum default value of one).
Examples:
’abc def ghi’.lastpos(’ ’) == 8
’abc def ghi’.lastpos(’ ’,7) == 4
’abcdefghi’.lastpos(’ ’) == 0
’abcdefghi’.lastpos(’cd’) == 3
’’.lastpos(’?’) == 0

le(length [,pad]) returns a string of length length containing the le-most length char-
acters of string.e string is padded with pad characters (or truncated) on the right
as needed.edefault pad character is a blank. lengthmust be a non-negativewhole
number. is method is exactly equivalent to string.substr(1, length [, pad]).
Examples:
’abc d’.left(8) == ’abc d ’
’abc d’.left(8,’.’) == ’abc d...’
’abc defg’.left(6) == ’abc de’

length() returns the number of characters in string.
Examples:
’abcdefgh’.length == 8
’’.length == 0

lower([n [,length])]
returns a copy of string with any uppercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by their
lowercase equivalent.
n must be a positive whole number, and defaults to 1 (the first character in string).
If n is greater than the length of string, the string is returned unchanged.

194

lengthmust be a non-negative whole number. If length is not specified, or is greater
than the number of characters from n to the end of the string, the rest of the string
(including the nth character) is assumed.
Examples:
’SumA’.lower == ’suma’
’SumA’.lower(2) == ’Suma’
’SuMB’.lower(1,1) == ’suMB’
’SUMB’.lower(2,2) == ’SumB’
’’.lower == ’’

returns the larger of string and number, which must both be numbers. If they com-
pare equal (that is, when subtracted, the result is 0), then string is selected for the
result.
e comparison is effected using a numerical comparison with a digits setting that
is either nine or, if greater, the larger of the number of digits in the mantissas of the
two numbers (excluding leading insignificant zeros).
e selected result is formatted by adding zero to the selected number with a dig-
its setting that is either nine or, if greater, the number of digits in the mantissa of
the number (excluding leading insignificant zeros). Scientific notation is used, if
necessary.
Examples:

max(number) 0.max(1) ==1
’-1’.max(1) ==1
’+1’.max(-1) ==1
’1.0’.max(1.00) ==’1.0’
’1.00’.max(1.0) ==’1.00’
’123456700000’.max(1234567E+5) == ’123456700000’
’1234567E+5’.max(’123456700000’) == ’1.234567E+11’

min(number) returns the smaller of string andnumber, whichmust both be numbers. If
they compare equal (that is, when subtracted, the result is 0), then string is selected
for the result.
e comparison is effected using a numerical comparison with a digits setting that
is either nine or, if greater, the larger of the number of digits in the mantissas of the
two numbers (excluding leading insignificant zeros).
e selected result is formatted by adding zero to the selected number with a dig-
its setting that is either nine or, if greater, the number of digits in the mantissa of
the number (excluding leading insignificant zeros). Scientific notation is used, if
necessary.
Examples:
0.min(1) ==0
’-1’.min(1) ==’-1’
’+1’.min(-1) ==’-1’
’1.0’.min(1.00) ==’1.0’
’1.00’.min(1.0) ==’1.00’
’123456700000’.min(1234567E+5) == ’123456700000’
’1234567E+5’.min(’123456700000’) == ’1.234567E+11’

195

overlay(new [,n [,length [,pad]]]) overlays the string new, padded or truncated to
length length, onto a copy of the target string starting at the nth character; the
string with any overlays is returned. Overlays may extend beyond the end of the
original string. If length is specified it must be a non-negative whole number. If n is
greater than the length of the target string, padding is added before the new string
also. e default pad character is a blank, and the default value for n is 1. n must
be greater than 0. e default value for length is the length of new.
Examples:
’abcdef’.overlay(’ ’,3) == ’ab def’
’abcdef’.overlay(’.’,3,2) == ’ab. ef’
’abcd’.overlay(’qq’) == ’qqcd’
’abcd’.overlay(’qq’,4) == ’abcqq’
’abc’.overlay(’123’,5,6,’+’) == ’abc+123+++’

pos(needle [,start]) returns the position of the string needle, in string (the ”haystack”),
searching from le to right. If the string needle is not found, or is the null string, 0 is
returned. By default the search starts at the first character of string (that is, start has
the value 1). is may be overridden by specifying start (which must be a positive
whole number), the point at which to start the search; if start is greater than the
length of string then 0 is returned. Examples:
’Saturday’.pos(’day’) == 6
’abc def ghi’.pos(’x’) == 0
’abc def ghi’.pos(’ ’) == 4
’abc def ghi’.pos(’ ’,5) == 8

reverse() returns a copy of string, swapped end for end.
Examples:
’ABc.’.reverse == ’.cBA’
’XYZ ’.reverse == ’ ZYX’
’Tranquility’.reverse == ’ytiliuqnarT’

returns a string of length length containing the right-most length characters of string
- that is, paddedwith pad characters (or truncated) on the le as needed.edefault
pad character is a blank. length must be a non-negative whole number.
Examples:

right(length [,pad]) ’abc d’.right(8) == ’ abc d’
’abc def’.right(5) == ’c def’
’12’.right(5,’0’) == ’00012’

sequence(final) returns a string of all characters, in ascending order of encoding, be-
tween and including the character in string and the character in final. string and
final must be single characters; if string is greater than final, an error is reported.
Examples:
’a’.sequence(’f’) == ’abcdef’
’
0’.sequence(’
x03’) == ’
x00
x01

196

x02
x03’
’
ufffe’.sequence(’
uffff’) == ’
ufffe
uffff’

sign() returns a number that indicates the sign of string, whichmust be a number. string
is first formatted, just as though the operation ”string+0” had been carried out with
sufficient digits to avoid rounding. If the number then starts with ’-’ then ’-1’ is
returned; if it is ’0’ then ’0’ is returned; and otherwise ’1’ is returned.
Examples:
’12.3’.sign == 1
’0.0’.sign == 0
’ -0.307’.sign == -1

space([n [,pad]]) returns a copy of string with the blank-delimited words in string for-
matted with n (and only n) pad characters between each word. n must be a non-
negativewhole number. If n is 0, all blanks are removed. Leading and trailing blanks
are always removed. e default for n is 1, and the default pad character is a blank.
Examples:
’abc def ’.space == ’abc def’
’ abc def ’.space(3) == ’abc def’
’abc def ’.space(1) == ’abc def’
’abc def ’.space(0) == ’abcdef’
’abc def ’.space(2,’+’) == ’abc++def’

strip([option [,char]])] returns a copy of string with Leading, Trailing, or Both leading
and trailing characters removed, when the first character of option is L, T, or B
respectively (these may be given in either uppercase or lowercase). e default is B.
e second argument, char, specifies the character to be removed, with the default
being a blank. If given, char must be exactly one character long.
Examples:
’ ab c ’.strip == ’ab c’
’ ab c ’.strip(’L’) == ’ab c ’
’ ab c ’.strip(’t’) == ’ ab c’
’12.70000’.strip(’t’,0) == ’12.7’
’0012.700’.strip(’b’,0) == ’12.7’

substr(n [,length [,pad]]) returns the sub-string of string that begins at the nth char-
acter, and is of length length, padded with pad characters if necessary. n must be
a positive whole number, and length must be a non-negative whole number. If n
is greater than string.length, then only pad characters can be returned. If length is
omitted it defaults to be the rest of the string (or 0 if n is greater than the length of
the string). e default pad character is a blank.
Examples:
’abc’.substr(2) == ’bc’
’abc’.substr(2,4) == ’bc ’

197

’abc’.substr(5,4) == ’ ’
’abc’.substr(2,6,’.’) == ’bc....’
’abc’.substr(5,6,’.’) == ’......’

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting sub-strings, especially if more than one sub-string is
to be extracted from a string.

subword(n [,length]) returns the sub-string of string that starts at the nth word, and
is up to length blank-delimited words long. n must be a positive whole number;
if greater than the number of words in the string then the null string is returned.
length must be a non-negative whole number. If length is omitted it defaults to be
the remaining words in the string. e returned string will never have leading or
trailing blanks, but will include all blanks between the selected words.
Examples:
’Now is the time’.subword(2,2) == ’is the’
’Now is the time’.subword(3) == ’the time’
’Now is the time’.subword(5) == ’’

translate(tableo, tablei [,pad]) returns a copy of string with each character in string ei-
ther unchanged or translated to another character.
e translate method acts by searching the input translate table, tablei, for each
character in string. If the character is found in tablei (the first, lemost, occurrence
being used if there are duplicates) then the corresponding character in the same
position in the output translate table, tableo, is used in the result string; otherwise
the original character found in string is used. e result string is always the same
length as string.
e translate tables may be of any length, including the null string. e output
table, tableo, is padded with pad or truncated on the right as necessary to be the
same length as tablei. e default pad is a blank.
Examples:
’abbc’.translate(’&’,’b’) == ’a&&c’
’abcdef’.translate(’12’,’ec’) == ’ab2d1f’
’abcdef’.translate(’12’,’abcd’,’.’) == ’12..ef’
’4123’.translate(’abcd’,’1234’) == ’dabc’
’4123’.translate(’hods’,’1234’) == ’shod’

Note: e last two examples show how the translate method may be used to move
around the characters in a string. In these examples, any 4-character string could
be specified as the first argument and its last character would be moved to the be-
ginning of the string. Similarly, the term:
’gh.ef.abcd’.translate(19970827,’abcdefgh’)

(which returns ”27.08.1997”) shows howa string (in this case perhaps a date)might
be re-formatted and merged with other characters using the translate method.

trunc([n]) returns the integer part of string, which must be a number, with n decimal
places (digits aer the decimal point). nmust be a non-negative whole number, and
defaults to zero.
e number string is formatted by adding zero with a digits setting that is either
nine or, if greater, the number of digits in the mantissa of the number (excluding

198

leading insignificant zeros). It is then truncated to n decimal places (or trailing
zeros are added if needed tomake up the specified length). Ifn is 0 (the default) then
an integer with no decimal point is returned.e result will never be in exponential
form.
Examples:
’12.3’.trunc == 12
’127.09782’.trunc(3) == 127.097
’127.1’.trunc(3) == 127.100
’127’.trunc(2) == 127.00
’0’.trunc(2) == 0.00

upper([n [,length]]) returns a copy of string with any lowercase characters in the sub-
string of string that begins at the nth character, and is of length length characters,
replaced by their uppercase equivalent.
n must be a positive whole number, and defaults to 1 (the first character in string).
If n is greater than the length of string, the string is returned unchanged.
lengthmust be a non-negative whole number. If length is not specified, or is greater
than the number of characters from n to the end of the string, the rest of the string
(including the nth character) is assumed.
Examples:
’Fou-Baa’.upper == ’FOU-BAA’
’Mad Sheep’.upper == ’MAD SHEEP’
’Mad sheep’.upper(5) == ’Mad SHEEP’
’Mad sheep’.upper(5,1) == ’Mad Sheep’
’Mad sheep’.upper(5,4) == ’Mad SHEEp’
’tinganon’.upper(1,1) == ’Tinganon’
’’.upper == ’’

verify(reference [,option [,start]]) verifies that string is composed only of characters
from reference, by returning the position of the first character in string that is not
also in reference. If all the characters were found in reference, 0 is returned. e
option may be either ’Nomatch’ (the default) or ’Match’. Only the first character
of option is significant and it may be in uppercase or in lowercase. If ’Match’ is
specified, the position of the first character in string that is in reference is returned,
or 0 is returned if none of the characters were found. e default for start is 1 (that
is, the search starts at the first character of string). is can be overridden by giv-
ing a different start point, which must be positive. If string is the null string, the
method returns 0, regardless of the value of the option. Similarly if start is greater
than string.length, 0 is returned. If reference is the null string, then the returned
value is the same as the value used for start, unless ’Match’ is specified as the op-
tion, in which case 0 is returned.
Examples:
’123’.verify(’1234567890’) == 0
’1Z3’.verify(’1234567890’) == 2
’AB4T’.verify(’1234567890’,’M’) == 3
’1P3Q4’.verify(’1234567890’,’N’,3) == 4
’ABCDE’.verify(’’,’n’,3) == 3
’AB3CD5’.verify(’1234567890’,’m’,4) == 6

