
NetRexx
Programming Guide

RexxLA

Version 5.01-GA of May 2, 2025

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-0-6

Publication Data

©Copyright The Rexx Language Association, 2011- 2025

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz ITServices andConsultancy, Amsteldijk
14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The
Netherlands.

This edition is registered under ISBN 978-90-819090-0-6

9 789081 909006

ISBN 978-90-819090-0-6

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

1 Meet the Rexx Family 1
1.1 Once upon a Virtual Machine . 1
1.2 Once upon another Virtual Machine . 2
1.3 Features of NetRexx . 2

2 Learning to program 5
2.1 Console Based Programs . 5
2.2 Comments in programs . 7
2.3 Strings . 8
2.4 Clauses . 9
2.5 When does a Clause End? . 9
2.6 Long Lines . 9
2.7 Loops . 10
2.8 Special Variables . 11

3 NetRexx as a Scripting Language 15
3.1 A Scripting Example . 16
3.2 Automatic ’Uses’ . 17
3.3 No ’return’ . 18

4 NetRexx as an Interpreted Language 19

5 Source Code Formatting 21
5.1 RxModel . 21
5.2 Beyond RxModel . 22

6 Using the translator 23
6.1 Using the translator as a compiler . 23
6.2 The translator command . 23
6.3 Compiling multiple programs and using packages . 25

7 Using build systems - ANT 29
7.1 In-source, no packages . 29
7.2 With package structure . 30

8 Using the NetRexxA API 33
8.1 The NetRexxA constructor . 34
8.2 The parse method . 35

II

Contents

8.3 The getClassObject method . 35

9 Calling non-JVM programs 37

10 Using NetRexx classes from Java 43

11 Classes 45
11.1 Classes . 46
11.2 Dependent Classes . 46
11.3 Properties . 46

12 Using Packages 49
12.1 The package statement . 49
12.2 Translator performance consequences . 49
12.3 Some NetRexx package history . 50

13 JPMS, The Java Platform Module System 51
13.1 CLASSPATH . 52
13.2 Adding modules to a compile run . 52

14 Programming Patterns 55
14.1 Singleton . 55
14.2 Observable and Events . 56
14.3 Recursive Parse . 57
14.4 More Observer/Observable . 57

15 Incorporating Class Libraries 61
15.1 A Word About Java Generics . 61
15.2 The Collection Classes . 62

16 Stream I/O 65
16.1 Lines() and Linein() . 65
16.2 Chars() and CharIn() . 66

17 Java Input and Output 67
17.1 The File Class . 67
17.2 Object Oriented I/O using Serialization . 70
17.3 Using the SAY instruction to write lines to a file . 72
17.4 Using RexxIO.forEachLine . 73

18 Algorithms in NetRexx 75
18.1 Factorial . 75
18.2 Fibonacci . 77

19 Using Parse 79
19.1 Literal Parsing . 79
19.2 Positional Parsing . 81
19.3 Variable Templates . 82

III

Contents

20 Using Trace 85
20.1 Tracing Program Statements . 85
20.2 Tracing Variables . 86
20.3 Interactive tracing . 87
20.4 Examples . 89
20.5 Tracing Notes . 92

21 Concurrency 95
21.1 Threads . 95

22 Using NetRexx for Web applets 97

23 Database Connectivity with JDBC 99

24 WebSphere MQ 105

25 MQTT 113
25.1 Pub/Sub with MQ Telemetry . 113

26 Component Based Programming: Beans 119

27 Interfacing to Scripting Languages 121
27.1 Which scripting engines are on my system? . 122
27.2 Selecting an engine . 123
27.3 Evaluating a script . 123
27.4 Bindings . 123
27.5 Interpreted execution of NetRexx scripts from jrunscript 125
27.6 Using AppleScript on macOS . 125
27.7 Execution of NetRexx scripts from ANT tasks . 126
27.8 Integration of NetRexx scripting in applications . 127
27.9 Interfacing with ooRexx using BSF4ooRexx . 127
27.10General scripting implementation notes . 127

28 NetRexx Tools 129
28.1 Editor support . 129
28.2 Java to Nrx (java2nrx) . 130

29 Using Eclipse for NetRexx Development 131
29.1 Downloading Eclipse . 131
29.2 Setting up the workspace . 132
29.3 Shellshock . 132
29.4 Installing Git . 132
29.5 Downloading the NetRexx project from the Git repository 133
29.6 Setting up the builds . 133
29.7 Using the NetRexx version of the NetRexx Ant task . 134
29.8 Setting up the Eclipse NetRexx Editor Plugin (Optional) . 134

30 Platform dependent issues 135

IV

Contents

30.1 Mobile Platforms . 135
30.2 IBM Mainframe: Using NetRexx programs in z/OS batch 137

31 Building the NetRexx translator 139
31.1 Repository . 139
31.2 The buildfile . 140
31.3 Testing . 142
31.4 Preparing a new release . 143
31.5 Package a new release . 143

32 Date and Time Arithmetic 145
32.1 Epoch . 147

33 The NetRexx Workspace - nrws 149
33.1 Installation . 149
33.2 Starting nrws . 150
33.3 Exit nrws . 150
33.4 Exploring the NetRexx language . 151
33.5 Arithmetic Expressions . 151
33.6 Some Types . 151
33.7 Symbols, Variables, Assignments, and Declarations . 152
33.8 Conversion . 153
33.9 Calling Functions . 153
33.10Long Lines . 154
33.11Numbers . 154
33.12Data Structures . 154
33.13Expanding to Higher Dimensions . 156
33.14Writing Your Own Functions . 156
33.15A Typical Session . 157
33.16Running Pipelines . 158
33.17System Commands . 158
33.18Input Files and NetRexx Files . 159
33.19Input Files . 159
33.20The nrws.input File . 160
33.21The nrws.properties File . 160
33.22The nrws.history file(s) . 161
33.23Workspace for NetRexx System Commands . 161
33.24Introduction . 161
33.25)cd . 162
33.26)clear . 163
33.27)display . 164
33.28)frame . 165
33.29)help . 166
33.30)history . 167
33.31)import . 168
33.32)numeric . 169

V

Contents

33.33)options . 169
33.34)package . 170
33.35)pquit . 170
33.36)quit . 171
33.37)read . 172
33.38)set . 172
33.39)show . 175
33.40)synonym . 176
33.41)system . 177
33.42)trace . 177
33.43)use . 178
33.44)what . 178

34 Translator inner workings 181
34.1 Translating, compiling and interpreting . 181
34.2 Method resolution . 188

Index 191

VI

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists
theotherpublications in this series, and their roles. Thesebooks canbeordered in
convenient hardcopyandelectronic formats from theRexxLanguageAssociation.

Programming Guide The Programming Guide is the one manual
that at the same time teaches programming,
shows lots of examples as they occur in the real
world, and explains about the internals of the
translator and how to interface with it.

Language Reference Referred to as the NRL, this is meant as
the formal definition for the language,
documenting its syntax and semantics,
and prescribing minimal functionality for
language implementers.

Pipelines Guide & Reference TheDataFloworiented companion toNetRexx,
with its CMS Pipelines compatible syntax,
is documented in this manual. It discusses
running Pipes for NetRexx in the command
shell and the Workspace, and has ample
examples of defining your own stages in
NetRexx.

i

Introduction

TheProgrammingGuide is thebook thathas thebroadest scopeof thepublications
in theNetRexxProgramming Series.Where the Language Reference and theQuickstart
Guide need to be limited to a formal description and definition of the NetRexx
language for the former, and a Quick Tour and Installation instructions for the
latter, this book has no such limitations. It teaches programming, discusses com-
puter language history and comparative linguistics, and shows many examples
on how to make NetRexx work with diverse techologies as TCP/IP, Relational
Database Management Systems, Messaging and Queuing (MQ™) systems, J2EE
Containers as JBOSS™ and IBMWebSphereApplication Server™, discusses various
rich- and thin client Graphical User Interface Options, and discusses ways to use
NetRexx on various operating platforms. For many people, the best way to learn
is from examples instead of from specifications. For this reason this book is rich
in example code, all of which is part of the NetRexx distribution, and tested and
maintained.

Terminology

TheNetRexx Language Reference (NRL) is the source of the definitive truth about the
language. In this ProgrammingGuide, terminology is sometimes usedmore loosely
than required for the more formal approach of the NRL. For example, there is a
fine line distinguishing statement, instruction and clause, where the latter is a more
Rexx-like concept that is not often mentioned in relation to other languages (if
they are not COBOL or SQL). While we try not to be confusing, clause and statement
will be interchangibly used, as are instruction and keyword instruction.

Acknowledgements

As this book is a compendium of decades of Rexx and NetRexx knowledge, it
stands upon the shoulders of many of its predecessors, many of which are not

iii

Contents

available in print anymore in their original form, or will never be upgraded or
actualized; we are indebted to many anonymous1 authors of IBM product docu-
mentation, and many others that we do know, and will thank in the following. If
anyone knows of a name not mentioned here that should be, please be in touch.
Dave Woodman, thank you for your contributions to this guide. A big IOU goes
out to Alan Sampson, who singlehandedly contributed more than one hundred
NetRexxprogrammingexamples. TheRedbookauthors (PeterHeuchert, Frederik
Haesbrouck, Norio Furukawa, Ueli Wahli, Kris Buelens, Bengt Heijnesson, Dave
Jones and Salvador Torres) have provided some important documents that have
shown, in an early stage, how almost everything on the JVM is better and easier
done in NetRexx. Kermit Kiser also provided examples and did maintenance on
the translator. Bill Finlason provided the Eclipse instructions. If anyone feels their
copyright is violated, please do let us know, sowe can properly attribute offending
passages, or take them out.2

1because they are unacknowledged in the original publications
2As the usage of all material in this publication is quoted for educational use, and consists of short fragments, a fair use

clause will apply in most jurisdictions.

iv

Chapter 1

Meet the Rexx Family

1.1 Once upon a Virtual Machine

On the 22nd ofMarch 1979Mike Cowlishaw of IBMhad a vision of an easier to use
command processor for VM, and wrote down a specification over the following
days. VM™ (now called z/VM) is the original Virtual Machine operating system,
stemming from an era in which time sharing was acknowledged to be the wave
of the future and when systems as CTSS (on the IBM 704) and TSS (on the IBM
360 Family of computers) were early timesharing systems, that offered the user
an illusion of having a large machine for their exclusive use, but fell short of
virtualising the entire hardware. The CP/CMS system changed this; CP virtualised
the hardware completely and CMS was the OS running on CP. CMS knew a suc-
cession of command interpreters, called EXEC, EXEC2 and Rexx™ (originally REX
- until it was found out, by the IBM legal department, that a product of another
vendor had a similar name) - the EXEC roots are the explanationwhy somepeople
refer to a NetRexx program as an “exec”. As a prime example of a backronym,
Rexx stands for “Restructured Extended Executor”. It can be defended that Rexx
came to be as a reaction on EXEC2, but it must be noted that both command
interpreters shipped around the same time. From 1988 on Rexx was available on
MVS/TSOand other systems, likeDOS, Amiga and variousUnix systems. Rexxwas
branded the official SAA procedures language and was implemented on all IBM’s
Operating Systems; most people got to know Rexx on OS/2. In the late eighties
the Object-Oriented successor of Rexx, Object Rexx, was designed by SimonNash
and his colleagues in the IBMWinchester laboratory. Rexx was thereafter known
as Classic Rexx. Several open source versions of Classic Rexx weremade over the
years, of which Regina is a good example.

1

Chapter 1. Meet the Rexx Family

1.2 Once upon another Virtual Machine

In 1995 Mike Cowlishaw ported Java™to OS/2™ and soon after started with an
experiment to run Rexx on the JVM™. With Rexx generally considered the first of
thegeneral purpose scripting languages,NetRexx™ is thefirst alternative language
for the JVM. The 0.50 release, from April 1996, contained the NetRexx runtime
classes and a translator written in Rexx but tokenized and turned into an OS/2
executable. The 1.00 release came available in January 1997 and contained a
translator bootstrapped to NetRexx. The Rexx string type that can also handle
unlimited precision numerics is called Rexx in Java and NetRexx. Where Classic
Rexx was positioned as a system glue language and application macro language,
NetRexx is seen as the one language that does it all, delivering system level pro-
grams or large applications.

Release 2.00 became available in August 2000 andwas amajor upgrade, in which
interpreted execution was added. Until that release, NetRexx only knew ahead of
time compilation (AOT).

Mike Cowlishaw took early retirement from IBM in March 2010. IBM announced
the transfer of NetRexx source code to the Rexx Language Association (RexxLA)
on June 8, 2011, 14 years after the v1.0 release, and on the same day, it released
the NetRexx source code to RexxLA under the ICU open source license. RexxLA
shortly after released this as NetRexx 3.00 and has followed with updates.

1.3 Features of NetRexx

Ease of use The NetRexx language is easy to read and write because many in-
structions are meaningful English words. Unlike some lower level program-
ming languages that use abbreviations, NetRexx instructions are common
words, such as say, ask, if...then...else, do...end, and exit.

Free format There are few rules about NetRexx format. You need not start an in-
struction in a particular column, you can also skip spaces in a line or skip
entire lines, you can have an instruction span many lines or have multiple
instructions on one line, variables do not need to be pre-defined, and you can
type instructions in upper, lower, or mixed case.

Convenient built-in functions NetRexx supplies built-in functions that perform
various processing, searching, and comparison operations for both text and
numbers. Other built-in functions provide formatting capabilities and arith-
metic calculations.

2

1.3. Features of NetRexx

Easy to debug WhenaNetRexx exec contains an error,messageswithmeaningful
explanations are displayed on the screen. In addition, the trace instruction
provides a powerful debugging tool.

Interpreted The NetRexx language is an interpreted language. When a NetRexx
exec runs, the language processor directly interprets each language state-
ment, or translates the program in JVM bytecode.

Extensive parsing capabilities NetRexx includes extensive parsing capabilities
for character manipulation. This parsing capability allows you to set up a
pattern to separate characters, numbers, and mixed input.

Seamless use of JVM Class Libraries NetRexx can use any class, and class library
for the JVM (written in Java or other JVM languages) in a seamless manner,
that is, without the need for extra declarations or definitions in the source
code.

3

Chapter 2

Learning to program

2.1 Console Based Programs

One way that a computer can communicate with a user is to ask questions and
thencompute results basedon the answers typed in. In otherwords, theuserhas a
conversationwith the computer. You can easilywrite a list ofNetRexx instructions
that will conduct a conversation.We call such a list of instructions a program. The
following listing shows a sample NetRexx program. The sample program asks the
user to give his name, and then responds to him by name. For instance, if the user
types in the name Joe, the reply Hello Joe is displayed. Or else, if the user does not
type anything in, the reply Hello stranger is displayed. First, we shall discuss how
it works; then you can try it out for yourself.
/∗ A conversation ∗/
say "Hello! What's your name?"
who=ask
if who = '' then say "Hello stranger"
else say "Hello" who

Briefly, the various pieces of the sample program are:

/* ... */ A comment explaining what the program is about. Where Rexx pro-
grams on several platforms must start with a comment, this is not a hard
requirement for NetRexx anymore. Still, it is a good idea to start every pro-
gram with a comment that explains what it does.

say An instruction to display Hello! What’ s your name? on the screen.
ask An instruction to read the response entered from the keyboard and put it into

the computer’s memory.
who The name given to the place in memory where the user’s response is put.
if An instruction that asks a question.
who = ” A test to determine if who is empty.

5

Chapter 2. Learning to program

then A direction to execute the instruction that follows, if the tested condition is
true.

say An instruction to display Hello stranger on the screen.
else An alternative direction to execute the instruction that follows, if the tested

condition is not true. Note that inNetRexx, else needs to be on a separate line.
say An instruction to display Hello, followed by whatever is in who on the screen.

The text of your program should be stored on a disk that you have access to with
the help of an editor program. On Windows, notepad or (notepad++), jEdit, X2 or
SlickEdit are suitable candidates. On Unix based systems, including macOS, vim
or emacs are plausible editors. If you are on z/VM or z/OS, XEDIT or ISPF/PDF are
a given. More about editing NetRexx code in chapter 28.1, Editor Support, on page
129.

When the text of the program is stored in a file, let’s say we called it hello.nrx, and
you installed NetRexx as indicated in the NetRexx QuickStart Guide, we can run it
with

nrc -exec hello

and this will yield the result:

NetRexx portable processor, version NetRexx after3.01, build 1-20120406-1326
Copyright (c) RexxLA, 2011. All rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

If you do not want to see the version and copyright message every time, which
would be understandable, then start the program with:

nrc -exec -nologo hello

This is what happened when Fred tried it.

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?
Fred
Hello Fred

The ask instruction paused, waiting for a reply. Fred typed Fred on the command
line and, when he pressed the ENTER key, the ask instruction put the word Fred

6

2.2. Comments in programs

into the place in the computer’s memory called “who”. The if instruction asked,
is “who” equal to nothing:

who = ’’

meaning, is the value of “who” (in this case, Fred) equal to nothing:

”Fred = ’’

This was not true; so, the instruction after thenwas not executed; but the instruc-
tion after else, was.

But when Mike tried it, this happened:

Program hello.nrx
===== Exec: hello =====
Hello! What’s your name?

Hello stranger
Processing of ’hello.nrx’ complete

Mike did not understand that he had to type in his name. Perhaps the program
should have made it clearer to him. Anyhow, he just pressed ENTER. The ask in-
struction put ” (nothing) into the place in the computer’s memory called “who”.
The if instruction asked, is:

who = ’’

meaning, is the value of “who” equal to nothing:

’’ = ’’

In this case, it was true. So, the instruction after then was executed; but the in-
struction after elsewas not.

2.2 Comments in programs

When you write a program, remember that you will almost certainly want to read
it over later (before improving it, for example). Other readers of your programalso
need toknowwhat theprogramis for,whatkindof input it canhandle,whatkindof
output it produces, andsoon.Youmayalsowant towrite remarksabout individual
instructions themselves. All these things, words that are to be read by humans
but are not to be interpreted, are called comments. To indicate which things are

7

Chapter 2. Learning to program

comments, use:

/* to mark the start of a comment
*/ to mark the end of a comment.

The /* causes the translator to stop compiling and interpreting; this starts again
only after a */ is found, which may be a few words or several lines later. For
example,

/* This is a comment. */
say text /* This is on the same line as the instruction */
/* Comments may occupy more
than one line. */

NetRexxalsohas linemode comments - those turna line at a time into a comment.
They are composed of two dashes (hyphens, in listings sometimes fused to a
typographical em dash - remember that in reality they are two n dashes.

-- this is a line comment

2.3 Strings

When the translator sees a quote (either ” or ’) it stops interpreting or compiling
and just goes along looking for thematching quote. The string of characters inside
the quotes is used just as it is. Examples of strings are:

’Hello’
”Final result: ”

If youwant touse aquotationmarkwithin a string you shouldusequotationmarks
of the other kind to delimit the whole string.

”Don’t panic”
’He said, ”Bother”’

There is another way. Within a string, a pair of quotes (of the same kind as was
used to delimit the string) is interpreted as one of that kind.

’Don’’t panic’ (same as ”Don’t panic”)
”He said, ””Bother””” (same as ’He said, ”Bother”’)

8

2.4. Clauses

2.4 Clauses

Your NetRexx program consists of a number of clauses. A clause can be:

1. A keyword instruction that tells the interpreter to do something; for example,

say ”the word”

In this case, the interpreter will display the word on the user’s screen.
2. An assignment; for example,

Message = ’Take care!’

3. A null clause, such as a completely blank line, or

;

4. Amethod call instructionwhich invokes amethod from a class

’hiawatha’.left(2)

2.5 When does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to
extend a clause over many lines. The rules are:

. Usually, each clause occupies one line.. If you want to put more than one clause on a line you must use a semicolon
(;) to separate the clauses.. If you want a clause to spanmore than one line youmust put a dash (hyphen)
at the end of the line to indicate that the clause continues on the next line. If
a line does not end in a dash, a semicolon is implied.

What will you see on the screen when this exec is run?
/∗ Example: there are six clauses in this program ∗/ say "Everybody cheer!"
say "2"; say "4" ; say "6" ; say "8" ; say "Who do we" −
"appreciate?"

2.6 Long Lines

Ever since the days of the punch card images are over, the lines in program
sources have become longer and longer, and with NetRexx being a free format
language, there is no real technical reason to limit line length. Still, for readability

9

Chapter 2. Learning to program

and for ease access to words within a line, it is often indicated to keep lines
relatively short and tidy. For this reason, the continuation character ’-’ can be used.
This also makes it possible to split long literal strings over lines.
say 'good' −
'night'

This example will concatenate ’good’ and ’night’ with a space inbetween. When
you want to avoid that, use the ’||’ concatenation operator.
say 'good' −
||'night'

2.7 Loops

We can go on and write clause after clause in a program source files, but some
repetitive actions in which only a small change occurs, are better handled by the
loop statement.

Imagine an assignment to neatly print out a table of exchange rates for dollars and
euros for reference in a shop. We could of course make the following program:
say 1 'euro equals' 1 ∗ 1.19 'dollars'
say 2 'euro equals' 2 ∗ 1.19 'dollars'
say 3 'euro equals' 3 ∗ 1.19 'dollars'
say 4 'euro equals' 4 ∗ 1.19 'dollars'
say 5 'euro equals' 5 ∗ 1.19 'dollars'
say 6 'euro equals' 6 ∗ 1.19 'dollars'
say 7 'euro equals' 7 ∗ 1.19 'dollars'
say 8 'euro equals' 8 ∗ 1.19 'dollars'
say 9 'euro equals' 9 ∗ 1.19 'dollars'
say 10 'euro equals' 10 ∗ 1.19 'dollars'

This is valid, but imagine the alarming thought that the list is deemed a success
and you are tasked with making a new one, but now with values up to 100. That
will be a lot of typing.

The way to do this is using the loop3 statement.
loop i=1 to 100
say i 'euro equals' i ∗ 1.19 'dollars'

end

Now the loop index variable i varies from1 to 100, and the statements between loop
and end are repeated, giving the same list, but now from 1 to 100 dollars.

3Note that Classic Rexx uses do for this purpose. In recent Open Object Rexx versions loop can also be used.

10

2.8. Special Variables

We can do more with the loop statement, it is extremely flexible. The following
diagram is a (simplified, because here we left out the catch and finally options)
rundown of the ways we can loop in a program.

A few examples of what we can do with this:

. Looping forever - better put, without deciding beforehand howmany times
loop forever
say 'another bonbon?'
x = ask
if x = 'enough already' then leave

end

The leave statement breaks the program out of the loop. This seems futile,
but in the chapter about I/O we will see how useful this is when reading files,
of which we generally do not know in advance howmany lines we will read in
the loop.. Looping for a fixed number of times without needing a loop index variable
loop for 10

in.read() /∗ skip 10 lines from the input file ∗/
end

. Looping back into the value of the loop index variable
loop i = 100 to 90 by −2
say i

end

This yields the following output:

===== Exec: test =====
100
98
96
94
92
90
Processing of ’test.nrx’ complete

2.8 Special Variables

We have seen that a variable is a place where some data, be it character date or
numerical data, can be held. There are some special variables, as shown in the
following program.

11

Chapter 2. Learning to program

/∗ NetRexx ∗/
options replace format comments java symbols binary

class RCSpecialVariables

method RCSpecialVariables()
x = super.toString
y = this.toString
say '<super>'x'</super>'
say '<this>'y'</this>'
say '<class>'RCSpecialVariables.class'</class>'
say '<digits>'digits'</digits>'
say '<form>'form'</form>'
say '<[1, 2, 3].length>'
say [1, 2, 3].length
say '</[1, 2, 3].length>'
say '<null>'
say null
say '</null>'
say '<source>'source'</source>'
say '<sourceline>'sourceline'</sourceline>'
say '<trace>'trace'</trace>'
say '<version>'version'</version>'

say 'Type an answer:'
say '<ask>'ask'</ask>'

return

method main(args = String[]) public static

RCSpecialVariables()

return

this The special variables this and super refer to the current instance of the class
and its superclass - what thismeans will be explained in detail in the chapter
Classes on page 45, as is the case with the class variable.

digits The special variable digits shows the current setting for the number of
decimal digits - the current setting of numeric digits. The related variable
form returns the current setting of numeric formwhich is either scientific
or engineering.

null The special variable null denotes the empty reference. It is there when a
variable has no value.

source The source and sourceline variables are a goodway to show the sourcefile
and sourceline of a program, for example in an error message.

trace The trace variable returns the current trace setting, which can be one of the
words off var methods all results.

12

2.8. Special Variables

version The version variable returns the version of the NetRexx translator that
was inuseat the time theclauseweprocessed; in caseof interpretedexecution(see
chapter 4 on 19, it returns the level of the current translator in use.

The result of executing this exec is as follows:

===== Exec: RCSpecialVariables =====
<super>RCSpecialVariables@4e99353f</super>
<this>RCSpecialVariables@4e99353f</this>
<class>class RCSpecialVariables</class>
<digits>9</digits>
<form>scientific</form>
<[1, 2, 3].length>
3
</[1, 2, 3].length>
<null>

</null>
<source>Java method RCSpecialVariables.nrx</source>
<sourceline>21</sourceline>
<trace>off</trace>
<version>NetRexx 3.02 27 Oct 2011</version>
Type an answer:
hello fifi
<ask>hello fifi</ask>

Itmightbeuseful tonotehere that these special variables arenotfixed in the sense
of that they are not Reserved Variables. NetRexx does not have reserved variables
and any of these special variables can be used as an ordinary variable. However,
when it is used as an ordinary variable, there is no way to retrieve the special
behavior.

13

Chapter 3

NetRexx as a Scripting Language

The term scripting is usedhere in the sense of using theprogramming language for
quickly composed programs that interact with some application or environment
to perform a number of simple tasks.

You can use NetRexx as a simple scripting languagewithout having knowledge of,
or using any of the features that is needed in a Java program that runs on the JVM
- like defining a class name, and having a mainmethod that is static and expects
an array of String as its input.

Scripts can be written very fast. There is no boilerplate, such as defining a class,
constructors and methods, and the programs contain only the necessary state-
ments. In this sense, a NetRexx script looks like an oo-version of a Classic Rexx
script. These will be automatically generated in the Java language source that is
being generated for a script.

The scripting feature can be used for test purposes. It is an easy and convenient
way of entering some statements and testing them. The scripting feature can also
be used for the start sequence of a NetRexx application.

Scripts can be interpreted or compiled - there is no rule that a script needs to
be interpreted. In interpreted mode, the edit-compile-run cycle is shortened, in
the sense that there is no separate compilation step necessary and incremental
editing and testing can be done very efficiently. In both cases, interpreted or
compiled, the NetRexx translator adds the necessary syntactic overhead into the
Java source to enable the JVM to execute the resulting program.

15

Chapter 3. NetRexx as a Scripting Language

3.1 A Scripting Example

In the following example we see how a simple script is written, translated to Java
source and executed.
/∗ NetRexx Greet.nrx ∗/
parse arg name .
if name <> '' then
say 'Hello,' name
else say 'Hello, stranger!'

If we execute this with nrc -verbose0 Greet -arg Mike it will say Hello Mike. Note
that in scripting mode the commandline arguments are put into a string called
arg, which canbeparsed like in aClassic Rexx script.We can lookhow this is done.
To see the source, we must compile it and tell the processor to keep the source,
and format it for readability (normally, no Java source is written to disk). Add a
-replace for whenwe are doing thismore than once. The commandline for this is:
nrc -keepasjava -format -replace Greet. This will leave a Greet.java file for us to
look at.
/∗ Generated from 'Greet.nrx' 28 Mar 2022 22:11:40 [v4.03] ∗/
/∗ Options: Annotations Decimal Format Java Logo Replace Trace2 Verbose3 ∗/

public class Greet{
private static final char[] \$01={1,10,2,0,1,0};
private static final netrexx.lang.Rexx \$02=netrexx.lang.Rexx.toRexx("");
private static final netrexx.lang.Rexx \$03=netrexx.lang.Rexx.toRexx("

Hello,");
private static final java.lang.String \$0="Greet.nrx";

\@SuppressWarnings("unchecked")

public static void main(java.lang.String \$0s[]){
netrexx.lang.Rexx name=null;
netrexx.lang.Rexx arg=new netrexx.lang.Rexx(\$0s);
{netrexx.lang.Rexx \$1[]=new netrexx.lang.Rexx[2];
netrexx.lang.RexxParse.parse(arg,\$01,\$1);
name=\$1[0];}
if (name.OpNotEq(null,\$02))
netrexx.lang.RexxIO.Say(\$03.OpCcblank(null,name));
else
netrexx.lang.RexxIO.Say("Hello, stranger!");
return;}

private Greet(){return;}
}

16

3.2. Automatic ’Uses’

We see that the Java source has a class Greet defined, and a static and public main
method, which is what the JVM looks for when asked to execute a class file. Its
argument is an Array of type String, called $0s - the contents of which are copied
into a Rexx variable called arg.

The scripting facility and its automatic generation of a class statement can lead
to one surprising message when there is an error in the first part of the program:
class x already impliedwhen the automatically generated class statement (using the
program file name) somehow clashes with the specified name that contains the
error. When not in scripting mode, this error message nearly always indicates an
error that occurred before the first class statement.

3.2 Automatic 'Uses'

When ScriptingMode 4.03is employed, the classes RexxStream, RexxDate and RexxTime are
automatically added to the Class definition using a uses statement. This statement
causes the static methods of these classes to be available to the program without
further qualification, as shown in the following example:
/∗ Rexx finds years a given date fell on a given weekday ∗/
argstr = 'start_year end_year weekday month day'
if arg='' then do
say 'args are' argstr
exit

end
parse arg start_year end_year weekday mon day
say mon day 'fell on a' weekday 'in the following years:'
loop i=start_year to end_year
dt = day mon i
if weekday = date('w',dt,'n') then say i

end

When we run this with nrc -verbose0 daydate -arg 1962 2022 saturday mar 10,
the following result is obtained:

mar 10 fell on a saturday in the following years:
1962
1973
1979
1984
1990
2001
2007

17

Chapter 3. NetRexx as a Scripting Language

2012
2018

(for more date and time examples, see page 145).