199

word(n) returns the nth blank-delimited word in string. n must be positive. If there are
fewer than n words in string, the null string is returned. is method is exactly
equivalent to string.subword(n,1).
Examples:
’Now is the time’.word(3) == ’the’
’Now is the time’.word(5) == ’’

wordindex(n) returns the character position of the nth blank-delimited word in string.
n must be positive. If there are fewer than n words in the string, 0 is returned.
Examples:
’Now is the time’.wordindex(3) == 8
’Now is the time’.wordindex(6) == 0

wordlength(n) returns the length of the nth blank-delimited word in string. n must be
positive. If there are fewer than n words in the string, 0 is returned.
Examples:
’Now is the time’.wordlength(2) == 2
’Now comes the time’.wordlength(2) == 5
’Now is the time’.wordlength(6) == 0

wordpos(phrase [,start]) searches string for the first occurrence of the sequence of
blank-delimited words phrase, and returns the word number of the first word of
phrase in string. Multiple blanks betweenwords in either phrase or string are treated
as a single blank for the comparison, but otherwise the words must match exactly.
Similarly, leading or trailing blanks on either string are ignored. If phrase is not
found, or contains no words, 0 is returned. By default the search starts at the first
word in string.ismay be overridden by specifying start (whichmust be positive),
the word at which to start the search.
Examples:
’now is the time’.wordpos(’the’) == 3
’now is the time’.wordpos(’The’) == 0
’now is the time’.wordpos(’is the’) == 2
’now is the time’.wordpos(’is the’) == 2
’now is the time’.wordpos(’is time’) == 0
’To be or not to be’.wordpos(’be’) == 2
’To be or not to be’.wordpos(’be’,3) == 6

words() returns the number of blank-delimited words in string.
Examples:
’Now is the time’.words == 4
’ ’.words == 0
’’.words == 0

x2b() Hexadecimal to binary. Converts string (a string of at least one hexadecimal char-
acters) to an equivalent string of binary digits. Hexadecimal characters may be any
decimal digit character (0-9) or any of the first six alphabetic characters (a-f), in
either lowercase or uppercase. string may be of any length; each hexadecimal char-
acter with be converted to a string of four binary digits. e returned string will
have a length that is a multiple of four, and will not include any blanks.

200

Examples:
’C3’.x2b == ’11000011’
’7’.x2b == ’0111’
’1C1’.x2b == ’000111000001’

x2c() Hexadecimal to coded character. Converts the string (a string of hexadecimal
characters) to a single character (packs). Hexadecimal characters may be any deci-
mal digit character (0-9) or any of the first six alphabetic characters (a-f), in either
lowercase or uppercase.
string must contain at least one hexadecimal character; insignificant leading zeros
are removed, and the string is then padded with leading zeros if necessary to make
a sufficient number of hexadecimal digits to describe a character encoding for the
implementation.
An error results if the encoding described does not produce a valid character for
the implementation (for example, if it has more significant bits than the implemen-
tation’s encoding for characters). Examples:
’004D’.x2c == ’M’ -- ASCII or Unicode
’4d’.x2c == ’M’ -- ASCII or Unicode
’A2’.x2c == ’s’ -- EBCDIC
’0’.x2c == ’\ 0’

e d2c method (see page 191) can be used to convert a NetR number to the
encoding of a character.

x2d([n]) Hexadecimal to decimal. Converts the string (a string of hexadecimal char-
acters) to a decimal number, without rounding. If string is the null string, 0 is re-
turned.
If n is not specified, string is taken to be an unsigned number.
Examples:
’0E’.x2d == 14
’81’.x2d == 129
’F81’.x2d == 3969
’FF81’.x2d == 65409
’c6f0’.x2d == 50928

If n is specified, string is taken as a signed number expressed in n hexadecimal
characters. If themost significant (le-most) bit is zero then the number is positive;
otherwise it is a negative number in twos-complement form. In both cases it is
converted to a NetR number which may, therefore, be negative. If n is 0, 0 is
always returned.
If necessary, string is padded on the le with ’0’ characters (note, not ”sign-
extended”), or truncated on the le, to length n characters; (that is, as though
string.right(n, ’0’) had been executed.)
Examples:
’81’.x2d(2) == -127
’81’.x2d(4) == 129
’F081’.x2d(4) == -3967
’F081’.x2d(3) == 129
’F081’.x2d(2) == -127

201

’F081’.x2d(1) == 1
’0031’.x2d(0) == 0

e c2d method (see page 189) can be used to convert a character to a decimal
representation of its encoding.

202

46

Appendix A - A Sample NetR Program

is appendix includes a short program, called qtime, which is an example of a ”real”
NetR program. e programs included elsewhere in this book have been contrived
to illustrate specific points. By contrast, qtime is a simple but useful tool that genuinely
improves the human factors of computer systems. People frequently wish to know the
time of day, and this program presents this information in a natural way.
e style used for this example is the same as that used throughout the book, with all
symbols except those describing classes beingwritten in lower case. OtherNetR pro-
gramming styles are possible, of course; NetR syntax is designed to permit a wide
variety of styles with a minimum of punctuation.
e qtime program is a modification of one of the first R programs ever written
(much of the program is identical). e main changes are:
. Indexed variables (brackets notation) are used instead of R stems.. e word method from the R class is used instead of the word R built-in

function.. e Java Date class is used to determine the current time.

qtime.nrx - Query Time

Listing 46.1: qtime.nrx
1 /*--*/
2 /* QTIME. This program displays the time in real English. */
3 /* If "?" is given as the first argument word then the */
4 /* program displays a description of itself. */
5 /*--*/
6

7 /*--------- First process any argument words ---------------*/
8 parse arg parm . /* get the first argument word */
9 select

10 when parm='?' then tell /* say what we do */
11 when parm='' then nop /* OK (no first argument) */
12 otherwise
13 say 'The only valid argument to QTIME is "?". The word'
14 say 'that you supplied ("'parm'") has been ignored.'
15 tell /* usually helpful to describe the program */
16 end
17

18 /*--------- Now start processing in earnest ----------------*/
19 /* Nearness phrases - using associative array lookup */
20 near='' /* default */
21 near[0]='' /* exact */
22 near[1]=' just gone'; near[2]=' just after' /* after */
23 near[3]=' nearly'; near[4]=' almost' /* before */
24

25 /* Extract the hours, minutes, and seconds from the time. */
26 /* Use the Java Date class as Rexx.Date not yet implemented */
27 parse Date() . . . now . /* time is fourth word */
28 parse now hour':'min':'sec

203

29

30 if sec>29 then min=min+1 /* round up minutes */
31 mod=min//5 /* where we are in 5 minute bracket */
32 out="It's"near[mod] /* start building the result */
33 if min>32 then hour=hour+1 /* we are TO the hour... */
34 min=min+2 /* shift minutes to straddle a 5-minute point */
35

36 /* Now special-case the result for Noon and Midnight hours */
37 if hour//12=0 & min//60<=4 then do
38 if hour=12 then say out 'Noon.'
39 else say out 'Midnight.'
40 return /* we are finished here */
41 end
42

43 min=min-(min//5) /* find nearest 5 mins */
44 if hour>12
45 then hour=hour-12 /* get rid of 24-hour clock */
46 else
47 if hour=0 then hour=12 /* .. and allow for midnight */
48

49 /* Determine the phrase to use for each 5-minute segment */
50 select
51 when min=0 then nop /* add "o'clock" later */
52 when min=60 then min=0 /* ditto */
53 when min= 5 then out=out 'five past'
54 when min=10 then out=out 'ten past'
55 when min=15 then out=out 'a quarter past'
56 when min=20 then out=out 'twenty past'
57 when min=25 then out=out 'twenty-five past'
58 when min=30 then out=out 'half past'
59 when min=35 then out=out 'twenty-five to'
60 when min=40 then out=out 'twenty to'
61 when min=45 then out=out 'a quarter to'
62 when min=50 then out=out 'ten to'
63 when min=55 then out=out 'five to'
64 end
65

66 numbers='one two three four five six'- /* (continuation) */
67 'seven eight nine ten eleven twelve '
68 out=out numbers.word(hour) /* add the hour number */
69 if min=0 then out=out "o'clock" /* .. and o'clock if exact */
70

71 say out'.' /* display the final result */
72

73 /*--*/
74 /* Subroutine that describes the purpose of the program */
75 /*--*/
76 method tell static
77 say 'QTIME will display the current time in real English.'
78 say 'Call without any arguments to display the time, or with'
79 say '"?" to display this information.'
80 say 'British English idioms are used in this program.'
81 say /* blank line - we are about to continue and show time */
82 return
83

84 /* Mike Cowlishaw, December 1979 - January 1985 */
85 /* NetRexx version March 1996 */

204

47

Appendix B - JavaBean Support

is appendix describes an experimental feature, indirect properties, which is supported
by the NetR reference implementation.
e intention of the feature is to make it easier to write a certain kind of class known as
a JavaBean. Almost all JavaBeans will have properties, which are data items that a user of
a JavaBean is expected to be able to customize (for example, the text on a pushbutton).
e names and types of the properties of a JavaBean are inferred from ”design patterns”
(in this context, conventions for naming methods) or from PropertyDescriptor objects
associated with the JavaBean.
e JavaBean properties do not necessarily correspond to instance variables in the class -
although very oen they do.e JavaBean specification does not guarantee that JavaBean
properties that can be set can also be inspected, nor does it describe how ambiguities of
naming and method signatures are to be handled.
e NetRC compiler allows a more rigorous treatment of JavaBean properties, by
allowing an optional attribute of properties in a class that declares them to be indirect
properties. Indirect properties are properties of a known type that are private to the class,
but which are expected to be publicly accessible indirectly, though certain conventional
method calls.
Declaring properties to be indirect offers the following advantages:

. For many simple cases, the access methods for the properties can be generated au-
tomatically; there is no need to explicitly code them in the source file for the class.
is is especially helpful for Indexed Properties (where four methods are needed,
in general).. Where access methods are explicitly provided in the class, they can be checked for
correct form, signature and accessibility. is detects errors at compile time that
otherwise would only be determined by testing.. Similarly, attention can be drawn to the presence of methods that may be intended
to be an access method for an indirect property, but will not be recognized as such
by builders.

e next section describes the use of indirect properties in more detail.

47.1 Indirect properties

e properties instruction (see page 127) is used to define the attributes of following
property variables. e visibility of properties may include a new alternative: indirect.

205

Properties with this form of visibility are known as indirect properties. ese are proper-
ties of a known type that are private to the class, but which are expected to be publicly
accessible indirectly, though certain conventional method calls.
For example, consider the simple program:

Listing 47.1: Sandwich.nrx
1 class Sandwich extends Canvas implements Serializable
2 properties indirect
3 slices=Color.gray
4 filling=Color.red
5

6 method Sandwich
7 resize(100,30)
8

9 method paint(g=Graphics)
10 g.setColor(slices)
11 g.fillRect(0, 0, size.width, size.height)
12 g.setColor(filling)
13 g.fillRect(12, 12, size.width-12, size.height-12)

is declares the Sandwich class as having two indirect properties, called slices and
filling, both being of type java.awt.Color.
In the example, no access methods are provided for the properties, so the compiler will
add them. By implementation-dependent convention, the names are prefixed with verbs
such as get and set, etc., and have the first character of their name uppercased to form
the method names. Hence, in this Java-based example, the following four methods are
added:

Listing 47.2: Slices
1 method getSlices returns java.awt.Color
2 return slices
3 method getFilling returns java.awt.Color
4 return filling
5 method setSlices($1=java.awt.Color)
6 slices=$1
7 method setFilling($2=java.awt.Color)
8 filling=$2

(where $1 and $2 are ”hidden” names used for accessing the method arguments).
Note that the indirect attribute for a property is an alternative to the public, private,
and inheritable, and shared attributes. Like private properties, indirect properties can
only be accessed directly by name fromwithin the class inwhich they occur; other classes
can only access them using the access methods (or other methods that may use, or have
a side-effect on, the properties).
Indirect properties may be constant (implying that only a get method is generated or
allowed, though the private property may be changed by methods within the class) or
transient (see page 128) . ey may not be static or volatile.
In detail, the rules used for generating automatic methods for a property whose name is
xxxx are as follows:

1. A method called getXxxx which returns the value of the property is generated.e
returned value will have the same type as xxxx.

2. If the type of xxxx is boolean then the generated method will be called isXxxx
instead of getXxxx.

206

3. If the property is not constant then a method for setting the property will also be
generated. is will be called setXxxx, and take a single argument of the same type
as xxxx. is assigns the argument to the property and returns no value.

If the property has an array type (for example, char[]), then it must only have a single
dimension. Two further methods may then be generated, according to the rules:

1. A method called getXxxx which takes a single int as an argument and which re-
turns an item from the property array is generated. e returned value will have
the same type as xxxx, without the []. e integer argument is used to index into
the array.

2. As before, if the result type of the method would be boolean then the name of the
method will be isXxxx instead of getXxxx.

3. If the property is not constant then a method for setting an item in the property
array will also be generated. is will be called setXxxx, and take two arguments:
the first is an int that is used to select the item to be changed, and the second is an
undimensioned argument of the same type as xxxx. It assigns the second argument
to the item in the property array indexed by the first argument, and returns no
value.

For example, for an indirect property declared thus:

properties indirect
fred=foo.Bar[]

the four methods generated would be:

Listing 47.3: getFred/setFred
1 method getFred returns foo.Bar[]; return fred
2 method getFred($1=int) returns foo.Bar; return fred[$1]
3 method setFred($2=foo.Bar[]); fred=$2
4 method setFred($3=int, $4=foo.Bar); fred[$3]=$4

Note that in all cases a method will only be generated if it would not exactly match a
method explicitly coded in the current class.

47.1.1 Explicit provision of access methods

Oen, for example when an indirect property has an on-screen representation, it is de-
sirable to redraw the property when the property is changed (and in more complicated
cases, there may be interactions between properties). ese and other actions will re-
quire extra processing which will not be carried out by automatically generated meth-
ods. To add this processing the access methods will have to be coded explicitly. In the
”Sandwich” example, we only need to supply the set methods, perhaps by adding the
following to the example class above:

Listing 47.4: setSlices
1 method setSlices(col=Color)
2 slices=col -- update the property
3 this.repaint -- redraw the component
4

5 method setFilling(col=Color)

207

6 filling=col
7 this.repaint

If we add these two methods, they will no longer be added automatically (the two get
methods will continue to be provided automatically, however). Further, since the names
match possible access methods for properties that are declared to be indirect, the com-
piler will check the method declaration: the method signatures and return type (if any)
must be correct, for example. Also, since the names of access methods are case-sensitive
(in a Java environment), you will be warned if a method appears to be intended to be an
access method but the case of one or more letters is wrong.
Specifically, the checks carried out are as follows:

1. For methods whose names exactly match a potential access method for an indirect
property (that is, start with is, get, or set, which is then followed by the name of an
indirect property with the first character of the name uppercased):. e argument list for (signature of) the method must match one of those that

could possibly be automatically generated for the property.. e returns type (if any) must match the expected returns type for that
method.. If the returns type is simply boolean, then the method name must start with
is. Conversely, if the method name starts with is then the returns type must be
just boolean.. If the property is constant then the name of the method cannot start with set.. A warning is given if the method is not public (the default).

2. For methods whose names match a potential access method, as above, except in
case:. A warning is given that the method in question may be intended to be an in-

direct property access method, but will not be recognized as such by builders.

ese checks detect a wide variety of errors at compile time, hence speeding the devel-
opment of classes that use indirect properties.

208

48

Appendix C - e netrexx.lang Package

is appendix documents the netrexx.lang package, which includes the classes used for
creating string objects of type R along with several classes that are oen used while
running NetR programs.
is appendix describes the public methods and properties of these classes, as imple-
mented by the reference implementation. It does not include those ”built-in” Methods
for NetR (see page 185) strings:ea. in the R class that form part of the NetR
language, or those classes and methods that are internal ”helper” components (which,
for example, are used as repositories for rarely-executed code).
e classes in the netrexx.lang package are:
. e Exception classes (see page 209). R (see page 210). RIO (helper class, for say and ask). RNode (helper class, for indexed strings). ROperators interface (see page 215). RParse (helper class, for parse). RSet (see page 215). RTrace (helper class, for trace). RUtil (helper class, for the R class). RWords (helper class, for the R class)

48.1 Exception classes

e classes provided for exceptions in the netrexx.lang package are all subclasses of
java.lang.RuntimeException and all have the same content. Each has two constructors:
one taking no argument and the other taking a string of type java.lang.String, which is
used for additional detail describing the exception.
e Exceptions are signalled as follows.

BadArgumentException signalled when an argument to a method is incorrect.
BadColumnException signalled when a column number in a parsing template is not

valid (for example, not a number).
BadNumericException signalled when a numeric digits instruction tries to set a

value that is not a whole number, or is not positive, or is more than nine digits.
DivideException signalled when an error occurs during a division. is may be due to

an attempt to divide by zero, or when the intermediate result of an integer divide
or remainder operation is not valid.

209

ExponentOverflowException signalled when the exponent resulting from an opera-
tion would require more than nine digits.

NoOtherwiseException signalledwhen a select construct does not supply an otherwise
clause and none of expressions on the when clauses resulted in ’1’.

NotCharacterException signalledwhen a conversion from a string to a single character
was attempted but the string was not exactly one character long.

NotLogicException signalled when a conversion from a string to a boolean was at-
tempted but the string was neither the string ’0’ nor the string ’1’.

Other exceptions, from the java.lang package, may also be signalled, for example Num-
berFormatException or NullPointerException.

48.2 e R class

e class netrexx.lang.R implements the NetR string class, and includes the
”built-in” Methods for NetR strings (see page 185).
Described here are the platform-dependent methods as provided in the reference im-
plementation: constructors (see page 210) for the class, the methods for arithmetic op-
erations (see page 211) , and miscellaneous methods (see page 214) intended for general
use.
e class netrexx.lang.R is serializable.

48.3 R constructors

ese constructors all create a string of type netrexx.lang.R.

R(arg=boolean)
Constructs a string which will have the value ’1’ if arg is 1 (true) or the value ’0’ if
arg is 0 (false).

R(arg=byte)
Constructs a string which is the decimal representation of the 8-bit signed binary
integer arg. e string will contain only decimal digits, prefixed with a leading mi-
nus sign (hyphen) if arg is negative. A leading zero will be present only if arg is
zero.

R(arg=char)
Constructs a string of length 1 whose first and only character is a copy of arg.

R(arg=char[])
Constructs a string by copying the characters of the character array arg in sequence.
e length of the string is the number of elements in the character array (that is,
arg.length).

R(arg=int)
Constructs a string which is the decimal representation of the 32-bit signed binary
integer arg. e string will contain only decimal digits, prefixed with a leading mi-
nus sign (hyphen) if arg is negative. A leading zero will be present only if arg is
zero.

210

R(arg=double)
Constructs a string which is the decimal representation of the 64-bit signed binary
floating point number arg. (e precise format of the result may change and will be
defined later.)

R(arg=float)
Constructs a string which is the decimal representation of the 32-bit signed binary
floating point number arg. (e precise format of the result may change and will be
defined later.)

R(arg=long)
Constructs a string which is the decimal representation of the 64-bit signed binary
integer arg. e string will contain only decimal digits, prefixed with a leading mi-
nus sign (hyphen) if arg is negative. A leading zero will be present only if arg is
zero.

R(arg=R)
Constructs a string which is copy of arg, which is of type netrexx.lang.R. arg
must not be null. Any sub-values (see page 77) are ignored (that is, they are not
present in the object returned by the constructor).

R(arg=short)
Constructs a string which is the decimal representation of the 16-bit signed binary
integer arg. e string will contain only decimal digits, prefixed with a leading mi-
nus sign (hyphen) if arg is negative. A leading zero will be present only if arg is
zero.

R(arg=String)
Constructs a NetR string by copying the characters of arg, which is of type
java.lang.String, in sequence. e length of the string is same as the length of arg
(that is, arg.length()). arg must not be null.

R(arg=String[])
Constructs a NetR string by concatenating the elements of the java.lang.String
array arg together in sequencewith a blank between each pair of elements.ismay
be used for converting the argument word array passed to the main method of a
Java application into a single string.
If the number of elements of arg is zero then an empty string (of length 0) is re-
turned. Otherwise, the length of the string is the sum of the lengths of the elements
of arg, plus the number of elements of arg, less one.
arg must not be null.

48.4 R arithmetic methods

esemethods implement theNetR arithmetic operators, as described in the section
on Numbers and (see page 167) arithmetic:ea.. Each corresponds to and implements a
method in the ROperators interface class (see page 215) .
Each of the methods here takes a RSet (see page 215) object as an argument. is
argument provides the numeric settings for the operation; if null is provided for the
argument then the default settings are used (digits=9, form=scientific).

211

For monadic operators, only the RSet argument is present; the operation acts upon
the current object. For dyadic operators, the RSet argument and a R argument
are present; the operation acts with the current object being the le-hand operand and
the second argument being the right-hand operand. For example, under default numeric
settings, the expression:

award+extra

(where award and extra are references to objects of type R) could be written as:

award.OpAdd(null, extra)

which would return the result of adding award and extra under the default numeric
settings.

OpAdd(set=RSet, rhs=R)
Implements the NetR + (Add) operator, and returns the result as a string of
type R.

OpAnd(set=RSet, rhs=R)
Implements the NetR & (And) operator, and returns a result (0 or 1) of type
boolean.

OpCc(set=RSet, rhs=R)
Implements the NetR || or abuttal (Concatenate without blank) operator, and
returns the result as a string of type R.