3.3 No 'return'

Because the script runs in generated method main, there is no possibility to use
the return statement - the java language, which defines themainmethod (the one
that is called when the JVM starts up) as returning void, does not allow it to return
anything.

The way to end a program and leave a return code is to use the exit statement.

18

Chapter 4

NetRexx as an Interpreted Language

In the JVM environment, compilation and interpretation are concepts that are
not as straightforward as in other environments; JVM code is interpreted on
several levels. When we are referring to interpreted NetRexx code, we indicate
that there is no intermediate Java compilation step involved. A JVM .class file is
always interpreted by the JVM runtime; the NetRexx translator is able to execute
programs without generating either .java or .class files.

This enables a very quick edit-debug-run cycle, especially when combined with
the command line feature that keeps the translator classes resident (the -prompt
option), or one of the IDE plugins for NetRexx.

For NetRexx to deliver this functionality, the translator has been designed to have
an analogous interpret facility for every code generation part.4

4This is the right order in which to explain this feature, because historically, the compiler was first (1996) and the in-
terpretation facility was added later (in 2000) -(but not without an extensive redesign of the compiler).

19

Chapter 5

Source Code Formatting

5.1 RxModel

Rexx is mostly a free-form programming language allowing each programmer
to write code in their own unique style. Over time, large programs with many
contributing authors may become difficult to read for new users. RxModel is a
NetRexx source code formatter that merges each style into one form. Visually, it
lays out nesting and control flow in a plain and simple manner.

The default built-in model is Model Zero and does nothing. Model One produces
clean, indented source without comments. Model Two produces clean, indented
and compacted sourcewithmerged comments. Model Three is a clever extension
of Model One inserting commented braces for code-folding editors.

Before starting, make a backup of your original source files. Your code must
compile cleanly before using RxModel. To use RxModel you only need to pass -
model[0-3] as anargument to theNetRexxCompiler. RxModel doeshaveproblems
with some clauses that can be resolved by editing the original NetRexx file and
running RxModel again. When the command finishes, you are left with the un-
touched NetRexx file and a Model file with ”.mod” as its extension. After review,
you can replace the NetRexx file with the new Model file. You must make sure
the Model file stills compiles. If you used Model Two, please ensure all comments
have been preserved and apply in context as the author intended.

For NetRexx developers, a powerful example is running RxModel against Net-
Rexx’s own code base.
git clone https://git.code.sf.net/p/netrexx/code netrexx−code
cd ./netrexx−code
ant clean
edit ./src/org/netrexx/process/RxFlag.nrx

21

Chapter 5. Source Code Formatting

Change line 57 from ”int 0” to ”int 1” and save.
ant

Rename the original cloned ./lib/NetRexxC.jar

Replace it with the freshly built one in ./build/lib/NetRexxC.jar
ant clean
ant

Now, for each ”*.nrx” inside the ./build/classes sub-directories you have a ”*.mod”
file.

A developer might want to keep the newly created NetRexxC.jar or NetRexxF.jar
that defaults to Model One without passing in -model1 for everyday personal use.
A Model One file will be generated each time the compiler is used.

5.2 Beyond RxModel

Under ./tools/java2xml is a NetRexx front-end to the sourceforge project XES
that converts Java to XML. It is older but it is currently a better option than the
buggy one provided by JavaParser. Under ./examples/javaparser, NrxWriter.nrx
is an almost perfect port of the DefaultPrettyPrinterVisitor included with the
current JavaParser project. It could become the next generation of java2nrx or
modified for other special projects. NrxJava.nrx is a very simple use case of
the DefaultPrettyPrinterVisitor in JavaParser to test NrxWriter. Also, included
is NrxYaml.nrx for those who like working with YAML files.

22

Chapter 6

Using the translator

This section of the document tells you how to use the translator package.

The NetRexx translator may be used as a compiler or as an interpreter (or it can
do both in a single run, so parsing and syntax checking are only carried out once).
It can also be used as simply a syntax checker.

When used as a compiler, the intermediate Java source code may be retained, if
desired. Automatic formatting, and the inclusion of comments from the NetRexx
source code are also options.

6.1 Using the translator as a compiler

The installation instructions for the NetRexx translator describe how to use the
package to compile and run a simple NetRexx program (hello.nrx). When using
the translator in this way (as a compiler), the translator parses and checks the
NetRexx source code, and if no errorswere found thengenerates Java source code.
This Java code is then compiled into bytecodes (.class files) using a Java compiler,
in a process called AOT compilation. By default, the javac compiler in the Java
toolkit is used.

This section explains more of the options available to you when using the trans-
lator as a compiler.

6.2 The translator command

The translator is invoked by running a Java program (class) which is called
org.netrexx.process.NetRexxC

23

Chapter 6. Using the translator

(NetRexxC, for short). This can be run by using the Java interpreter, for example, by
the command:
java org.netrexx.process.NetRexxC

or by using a system-specific script (such as NetRexxC.cmd. or nrc.bat). In either
case, the compiler invocation is followed by one or more file specifications (these
are the names of the files containing the NetRexx source code for the programs to
be compiled).

File specifications may include a path; if no path is given then NetRexxC will look
in the current (working) directory for the file. NetRexxCwill add the extension .nrx
to input program names (file specifications) if no extension was given.

So, for example, to compile hello.nrx in the current directory, you could use any of:
java org.netrexx.process.NetRexxC hello
java org.netrexx.process.NetRexxC hello.nrx
NetRexxC hello.nrx
nrc hello

(the first two should always work, the last two require that the system-specific
script be available). The resulting .class file is placed in the current directory, and
the .crossref (cross-reference) file is placed in the same directory as the source file
(if there are any variables and the compilation has no errors).

Here is an example of compiling two programs, one of which is in the directory
d:\myprograms:
nrc hello d:\myprograms\test2.nrx

In this case, again, the .classfile for eachprogram isplaced in the current directory.

Note that when more than one program is specified, they are all compiled within
the same class context. That is, they can see the classes, properties, andmethods
of the other programs being compiled, much as though they were all in one file.
5 This allows mutually interdependent programs and classes to be compiled in
a single operation. Note that if you use the package instruction you should also
read the more detailed Compiling multiple programs section.

On completion, theNetRexxC classwill exitwith one of three return values: 0 if the
compilation of all programswas successful, 1 if therewere one ormoreWarnings,
but no errors, and 2 if there were one or more Errors. The result can be forced to
0 for warnings only with the -warnexit0 option.

Aswell asfilenames, youcanalso specify variousoptionwords,whicharedistinguished
by the word being prefixed with -. These flagged words (or flags) may be any of

5The programs do, however, maintain their independence (that is, they may have different options, import, and
package instructions).

24

6.3. Compiling multiple programs and using packages

the option words allowed on the NetRexx options instruction (see the NetRexx
language documentation, and the below paragraph). These options words can
be freely mixed with file specifications. To see a full list of options, execute the
NetRexxC with the –help option command without specifying any files. As this
command states, all options may have prefix ’no’ added for the inverse effect.

6.2.1 Options

Here are some examples:
java org.netrexx.process.NetRexxC hello −keep −strictargs
java org.netrexx.process.NetRexxC −keep hello wordclock
java org.netrexx.process.NetRexxC hello wordclock −nocompile
nrc hello
nrc hello.nrx
nrc −run hello
nrc −run Spectrum −keep
nrc hello −binary −verbose1
nrc hello −noconsole −savelog −format −keep

Option words may be specified in lowercase, mixed case, or uppercase. File spe-
cifications are platform-dependent and may be case sensitive, though NetRexxC
will always prefer an exact case match over a mismatch.

Note:The -runoption is implementedbya script (suchasnrc.bat orNetRexxC.cmd),
not by the translator; some scripts (such as the .bat scripts) may require that the
-run be the first word of the command arguments, and/or be in lowercase. They
may also require that only the name of the file be given if the -run option is used.
Check the commentary at the beginning of the script for details.

6.3 Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all
compiled within the same class context: that is, they can see the classes, proper-
ties, and methods of the other programs being compiled, much as though they
were all in one file.

This allows mutually interdependent programs and classes to be compiled in a
single operation. For example, consider the following two programs (assumed to
be in your current directory, as the files X.nrx and Y.nrx):
/∗ X.nrx ∗/
class X
why=Y null

25

Chapter 6. Using the translator

/∗ Y.nrx ∗/
class Y
exe=X null

Each contains a reference to the other, so neither can be compiled in isolation.
However, if you compile them together, using the command:
nrc X Y

the cross-references will be resolved correctly.

The total elapsed timewill be significantly less, too, as theclasseson theCLASSPATH
need to be located only once, and the class files used by the NetRexxC compiler
or the programs themselves will also only be loaded (and JIT-compiled) once.

This example works as you would expect for programs that are not in packages.
There is a restriction, though, if the classes youare compiling are in packages (that
is, they include a package instruction). NetRexxC uses either the javac compiler
or the Eclipse batch compiler ecj to generate the .class files, and for mutually-
dependentfiles like these; both require the sourcefiles tobe in the JavaCLASSPATH,
in the sub-directory described by the package instruction.

So, for example, if your project is based on the tree:

D:\myproject

if the two programs above specified a package, thus:
/∗ X.nrx ∗/
package foo.bar
class X
why=Y null

/∗ Y.nrx ∗/
package foo.bar
class Y
exe=X null

1. You should put these source files in the directory: D:\myproject\foo\bar
2. The directory D:\myproject should appear in your CLASSPATH setting (if you
don’t do this, javacwill complain that it cannotfindoneor other of the classes).

3. You should then make the current directory be D:\myproject\foo\bar and then
compile the programs using the command nrc X Y, as above.

With this procedure, you should end up with the .class files in the same directory
as the .nrx (source) files, and therefore also on the CLASSPATH and immediately
usablebyotherpackages. Ingeneral, this arrangement is recommendedwhenever
you are writing programs that reside in packages.

26

6.3. Compiling multiple programs and using packages

Notes:

1. When javac is used to generate the .class files, no new .class files will be created
if any of the programs being compiled together had errors - this avoids
accidentally generating mixtures of new and old .class files that cannot work
with each other.

2. If a class is abstract or is an adapter class then it should be placed in the list
before any classes that extend it (as otherwise any automatically generated
methods will not be visible to the subclasses).

27

Chapter 7

Using build systems - ANT

From the command line, different build systems can be used to build an entire
project in one go. This chapter explains how to use ANT, one of the early Java
cross-platform build tools. With ant, the specification for the build needs to be
provided in an .xml file; the default is build.xml. NetRexx itself is built using
ant; its build.xml can be checked out in the git repository. Two scenarios for
building with ant are mentioned in the following sections. Unlike make, ant does
not work with command lines, but with specialized Java tasks, to make this build
system platform independent. A special NetRexx ant task (written in NetRexx) is
packaged in the NetRexxC.jar and NetRexxF.jar files, this needs to be specified in
the build file; the small ant-netrexx.jar file also can be used.

The official Apache package for ant has the original NetRexx optional task written
in the Java language; this can be used, but is not up to date with the RexxLA
version.

Note that when building NetRexx from source, there are two bootstrapping situa-
tions: NetRexx is written in itself, and is built using the optional NetRexx ant task,
written in NetRexx, using ant.

7.1 In-source, no packages

In this scenario, the build is in-source, this means the program source files and
the class files are interspersed in the same directory; this is often the case with
small projects that only have a few source files and no package structure. This
situation enables a very small buildfile, with only two ’build goals’ in it: prepare
compile and clean, identified by <target> XML tags. In this case, the ’compile’ goal
is the default, as indicated on the <project> tag, default= attribute. We also need
to include a <taskdef> tag for ant to find the NetRexx task.

29

Chapter 7. Using build systems - ANT

Also, we assume that the environment settings for the current user are in effect,
notably the one for CLASSPATH. Larger projects will probably package their own
libraries, and possibly need to specify build- and runtime classpaths; these are
not needed here.
<?xml version="1.0" ?>

<project name="Hello"
default="compile"
basedir=".">

<property environment="env"/>

<taskdef name="nrc"
classname="org.apache.tools.ant.taskdefs.optional.NetRexx"
classpath="${env.CLASSPATH}">

</taskdef>

<target name="compile"
description="compile">
<nrc srcDir="."
classpath="${env.CLASSPATH}"
includes="∗.nrx"
compile="yes" />

</target>

<target name="clean"
description="deletes the .class files">
<delete>
<fileset dir="." includes="∗.class"/>

</delete>
</target>

</project>

This build process will be run when the user enters the ant command, and the
result is a number of class files - if there are no errors. In case of errors, no class
files are produced. On subsequent runs, only the classes of which the source files
are newer than the class files, will be compiled - this makes for an efficient build
process.

7.2 With package structure

For a slightly larger project, which has its own package structure, we can use a
slightly more complicated build file, that will serve a lot of projects of this kind.
In this scenario, the source files are in a src directory, and the class files will be
compiled to a file system directory structure based on the package names. As
an example, if the file hello.nrx is in a src subdirectory of the project, and its

30

7.2. With package structure

package name is org.rexxla.examples, the hello.class file will be in a subdirectory
<project>/war/WEB-INF/classes/org/rexxla/examples/.

For universal usability, e.g. in a JEE webserver as Tomcat, Jetty or JBoss, we use
the WAR file structure, as is the standard for these application servers..

Next to the environment, we define two properties for the NetRexx optional ant
task: we tell it to generate Java source files (’keepasjava’), and to replace Java
source that is already there without asking.
<?xml version="1.0" ?>

<project name="Hello Packages"
default="nrccompile"
basedir=".">

<property environment="env"/>
<property name="ant.netrexxc.keepasjava" value="true"/>
<property name="ant.netrexxc.replace" value="true"/>

<taskdef name="nrc"
classname="org.apache.tools.ant.taskdefs.optional.NetRexx"
classpath="${env.CLASSPATH}">

</taskdef>

<path id="project.class.path">
<pathelement location="war/WEB−INF/classes"/>
<pathelement location="${env.CLASSPATH}"/>
<fileset dir="war/WEB−INF/lib" includes="∗∗/∗.jar"/>

</path>

<target name="libs" description="Copy libs to WEB−INF/lib">
<mkdir dir="war/WEB−INF/lib" />
<mkdir dir="war/WEB−INF/classes"/>

</target>

<target name="nrccompile" depends="libs" description="Compile NetRexx
source to Java">

<nrc srcDir="src" destDir="war/WEB−INF/classes"
includes="∗∗" compile="yes"
classpath="${env.CLASSPATH}"/>
<copy todir="war/WEB−INF/classes">
<fileset dir="src" excludes="∗∗/∗.nrx"/>

</copy>
</target>

<target name="javacompile" depends="libs,nrccompile" description="
Compile Java source to bytecode">

<javac srcdir="src" includes="∗∗" encoding="utf−8"
destdir="war/WEB−INF/classes">

<classpath refid="project.class.path"/>
</javac>
<copy todir="war/WEB−INF/classes">

31

Chapter 7. Using build systems - ANT

<fileset dir="src" excludes="∗∗/∗.java"/>
</copy>

</target>

<target name="war" depends="nrccompile,javacompile" description="Create a
war file">

<zip destfile="Example.war" basedir="war"/>
</target>

<target name="clean"
description="Cleans this project">
<delete dir="war"

failonerror="false" />
</target>

</project>

In ananalogousway,we compile the sources theremight be in .javafiles in a larger
project with the javac task.