OpCcblank(set=RSet, rhs=R)
Implements theNetR blank (Concatenate with blank) operator, and returns the
result as a string of type R.

OpDiv(set=RSet, rhs=R)
Implements the NetR / (Divide) operator, and returns the result as a string of
type R.

OpDivI(set=RSet, rhs=R)
Implements the NetR % (Integer divide) operator , and returns the result as a
string of type R.

OpEq(set=RSet, rhs=R)
Implements the NetR = (Equal) operator, and returns a result (0 or 1) of type
boolean.

OpEqS(set=RSet, rhs=R) Implements the NetR == (Strictly equal) opera-
tor, and returns a result (0 or 1) of type boolean.

OpGt(set=RSet, rhs=R)
Implements the NetR > (Greater than) operator, and returns a result (0 or 1) of
type boolean.

OpGtEq(set=RSet, rhs=R)
Implements the NetR >= (Greater than or equal) operator, and returns a result
(0 or 1) of type boolean.

OpGtEqS(set=RSet, rhs=R)
Implements the NetR »= (Strictly greater than or equal) operator, and returns
a result (0 or 1) of type boolean.

212

OpGtS(set=RSet, rhs=R)
Implements the NetR » (Strictly greater than) operator, and returns a result (0
or 1) of type boolean.

OpLt(set=RSet, rhs=R)
Implements the NetR < (Less than) operator, and returns a result (0 or 1) of
type boolean.

OpLtEq(set=RSet, rhs=R)
Implements the NetR <= (Less than or equal) operator, and returns a result (0
or 1) of type boolean.

OpLtEqS(set=RSet, rhs=R)
Implements the NetR «= (Strictly less than or equal) operator, and returns a
result (0 or 1) of type boolean.

OpLtS(set=RSet, rhs=R)
Implements the NetR « (Strictly less than) operator, and returns a result (0 or
1) of type boolean.

OpMinus(set=RSet)
Implements the NetR Prefix - (Minus) operator , and returns the result as a
string of type R.

OpMult(set=RSet, rhs=R)
Implements the NetR * (Multiply) operator , and returns the result as a string
of type R.

OpNot(set=RSet)
Implements the NetR Prefix \ (Not) operator, and returns a result (0 or 1) of
type boolean.

OpNotEq(set=RSet, rhs=R)
Implements the NetR \= (Not equal) operator, and returns a result (0 or 1) of
type boolean.

OpNotEqS(set=RSet, rhs=R)
Implements the NetR \== (Strictly not equal) operator, and returns a result (0
or 1) of type boolean.

OpOr(set=RSet, rhs=R)
Implements the NetR | (Inclusive or) operator, and returns a result (0 or 1) of
type boolean.

OpPlus(set=RSet)
Implements theNetRPrefix+ (Plus) operator , and returns the result as a string
of type R.

OpPow(set=RSet, rhs=R)
Implements the NetR ** (Power) operator , and returns the result as a string of
type R.

OpRem(set=RSet, rhs=R)
Implements theNetR // (Remainder) operator , and returns the result as a string
of type R.

OpSub(set=RSet, rhs=R)
Implements the NetR - (Subtract) operator, and returns the result as a string of
type R.

213

OpXor(set=RSet, rhs=R)
Implements the NetR && (Exclusive or) operator, and returns a result (0 or 1)
of type boolean.

48.5 R miscellaneous methods

ese methods provide standard Java methods for the class, together with various con-
versions.

charAt(offset=int)
Returns the character from the string at offset (that is, if offset is 0 then the first
character is returned, etc.). e character is returned as type char.
If offset is negative, or is greater than or equal to the length of the string, an excep-
tion is signalled.

equals(item=Object)
Compares the string with the value of item, using a strict character-by-character
comparison, and returns a result of type boolean.
If item is null or is not an instance of one of the types R, java.lang.String,
or char[], then 0 is returned. Otherwise, item is converted to type R and the
OpEqS (see page 212)method (or equivalent) is used to compare the current string
with the converted string, and its result is returned.

hashCode()
Returns a hashcode of type int for the string. is hashcode is suitable for use by
the java.util.Hashtable class.

toboolean()
Converts the string to type boolean. If the string is neither ”0” nor ”1” then a
NotLogicException (see page 210) is signalled.

tobyte()
Converts the string to type byte. If the string is not a number, has a non-zero deci-
mal part, or is out of the possible range for a byte (8-bit signed integer) result then
a NumberFormatException is signalled.

tochar()
Converts the string to type char. If the string is not exactly one character in length
then a NotCharacterException (see page 210) is signalled.

toCharArray()
Converts the string to type char[]. A character array object of the same length as the
string is created, and the characters of the string are copied to the array in sequence.
e character array is then returned.

todouble()
Converts the string to type double. If the string is not a number, or is out of the
possible range for a double (64-bit signed floating point) result then a Number-
FormatException is signalled.

tofloat()
Converts the string to type float. If the string is not a number, or is out of the
possible range for a float (32-bit signed floating point) result then a NumberFor-
matException is signalled.

214

toint()
Converts the string to type int. If the string is not a number, has a non-zero decimal
part, or is out of the possible range for an int (32-bit signed integer) result then a
NumberFormatException is signalled.

tolong()
Converts the string to type long. If the string is not a number, has a non-zero dec-
imal part, or is out of the possible range for a long (64-bit signed integer) result
then a NumberFormatException is signalled. [%hide

toR(arg=char[]) static
Takes arg, an array of characters, and returns a copy of it as a string of type net-
rexx.lang.R. If the argument is null, then null is returned (not a null string).
is is a static method (a function).

toR(arg=String) static
Takes arg, a java.lang.String, and returns a copy of it as a string of type net-
rexx.lang.R. If the argument is null, then null is returned (not a null string).
is is a static method (a function).

toshort()
Converts the string to type short. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a short (16-bit signed) result then
a NumberFormatException is signalled.

toString()
Converts the string to type java.lang.String. A String object of the same length as
the string is created, and the characters of the string are copied to the new string in
sequence. e String is then returned.

48.6 e ROperators interface class

e ROperators interface class defines the signatures of the methods that imple-
ment the NetR (and R) operators. ese methods are described in the section
R arithmetic methods (see page 211)
In the future this interface may be used to allow the overloading of operators for objects
of types other than R. e current NetR language definition does not permit
operator overloading.

48.7 e RSet class

e RSet class is used to provide the numeric settings for the methods described
in the section :cit. R (see page 211) arithmetic methods:ea.:ecit.. When provided, a
RSet Object supplies the numeric settings for the operation; when null is provided
then the default settings are used (digits=9, form=SCIENTIFIC).

215

48.7.1 Public properties

ese properties supply the numeric settings and certain values theymay take.Aer con-
struction, the digits and form values should only be changed by using the setDigits
and setForm methods.

DEFAULT_DIGITS
A constant of type int that describes the default number of digits for a numeric
operation (9).

DEFAULT_FORM
A constant of type byte that describes the default exponential format for a numeric
operation (SCIENTIFIC).

digits
A value of type int that describes the numeric digits to be used for a numeric oper-
ation. e R arithmetic (see page 211) methods:ea. use this value to determine
the significance of results. digits must always be greater than zero.

ENGINEERING
A constant of type byte that signifies that engineering exponential formatting
should be used for a numeric operation.

form
A value of type byte that describes the exponential format to be used for a nu-
meric operation. e R arithmetic (see page 211) methods:ea. use this value to
determine the formatting of results that require an exponent. form must be either
ENGINEERING or SCIENTIFIC.

SCIENTIFIC
A constant of type byte that signifies that scientific exponential formatting should
be used for a numeric operation.

48.7.2 Constructors

ese constructors are used to set the initial values of a RSet object.

RSet()
Constructs a RSet object which has default digits and form properties.

RSet(newdigits=int)
Constructs a RSet object which has its digits property set to newdigits and its
form property set to DEFAULT_DIGITS.

RSet(newdigits=int, newform=byte)
Constructs a RSet object which has its digits property set to newdigits and its
form property set to newform.

RSet(arg=RSet)
Constructs aRSet objectwhich is copy of arg, which is of typenetrexx.lang.RSet.
arg must not be null.

48.7.3 Methods

e RSet class has the following additional methods:
216

formword()
Returns a string of type netrexx.lang.R that describes the form property. is
will either be the string ’engineering’ or the string ’scientific’, corresponding to the
form value ENGINEERING or SCIENTIFIC, respectively.

setDigits(newdigits=R)
Sets the digits value for the RSet object, from newdigits, aer rounding and
checking as defined for the numeric instruction; newdigitsmust be a positive whole
number with no more than nine digits. No value is returned.

setForm(newformword=R)
Sets the form value for the RSet object, from newformword. is must equal
either the string ’engineering’ or the string ’scientific’, corresponding to the form
value ENGINEERING or SCIENTIFIC, respectively. No value is returned.

217

List of Figures

219

Index

* multiplication operator„ 64, 170
- tracing flag„ 144
= tracing flag„ 144
+ plus sign,addition operator, 64, 170
+ plus sign,in parsing template, 163
++ invalid sequence„ 39
+++ tracing flag„ 144
„ 35, 36, 43, 53, 57, 59, 64, 66, 73, 85, 88, 93, 97, 99,

101, 107, 109, 111, 133, 135, 138, 139, 141, 151,
152, 154, 161, 165, 170, 176, 189, 198, 203

- continuation character„ 39
- minus sign,in parsing template, 163
- minus sign,subtraction operator, 64, 170
. (period),as placeholder in parsing, 163
. (period),in numbers, 169
. (period),in terms, 47
= equals sign,assignment indicator, 73
= equals sign,equal operator, 65
= equals sign,in LOOP instruction, 101
= equals sign,in parsing template, 163
»> tracing flag„ 144
>a> tracing flag„ 144
>p> tracing flag„ 144
>v> tracing flag„ 144
$ dollar sign,in symbols, 37
& and operator„ 66
&& exclusive or operator„ 66
_ underscore,in symbols, 37
NetR,language definition, 29
\backslash,escape character, 37
\backslash,not operator, 66
\= not equal operator„ 65
\\invalid sequence„ 39
Rexx, 22
arg, 22, 203
case, 15
catch, 28
class, 21–23, 27, 58, 148, 206
constant, 148
digits, 16
do, 15, 16, 28, 204
else, 14, 15, 204
end, 15, 16, 20, 23, 27, 28, 148, 203, 204
exit, 15, 20
extends, 23, 27, 58, 148, 206
for, 23

if, 14–16, 20, 148, 203, 204
implements, 206
import, 148
indirect, 206
iterate, 20
loop, 16, 20, 23, 27, 148
method, 20–24, 27, 58, 148, 204, 206, 207
nop, 203, 204
numeric, 16
otherwise, 15, 203
parse, 18–20, 24, 203
private, 58
properties, 58, 148, 206
public, 148
return, 20, 21, 148, 204, 206, 207
returns, 21, 206, 207
say, iii, 13–17, 19–25, 27, 28, 147, 148,

203, 204
select, 15, 203, 204
set, 20
static, 20, 22, 204
super, 23, 58
then, 14–16, 20, 148, 203, 204
this, 21, 58, 207, 208
to, 16, 20, 27, 148
trace, 24, 25
when, 15, 203, 204
while, 20

ABBREV method„ 186
Abbreviations,testing with ABBREV method,

186
ABS method„ 186
Absolute,column specification in parsing,

163
Absolute,positional pattern, 163
Absolute,value, finding using ABS method,

186
Abstract classes„ 86
Abstract methods„ 86, 111
ABSTRACT,on CLASS instruction, 86
ABSTRACT,on METHOD instruction, 111
Abuttal concatenation operator„ 64, 66
Active constructs„ 97, 99
Adapter classes„ 86
ADAPTER,on CLASS instruction, 86
Addition,definition, 170

221

Addition;.pi ,Subtraction;.pi
/Multiplication;.pi /Division, 64

Address,instruction, 83
Algebraic precedence„ 68
ALL,TRACE setting, 142
Alphabetics,checking with DATATYPE, 189
Alphanumerics,checking with DATATYPE, 189
AND,logical operator, 66
ANSI standard,arithmetic definition, 168
Arbitrary precision arithmetic„ 167
Arguments,of methods, 53
Arguments,on METHOD instruction, 110
Arguments,optional, 110
Arguments,passing to methods, 53
Arguments,provided by caller, 110
Arguments,required, 110
Arithmetic,comparisons, 173
Arithmetic,errors, 176
Arithmetic,exceptions, 176
Arithmetic,implementation independence, 175
Arithmetic,NUMERIC settings, 117
Arithmetic,operation rules, 170
Arithmetic,operators, 64, 167, 169
Arithmetic,overflow, 176
Arithmetic,precision, 169
Arithmetic,underflow, 176
Array initializer,in terms, 47, 79
Arrays„ 78
Arrays,constructors, 78
Arrays,in terms, 52
Arrays,initializing, 79
Arrays,references, 78
ASCII,coded character set, 33
ASK special word„ 155
Assignment„ 71, 73
Assignment,binary, 178
Assignment,instruction, 71, 73
Assignment,of literals, 178
Assignment,property initialization, 147

B2D method, 186
B2X method, 187
Backslash character,escape sequence, 37
Backslash character,in strings, 37
Backslash character,not operator, 66
BadArgumentException„ 209
BadColumnException„ 209
BadNumericException„ 209
Binary classes„ 87, 177
Binary classes,assignment, 178
Binary classes,binary methods, 112
Binary classes,control variables, 178
Binary classes,LOOP instruction, 178
Binary classes,NUMERIC instruction, 178
Binary constructors„ 179
Binary literals„ 178
Binary methods„ 112, 177
Binary methods,assignment, 178
Binary methods,control variables, 178
Binary methods,LOOP instruction, 178

Binary methods,NUMERIC instruction, 178
Binary numbers„ 60, 177
Binary numeric symbol„ 38, 41
Binary operations,dyadic, 177
Binary operations,monadic, 178
Binary operations,prefix, 178
Binary,arithmetic, 177
Binary,checking with DATATYPE, 189
Binary,conversion to decimal, 186
Binary,conversion to hexadecimal, 187
Binary,from decimal, 191
BINARY,in OPTIONS instruction, 119
BINARY,on CLASS instruction, 87
BINARY,on METHOD instruction, 112
Binary,operations, 177
Binary,values, 177
Bits,binary operators, 66
Bits,checking with DATATYPE, 189
Blank„ 35
Blank,adjacent to operator character, 38
Blank,adjacent to special character, 39
Blank,as concatenation operator, 64
Blank,as type conversion operator, 66
Blank,operator, 64, 66
Blank,removal with SPACE method, 197
Blank,removal with STRIP method, 197
Block comments„ 36
Body,of a loop, 102
Body,of classes, 85
Body,of group, 89
Body,of methods, 109
Body,of select, 135
Boolean operations„ 66
boolean type, value of„ 60
Bottom of program, reaching during

execution„ 91
Bounded loop„ 102
Bounded loop,controlled, 103
Bounded loop,over values, 104
Bounded loop,simple, 102
Brackets,in array initializers, 47, 79
Brackets,in array references, 78
Brackets,in indexed references, 47
Brackets,in indexed strings, 77
Brackets,in terms, 47
BY phrase of LOOP instruction„ 101

C2D method„ 189
C2X method„ 189
Carriage return character,escape sequence,

37
Case,of names, 40
CASE,on SELECT instruction, 137
Casting,to type, 66
CATCH,on DO instruction, 90
CATCH,on LOOP instruction, 106
CATCH,on SELECT instruction, 138
CATCH,use of, 182
Caught exceptions„ 181
CENTER method„ 187

222

CENTRE method„ 187
CHANGESTR method„ 187
Changing strings,using CHANGESTR, 187
Changing strings,using TRANSLATE, 198
char,as a string, 60
Character sets„ 33
Character„ 33
Character,appearance, 33
Character,conversion to decimal, 189
Character,conversion to hexadecimal, 189
Character,converting to binary, 179
Character,encodings, 33, 179
Character,from a number, 191, 201
Character,from decimal, 191
Character,from hexadecimal, 201
Character,glyphs, 33
Character,removal with STRIP method, 197
charAt method„ 214
Checked exceptions„ 183
Class„ 43
Class,body of, 85
Class,definition, 147
Class,filename of, 156
Class,instances of, 57
Class,name of, 85
Class,names, case of, 40
Class,package of, 123
Class,qualified name of, 123
Class,short name of, 85
CLASS,special word, 155
Class,starting, 85
Classes,abstract, 86
Classes,adapter, 86
Classes,and subclasses, 87
Classes,and superclasses, 87
Classes,binary, 87
Classes,dependent, 44, 152
Classes,final, 87
Classes,interface, 87
Classes,minor, 44, 151
Classes,parent, 44, 151
Classes,private, 86
Classes,public, 86
Classes,shared, 86
Classes,standard, 86
classpath option„ 119
Clauses„ 35
Clauses,continuation of, 39
Clauses,null, 71
Coded character set,ASCII, 33
Coded character set,EBCDIC, 33
Coded character set,Unicode, 33
Coded character„ 33
Coded character,conversion to decimal, 189
Coded character,conversion to hexadecimal,

189
Coded character,from decimal, 191
Coded character,from hexadecimal, 201
Collating sequence, using SEQUENCE„ 196
Column specification in parsing„ 163

Comma,in array references, 78
Comma,in indexed strings, 77
Comma,in method calls, 53
Command line options„ 122
COMMENTS option„ 119
Comments„ 35
Comments,block, 36
Comments,line, 35
Comments,nesting, 36
Comments,starting a program with, 36
COMPACT option„ 119
Comparative operators„ 65
COMPARE method„ 188
Comparison,of numbers, 65, 173
Comparison,of strings and numbers, 65
Comparison,of strings/using COMPARE, 188
Compiler options„ 119
Compound terms„ 48
Concatenation,of strings, 64
Concatenation,of types, 66
Conditional loops„ 101
Conditional phrase„ 102, 105
CONSOLE option„ 120
Console, writing to with SAY„ 133
Constant methods„ 111
CONSTANT,on METHOD instruction, 111
CONSTANT,on PROPERTIES instruction, 128
Constants„ 128
Constants,used by classes, 88
Constants,using properties, 128
Constructor,Rexx(boolean), 210
Constructor,Rexx(byte), 210
Constructor,Rexx(char), 210
Constructor,Rexx(char[]), 210
Constructor,Rexx(double), 211
Constructor,Rexx(float), 211
Constructor,Rexx(int), 210
Constructor,Rexx(long), 211
Constructor,Rexx(Rexx), 211
Constructor,Rexx(short), 211
Constructor,Rexx(String), 211
Constructor,Rexx(String[]), 211
Constructor,RexxSet(), 216
Constructor,RexxSet(int), 216
Constructor,RexxSet(int,byte), 216
Constructor,RexxSet(RexxSet), 216
Constructors„ 57, 109
Constructors,array, 78
Constructors,binary, 179
Constructors,default, 57
Constructors,in minor classes, 151
Constructors,method, 109
Constructors,of dependent objects, 153
Constructors,of minor classes, 152
Constructors,qualified, 153
Constructors,special, 157
Constructs,active, 99
Continuation,character, 39
Continuation,of clauses, 39
Control variable„ 103, 104

223

Controlled loops„ 103
Conversion,automatic, 59
Conversion,binary constructors, 179
Conversion,binary to decimal, 186
Conversion,binary to hexadecimal, 187
Conversion,character to decimal, 189
Conversion,character to hexadecimal, 189
Conversion,coded character to decimal, 189
Conversion,coded character to hexadecimal,

189
Conversion,cost of, 61
Conversion,decimal to binary, 191
Conversion,decimal to character, 191
Conversion,decimal to hexadecimal, 191
Conversion,explicit, 61
Conversion,formatting numbers, 192
Conversion,hexadecimal to binary, 200
Conversion,hexadecimal to character, 201
Conversion,hexadecimal to decimal, 201
Conversion,of characters, 179
Conversion,of types, 59
Conversion,of well-known types, 59
COPIES method„ 188
COPYINDEXED method„ 188
Copying a string using COPIES„ 188
Copying indexed variables„ 188
Counting,strings, using COUNTSTR, 189
Counting,words, using WORDS, 200
COUNTSTR method„ 189
CROSSREF option„ 120

D2B method„ 191
D2C method„ 191
D2X method„ 191
Data,conversions, 59
Data,length of, 63, 194
Data,terms, 47, 63
Data,type checking, 63
Data,types, 43
DATATYPE method„ 189
Datatypes„ 43, 59, 63
DECIMAL option„ 120
Decimal,conversion to binary, 191
Decimal,conversion to character, 191
Decimal,conversion to hexadecimal, 191
Declarations,of variables, 74
DEFAULT_DIGITS property„ 216
DEFAULT_FORM property„ 216
Deleting,part of a string, 190
Deleting,words from a string, 190
Delimiters,for comments, 35
Delimiters,for strings, 36
DELSTR method„ 190
DELWORD method„ 190
Dependent classes„ 44
Dependent classes,restrictions, 154
Dependent object„ 152
Dependent object,constructing, 153
DEPENDENT,on CLASS instruction, 152
DEPRECATED,on CLASS instruction, 87

DEPRECATED,on METHOD instruction, 112
DEPRECATED,on PROPERTIES instruction, 128
DIAG option„ 120
Diagrams, of syntax„ 31
digits property„ 216
Digits,checking with DATATYPE, 189
DIGITS,effect on whole numbers, 175
Digits,in numbers, 168
DIGITS,on NUMERIC instruction, 117, 169
DIGITS,rounding when numbers used, 175
DIGITS,special word, 155
Dimension,of arrays, 44
Dimension,of types, 44
Dimensioned types„ 44
DivideException„ 209
Division,definition, 171
Division,integer, 167
DO group„ 89
DO group,naming of, 89
DO instruction,LABEL, 89
Dollar sign,in symbols, 37
Double-quote,escape sequence, 37
Double-quote,string delimiter, 36
Dummy instruction, NOP„ 115
Duplicate methods„ 113
Dyadic operators„ 63