In the libs target we create the output directories as indicated in the standard. The
compile task then translates the .nrx source files to the respective files in the target
directories, by using a compile and a copy task. This enables us to have the same
package structure in the source and target directories, which then are ready to be
compressed - and packaged - into a .war file, which is a standard web archive, with
the ant war command.

The clean task deletes the whole directory tree that starts with war, which is a very
efficient way to clean out all built objects (except the compressed war file itself).

32

Chapter 8

Using the NetRexxA API

As described elsewhere, the simplest way to use the NetRexx interpreter is to use
the command interface (NetRexxC) with the -exec or -arg flags. There is a also a
more direct way to use the interpreter when calling it from another NetRexx (or
Java) program, as described here. This way is called the NetRexxA Application Pro-
gramming Interface (API).
TheNetRexxAclass is in the samepackageas the translator (that is, org.netrexx.process),
and comprises a constructor and two methods. To interpret a NetRexx program
(or, in general, call arbitrary methods on interpreted classes), the following steps
are necessary:

1. Construct the interpreter object by invoking the constructor NetRexxA(). At
this point, the environment’s classpath is inspected and known compiled
packages and extensions are identified.

2. Decideon theprogram(s)whichare tobe interpreted, and invoke theNetRexxA
parse method to parse the programs. This parsing carries out syntax and
other static checks on the programs specified, and prepares them for inter-
pretation. A stub class is created and loaded for each class parsed, which
allows access to the classes through the JVM reflection mechanisms.

3. At this point, the classes in the programs are ready for use. To invoke a
method on one, or construct an instance of a class, or array, etc., the Java
reflectionAPI (in java.lang and java.lang.reflect) is used in theusualway,working
on the Class objects created by the interpreter. To locate these Class objects,
the API’s getClassObjectmethod must be used.

Once step 2 has been completed, any combination or repetition of using the
classes is allowed. At any time (provided that all methods invoked in step 3 have
returned) a new or edited set of source files can be parsed as described in step
2, and after that, the new set of class objects can be located and used. Note that

33

Chapter 8. Using the NetRexxA API

operation is undefined if any attempt ismade to use a class object thatwas located
before the most recent call to the parsemethod.
Here’s a simple example, a program that invokes themainmethod of the hello.nrx
program’s class:
options binary
import org.netrexx.process.\nr{}A

interpreter=NetRexxA() −− make interpreter

files=['hello.nrx'] −− a file to interpret
flags=['nocrossref', 'verbose0'] −− flags, for example
interpreter.parse(files, flags) −− parse the file(s), using the flags

helloClass=interpreter.getClassObject(null, 'hello') −− find the hello
Class

−− find the 'main' method; it takes an array of Strings as its argument
classes=[interpreter.getClassObject('java.lang', 'String', 1)]
mainMethod=helloClass.getMethod('main', classes)

−− now invoke it, with a null instance (it is static) and an empty String
array

values=[Object String[0]]

loop for 10 −− let's call it ten times, for fun...
mainMethod.invoke(null, values)

end

Compiling and running (or interpreting!) this example program will illustrate
some important points, especially if a trace all instruction is added near the top.
First, the performance of the interpreter (or indeed the compiler) is dominated
by JVM and other start-up costs; constructing the interpreter is expensive as the
classpath has to be searched for duplicate classes, etc. Similarly, the first call to
the parsemethod is slowbecause of the time taken to load, verify, and JIT-compile
the classes that comprise the interpreter. After that point, however, only newly-
referenced classes require loading, and execution will be very much faster.
The remainder of this section describes the constructor and the two methods of
the NetRexxA class in more detail.

8.1 The NetRexxA constructor

NetRexxA()

This constructor takesnoarguments andbuilds an interpeter object. This process
includes checking the classpath and other libraries known to the JVM and identi-

34

8.2. The parse method

fying classes and packages which are available.

8.2 The parse method

parse(files=String[], flags=String[]) returns boolean

The parsemethod takes two arrays of Strings. The first array contains a list of one
ormore file specifications, one in each element of the array; these specify the files
that are to be parsed andmade ready for interpretation.
The second array is a list of zero or more option words; these may be any option
words understood by the interpreter (but excluding those known only to the
NetRexxC command interface, such as time). 6 The parse method prefixes the
nojava flag automatically, to prevent .java files being created inadvertently. In the
example, nocrossref is supplied to stop a cross-reference file being written, and
verbose0 is added to prevent the logo and other progress displays appearing.
The parse method returns a boolean value; this will be 1 (true) if the parsing
completed without errors, or 0 (false) otherwise. Normally a program using the
API should test this result an take appropriate action; it will not be possible to
interpret a program or class whose parsing failed with an error.

8.3 The getClassObject method

getClassObject(package=String, name=String [,dimension=int]) returns Class

This method lets you obtain a Class object (an object of type java.lang.Class) repre-
senting a class (or array) known to the interpreter, including those newly parsed
by a parse instruction.
Thefirst argument,package, specifies thepackagename (for example, com.ibm.math).
For a class which is not in a package, null should be used (not the empty string, ”).
The second argument, name, specifies the class name (for example, BigDecimal).
For a minor (inner) class, this may have more than one part, separated by dots.
The third, optional, argument, specifies thenumberofdimensionsof the requested
class object. If greater than zero, the returned class object will describe an array
with the specified number of dimensions. This argument defaults to the value 0.
Anexampleofusing thedimensionargument is shownabovewhere the java.lang.String[]
array Class object is requested.
Once a Class object has been retrieved from the interpreter it may be used with

6Note that the option words are not prefixed with a -.

35

Chapter 8. Using the NetRexxA API

the Java reflection API as usual. The Class objects returned are only valid until the
parse method is next invoked.

36

Chapter 9

Calling non-JVM programs

Non-JVM programs can be called using the Address instruction. For optimal flexi-
bility in the handling of output, this sections describes how to use the native Java
facilities for this. It is easy to call non-JVM programs from a NetRexx program -
not as easy as calling a JVM class of course, but if the following recipe is observed,
it will shownot to be amajor problem. The following example is reusable formany
cases.
/∗ script NonJava.nrx

This program starts an UNZIP program, redirects its output,
parses the output and shows the files stored in the zipfile ∗/

parse arg unzip zipfile .

−− check the arguments − show usage comments
if zipfile = '' then do

say 'Usage: Process unzipcommand zipfile'
exit 2

end

do
say "Files stored in" zipfile
say "−".left(39,"−") "−".left(39,"−")
child = Runtime.getRuntime().exec(unzip ' −v' zipfile) −− program start

−− read input from child process
in = BufferedReader(InputStreamReader(child.getInputStream()))
line = in.readline

start = 0 −− listing of files are not available yet
count = 0
loop while line \= null

parse line sep program
if sep = '−−−−−−' then start = \start
else
if start then do

count = count + 1

37

Chapter 9. Calling non-JVM programs

if count // 2 > 0 then say program.word(program.words).left(39)
'\−'

else say program.word(program.words)
end

line = in.readline()
end

−− wait for exit of child process and check return code
child.waitFor()
if child.exitValue() \= 0 then

say 'UNZIP return code' child.exitValue()

catch IOException
say 'Sorry cannot find' unzip

catch e2=InterruptedException
e2.printStackTrace()

end

Just firing off a program is no big deal, but this example (in script style) showshow
easy it is to access the in- and output handles for the environment that executes
the program, which enables you to capture the output the non-jvm program pro-
duces anddouseful thingswith it.7 Line 17 starts the external commandusing the
JVM Runtime class in a process called child. In line 20 we create a BufferedReader
from the child processes’ output. This is called an InputStream but it might as
well have been called an OutputStream- everything regarding I/O is relative - but
fortunately the designers of the JVM took care of deciding this for you. In lines 25-
35 we loop through the results and show the files stored in the zipfile. Note that
we do (line 14) have to catch (line 42) the IOException that ensues if the runtime
cannot find the unzip program, maybe because it is not on the path or was not
delivered with your operating system.

Starting from JVM1.5 releases, there is a newway to accomplish the same goal, in
a cleanermanner andwith the added bonus of being able to redirect streams, and
use environment variables. In this regard, the environment variable hasmade an
important comeback from having its calls deprecated, to easy to use support in
the ProcessBuilder class.
package org.netrexx.address

/∗∗
∗ Class OSProcess implements ways to execute and get output from an OS

Process
∗/
class OSProcess deprecated

properties indirect
pid = Process

7This is akin to what one would do with queue on z/VM CMS and outtrap on z/OS TSO in Classic Rexx.

38

returncode
commandList = ArrayList()
outList = ArrayList()

properties private
listeners = HashSet()
/∗∗
∗ Default constructor
∗/
method OSProcess()
return

/∗
∗ helper method that makes an ArrayList of out a Rexx string for use
∗ in the similarly named method that has an ArrayList as input
∗/

method outtrap(command_=Rexx) returns ArrayList
if command_ = '', command_ = null then return null
a = ArrayList()
loop until command_ = ''
parse command_ first command_
a.add(first.toString())

end
return this.outtrap(a)

/∗
∗ helper method that makes an ArrayList of out a Rexx string for use
∗ in the similarly named method that has an ArrayList as input
∗/

method exec(command_=Rexx, wait=1)
if command_ = '', command_ = null then return
a = ArrayList()
loop until command_ = ''
parse command_ first command_
a.add(first.toString())

end
this.exec(a,wait)

/∗∗
∗ Method outtrap starts an OS process from a command line in an

ArrayList
∗ @param command is a List that has the command to be executed as

elements
∗ @return List containing the output of the command
∗/
method outtrap(command_=ArrayList) returns ArrayList
this.commandList = command_
do
pb = ProcessBuilder(command_)
pb.redirectErrorStream(1)
this.pid = pb.start()
in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
line = Rexx in.readLine()
loop while line <> null

39

Chapter 9. Calling non-JVM programs

this.outList.add(line)
line = Rexx in.readLine()

end
pid.waitFor()
returncode = pid.exitValue()
return this.outList

catch iox=IOException
say iox.getMessage()
return ArrayList()

catch InterruptedException
say "interrupted"
return ArrayList()

end −− do

/∗∗
∗ Method exec starts an OS process from a command line in an ArrayList
∗ @param then fires off outputEvent events to every registered listener
∗ @return void
∗/
method exec(command_=ArrayList,wait=1)
this.commandList = command_
do
pb = ProcessBuilder(command_)
pb.redirectErrorStream(1)
this.pid = pb.start()
if wait then do

in = BufferedReader(InputStreamReader(this.pid.getInputStream()))
line = in.readLine()
loop while line <> null
line = in.readLine()
i = this.listeners.iterator()
loop while i.hasNext()
op = OutputEventListener i.next()

op.outputReceived(OutputLineEvent(this,line,this.pid))
end

end
pid.waitFor()
returncode = pid.exitValue()

end
catch iox=IOException
say iox.getMessage()

catch InterruptedException
say "interrupted"

end −− do

/∗∗
∗ Method addOutputEventListener supports registering an event listener
∗ @param listener_ is a OutputEventListener
∗/
method addOutputEventListener(listener_=OutputEventListener)
this.listeners.add(listener_)

/∗∗

40

∗ Method removeOutputEventListener supports de−registering an event
listener

∗ @param listener_ is a OutputEventListener
∗/
method removeOutputEventListener(listener_=OutputEventListener)
this.listeners.remove(listener_)

In the above sample, we are using two different ways to obtain the output from
a process started by the JVM from our own program. The method outtrap waits
until the invoked process is finished and returns all output lines in an ArrayList.
Its name is not entirely coincidental with the similar TSO outtrap function.

Sometimes we cannot wait until the child process is finished, for example when
it is a long running process and we need to capture the output on a line-by-line
basis to see what is happening - in case of the example, this was done to capture
the output as part of a testsuite for amultithreadedfile transfer application,which
has a server resident process that is not supposed to end, because one of its tasks
is to poll a directory for incoming files with a specific pattern in the file names.
This is implemented using an Event based pattern (as explained in 14.2 on page
56.
package org.netrexx.address
import java.util.EventObject
/∗∗
∗ Class OutputLineEvent embodies the OutputLineEvent
∗/
class OutputLineEvent extends EventObject deprecated

properties indirect
pid = Process
line
/∗∗
∗ Default constructor
∗/
method OutputLineEvent(ob=Object,line_, pid_=Process)
super(ob)
this.line = line_
this.pid = pid_
return

package org.netrexx.address
import java.util.EventListener
/∗∗
∗ Interface OutputEventListener specifies the one mandatory method for

this interface
∗/
class OutputEventListener interface implements EventListener deprecated

method outputReceived(ob=OutputLineEvent)

The call would look something like this:
41

Chapter 9. Calling non-JVM programs

os = OSProcess()
os.addOutputEventListener(this)
os.exec(command)

The class must extend OutputEvenListener, and implement this method:
method outputReceived(ob=OutputLineEvent)
this.counter = this.counter+1
say this.counter ob.getPid() ob.getLine()

42

Chapter 10

Using NetRexx classes from Java

If you are a Java programmer, using a NetRexx class from Java is just as easy as
using a Java class from NetRexx. NetRexx compiles to Java classes that can be
used by Java programs. You should import the netrexx.lang package to be able to
use the short class name for the Rexx (NetRexx string and numerics) class.

A NetRexx method without a returns keyword can return nothing, which is the
void type in Java, or a Rexx string. NetRexx is case independent8; Java is case
dependent. NetRexx generates the Java code with the case used in the class and
method instructions. For example, if you named your class Spider in the NetRexx
source file, the resulting Java class file is Spider.class. The public class name in
your source program must match the NetRexx source file name. For example,
if your source file is SPIDER.NRX, and your class is Spider, NetRexx generates a
warning and changes the class name to SPIDER to match the file name. A Java pro-
gram using the class name Spider would not find the generated class, because its
name is SPIDER.class - if the compile succeeded, which is not guaranteed in case
of casingmismatches. If you have problems, compile your NetRexx programwith
the options -keepasjava -format. You then can look at the generated java file for
the correct spelling style and method parameters.

8With the default of options nostrictcase in effect.

43

Chapter 11

Classes

Somewhere in the nineties Object Orientation became one of the mainstream
ways to organize computer programs, and support for this was added to pro-
gramming languages. C became C++ with a preprocessor that generates C9 that is
not entirely unlike the NetRexx translator produces Java. Java in itself is syntax-
wise a cleaned up version of C++, but in essence an entirely different language.
Its inventor and architect, James Gosling, has stated on various occasions that he
was planning a fully different syntax for what finally became Java - but that Sun
management more or less forced him to use a C++ derived syntax, because C++
compilers was what SUN did well at the time. With Brendan Eich having to base
JavaScript qua naming and syntax on Java, the circle that brought theworld terse,
curly braces based notations, is complete.

For an audience of Rexx programmers, the usual OO presentation goes into the
advantages of the paradigm. Today, that is not really necessary, and OO is a
given; it slightly deviates from earlier notation as result of trying to put data and
procedure into Objects, but it is no great deal, and this NetRexx Programmer’s
Guide does not need a special section on the benefits of the OO paradigm. It is
assumed that with a few examples everyone should be able to get it; some old
programmers might resist but there is really no use in fighting the mainstream.
Consequently, this sectiondiscusses theway todo this inNetRexx; thewayNetRexx
does it is for a very large part formed by the way the JVM dictates it, adapted to
Rexx notational style and conventions.