E-notation„ 67, 174
E-notation,definition, 174
E-notation,in symbols, 38
EBCDIC,coded character set, 33
Empty reference, null„ 156
Encodings, of characters„ 33
Encodings,binary, 179
Encodings,of characters, 33
END clause,specifying control variable, 104
End condition of a LOOP loop„ 103
End-of-file character„ 35
Engineering notation„ 117, 174
ENGINEERING property„ 216
ENGINEERING value for NUMERIC FORM„ 117
EOF character„ 35
Equality,of objects, 65
Equality,testing of, 65
equals method„ 214
Errors during arithmetic„ 176
Escape sequences in strings„ 37
Euro character„ 37
Euro character,in symbols, 37
Evaluation,of expressions, 63
Evaluation,of terms, 48
Example,Hello World, 147
Example,of constructors, 58
Example,of exception handling, 182
Example,of two classes, 148
Example,program, 203
Exception,BadArgumentException, 209
Exception,BadColumnException, 209
Exception,BadNumericException, 209
Exception,DivideException, 209

224

Exception,ExponentOverflowException, 210
Exception,NoOtherwiseException, 210
Exception,NotCharacterException, 210
Exception,NotLogicException, 210
Exception,NullPointerException, 210
Exception,NumberFormatException, 210
Exceptions„ 181
Exceptions,after CATCH clause, 183
Exceptions,after FINALLY clause, 183
Exceptions,checked, 183
Exceptions,during arithmetic, 176
Exceptions,during conversions, 60
Exceptions,listed on METHOD instruction, 113
Exceptions,raising, 139
Exceptions,signalling, 139
Exceptions,throwing, 139
Exclusive OR,logical operator, 66
EXISTS method„ 192
EXIT instruction„ 91
Experimental feature„ 205
EXPLICIT option„ 120
Exponential notation„ 67, 117, 167, 174
Exponential notation,definition, 174
Exponential notation,in symbols, 38
Exponentiation,definition, 172
ExponentOverflowException„ 210
Expressions,evaluation, 63
Expressions,examples, 68
Expressions,results of, 63
EXTENDS,on CLASS instruction, 87
Extra digits,in numbers, 169
Extra digits,in numeric symbols, 37, 38
Extra digits,in symbols, 37
Extra letters, in symbols„ 37
Extracting,a sub-string, 197
Extracting,words from a string, 198

False value„ 66
Final classes„ 87
Final methods„ 111
FINAL,on CLASS instruction, 86
FINAL,on METHOD instruction, 111
FINALLY,on DO instruction, 90
FINALLY,on LOOP instruction, 106
FINALLY,on SELECT instruction, 138
FINALLY,reached by LEAVE, 99
FINALLY,use of, 182
Finding a mismatch using COMPARE„ 188
Finding a string in another string„ 194, 196
Fixed size, of arrays„ 78
Floating-point numbers, binary„ 177
Flow control,abnormal, with SIGNAL, 139
Flow control,with DO construct, 89
Flow control,with IF construct, 93
Flow control,with LOOP construct, 101
Flow control,with SELECT construct, 135
FOR,phrase of LOOP instruction, 101
FOR,repetitor on LOOP instruction, 101
FOREVER,loops, 102
FOREVER,repetitor on LOOP instruction, 101

Form feed character„ 35
form property„ 216
FORM,option of NUMERIC instruction, 117, 174
FORM,special word, 155
FORMAT,method, 192
FORMAT,option, 120
Formatting,numbers for display, 192
Formatting,numbers with TRUNC, 198
Formatting,of output during tracing, 143
Formatting,text centering, 187
Formatting,text left justification, 194
Formatting,text right justification, 196
Formatting,text spacing, 197
formword() method„ 217
Full name,of classes, 151
Fully-qualified name, of classes„ 123
Functions,numeric arguments of, 175
Functions,return from, 131
Functions,used by classes, 88

Glyphs„ 33
Group, DO„ 89
Guard digit in arithmetic„ 170

hashCode method„ 214
Hexadecimal numeric symbol„ 38, 40
Hexadecimal,checking with DATATYPE, 189
Hexadecimal,conversion to binary, 200
Hexadecimal,conversion to character, 201
Hexadecimal,conversion to decimal, 201
Hexadecimal,digits in escapes, 37
Hexadecimal,escape sequence, 37
Hyphen,as continuation character, 39

IF instruction„ 93
IMPLEMENTS,on CLASS instruction, 88
Implied semicolons„ 39
IMPORT instruction„ 95
Imports,automatic, 96
Imports,explicit, 95
Indefinite loops„ 101, 102
Indention during tracing„ 143
Index strings,for sub-values, 77
Index strings,testing for, 192
Indexed references,arrays, 78
Indexed references,in terms, 47
Indexed references,indexed strings, 77
Indexed strings„ 77
Indexed strings,copying, 188
Indexed strings,merging, 188
Indexed strings,testing for, 192
Indirect properties„ 205
INDIRECT,on PROPERTIES instruction, 205
Inequality, testing of„ 65
Infinite loops„ 101
INHERITABLE,on METHOD instruction, 110
INHERITABLE,on PROPERTIES instruction, 128
Initializing arrays„ 79
INSERT method„ 194
Inserting a string into another„ 194
Instance, of a class„ 57

225

Instructions„ 81
Instructions,Address, 83
Instructions,assignment, 71, 73
Instructions,CLASS, 85
Instructions,DO, 89
Instructions,EXIT, 91
Instructions,IF, 93
Instructions,IMPORT, 95
Instructions,ITERATE, 97
Instructions,keyword, 71, 81
Instructions,LEAVE, 99
Instructions,LOOP, 101
Instructions,METHOD, 109, 112
Instructions,method call, 71
Instructions,NOP, 115
Instructions,NUMERIC, 117
Instructions,OPTIONS, 119
Instructions,PACKAGE, 123
Instructions,PARSE, 125
Instructions,PROPERTIES, 127, 205
Instructions,RETURN, 131
Instructions,SAY, 133
Instructions,SELECT, 135
Instructions,SIGNAL, 139
Instructions,TRACE, 141
Integer division„ 167
Integer division,definition, 172
Integers, binary„ 177
Interface classes„ 87
Interface classes,properties in, 129
INTERFACE,on CLASS instruction, 86
Interfaces,implemented by classes, 88
Internal functions,return from, 131
Interpreter options„ 119
ITERATE instruction„ 97
ITERATE instruction,use of variable on, 97

JAVA option„ 120
Java,in reference implementation, 29
JavaBean properties„ 205

Keyword instructions„ 71, 81
Keywords„ 71
Keywords,mixed case, 81

LABEL,on DO instruction, 89
LABEL,on LOOP instruction, 105
LABEL,on SELECT instruction, 136
Language processor options„ 119
LASTPOS method„ 194
Leading blanks,removal with STRIP method,

197
Leading zeros,adding with the RIGHT method,

196
Leading zeros,removal with STRIP method, 197
LEAVE instruction„ 99
LEAVE instruction,use of variable on, 99
LEFT method„ 194
LENGTH,method, 194
Length,of arrays, 51
Length,of comments, 36

LENGTH,special word, 51, 155
Letters,checking with DATATYPE, 189
Line comments„ 35
Line ends, effect of„ 39
Line feed character,escape sequence, 37
Line numbers, in tracing„ 143
Line, displaying„ 133
Literal patterns„ 161
Literal strings„ 36
Literal strings,in terms, 47
Literals, binary„ 178
Local variables„ 75
Locating,a string in another string, 194,

196
Locating,a word or phrase in a string, 200
Logical operations„ 66
LOGO option„ 120
Loops,active, 97, 99
Loops,execution model, 106
Loops,in binary classes and methods, 178
Loops,label, 105
Loops,modification of, 97
Loops,naming of, 105
Loops,repetitive, 101, 102
Loops,termination of, 99
LOWER method„ 194
Lowercase,checking with DATATYPE, 189
Lowercase,names, 40
Lowercasing strings„ 194

Mantissa of exponential numbers„ 174
Matching methods„ 55
Mathematical method,ABS, 186
Mathematical method,DATATYPE options, 189
Mathematical method,FORMAT, 192
Mathematical method,MAX, 195
Mathematical method,MIN, 195
Mathematical method,SIGN, 197
MAX method„ 195
Merging indexed variables„ 188
Method call instructions„ 54, 71
METHOD instruction„ 112
Method„ 43
Method, built-in,ABBREV, 186
Method, built-in,ABS, 186
Method, built-in,B2D, 186
Method, built-in,B2X, 187
Method, built-in,C2D, 189
Method, built-in,C2X, 189
Method, built-in,CENTER, 187
Method, built-in,CENTRE, 187
Method, built-in,CHANGESTR, 187
Method, built-in,COMPARE, 188
Method, built-in,COPIES, 188
Method, built-in,COPYINDEXED, 188
Method, built-in,COUNTSTR, 189
Method, built-in,D2B, 191
Method, built-in,D2C, 191
Method, built-in,D2X, 191
Method, built-in,DATATYPE, 189

226

Method, built-in,DELSTR, 190
Method, built-in,DELWORD, 190
Method, built-in,EXISTS, 192
Method, built-in,FORMAT, 192
Method, built-in,INSERT, 194
Method, built-in,LASTPOS, 194
Method, built-in,LEFT, 194
Method, built-in,LENGTH, 194
Method, built-in,LOWER, 194
Method, built-in,MAX, 195
Method, built-in,MIN, 195
Method, built-in,OVERLAY, 195
Method, built-in,POS, 196
Method, built-in,REVERSE, 196
Method, built-in,RIGHT, 196
Method, built-in,SEQUENCE, 196
Method, built-in,SIGN, 197
Method, built-in,SPACE, 197
Method, built-in,STRIP, 197
Method, built-in,SUBSTR, 197
Method, built-in,SUBWORD, 198
Method, built-in,TRANSLATE, 198
Method, built-in,TRUNC, 198
Method, built-in,UPPER, 199
Method, built-in,VERIFY, 199
Method, built-in,WORD, 200
Method, built-in,WORDINDEX, 200
Method, built-in,WORDLENGTH, 200
Method, built-in,WORDPOS, 200
Method, built-in,WORDS, 200
Method, built-in,X2B, 200
Method, built-in,X2C, 201
Method, built-in,X2D, 201
Method,argument variables, 75
Method,body of, 109
Method,calls in terms, 47
Method,charAt, 214
Method,definition, 147
Method,equals, 214
Method,formword(), 217
Method,hashCode, 214
Method,names, case of, 40
Method,NotEq, 213
Method,NotEqS, 213
Method,OpAdd, 212
Method,OpAnd, 212
Method,OpCc, 212
Method,OpCcblank, 212
Method,OpDiv, 212
Method,OpDivI, 212
Method,OpEq, 212
Method,OpEqS, 212
Method,OpGt, 212
Method,OpGtEq, 212
Method,OpGtEqS, 212
Method,OpGtS, 213
Method,OpLt, 213
Method,OpLtEq, 213
Method,OpLtEqS, 213
Method,OpLtS, 213