Where traditional Rexx would say:

l=left(ourstring,1)

the OO-versions of Rexx would say:
9Cfront

45

Chapter 11. Classes

l=ourstring.left(1)

As often the case, the hard part is in the notational ommission that OO has as its
characteristic: the instancepointer is nopart of the function call andhasmoved to
the left (in what now is called amethod. The weight has shifted from the operation
to the object it is called on.

11.1 Classes

Classes represent a blueprint, ’cookie cutter’ approach in creating objects that do
useful things. A class is defined in a file by the same name (exceptions here for
dependent classes). So a class called Cookie is defined in a file called Cookie.nrx.
Its real,whichmeans itsmost specificname, including itspackage specification, is
not givenby thefilenamebutby thecombinationof theclass=file+ thenamegiven
on the package statement. This enables one to put classes in different packages
without having to change the file names.

11.2 Dependent Classes

Dependent classes are the NetRexx way to implement Java inner classes. There
is no in-line definition possible, and dependent classes need their own class
definition, but can be defined in the same source file as the classes they depend
on. The notational advantage of ’nested’ class definition, like customary in (for
example) Java Swing programs is absent. What is present, is the way dependent
classes can seamlessly access properties of their parent classes.

11.3 Properties

The properties statement enables us to define variables that are global to the class
definition, and as such can be used by all methods of the class.

A properties statement needs at least one visibility ormodifier keyword.When this
is left out, a variable called “properties” is defined,which is not an error, but (most
of the times) not what was intended.

Because the properties of a class can be externally visible (depending on visibility

46

11.3. Properties

they need to have a type. When the type is omitted in the definition, they are
of type Rexx. So-called indirect properties, defined with the properties indirect
modifier, give rise to automated generation of getter and settermethods for use in
Java Beans.

47

Chapter 12

Using Packages

Any non-toy, non-trivial programneeds to be in a package. Only examples in pro-
gramming books (present company included) have programs without package
statements. The reason for this is that there is a fairly large chance that you will
give something a name that is already used by someone else for something else.
Things are not their names10, and the same names are given to wildly dissimilar
things. The package construct is the JVM’s approach to introducingnamespaces into
the total set of programs that programmers make. Different people will probable
write somemethod that is called listDifferences sometime. With all my software
in a package called com.frob.nitz and yours in a package called com.frob.otzim,
there is no danger of our programs calling the wrong class and listing the wrong
differences.

It is imperative to understand this chapter before continuing - it is a mechanical
nuts-and-bolts issue but an essential one at that.

12.1 The package statement

Thefinal words about theNetRexxpackage statement is in theNetRexx Language
Reference, but the final statement about the packagemechanism is in the JVMdoc-
umentation.

12.2 Translator performance consequences

Because theNetRexx translator has to scan all packages that it can see (meaning a
recursive scanof thedirectories below its own level in thedirectory tree, andon its
10Willard Van Orman Quine, Word and Object, MIT Press, 1960, ISBN 0-262-67001-1

49

Chapter 12. Using Packages

classpath, it is often advisable (and certainly if . (a dot, representing the current
directory) is part of the classpath) to do development in a subdirectory, instead
of, for example, the top level home directory. If a large number of packages and
classes are visible to the translator, compile times will be negatively impacted.

12.3 Some NetRexx package history

All IBM versions of NetRexx had the translator in a package called

COM.ibm.netrexx.process

The official, SUN ordained convention for package names was, to prepend the
reversed domain name of the vendor to the package name, while uppercasing
the top level domain. NetRexx, being one of the first programs to make use of
packages, followed this convention, that was quickly dropped by SUN afterwards,
probably because someone experienced what trouble it could cause with version
management software that adapted to case-sensitiveandcase-insensitivefile systems.
For NetRexx, which had started out keenly observing the rules, this insight came
late. With the first RexxLA release of NetRexx in 2011, the package name was
changed to org.netrexx,while the runtimepackagenamewaskept as netrexx.lang,
also because somemajor other languages follow this convention.

50

Chapter 13

JPMS, The Java PlatformModule
System

Java9+ introduced the Java Platform Module System (JPMS) per JSR 376. While
Java 9 still loads external classes from files and jar-files, all run-time packages
now are bundled in modules. NetRexx 3.xx was not capable to load classes from
the JPMS.

NetRexx 4 is now supporting the JPMS to find and load its needed run-time
packages.11

From a NetRexx source code perspective, nothing changes. NetRexx is agnostic
about modules. It processes packages and classes whether found in directories,
jar-files or - now -modules. All existing source code should run unmodified, with
the exception that possibly classes could need to be called explicitly when short-
named classes now exhibit ambiguous classes if the short-named class is found
in more than one module/package. E.g.

/modules/java.base/java/util/spi/ToolProvider.class
/modules/java.compiler/javax/tools/ToolProvider.class

NetRexx 4 depends on JSR 203 (NIO.2) and thus requires aminimum JDK level of
Java 7, whereas NetRexx 3 runs on Java 6. NetRexx 4 compiles and runs on Java
7/8 (without JPMS) and on Java 9+ (with JPMS).

11You’ll find, in the NetRexx source code, updates in RxClasser, where method importclasses() is extended to look for
packages and classes in JPMS’ jrt:/ file system.
Method packmodfind() walks the jrt:/ directory tree at initialisation and registers all found packages. Method modfind()

registers classes when imported. Method loadclass() loads the class image from the JPMS.

51

Chapter 13. JPMS, The Java PlatformModule System

13.1 CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to
indicate a search path for Java classes. The Java Virtual Machine and the NetRexx
translator rely on the CLASSPATH value to find directories, zip files, and jar files
which may contain Java classes. The procedure for setting the CLASSPATH envi-
ronment variable depends on your operating system (and theremaybemore than
one way).

. For Linux and Unix (BASH, Korn, or Bourne shell), use:
CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH

. Changes for re-boot or opening of a new window should be placed in your
/etc/profile, .login, or .profile file, as appropriate.. For Linux and Unix (C shell), use:

setenv CLASSPATH <newdir>:\$CLASSPATH

Changes for re-boot or opening of a new window should be placed in your
.cshrc file. If you are unsure of how to do this, check the documentation you
have for installing the Java toolkit.. For Windows operating systems, it is best to set the system wide environ-
ment,which is accessibleusing theControl Panel (a search for “environment”
offsets themany attempts to relocate the exact dialog in successiveWindows
Control Panel versions somewhat).

The Quick Start Guide has more information about CLASSPATH.

13.2 Adding modules to a compile run

Extramodules are provided to the java runtimewith the –module-path argument,
–module-path describes a list of directories containing module jar files.

Because, by default, NetRexx programs compile in the unnamed module, any
referenced jar file must be included in the --add-modules option at run-time. So
when --modulepath PATH1:PATH2 isneededat compile-time, --module-path PATH1:PATH2
--add-module JAR1,JAR2 is needed at run-time.

Java also supports the --upgrade-module-path PATH1:PATH2 option, which ’adds’ all
modules in the given paths to the unnamedmodule.

52

13.2. Adding modules to a compile run

Setting the options in the JDK_JAVA_OPTIONS environment variable will allow Net-
Rexx to find classes in the given modules.

By convenience, NetRexx supports both –module-path and –upgrade-module-
path:

$ export JDK_JAVA_OPTIONS=’--upgrade-module-path PATH1:PATH2’
$ nrc -run code-needing-classes-from-modules-outside-jrt

or (for Windows)

> set JDK_JAVA_OPTIONS=--upgrade-module-path ”PATH1;PATH2”
> nrc -run code-needing-classes-from-modules-outside-jrt

53

Chapter 14

Programming Patterns

Much has been made of patterns as aggregations of higher level embodiments
of programming solutions. It has been observed12 that of a number of the C++
oriented patterns inDesign Patterns13, some owe their existence to complications
in the C++ language and are not readily reproducible in a Java Patterns or Ruby
Patternsbook. The samegoes forNetRexx- in this chapterwewould like topresent
a number of Java patterns usable in NetRexx, and a number of patterns that are
unique to NetRexx.

14.1 Singleton

Sometimes we only want one instance of a class, and we want every user of the
class to refer to that same instance. In this case, we need to adapt the class
construction mechanism to make sure this happens. There are different ways
to implement this, one way is shown below.
class TheGatherer

properties static
instance = TheGatherer

method getInstance() returns TheGatherer static protect
if TheGatherer.instance <> null then
do

return TheGatherer.instance
end

else
do

TheGatherer.instance = TheGatherer()
return TheGatherer.instance

12This observation from a Java patterns book.
13Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

Professional; 1994

55

Chapter 14. Programming Patterns

end

/∗∗
∗ private constructor enforces singleton
∗/
method TheGatherer() private signals ClassNotFoundException

The way that has been chosen here is tomake the constructor private, so no other
class canuse it.Weneed an alternativemethod tomake the first and only instance
of this class, and this is the getInstance()method. This checks if a static property
instance is null, in which case the private constructor is run and its return value
put in instance. Every subsequent call to getInstance() sees the value of the static
variable instance being not null, and returns that value, which now refers to
the single instance. There are several ways to enhance this method, but this is
a simple way and it fits the bill. For added security, override themethods for class
serialization.

There is a commonnaming pattern for Singletons, which is the prepend the name
of the class with The, as in the above example.

14.2 Observable and Events

The observer pattern can also be referred to as Callback, and the Java Event class
delivers support for it. It is very usable if some result needs to be available for a
set of callers, where the set is 0 to many. It works as follows: (see a simple imple-
mentation in section 9.4 on page 41) An object, maintains a list of its dependents,
called observers, and notifies them automatically of any state changes, usually
by calling one of their methods. It is mainly used to implement distributed event
handling systems. The Observer pattern is also a key part in the familiar Model
View Controller (MVC) architectural pattern. In the JVM, this object needs to
implement the methods of the Listener interface; this interface specifies the
addListenerandRemoveListenermethods; it keepsacollection inwhich references
to the added listener objects are maintained. The listening is done to subclassed
Java Event classes. The event specifies the method to be called when ’firing off’
and event. This means that this method is called on every listener.

One of the larger benefits: it decouples the observer from the subject. The subject
doesn’t need to know anything special about its observers. Instead, the subject
simply allows observers to subscribe. When the subject generates an event, it
simply passes it to each of its observers. Another benefit is that event consuming
classes don’t have to wait until a process is finished, and can consume events as

56

14.3. Recursive Parse

they come in. TheOSProcess class onpage41)uses anevent approach to consume
output lines froma subprocess - in the version that puts the output in anArrayList
needs to wait for the subprocess to end, but the event driven version canmonitor
a long running process and analyze output lines whenever they are received.

14.3 Recursive Parse

This is a pattern somewhat unique to Rexx, by virtue of Rexx having the Parse
statement. It also works in NetRexx.
/∗ process a string word by word ∗/

testString = "Foo Bar Baz Frob Frobnitz Frobbotzim"

loop until testString = ""

−− copy the first word of testString into curName
−− remove it from testString

parse testString curName testString

say "Current word is " curName
say "Remaining words in testString are " testString
end −− loop until testString

This enables one to ’peel off’ one word of a sentence at at time.

14.4 More Observer/Observable

Java has special support for the Observer/Observable pattern in the form of the
Observer class and the Observable interface. In the following snippet one can see
the Observer class in working.

The class is the same singleton as shown above, and starts several threads which
need to be observed.
class TheGatherer implements Observer

TheObservable threadsneed to implement theObservable interface, and to be able
to be started as a thread, Runnable. This is how we start it; its definition follows.
method TheGatherer() private signals ClassNotFoundException
logger_.info("TheGatherer: start")
t1 = TransactionStatusMonitor(Rexx 10000)
t1.addObserver(this)
Thread(t1).start()
logger_.info("TheGatherer: started thread TransactionStatusMonitor")

57

Chapter 14. Programming Patterns

We instantiate the Observable class as t1, and add the instance of our Observer
class, TheGatherer, to it as Observer. After we have done this, we start it by
instantiating a Thread object with it and calling the startmethod, which, by virtue
of it implementing the Runnable interface, starts its runmethod.

Note that the TransactionStatusMonitor extends a class called Monitor, which in
turn, implements the Observable interface. The reason for this is, we run several
monitoring threads, and they all behave in the same way.
import java.util.Observable
class Monitor extends Observable

properties public
logger_ = Logger.getLogger(Monitor.class.getName())
sleeptime

properties static
da = TheDataAccess null

method Monitor()
this.da = TheDataAccess.getInstance()

class TransactionStatusMonitor implements Runnable extends Monitor

method TransactionStatusMonitor(s) signals ClassNotFoundException
this.sleeptime = s

method run()
do
loop forever

pi = this.da.idealq1()
if pi.getID().length() < 5 then
do
nop

end
else do
pi.setIdType('ideal')
ibidp = this.da.getIBPostIDStatuses(pi)
setChanged()
notifyObservers(ibidp.getStatusDelta())

end

Thread.currentThread().sleep(this.sleeptime) −− sleep for sleeptime
seconds
end

catch InterruptedException
parse source s
say "thread interrupted:" s

end

In lines 17 an 18 the magic happens: the setChanged() method sets the status
of this instance as updated, and the notifyObservers() method calls for all the

58

14.4. More Observer/Observable

registered Observers their update()methods; this has the following signature:
method update(o=Observable,obj=Object) protect
cl = o.getClass().getName()

The update()methodreceivesan Object. The .getClass.getNamecall is for illustrative
purposes and can be used to decide how to treat the received update object.

59

Chapter 15

Incorporating Class Libraries

15.1 AWord About Java Generics

Many classes in Java are expressed as generics. It is important to note that the
generic is a compile time only java type enforcement mechanism, and therefore
does not affect NetRexx.

A generic class has, underlying it, a class that accepts one or more objects as
parameters - taking as an example the ArrayList class, the Java documentation
shows that this has a class signature of public class ArrayList<E> with one of
the constructors being ArrayList() and, for example, a method add(E e). If the
Arraylist is instantiated in Java as follows:-

ArrayList<String> stringList = new ArrayList<String>();

then the Java compiler will note that the ArrayList is instantiated with a <String>
object - and will enforce String usage everywhere else that the <E> is used in the
class documentation - in this case the type add(E e).

Thus

stringList.add(”Item”);

will be permitted by the compiler, since a string is being added. In contrast,

stringList.add(new Integer(7));

will fail since a string is not being added.

Remembering that the ArrayList deals directly with objects the following short
NetRexxprogramwill correctlyuse ArrayListwithoutworryingabout the ”complication”
of generics.

a1 = ArrayList() −− An ArrayList just deals with Objects

61

Chapter 15. Incorporating Class Libraries

a1.add("Eric") −− so we give it some Rexx objects
a1.add("Erica")
num = 0
a1.add(num)

say "There are" a1.size "elements in the list" −− and show they are
present

/∗ Now, to retrieve them ∗/

loop item over a1
say item

end

If one does not need generics, then it could be asked why they have been imple-
mented at all - the answer is that they prevent many Java run-time errors resul-
ting from a failure to cast the object used to the correct type. When program-
ming in NetRexx the use of the ”universal” Rexx class means that this is rarely
an issue. When retrieving objects from a generic class used from within Java one
must remember to use the correct type, cast or the binary option just as would be
expected when using a Java object in any other way.