Method,OpMinus, 213
Method,OpMult, 213
Method,OpNot, 213
Method,OpOr, 213
Method,OpPlus, 213
Method,OpPow, 213
Method,OpRem, 213
Method,OpSub, 213
Method,OpXor, 214
Method,setDigits(Rexx), 217
Method,setForm(Rexx), 217
Method,short name of, 109
Method,starting, 109
Method,toboolean, 214
Method,tobyte, 214
Method,tochar, 214
Method,todouble, 214
Method,tofloat, 214
Method,toint, 215
Method,tolong, 215
Method,toRexx, 215
Method,toshort, 215
Method,toString, 215
Methods„ 53
Methods,abstract, 86, 111
Methods,arguments of, 110
Methods,binary, 112
Methods,constant, 111
Methods,constructor, 57, 109
Methods,duplicate, 113
Methods,final, 111
Methods,inheritable, 110
Methods,invocation of, 53
Methods,native, 111
Methods,overloading, 113
Methods,overriding, 56
Methods,private, 110
Methods,protected, 112
Methods,public, 110
Methods,resolution of, 54
Methods,return values, 113
Methods,searching for, 55
Methods,shared, 110
Methods,special, 157
Methods,standard, 111
Methods,static, 111
METHODS,TRACE setting, 142
MIN method„ 195
Minor classes„ 44
Minor classes,constructing, 152
Minor classes,naming of, 151
Minor classes,nesting of, 151
Minor classes,restrictions, 154
Mixed case,checking with DATATYPE, 189
Mixed case,names, 40
Model,of loop execution, 106
Monadic (prefix) operators„ 63
Moving characters, with TRANSLATE method„

198
Multiplication,definition, 170

227

Names, special,class, 155
Names, special,sourceline, 156
Names,case of, 40
Names,of variables, 73
Names,on ITERATE instructions, 97
Names,on LEAVE instructions, 99
Names,special/ask, 155
Names,special/digits, 155
Names,special/form, 155
Names,special/length, 155
Names,special/null, 156
Names,special/source, 156
Names,special/super, 156
Names,special/this, 157
Names,special/trace, 157
Names,special/version, 157
Native methods„ 111
NATIVE,on METHOD instruction, 111
Negation,of logical values, 66
Negation,of numbers, 64
Nesting of comments„ 36
netrexx.lang package„ 209
netrexx.lang,Exceptions, 209
netrexx.lang,Rexx arithmetic methods, 211
netrexx.lang,Rexx class, 210
netrexx.lang,Rexx constructors, 210
netrexx.lang,Rexx miscellaneous methods, 214
netrexx.lang,RexxOperators class, 215
netrexx.lang,RexxSet class, 215
netrexx.lang,RexxSet constructors, 216
netrexx.lang,RexxSet methods, 216
netrexx.lang,RexxSet properties, 216
Newline character,escape sequence, 37
NOBINARY option„ 119
NOCOMMENTS option„ 119
NOCOMPACT option„ 119
NOCONSOLE option„ 120
NOCROSSREF option„ 120
NODECIMAL option„ 120
NODIAG option„ 120
NOEXPLICIT option„ 120
NOFORMAT option„ 120
NOJAVA option„ 120
NOLOGO option„ 120
NoOtherwiseException„ 210
NOP instruction„ 115
NOREPLACE option„ 120
Normal comparative operators„ 65
NOSAVELOG option„ 120
NOSOURCEDIR option„ 121
NOSTRICTARGS option„ 121
NOSTRICTASSIGN option„ 121
NOSTRICTCASE option„ 121
NOSTRICTIMPORT option„ 121
NOSTRICTPROPS option„ 121
NOSTRICTSIGNAL option„ 121
NOSYMBOLS option„ 121
NOT operator„ 66
Notation,engineering, 117, 174
Notation,scientific, 117, 174

Notations,in text, 31
Notations,syntax, 31
NotCharacterException„ 210
NotEq method„ 213
NotEqS method„ 213
NotLogicException„ 210
NOTRACE option„ 121
NOUTF8 option„ 121
NOVERBOSE option„ 122
Null character,escape sequence, 37
Null clauses„ 71
Null instruction, NOP„ 115
NULL special word„ 156
Null strings„ 36
NullPointerException„ 210
NumberFormatException„ 210
Numbers„ 67, 167
Numbers,arithmetic on, 64, 167, 169
Numbers,as symbols, 38
Numbers,checking with DATATYPE, 189
Numbers,comparison of, 65, 173
Numbers,conversion to character, 191, 201
Numbers,conversion to hexadecimal, 191
Numbers,definition, 168, 174
Numbers,examples of, 67
Numbers,formatting for display, 192
Numbers,in LOOP instruction, 101
Numbers,rounding, 192
Numbers,truncating, 198
Numbers,use of by NetRexx, 175
Numeric symbols„ 38, 47
Numeric symbols,binary, 41
Numeric symbols,hexadecimal, 40
NUMERIC,DIGITS, 169
NUMERIC,FORM, 174
NUMERIC,in binary classes and methods, 178
NUMERIC,instruction, 117
Numeric,part of a number, 168, 174

Objects,comparing, 65
Objects,constructing, 57
Objects,equality, 65
OFF,TRACE setting, 142
OpAdd method„ 212
OpAnd method„ 212
OpCc method„ 212
OpCcblank method„ 212
OpDiv method„ 212
OpDivI method„ 212
OpEq method„ 212
OpEqS method„ 212
Operators„ 63
Operators,arithmetic, 64, 167, 169
Operators,blank, 64, 66
Operators,characters used for, 38
Operators,comparative, 65, 173
Operators,composition of, 63
Operators,concatenation, 64
Operators,logical, 66
Operators,precedence (priorities) of, 68

228

Operators,type, 66
OpGt method„ 212
OpGtEq method„ 212
OpGtEqS method„ 212
OpGtS method„ 213
OpLt method„ 213
OpLtEq method„ 213
OpLtEqS method„ 213
OpLtS method„ 213
OpMinus method„ 213
OpMult method„ 213
OpNot method„ 213
OpOr method„ 213
OpPlus method„ 213
OpPow method„ 213
OpRem method„ 213
OpSub method„ 213
Option words„ 119
Optional arguments„ 110
OPTIONS,instruction, 119
Options,on command line, 122
OpXor method„ 214
OR,logical exclusive, 66
OR,logical inclusive, 66
Over loops„ 104
OVER repetitor on LOOP instruction„ 101
Overflow, arithmetic„ 176
OVERLAY method„ 195
Overlaying a string onto another„ 195
Overloaded methods„ 113
Overriding methods„ 56

PACKAGE instruction„ 123
Package„ 43, 123
Package,name of, 95, 123
Package,netrexx.lang, 209
Packing a string,with B2D, 186
Packing a string,with B2X, 187
Packing a string,with X2C, 201
Parent class„ 151
Parent object„ 152
Parent,of dependent object, 153
PARENT,special word, 153
Parentheses,adjacent to blanks, 39
Parentheses,in expressions, 63, 68
Parentheses,in method calls, 47, 53
Parentheses,in parsing templates, 165
Parentheses,in terms, 47
Parentheses,omitting from method calls, 47,

48
PARSE,instruction, 125
PARSE,parsing rules, 159
Parsing templates,in PARSE instruction, 125
Parsing,absolute columns, 163
Parsing,definition, 160
Parsing,general rules, 159, 161
Parsing,introduction, 159
Parsing,literal patterns, 161
Parsing,positional patterns, 163
Parsing,selecting words, 162

Parsing,variable patterns, 165
Period,as placeholder in parsing, 163
Period,in numbers, 169
Period,in terms, 47
POS position method„ 196
Positional patterns„ 163
Power operator„ 64
Power operator,definition, 172
Powers of ten in numbers„ 67, 174
Precedence of operators„ 68
Precision,arbitrary, 167
Precision,of arithmetic, 169
Prefix operators„ 63
Prefix operators,+, 64
Prefix operators,+/with types, 66
Prefix operators,-, 64
Prefix operators,-/with types, 66
Prefix operators,\, 66
Prefix operators,\/with types, 66
Prefix operators,arithmetic, 170
Primitive types„ 43, 177
Primitive types,conversions, 59
Priorities of operators„ 68
PRIVATE,on CLASS instruction, 86
PRIVATE,on METHOD instruction, 110
PRIVATE,on PROPERTIES instruction, 128
Program,filename of, 156
Program,prolog, 147
Program,structure, 147
Programmer’s model of LOOP„ 106
Programs„ 147
Programs,examples, 203
Programs,structure, 147
Prolog, of a program„ 147
PROPERTIES instruction„ 127, 205
Properties„ 43, 74, 127
Properties,case of names, 40
Properties,constant, 128
Properties,deprecated, 128
Properties,for JavaBeans, 205
Properties,in dependent classes, 154
Properties,in interface classes, 129
Properties,in minor classes, 154
Properties,indirect, 205
Properties,inheritable, 128
Properties,initialization, 147
Properties,modifiers, 128
Properties,naming, 127
Properties,private, 128
Properties,public, 128
Properties,shared, 128
Properties,static, 128
Properties,transient, 128
Properties,unused, 129
Properties,visibility, 128
Properties,volatile, 128
Property,DEFAULT_DIGITS, 216
Property,DEFAULT_FORM, 216
Property,digits, 216
Property,ENGINEERING, 216

229

Property,form, 216
Property,SCIENTIFIC, 216
PROTECT,on DO instruction, 90
PROTECT,on LOOP instruction, 106
PROTECT,on METHOD instruction, 112
PROTECT,on SELECT instruction, 136
Protected methods„ 112
PUBLIC,on CLASS instruction, 86
PUBLIC,on METHOD instruction, 110
PUBLIC,on PROPERTIES instruction, 128
Pure numbers„ 174

qtime example program„ 203
Qualified name, of classes„ 123
Qualified types„ 43
Quotes in strings„ 36

Rexx(boolean) constructor„ 210
Rexx(byte) constructor„ 210
Rexx(char) constructor„ 210
Rexx(char[]) constructor„ 210
Rexx(double) constructor„ 211
Rexx(float) constructor„ 211
Rexx(int) constructor„ 210
Rexx(long) constructor„ 211
Rexx(Rexx) constructor„ 211
Rexx(short) constructor„ 211
Rexx(String) constructor„ 211
Rexx(String[]) constructor„ 211
Rexx,arithmetic, 167
Rexx,class/NetRexx strings, 43
Rexx,class/conversions, 60
Rexx,class/methods of, 185
Rexx,class/use by PARSE, 125
RexxSet() constructor„ 216
RexxSet(int) constructor„ 216
RexxSet(int,byte) constructor„ 216
RexxSet(RexxSet) constructor„ 216
Raising exceptions„ 139
Re-ordering characters,with TRANSLATE

method, 198
Real numbers, binary„ 177
Reference implementation„ 29
References,in terms, 47
References,null, 156
References,to arrays, 78
References,to current object, 156, 157
References,to indexed strings, 77
References,to methods, 53
Relative column specification in parsing„

163
Relative positional pattern„ 163
Remainder operator„ 167
Remainder operator,definition, 172
Remainder operator;.pi ,Integer division;.pi

/Exponentiation, 64
Repeating a string with COPIES„ 188
Repetitive loops„ 102
Repetitor phrase„ 102
REPLACE option„ 120

Replacing strings,using CHANGESTR, 187
Replacing strings,using TRANSLATE, 198
Required arguments„ 110
Resolution of methods„ 54
Results,of methods, 113
Results,returned by RETURN, 131
Results,size of, 63
RESULTS,TRACE setting, 142
Return character,escape sequence, 37
Return code, setting on exit„ 91
RETURN instruction„ 131
Return string, setting on exit„ 91
Return Types, 56
RETURNS,on METHOD instruction, 113
REVERSE method„ 196
RIGHT method„ 196
Rounding„ 167
Rounding,definition, 170
Rounding,when numbers used, 175
Running off the end of a program„ 91

SAVELOG option„ 120
SAY,instruction, 133
Scientific notation„ 117, 174
SCIENTIFIC property„ 216
SCIENTIFIC value for NUMERIC FORM„ 117
Search order,for methods, 54
Search order,for term evaluation, 49
Searching a string for a word or phrase„

196, 200
Select,label, 136
Select,naming of, 136
Semicolons„ 35
Semicolons,can be omitted, 31
Semicolons,implied, 39
SEQUENCE method„ 196
setDigits(Rexx) method„ 217
setForm(Rexx) method„ 217
SHARED,on CLASS instruction, 86
SHARED,on METHOD instruction, 110
SHARED,on PROPERTIES instruction, 128
Short name,of classes, 85, 151
Short name,of methods, 109
SIGN method„ 197
SIGNAL instruction„ 139
Signals„ 181
SIGNALS,on METHOD instruction, 113
Significand of exponential numbers„ 174
Significant digits, in arithmetic„ 169
Signs in parsing templates„ 163
Simple DO group„ 89
Simple number„ 38
Simple repetitor phrase„ 102
Simple terms„ 47
Single-quote,escape sequence, 37
Single-quote,string delimiter, 36
SOURCE special word„ 156
SOURCEDIR option„ 121
SOURCELINE,special word, 156
SPACE method„ 197

230

Special characters„ 39
Special characters,used for operators, 38
Special methods„ 157
Special methods,super, 153, 157
Special methods,this, 157
Special words„ 155
Special words,ask, 155
Special words,class, 155
Special words,digits, 155
Special words,form, 155
Special words,length, 155
Special words,null, 156
Special words,parent, 153
Special words,source, 156
Special words,sourceline, 156
Special words,super, 156
Special words,this, 153, 157
Special words,trace, 157
Special words,version, 157
Square brackets,in array initializers, 47,

79
Square brackets,in indexed references, 47
Standard classes„ 86
Standard methods„ 111
Static methods„ 111
Static methods,used by classes, 88
Static variable typing„ 75
STATIC,on METHOD instruction, 111
STATIC,on PROPERTIES instruction, 128
stderr, used by TRACE„ 145
stdin, reading with ASK„ 155
stdout, writing to with SAY„ 133
Strict comparative operators„ 65
STRICTARGS option„ 121
STRICTASSIGN option„ 121
STRICTCASE option„ 121
STRICTIMPORT option„ 121
STRICTPROPS option„ 121
STRICTSIGNAL option„ 121
Strings„ 36
Strings,as literal constants, 36
Strings,comparison of, 65
Strings,concatenation of, 64
Strings,escapes in, 37
Strings,in terms, 47
Strings,indexed, 77
Strings,length of, 194
Strings,lowercasing, 194
Strings,moving with TRANSLATE method, 198
Strings,null, 36
Strings,quotes in, 36
Strings,sub-values of, 77
Strings,types of, 60
Strings,uppercasing, 199
Strings,verifying contents of, 199
STRIP method„ 197
Stub, of term„ 48
Sub-expressions, in terms„ 47
Sub-keywords„ 81
Sub-string, extracting„ 197

Sub-values, of strings„ 77
Subclass of a class„ 87
Subroutines,calling, 54
Subroutines,passing back values from, 131
Subroutines,return from, 131
Substitution,in expressions, 63
SUBSTR method„ 197
Subtraction,definition, 170
SUBWORD method„ 198
SUPER,special method, 153, 157
SUPER,special word, 156
Superclass of a class„ 87
Symbol characters,checking with DATATYPE,

189
SYMBOLS option„ 121
Symbols„ 37
Symbols,assigning values to, 73
Symbols,case of, 40
Symbols,in terms, 47
Symbols,numeric, 38, 47
Symbols,use of, 73
Symbols,valid names, 37
Syntax diagrams,notation for, 31
Syntax notation„ 31
System-dependent options„ 119

Tab character„ 35
Tab character,escape sequence, 37
Tabulation character„ 35
Templates, parsing,general rules, 159
Templates, parsing,in PARSE instruction, 125
Ten, powers of„ 174
Terminal, writing to with SAY„ 133
Terms„ 47, 63
Terms,compound, 48
Terms,evaluation of, 48
Terms,in assignments, 76
Terms,on left of =, 76
Terms,parsing of, 125
Terms,simple, 47
Terms,stub of, 48
Testing for indexed variables„ 192
THEN,following IF clause, 93
THEN,following WHEN clause, 135
THIS,special method, 157
THIS,special word, 153, 157
Thread,tracing, 144
TO phrase of LOOP instruction„ 101
toboolean method„ 214
tobyte method„ 214
tochar method„ 214
todouble method„ 214
tofloat method„ 214
toint method„ 215
Tokens„ 36
tolong method„ 215
toRexx method„ 215
toshort method„ 215
toString method„ 215
Trace setting„ 142

231

Trace setting,altering with TRACE
instruction, 141

Trace,context, 144
TRACE,instruction, 141
TRACE,option, 121
TRACE,special word, 157
Tracing,clauses, 142
Tracing,data identifiers, 144
Tracing,execution of programs, 141
Tracing,line numbers, 143
Tracing,variables, 142
Trailing blanks,removal with STRIP method,

197
Trailing zeros„ 170
TRANSIENT,on PROPERTIES instruction, 128
TRANSLATE method„ 198
Translation,with TRANSLATE method, 198
Trapping of exceptions„ 139
True value„ 66
TRUNC method„ 198
Truncating numbers„ 198
Types„ 43
Types,checking instances of, 66
Types,checking with DATATYPE, 189
Types,concatenation of, 66
Types,conversions, 59
Types,declaring, 74
Types,dimensioned, 44
Types,of terms, 63
Types,of values, 63
Types,operations on, 66
Types,primitive, 43, 177
Types,qualified, 43
Types,simplification, 59

Underflow, arithmetic„ 176
Underscore,in symbols, 37
Unicode,coded character set, 33
Unicode,escape sequence, 37
Unicode,UTF-8 encoding, 121
Unpacking a string,with C2X, 189
Unpacking a string,with X2B, 200
UNTIL phrase of LOOP instruction„ 101
UNUSED,on PROPERTIES instruction, 129
UPPER method„ 199
Uppercase,checking with DATATYPE, 189
Uppercase,names, 40
Uppercasing strings„ 199
USES,on CLASS instruction, 88
UTF-8 encoding„ 121
UTF8 option„ 121

Variable reference,in parsing template, 165
Variables„ 73
Variables,controlling loops, 103
Variables,in parsing patterns, 165
Variables,indexed, 77
Variables,local, 75
Variables,method arguments, 75
Variables,names of, 73

Variables,parsing of, 125
Variables,properties, 74
Variables,scope of, 75
Variables,setting new value, 73
Variables,static typing of, 75
Variables,subscripts, 77
Variables,type of, 73
Variables,valid names, 73
Variables,visibility, 75
VERBOSE option„ 122
VERBOSEn option„ 122
VERIFY method„ 199
VERSION special word„ 157
Visibility,of classes, 86
Visibility,of methods, 110
Visibility,of properties, 128
VOLATILE,on PROPERTIES instruction, 128

WARNEXIT0 option, 122
Well-known conversions„ 59
WHILE phrase of LOOP instruction„ 101
White space„ 35
Whole numbers„ 67
Whole numbers,checking with DATATYPE, 189
Whole numbers,definition, 175
WORD method„ 200
WORDINDEX method„ 200
WORDLENGTH method„ 200
WORDPOS method„ 200
WORDS method„ 200
Words, special,class, 155
Words, special,sourceline, 156
Words,counting, using WORDS, 200
Words,deleting from a string, 190
Words,extracting from a string, 198, 200
Words,finding in a string, 200
Words,finding length of, 200
Words,in parsing, 162
Words,locating in a string, 200
Words,special/ask, 155
Words,special/digits, 155
Words,special/form, 155
Words,special/length, 155
Words,special/null, 156
Words,special/source, 156
Words,special/super, 156
Words,special/this, 157
Words,special/trace, 157
Words,special/version, 157

X2B method„ 200
X2C method„ 201
X2D method„ 201
XOR, logical operator„ 66

Zero character,escape sequence, 37
Zeros,adding on the left, 196
Zeros,padding, 196
Zeros,removal with STRIP method, 197

232

9 789081 909013

ISBN 978-90-819090-1-3

233

	List of Tables
	The NetRexx Programming Series
	Typographical conventions
	Introduction
	Language Objectives
	Language Concepts
	Acknowledgements

	Introduction to the current edition
	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	NetRexx Language Definition
	Notations
	Characters and Encodings
	Character Sets

	Structure and General Syntax
	Blanks and White Space
	Comments
	Tokens
	Implied semicolons and continuations
	The case of names and symbols
	Hexadecimal and binary numeric symbols

	Types and Classes
	Primitive types
	Dimensioned types
	Minor and Dependent classes

	Terms
	Simple terms
	Compound terms
	Evaluation of terms
	Simple term evaluation
	Stub evaluation
	Continuation evaluation
	Arrays in terms

	Methods and Constructors
	Method call instructions
	Method resolution (search order)
	Method overriding
	Return Types
	Constructor methods

	Type conversions
	Permitted automatic conversions
	Permitted explicit conversions
	Costs of conversions

	Expressions and Operators
	Operators
	Numbers
	Parentheses and operator precedence

	Clauses and Instructions
	Assignments and Variables
	The use and scope of variables
	Terms on the left of assignments

	Indexed strings and Arrays
	Arrays

	Keyword Instructions
	Address instruction
	Class instruction
	Visibility
	Modifier
	Binary
	Deprecated
	Extends
	Uses
	Implements

	Do instruction
	Exit instruction
	If instruction
	Import instruction
	Iterate instruction
	Leave instruction
	Loop instruction
	Syntax notes:
	Indefinite loops
	Bounded loops
	Label phrase
	Protect phrase
	Exceptions in loops
	Programmer's model - how a typical loop is executed

	Method instruction
	Arguments
	Visibility
	Modifier
	Protect
	Binary
	Deprecated
	Returns
	Signals
	Duplicate methods

	Nop instruction
	Numeric instruction
	Options instruction
	Package instruction
	Parse instruction
	Properties instruction
	Visibility
	Modifier
	Deprecated
	Unused
	Properties in interface classes

	Return instruction
	Say instruction
	Select instruction
	Label phrase
	Protect phrase
	Case phrase
	Exceptions in select constructs

	Signal instruction
	Trace instruction
	Tracing clauses
	Tracing variables
	The format of trace output

	Program structure
	Program defaults

	Minor and Dependent classes
	Minor classes
	Dependent classes
	Restrictions

	Special names and methods
	Special names
	Special methods

	Parsing templates
	Introduction to parsing
	Parsing definition

	Numbers and Arithmetic
	Introduction
	Definition

	Binary values and operations
	Operations in binary classes and methods
	Binary constructors

	Exceptions
	Syntax and example
	Exceptions after catch and finally clauses
	Checked exceptions

	Methods for NetRexx strings
	General notes on the built-in methods:
	The built-in methods

	Appendix A - A Sample NetRexx Program
	Appendix B - JavaBean Support
	Indirect properties

	Appendix C - The netrexx.lang Package
	Exception classes
	The Rexx class
	Rexx constructors
	Rexx arithmetic methods
	Rexx miscellaneous methods
	The RexxOperators interface class
	The RexxSet class

	List of Figures
	Index