15.2 The Collection Classes

The Java collections framework (JCF) is a set of classes and interfaces that im-
plement commonly reusable collection data structures. The JCF provides both
interfaces thatdefinevariouscollectionsandclasses that implement them.Collection
implementations in pre-JDK 1.2 versions of the Java platform included few data
structure classes, but did not contain a collections framework. The standard me-
thods for grouping Java objects were via the array, the Vector, and the Hashtable
classes,whichwerenot easy to extend, anddidnot implement a standardmember
interface. The collections framework was designed and developed primarily by
Joshua Bloch, and was introduced in JDK 1.2.

Almost all collections in Java are derived from the java.util.Collection interface.
Collection defines the basic parts of all collections. The interface states the add()
and remove()methods for adding to and removing from a collection respectively.
Also required is the toArray()method, which converts the collection into a simple
array of all the elements in the collection. Finally, the contains()method checks if
a specified element is in the collection. The Collection interface is a subinterface
of java.util.Iterable, so anyCollection is iterable (using an iterator for a loopover
the contents). All collections have an iterator that goes through all of the elements

62

15.2. The Collection Classes

in the collection.

The Collection framework is one of the aspects of where NetRexx relegates to
Java for its implementation. Where ooRexx has had its collection classes in the
language definition from day one, in NetRexx they are not part of the language;
most of the data related support is in the indexed strings feature. This, in turn,
makes use of the Dictionary mechanism already implemented in the earliest
versions of Java; NetRexx language design was long complete when JDK 1.2 came
out.

The Pre-JavaGeneric classes JFChad, in order to be generic, an interface inwhich
objects could be added in as a java.lang.Object, but on return, that object needed
to be typecast to the right type. Using collection classes did entail a good deal of
casting return values, as type Rexx was not part of the set of types that collections
had native support for. Modern NetRexx versions 3.02have builtin support for using
type Rexx in collection classes14, so these can be added to and retrieved from
collection classes without further ado.

The NetRexx native Rexx datatype contains a Java Hashtable which is part of the
Collections Framework. New classes, constructors andmethods have been added
to implement the Java Map interface and allow better interoperation with Java.
Some of the new collections support methods include isindexed() to check if a
Mapcurrently exists, size() todetermine thecountofmapentries and buildmap(sequence1,sequence2)
to construct Rexx maps from arrays or Java Lists. Other classes and methods are
documented in the Java CollectionsMap interface Javadocs. ”isindexed()” returns
0 if no indexed values exist and 1 if there is at least one indexed value in a Rexx
object. To build a new indexed Rexx map with the buildmap method you can do
this: Rexx(default).buildMap(keys, values) where keys and values are any arrays
or Java collections framework Lists and default is the default value for the Rexx
variable (using the standard Rexx constructors).

All elements are converted to strings before being added to the indexed Rexx
variable which is returned. Null can be passed for one of the keys or values
parameters to default to a 1-n integer sequence matching the other parameter
but if both parameters are provided they must have the same length. Note that
arrays do not need to be string arrays and that primitive arrays such as int[] are
also accepted.

Collection is a Java generic. Any collection can be written to store any class.
For example, Collection<String> can hold strings, and the elements from the

14In actuality, the needed interfaces, like Comparable and Comparator are now provided in the Rexx type

63

Chapter 15. Incorporating Class Libraries

collection can be used as strings without any casting required. NetRexx 3.02
added loop over support inNetRexxprograms for collection classes; this has been
implemented without the need for Java generics. This makes it impossible to use
the generics mechanism to constrain collection class membership to a specified
type. This, however, can be easier accomplished by subclassing the collection
class and overriding its constructors.

64

Chapter 16

Stream I/O

4.03Stream I/O was one of the casualties of an IBM Source Code Freeze around the
Rexx 4.00 era. This meant that TSO (MVS - OS390 - z/OS) Rexx did not receive
the code, and had to settle for EXECIO, originally a VM utility program, which
was adapted to handle Rexx stems. Regina and Open Object Rexx (ooRexx) do
have Stream I/O, while several dialects have idiosyncratic I/O implementations,
some based on the C standard library. For a long time, MVS/TSO had a separately
installable stream I/O library; not many IBM mainframe sites did install it, and
consequently it could not be counted upon to be available. These functions are,
however, available on z/OS USS (Unix Systems Services).

Like the rest of Rexx, stream I/O was designed to make life easier on the software
developer, and without any doubt, it does. For this reason, NetRexx now contains
a RexxStream class, which is inspired on the Classic Rexxversion. Asmentioned on
page 15, this class is automatically availablewhenusingNetRexx in scriptingmode,
where the expectation is it will be used most. On first sight, these functions look
line Classic Rexx in the sense that they are not predicated on an object; in fact they
are static methods of the RexxStream class.15

Data can be written to, and read from, files, without going through open and close
routines; also, in the samemanner information on filemetadata can be obtained.

16.1 Lines() and Linein()

As an example, it is now possible to write a very short script that reads lines from
a file for inspecting or transforming their content, in a few lines.
−− show the lines() function − loop until eof

15For this reason they are listed in the list of Rexx string functions in the NetRexx Language Reference, but explained in
their own chapter of that manual.

65

Chapter 16. Stream I/O

loop i=1 while lines('testdata.txt') > 0
say i linein('testdata.txt')

end

1 SATOR
2 AREPO
3 TENET
4 OPERA
5 ROTAS

This script loopswhile the function lines(’testdata.txt’ returnsanumbergreater
than 0, and prints the line number in front of the line. (Notice how the loop sta-
tement always increases the loop variable i when the loop is executed). These
functions are Unicode compatible.

16.2 Chars() and CharIn()

For char() and charin() the same rules apply, but they work on one (Unicode)
character at a time. Because of this, they are not as fast, as they cannot optimally
use a buffered input mechanism.

66

Chapter 17

Java Input and Output

An early NetRexx design decision was to leave I/O operations out of the language,
and to depend on the JVM functionality for this. This turned out to be a mixed
blessing, as JVM I/O has been enhanced and changed over the years; on the other
hand, JVM I/O has changed (and grown) a lot over the years, and did become a
complex component. Also, the various environments in which NetRexx can be
used as a programming language, are not limited to file I/O, but have various
implementations to interact with the outside world. A NetRexx program that
employs Web technology has different method calls to make than a program that
uses ISPF for user interaction.

17.1 The File Class

TheJava Fileclass represents afile16; variouspiecesof informationcanbe requested
from a instance of this class, when it points to a file on disk.

17.1.1 Example

/∗ file\FileInfo.nrx

Display file/directory/path information ∗/

parse arg fileName .
if fileName = "" then do

say "Enter file or directory name to test ?"
filename = ask

end
f1 = File(fileName) −− create file object
if f1.exists() = 0 then do

16or rather a path

67

Chapter 17. Java Input and Output

say 'File:' filename 'does not exist.'
exit 8

end

say "System related information −−−−−−−−−−−−−−−−−−−−−−"
say " pathSeparator :" f1.pathSeparator −− these are not

methods
say " pathSeparatorChar :" f1.pathSeparatorChar −− they are public
say " separator :" f1.separator −− static
say " separatorChar :" f1.SeparatorChar −− class

variables
say
say "File/directory related information −−−−−−−−−−−−−−"
say " canRead :" f1.canRead()
say " canWrite :" f1.canWrite()
say " isDirectory :" f1.isDirectory()
say " isFile :" f1.isFile()
say " length :" f1.length()
say " lastModified :" f1.lastModified() "=" Date(f1.lastModified()

)
say " isAbsolute :" f1.isAbsolute()
say " getAbsolutePath :" f1.getAbsolutePath()
say " getCanonicalPath :" f1.getCanonicalPath()
say " getPath :" f1.getPath()

parent1 = f1.getParent()
if parent1 = null then parent1 = "null returned"
say " getParent :" parent1
say " getName :" f1.getName()
say " toString :" f1.toString()
say " hashCode :" f1.hashCode()

if f1.isDirectory() then do
say
say "List of this directory −−−−−−−−−−−−−−−−−−−−−−−−−−−\n"
list1 = f1.list()
if list1.length = 0

then say " directory is empty"
else
loop i = 0 to list1.length −1

f2 = File(f1.getAbsolutePath()''f1.separator''list1[i])
if f2.isDirectory() then say " Dir :" list1[i]

else say " File:" list1[i]
end

end
say "\n−−−"
−− end fileinfo

17.1.2 Line mode I/O using BufferedReader and FileOutputStream

While standard Java I/O does not perform particularly well in the unbuffered
version, a BufferedReader can bewrapped around any Reader in order tomaximize

68

17.1. The File Class

the amount of data that is read in one I/O operation.

Example

/∗ linecomment.nrx −− convert appropriate block comments to line comments
∗/

/∗ This is a sample file input and output program, showing how to open,
check, and process text files, and handle exceptions.
Note the use of the Reader and Writer classes, which convert your
local computer's 'code page' (character encoding) to Unicode during
reading and back again during writing. ∗/

parse arg fin fout . −− get the arguments: input and output files
if fout='' then do
say '# Please specify both input and output files'
exit 1

end

/∗ Open and check the files ∗/
do
infile=File(fin)
instream=FileInputStream(infile)
inhandle=BufferedReader(InputStreamReader(instream))
outfile=File(fout)
if outfile.getAbsolutePath=infile.getAbsolutePath then do
say '# Input file cannot be used as the output file'
exit 1

end
outstream=FileOutputStream(outfile)
outhandle=OutputStreamWriter(outstream)
say 'Processing' infile'...'

catch e=IOException
say '# error opening file' e.getMessage

end

linesep=System.getProperty('line.separator') −− be platform−neutral

/∗ The main processing loop ∗/
loop linenum=1 by 1
line=Rexx inhandle.readLine −− get next line [as Rexx string]
if line=null then leave linenum −− normal end of file

parse line pre '/∗' mid '∗/' post −− process the line
if pre\='' then
if mid\='' then
if post=='' then
line=pre'−−'mid

if linenum>1 then outhandle.write(linesep, 0, linesep.length)
outhandle.write(line, 0, line.length)

catch e=IOException
say '# error reading or writing file' e.getMessage

69

Chapter 17. Java Input and Output

catch RuntimeException
say '# processing ended'

finally do −− close files
if inhandle\=null then inhandle.close
if outhandle\=null then outhandle.close

catch IOException
−− ignore errors during close

end
end linenum

say linenum−1 'lines written'

17.2 Object Oriented I/O using Serialization

The serialization methods of a Class can be used to write a class as serialized
binary data. Using the writeObject() method, an object can be written to a file
using one call. Note that the Rexx class is serializable for a long time already.

17.2.1 Example

/∗ file\SeriaIO.nrx

Output of a Customer object with binary data using Serialization ∗/

class SeriaIO
Properties constant
yes = boolean 1
no = boolean 0

method main(args=String[]) static
custDB = Customer2[4] −− allocate 4 customers
custRD = Customer2[] −− read back "x" customers

−− instanciate objects
custDB[0] = Customer2(101,"Ueli Wahli" ,"U.S.A." ,500.5,25,yes)
custDB[1] = Customer2(102,"Peter Heuchert" ,"Germany",400.4,30,yes)
custDB[2] = Customer2(103,"Frederik Haesbrouck","Belgium",350.9,24,no)
custDB[3] = Customer2(104,"Norio Furukawa" ,"Japan" ,250.5,39,no)

−− writes the object variables to a file
say 'Writing' custDB.length 'customers'
os = ObjectOutputStream(FileOutputStream("seriaio.dat"))
os.writeInt(custDB.length) −− number of objects

os.writeObject(custDB) −− WRITE OBJECTS WITH ONE
CALL

os.flush() −− force output
os.close()

70

17.2. Object Oriented I/O using Serialization

−− reads the object variables from the file
say 'Reading...'
is = ObjectInputStream(FileInputStream("seriaio.dat"))
n = is.readInt() −− number of customers
say 'Display of' n 'customers:'

custRD = Customer2[] is.readObject() −− READ OBJECTS WITH ONE
CALL

loop i = 0 to custRD.length−1
say custRD[i].getCustNo() (Rexx custRD[i].getName()).left(20) −

(Rexx custRD[i].getAddress_()).left(10) −
(Rexx custRD[i].getHourly() ∗ custRD[i].getWork()).right(10) −
custRD[i].getBool()

end
is.close()

/∗ −−− ∗/
/∗ Customer class ∗/
/∗ −−− ∗/
class Customer2 implements Serializable

properties private −− various data types
custNo = String
name = String
address_ = String
hourly = float
work = int
bool = boolean

method Customer2(aCustNo=String, aName=String, aAddress_=rexx, −
aHourly=float, aWork=int, aBool=boolean)

custNo = aCustNo; name = aName; address_ = aAddress_
hourly = aHourly; work = aWork; bool = aBool

method getCustNo() returns String
return custNo

method getName() returns String
return name

method getAddress_() returns Rexx
return address_

method getHourly() returns float
return hourly

method getWork() returns int
return work

method getBool() returns boolean
return bool

−− end

71

Chapter 17. Java Input and Output

17.3 Using the SAY instruction to write lines to a file

It used to be that a lot of programs started out with using say statements to write
to the console, and later, when output became too voluminous, needed to be
reworked to use output statements. Say has been extended to write to any (and
multiple) outputstream(s).

The setOutputStream()Method takes anOutputStreamwhich from thatmoment on
is used for output. This canbe System.out (which is thedefault) but also System.err,
to direct errormessages to. This outputstream can also be directed to a file, using
a FileOutputStream.

In addition to the setOutputStream() operation, which replaces the previously set
OutputStream, there are also pushOutputStream() and popOutputStream(), which add
(push) and remove (pop) streams from a list. In this way, it is possible to direct
output to, e.g. an System.out and System.err stream, and at the same time to a
number of files.

These operations are not a good fit for multithreaded programs. For use in the
heavily multithreaded Pipelines environment, the method RexxIO.pipeSay was
designed, which is used in the Pipelines source code, but can also be employed in
your ownmultithreaded programs.

Example

/∗
∗ Illustrates how the say statement became a bit more flexible
∗ now able to direct to different output streams, or files
∗/

say 'this is stdout'
RexxIO.pushOutputStream(System.err)
say 'stdout and stderr'
RexxIO.popOutputStream()
say 'only stdout'
RexxIO.popOutputStream()
say 'only stdout'
RexxIO.popOutputStream()
RexxIO.popOutputStream()
RexxIO.popOutputStream()

RexxIO.setOutputStream(FileOutputStream('testfile1.txt'))
say 'this goes to testfile1.txt'
RexxIO.pushOutputStream(FileOutputStream('testfile2.txt'))
say 'this goes to testfile2.txt'

72

17.4. Using RexxIO.forEachLine

17.4 Using RexxIO.forEachLine

A pattern in which there is an action for every line in a file, is now supported
with the oneliner file handler, RexxIO.forEachLine. A Class that implements the
interface LineHandler can read lines from a file using the
RexxIO().File(’filename’).forEachLine(x) idiom,which is very compact. The LineHandler
interface needs to implement the handle()method, which is fed the line that has
been read.

Example

class testLine implements LineHandler
method main(args=String[]) static

RexxIO().File("legenda.txt").forEachline(testLine())
RexxIO().File("legenda.txt").forEachline(testLine().testFile2())

method handle(in)
say in

class testLine.testFile2 dependent implements LineHandler
method handle(in)
say in

73

Chapter 18

Algorithms in NetRexx

18.1 Factorial

A factorial is theproduct of an integerandall the integersbelow it; themathematical
symbol used is ! (the exclamation mark). For example 4! is equal to 24 (because
4*3*2*1=24). The following program illustrates a recursive (a method calling
itself) and an iterative approach to calculating factorials.
/∗ NetRexx ∗/

options replace format comments java symbols nobinary

numeric digits 64 −− switch to exponential format when numbers become
larger than 64 digits

say 'Input a number: \−'
say
do
n_ = long ask −− Gets the number, must be an integer

say n_'! =' factorial(n_) '(using iteration)'
say n_'! =' factorial(n_, 'r') '(using recursion)'

catch ex = Exception
ex.printStackTrace

end

return

method factorial(n_ = long, fmethod = 'I') public static returns Rexx
signals IllegalArgumentException

if n_ < 0 then −
signal IllegalArgumentException('Sorry, but' n_ 'is not a positive

integer')

select

75

Chapter 18. Algorithms in NetRexx

when fmethod.upper = 'R' then −
fact = factorialRecursive(n_)

otherwise −
fact = factorialIterative(n_)

end

return fact

method factorialIterative(n_ = long) private static returns Rexx

fact = 1
loop i_ = 1 to n_
fact = fact ∗ i_
end i_

return fact

method factorialRecursive(n_ = long) private static returns Rexx

if n_ > 1 then −
fact = n_ ∗ factorialRecursive(n_ − 1)

else −
fact = 1

return fact

Executing this program yields the following result:

===== Exec: RCFactorial =====
Input a number:
42
42! = 1405006117752879898543142606244511569936384000000000 (using iteration)
42! = 1405006117752879898543142606244511569936384000000000 (using recursion)

As you can see, fortunately, both approaches come to the same conclusion about
the results. In the above program, both approaches are a bit intermingled; for
more clarity about how to use recursion, have a look at this:
class Factorial
numeric digits 64

method main(args=String[]) static
say factorial_(42)

method factorial_(number) static
if number = 0 then return 1
else return number ∗ factorial_(number−1)

In this program we can clearly see that the factorial_ method, that takes an
argument number (which is of type Rexx if we do not specify it to be another type),
calls itself in the method body. This means that at runtime, another copy of it

76

18.2. Fibonacci

is run, with as argument number that the first invocation returns (the result of
42*41), and so on.

In general, a recursive algorithm is considered more elegant, while an iterative
approach has a better runtime performance. Some language environments are
optimized for recursion, which means that their processors can spot a recursive
algorithm and optimize it by not making many useless copies of the code. Some
day in the near future the JVM will be such an environment. Also, for some
problems, for example theprocessingof tree structures, usinga recursivealgorithm
seems much more natural, while an iterative algorithm seems complicated or
forced.

18.2 Fibonacci

/∗ NetRexx ∗/
options replace format comments java symbols

numeric digits 210000 /∗prepare for some big ones. ∗/
parse arg x y . /∗allow a single number or range.∗/
if x == '' then do /∗no input? Then assume −30−−>+30∗/
x = −30
y = −x
end

if y == '' then y = x /∗if only one number, show fib(n)∗/
loop k = x to y /∗process each Fibonacci request.∗/
q = fib(k)
w = q.length /∗if wider than 25 bytes, tell it∗/
say 'Fibonacci' k"="q
if w > 25 then say 'Fibonacci' k "has a length of" w
end k
exit

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−FIB subroutine (non−recursive)−−−∗/
method fib(arg) private static
parse arg n
na = n.abs

if na < 2 then return na /∗handle special cases. ∗/
a = 0
b = 1

loop j = 2 to na
s = a + b
a = b
b = s
end j

if n > 0 | na // 2 == 1 then return s /∗if positive or odd negative... ∗/

77

Chapter 18. Algorithms in NetRexx

else return −s /∗return a negative Fib number. ∗/

78

Chapter 19

Using Parse

The Parse statement is one of the stalwarts of the Rexx family of languages, and
allows one to easily split a string into parts without needing to resort to more
traditional techniques of string processing.

The syntax of a parse statement is

parse term template

where term is a string or a previously initialised variable. The template is a list of
instructions describing how to split the string.

19.1 Literal Parsing

The most common use of parse is to split a string up into parts separated with a
delimiter - whilst themost common delimiter is a simple space any stringmay be
used:-
log = "2014/05/15 21:35:47.012 − error in {{[findit]}}"
parse log year "/" month "/" day hour ":" minute ":" second "." msecond "−"

text
say "On day" day "of month" month "at about" hour":"minute "we got" text
parse text "{{[" name "]}}"
say name

Here log is composed of a datestamp separated from amessage by a hyphen. The
datestamp is composed of a date separated from a time by a space - within the
date the yearmonth and day are delimited by a slash andwithin the date the hour,
minute and second fields by a colon. The millisecond field is separated from the
seconds by a decimal point.

The first parse divides these using the relevant delimiter - where there is no
delimiter then a space is used.

79

Chapter 19. Using Parse

The term is the variable log and the template is

year ”/” month ”/” day hour ”:” minute ”:” second ”.” msecond ”-” text

This first template may be read as the following sequence of actions

1. Assign the contents of log to the variable year until a / is encountered (2014)
2. Following the / assign monthwith the sting found up until another / (05)
3. Place the contents following the / until a space into the variable day (15)
4. Following the space, assign the value found up until the : into the hour
variable (21)

5. Repeat for the variable minute (35)
6. Assign the second value up until the .
7. Take the value for msecond until a delimiter of - is seen
8. Assign the remainder to variable text

The second parse statement shows how the delimiters can bemore complex - the
template is

”{{[” name ”]}}”

and extracts the value between {{[and]}} to the variable (name)

Running the above example will produce the following output:-

At about 21:35 we got error in {{[findit]}}
findit

As another example, consider
quote = "Now is the winter of our discontent"
loop forever

parse quote word quote
say word
if quote = "" then leave

end

This will take the first word from quote, and assign the remainder back into quote,
print the word taken and repeat until the variable quote is the empty string. The
output from this will be

Now
is
the
winter
of

80

19.2. Positional Parsing

our
discontent

19.1.1 The Placeholder (dummy) Variable

The first example assigns values to several variables that are not used - this is
unnecessary and can be avoided by the use of a placeholder variable which is the
. character.

If this is done, the first parse statement becomes

parse log . ”/” month ”/” day hour ”:” minute ”:” . ”.” . ”-” text

The output will remain the same.

19.2 Positional Parsing

Whilst themajority of parsing can be done using a fixed literal delimiter, the parse
instruction also allows parsing based onpositional patterns. This is achievedwith
the use of numerical values in the template - the values may also take a prefix of
+, - or =

no prefix or = indicates that the number is an absolute columnvalue in the string
being parsed

+ indicates a relative position that starts from the specified position after the
position where the last match occurred

- indicates a relativeposition that starts from the specifiedposition before the last
match

These points are best illustrated by example
quote = "Now is the winter of our discontent"
tens = " 11111111112222222222333333"
units = "12345678901234567890123456789012345"

say quote
say tens
say units

parse quote 10 str1 20 −8 str2 +6 str3
−− str1 starts at column 10 and is 10 chars long
say str1 "("str1.length")"
−− str2 steps back 8 chars and is 6 chars long
say str2 "("str2.length")"

81

Chapter 19. Using Parse

−− str3 is the remainder of the string (as should be expected)
say str3

Running this gives the following

Now is the winter of our discontent
11111111112222222222333333

12345678901234567890123456789012345
e winter o (10)
winter (6)
of our discontent

Both literal and positional parsing can be combined. Keen-eyed readers will
have noted that the output from the first example contained an extra space before
the word error

At about 21:35 we got error in {{[findit]}}
Extra space here ^^

This is the result of assigning the remainder of the string to the variable text -
leading blanks are normally removed except in this special case.

One can use a positional pattern to eliminate this extra space:-
log = "2014/05/15 21:35:47.012 − error in {{[findit]}}"
parse log . "/" month "/" day hour ":" minute ":" . "." . "−" +2 text
say "On day" day "of month" month "at about" hour":"minute "we got" text
parse text "{{[" name "]}}"
say name

Note that the relative positional pattern used here is +2 - 0 is the position of the
last match which is the hyphen, +1 is the position of the following space and thus
+2 is the start of the target string.

19.3 Variable Templates

Variablesmaybeused as the pattern in the templates in order to accommodate the
occasions when the pattern may need to be specified at runtime. An illustration
of this is the following evolution of the first example that will correctly parse dates
specified in two distinct ways
log = ""
log[1] = "2014/05/15 21:35:47.012 − error in {{[findit]}}"
log[2] = "2014−05−15 21:35:47.012 − error in {{[findit]}}"

loop i = 1 to 2

82

19.3. Variable Templates

dtsep = log[i].substr(5,1)
parse log[i] . (dtsep) month (dtsep) day hour ":" minute ":" . "." . "−"

+2 text
say "On day" day "of month" month "at about" hour":"minute "we got" text

end

Note that hedate separator dtsep is determinedand thenused in theparsepattern
by enclosing it in parentheses, thus (dtsep). The output of this program is

On day 15 of month 05 at about 21:35 we got error in {{[findit]}}
On day 15 of month 05 at about 21:35 we got error in {{[findit]}}

It can be seen that the date was successfully parsed in both cases.

It is important to note that any pattern specified by a variable will be assumed to be
literal unless it has a +, - or = prefix. Should one wish to use positional patterns then
the prefixmust be used.
message = "this is a message that contains the number 10− just there, see?"
pat = "10"
parse message part1 5 (pat) part2
say "literal:" part1 part2
parse message part1 5 =(pat) part2
say "positional:" part1 part2

When run this illustrates the difference between the two parse statements

literal: this - just there, see?
positional: this message that contains the number 10- just there, see?

83

Chapter 20

Using Trace

The trace command is the inbuilt debugging facility of the Rexx family, and, as
might be expected from its name, allows one to trace the execution of your pro-
gram. It is possible to trace both program statements and the state of variables
within your code.

(Trace) is a compile-time option, and should be disabled once debugging as been
completed.

The syntax of the trace command is

trace traceitem

where traceitem defines the behaviour of the trace command. Only one traceitem
maybe given, and only one of the programstatement tracing optionswill be in use
at any time. Variable tracing options, however, are additive and such statements
may appear multiple times.

All trace output is headed by three hyphens followed by the source file name, as
follows

--- TerribleExample.nrx

20.1 Tracing Program Statements

The traceoptions that affect the tracing of program statements are

all will display all statements as they are executed. Each line in the trace output
will be prefixed with *=* or a *-* should output span subsequent lines.
The trace all statement can be placed anywhere in the program source.

methods will show the eachmethod as it is invoked, alongwith anyparameters to

85

Chapter 20. Using Trace

it. The trace output for method traces is prefixed by a *=* for the method call
itself and a >a> indicating the assignment of a value to a method parameter.
No other program statements will be traced.
The trace methods statement shouldbeplacedbefore thefirstmethod isdefined
in a class.

results acts as though the trace all statement had been given, and, if placed
before any method will also act as though trace methodswas also specified.
In addition to the all and methods tracing implied by results the followingwill
also take place
Properties will have their assignments shown. These will be identified by >p>
Local variables will also be traced, with assignments identified by >v>
Expressions will have their evaluations shown if not shown for as a part of

properties or local variable trace output. Such evaluations are indicated
by »>

int will stop execution of the NetRexx program, allow single stepping through the
program and provide read and write access to variables and properties. To
leave the interactive trace type trace off at the *-> prompt.

off trace off disables tracing. No further tracing output will take place.

20.2 Tracing Variables

The all-or-nothing tracing offered by, for instance trace results can lead to a
deluge of trace information in many cases.

In these instances one may more finely control which variables one wishes to
monitor using the trace var statement. The syntax of the trace var statement is

trace var var1 [var2...]

or

trace var -var1 [-var2...]

where the first form adds variables to the list that should be watched, and the
second removes them.The formsmaybemixed toaddsomevariables and remove
others simultaneously, as here:-

trace var var1 -var2 var3 -var4 -var5

to monitor var1 and var3 and remove var2, var5 and var5 from the list of watched
variables.

86

20.3. Interactive tracing

Multiple trace var statements may be used, as mentioned above.

It is not an error to specify a variable name that does not exist.

Each variable can appear only once in a trace statement.

A variable namemay that of any type - including arrays (without the []).

Program tracing options never alter the list of watched variables. If tracing has
previously been turned off then variable tracing may be resumed simply with a
trace var statement.

20.3 Interactive tracing

Interactive tracing is activated by the trace int instruction, which will cause the
interpreter to stop and present the interactive trace prompt.

Pressing [Enter] continuously, single-steps and executes every clause in the pro-
gram. Variables and properties are accessible in both read and write mode.

Typing ’?’ shows the interactive trace capabilities:
∗−> ?

Experimental interactive trace :
press [Enter] to trace interactively
type '=' to reinterpret current clause
type '−[n]' to show previous n clause(s), shows current clause if n is

absent
type '+[n]' to show next n clause(s), shows next clause if n is absent
type 'trace off' to stop tracing
any other clause entered must be either an assignment or a SAY

instruction
∗−>

Given below trace.nrx program,
class trace
properties public static
p = 1

method main(args=String[]) static
say 'interactively tracing..'
trace int
i=0
say 'i='i
i=traced(i)
say 'Hello world'||'!'.copies(i)

method traced(arg=Rexx) static
say 'traced called with arg:'arg
return arg+p

87

Chapter 20. Using Trace

a sample interactive trace session might look as follows:
$ nrc −exec trace
NetRexx portable processor 4.04
Copyright (c) RexxLA, 2011,2022. All rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program trace.nrx
=== class trace ===
function main(String[])
function traced(Rexx)

===== Exec: trace =====
interactively tracing..

∗−> −− interrupted at trace int,
single−step

−−− trace.nrx
8 ∗=∗ i=0
>v> i "0"
∗−> −− single−step

9 ∗=∗ say 'i='i
>>> "i=0"

i=0
∗−> i=2 −− update variable i
∗−> = −− re−execute current clause
>>> "i=2"

i=2
∗−> say 'p='p −− say something

p=1
∗−> p=2 −− update property p
∗−> say 'p='p

p=2
∗−> −− single−step

10 ∗=∗ i=traced(i)
>>> "2"

traced called with arg:2
>v> i "4"
∗−> −− single−step

11 ∗=∗ say 'Hello world'||'!'.copies(i)
>>> "4"
>>> "Hello world!!!!"

Hello world!!!!
∗−> i=−1 −− update variable
∗−> i=traced(i) −− call method

traced called with arg:−1
∗−> say 'i='i −− say something

i=1
∗−> = −− re−execute
>>> "1"
>>> "Hello world!"

Hello world!
∗−> trace off −− trace off

Processing of 'trace.nrx' complete

88

20.4. Examples

20.4 Examples

20.4.1 Program Trace

Trace All

Running the program below
trace all

class traceExample

properties
aIs
bIs

method traceExample(a, b)
aIs = a
bIs = b

method times
retturn aIs ∗ bIs

method main($cmdin1=String[]) static
arg=Rexx($cmdin1)
te = traceExample(2, 3)
fred = te.times
say fred

gives trace output of

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c”
17 *=* arg=Rexx($cmdin1)
18 *=* te = traceExample(2, 3)
9 *=* method traceExample(a, b)

>a> a ”2”
>a> b ”3”

10 *=* aIs = a
11 *=* bIs = b
12 *-*
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs
20 *=* say fred

89

Chapter 20. Using Trace

This output may be read thus

— traceExample.nrx Identification of the program being traced. This is the
tracing context.

16 *=* method main($cmdin1=String[) static] Thefirst line that is actually executed
is line 16.
>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c” Variable $cmdin1 is assigned a
string value from the java virtual machine.

17 *=* arg=Rexx($cmdin1) Line 17 is executed next...
18 *=* te = traceExample(2, 3) followed by line 18
9 *=* method traceExample(a, b) Line 18 is amethod call to amethod on line 9...
>a> a ”2” which assigns a value of 2 to parameter a
>a> b ”3” and a value of 3 to parameter b

10 *=* aIs = a the following lines document only code execution
11 *=* bIs = b
12 *-*
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs
20 *=* say fred

Trace Methods

Replacing the trace all from line 1 with trace methods gives trace output of

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@8094cc7”
9 *=* method traceExample(a, b)
>a> a ”2”
>a> b ”3”

13 *=* method times

As should be expected, this is a subset of the output provided when using trace
all.

Trace Results

Replacing the trace all from line 1 with trace resultswould give

90

20.4. Examples

--- traceExample.nrx
16 *=* method main($cmdin1=String[]) static

>a> $cmdin1 ”[Ljava.lang.String;@72ebbf5c”
17 *=* arg=Rexx($cmdin1)

>>> ”[Ljava.lang.String;@72ebbf5c”
>v> arg ””

18 *=* te = traceExample(2, 3)
>>> ”2”
>>> ”3”

9 *=* method traceExample(a, b)
>a> a ”2”
>a> b ”3”

10 *=* aIs = a
>p> aIs ”2”

11 *=* bIs = b
12 *-*
11 >p> bIs ”3”
18 >v> te ”traceExample@53606bf5”
19 *=* fred = te.times
13 *=* method times
14 *=* return aIs * bIs

>>> ”6”
19 >v> fred ”6”
20 *=* say fred

>>> ”6”

Here is can be seen that more information is available. Noticeably, the values of
assignments are given. For instance

Line 17 now has an entry of >v> arg ”” showing that hte value of the variable arg
was set to the empty string

Line 18 now has the values of the specified parameters evaluated (»> ”2” and
»» ”3”)

Lines 10 and 11 show that values were assigned to parameters (>p> aIs ”2” and
>p> bIs ”3”)

Line 18 then shows the assignment of the instantiated class to variable te
Line 14 shows the evaluation of the multiplication (»> ”6”), which is assigned to

variable fred in line 19 (>v> fred ”6”) on line 19.
Finally we see the evaluation of variable fred on line 20.

91

Chapter 20. Using Trace

20.4.2 Variable Tracing

Consider the following example:-
a = "a"
b = "b"
c = 1
d = 2
e = 3

trace var a b c d e f y
z = a || b
y = c + d
f = y + 2
e = f

trace var −a −c −d −e
y = y ∗ 2
a = y
e = a

Running this will produce the output below

--- variableTraceExample.nrx
9 *=* y = c + d
>v> y ”3”

10 *=* f = y + 2
>v> f ”5”

11 *=* e = f
>v> e ”5”

14 *=* y = y * 2
>v> y ”6”

It can be seen that only the lines that contain watched variables are traced. This
the variable assignments on lines 9, 10 and 11 are displayed, since the variables
being watched from line 7 to line 12 are a, b, c, d, e, f and y.

Following this, however only the assignment to variable y is shown, since the
variables a, b ,c dand eare removed fromthe listwith thecommand trace var -a -c -d -e.

20.5 Tracing Notes

One further prefix may be encountered in the trace outout +++ which signifies an
error.

Whenever tracing transfers toadifferent sourcefile, anew tracing context, identified

92

20.5. Tracing Notes

by the — prefix is output.

Tracing is expensive, and may dramatically impact the run-time performance of
the program being traced. Judicious use may therefore be warranted.

93

Chapter 21

Concurrency

21.1 Threads

Threads are a built-in multitasking feature of the JVM. Where earlier JVM im-
plementations sometime ran on so-called Green Threads, which is a library that
implements thread support for OS’ses that do not have this facility (an early
version of Java was called GreenTalk for this reason), modern versions all use
native OS thread support.

Anew thread is createdwhenwecreate an instance of theThread class.Wecannot
tell a threadwhichmethod to run, because threads are not references tomethods.
Instead we use the Runnable interface to create an object that contains the run
method:

Every thread begins its concurrent life by executing the run method. The run
method does not have any parameters, does not return a value, and is not allowed
to signal any exceptions. Any class that implements the Runnable interface can
serveasa target of anew thread.Anobject of a class that implements theRunnable
interface is used as a parameter for the thread constructor.

Threads can be given a name that is visible when listing the threads in your
system. It is good practice to name every thread, because if something goeswrong
you can see which threads are still running. Additionally, threads are grouped by
thread groups. If you do not supply a thread group, the new thread is added to
the thread group of the currently executing thread. The threads of a group and
their subgroups can be destroyed, stopped, resumed, or suspended by using the
ThreadGroup object.

The next two samples are used in the following programs that illustrate thread
usage.
/∗ thread/ThrdTst1.nrx ∗/

95

Chapter 21. Concurrency

h1 = Hello1('This is thread 1')
h2 = Hello1('This is thread 2')

Thread(h1,'Thread Test Thread 1').start()
Thread(h2,'Thread Test Thread 2').start()

class Hello1 implements Runnable
Properties inheritable
message = String

method Hello1(s = String)
message = s

method run()
loop for 50
say message

end

/∗ thread/ThrdTst2.nrx ∗/

h1 = Hello2('This is thread 1')
h2 = Hello2('This is thread 2')

h1.start()
h2.start()

class Hello2 extends Thread
Properties inheritable
message = String

method Hello2(s = String)
super('Thread Test − Message' s)
message = s

method run()
loop for 50
say message
do
sleep(10)
catch InterruptedException

end
end

Thesecondclass,Hello2, doesnot implement the Runnable interface, but subclasses
it, so it inherits itsmethods.This is a valid approach, and it is up to thedeveloper to
choose an implementation and worry about the semantics of an inherited thread
interface. A newly created thread remains idle until the start method is invoked.
The thread then wakes up and executes the run method of its target object. The
start method can be called only once. The thread continues running until the run
method completes or the stop method of the thread is called.

96

Chapter 22

Using NetRexx for Web applets

JavaWeb applets are a deprecated applicationmodel, depending on web browser
plugins, and will be removed from the JDK. This chapter will be removed when
NetRexx support for Java versions that includes web applets ends. Note that, for
some time now, no mainstream web browser supports Java applets. Web applets
can be written one of two styles:

. Lean and mean, where binary arithmetic is used, and only core Java classes
(such as java.lang.String) are used. This is recommended for WorldWideWeb
pages, which may be accessed by people using a slow internet connection.
Several examples using this style are included in the NetRexx package (eg.,
NervousTexxt.nrx or ArchText.nrx).. Full-function, where decimal arithmetic is used, and advantage is taken of
the full power of the NetRexx runtime (Rexx) class. This is appropriate for
intranets,wheremost userswill have fast connections to servers. An example
using this style is included in the NetRexx package (WordClock.nrx).

If youwrite applets which use the NetRexx runtime (or any other Java classes that
might not be on the client browser), the rest of this sectionmay help in setting up
your Web server.

A good way of setting up an HTTP (Web) server for this is to keep all your applets
in one subdirectory. You can then make the NetRexx runtime classes (that is, the
classes in the package known to the JavaVirtualMachine as netrexx.lang) available
to all theapplets byunzippingNetRexxR.jar into a subdirectorynetrexx/lang below
your applets directory.
For example, if the root of your server data tree is

D:\mydata

you might put your applets into

97

Chapter 22. Using NetRexx for Web applets

D:\mydata\applets

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the
directory

D:\mydata\applets\netrexx\lang

The same principle is applied if you have any other non-core Java packages
that you want to make available to your applets: the classes in a package called
iris.sort.quicksortswould go in a subdirectory below applets called iris/sort/quicksorts,
for example.

Note that since Java 1.1 or later it is possible to use the classes direct from the
NetRexxR.jar file. Please see the Java documentation for details.

98

Chapter 23

Database Connectivity with JDBC

For interfacing with Relational DatabaseManagement Systems (RDBMS) NetRexx
uses the Java Data Base Connectivity (JDBC)model. Thismeans that all important
database systems, for which a JDBC driver has been made available, can be used
from your NetRexx program. This is a large bonus when we compare this to the
other open source scripting languages, that have been made go by with specific,
nonstandard solutions and special drivers. In contrast, NetRexx programs can be
made compatible with most database systems that use standard SQL, and, with
some planning and care, can switch database implementations at will.
/∗ jdbc\JdbcQry.nrx

This NetRexx program demonstrate DB2 query using the JDBC API.
Usage: Java JdbcQry [<DB−URL>] [<userprefix>] ∗/

import java.sql.

parse arg url prefix −− process arguments
if url = '' then
url = 'jdbc:db2:sample'

else do −− check for correct URL
parse url p1 ':' p2 ':' rest
if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do
say 'Usage: java JdbcQry [<DB−URL>] [<userprefix>]'
exit 8

end
end
if prefix = '' then prefix = 'userid'

do −− loading DB2 support
say 'Loading DB2 driver classes...'
Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
−− Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()

catch e1 = Exception
say 'The DB2 driver classes could not be found and loaded !'
say 'Exception (' e1 ') caught : \n' e1.getMessage()
exit 1

99

Chapter 23. Database Connectivity with JDBC

end −− end : loading DB2 support

do −− connecting to DB2 host
say 'Connecting to:' url
jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password

')
catch e2 = SQLException
say 'SQLException(s) caught while connecting !'
loop while (e2 \= null)
say 'SQLState:' e2.getSQLState()
say 'Message: ' e2.getMessage()
say 'Vendor: ' e2.getErrorCode()
say
e2 = e2.getNextException()

end
exit 1

end −− end : connecting to DB2 host

do −− get list of departments with the
managers

say 'Creating query...'
query = 'SELECT deptno, deptname, lastname, firstnme' −

'FROM' prefix'.DEPARTMENT dep,' prefix'.EMPLOYEE emp'−
'WHERE dep.mgrno=emp.empno ORDER BY dep.deptno'

stmt = Statement jdbcCon.createStatement()
say 'Executing query:'
loop i=0 to (query.length()−1)%75
say ' ' query.substr(i∗75+1,75)

end
rs = ResultSet stmt.executeQuery(query)
say 'Results:'
loop row=0 while rs.next()
say rs.getString('deptno') rs.getString('deptname') −

'is directed by' rs.getString('lastname') rs.getString('firstnme
')

end
rs.close() −− close the ResultSet
stmt.close() −− close the Statement
jdbcCon.close() −− close the Connection
say 'Retrieved' row 'departments.'

catch e3 = SQLException
say 'SQLException(s) caught !'
loop while (e3 \= null)
say 'SQLState:' e3.getSQLState()
say 'Message: ' e3.getMessage()
say 'Vendor: ' e3.getErrorCode()
say
e3 = e3.getNextException()

end
end −− end: get list of departments

The first peculiarity of JDBC is the way the driver class is loaded. When most
classes are ’pulled in’ by the translator, a JDBC driver traditionally is loaded

100

through the reflection API. This happens in line 22 with the Class.forName call.
This implies that the library containing this class must be on the classpath.

In previous versions of JDBC, to obtain a connection, one first had to initialize the
JDBC driver by calling the method Class.forName. Any JDBC 4.0 drivers that are
found on the class path are automatically loaded. (However, one must manually
load any drivers prior to JDBC 4.0 with the method Class.forName.)

In line32of theexampleweconnect to thedatabaseusingaurl andauserid/password
combination. This is an easy way to do and test, but for most serious applications
we do not want plaintext userids and passwords in the sourcecode, so most of
the time we would store the connection info in a file that we store in encrypted
form, or we use facilities of J2EE containers that can provide data sources that
take care of this, while at the same time decoupling your application source from
the infrastructure that it will run on.

In line 47 the query is composedbyfilling in variables in aRexx string andmaking
a Statement out of it, in line 50. In line 55, the Statement is executed, which yields
a ResultSet. This has a cursor that moves forward with each next call. The next call
returns true as longs as there are rows from the resultset to return.

The ResultSet interface implements getter methods for all JDBC Types. In the
above example, all returned results are of type String.
/∗ jdbc\JdbcUpd.nrx

This NetRexx program demonstrate DB2 update using the JDBC API.
Usage: Java JdbcUpd [<DB−URL>] [<userprefix>] [U] ∗/

import java.sql.

parse arg url prefix lowup −− process arguments
if url = '' then

url = 'jdbc:db2:sample'
else do −− check for correct URL

parse url p1 ':' p2 ':' rest
if p1 \= 'jdbc' | p2 \= 'db2' | rest = '' then do

say 'Usage: java JdbcUpd [<DB−URL>] [<userprefix>] [U]'
exit 8

end
end
if prefix = '' then prefix = 'userid'
if lowup \= 'U' then lowup = 'L'

do −− loading DB2 support
say 'Loading DB2 driver classes...'

101

Chapter 23. Database Connectivity with JDBC

Class.forName('COM.ibm.db2.jdbc.app.DB2Driver').newInstance()
−− Class.forName('COM.ibm.db2.jdbc.net.DB2Driver').newInstance()

catch e1 = Exception
say 'The DB2 driver classes could not be found and loaded !'
say 'Exception (' e1 ') caught : \n' e1.getMessage()
exit 1

end −− end : loading DB2 support

do −− connecting to DB2 host
say 'Connecting to:' url
jdbcCon = Connection DriverManager.getConnection(url, 'userid', 'password

')
catch e2 = SQLException
say 'SQLException(s) caught while connecting !'
loop while (e2 \= null)

say 'SQLState:' e2.getSQLState()
say 'Message: ' e2.getMessage()
say 'Vendor: ' e2.getErrorCode()
say
e2 = e2.getNextException()

end
exit 1

end −− end : connecting to DB2 host

do −− retrieve employee, update
firstname

say 'Preparing update...' −− prepare UPDATE
updateQ = 'UPDATE' prefix'.EMPLOYEE SET firstnme = ? WHERE empno = ?'
updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)
say 'Creating query...' −− create SELECT
query = 'SELECT firstnme, lastname, empno FROM' prefix'.EMPLOYEE'
stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query) −− execute select

loop row=0 while rs.next() −− loop employees
firstname = String rs.getString('firstnme')
if lowup = 'U' then firstname = firstname.toUpperCase()
else do

dChar = firstname.charAt(0)
firstname = dChar || firstname.substring(1).toLowerCase()

end
updateStmt.setString(1, firstname) −− parms for update
updateStmt.setString(2, rs.getString('empno'))
say 'Updating' rs.getString('lastname') firstname ': \0'
say updateStmt.executeUpdate() 'row(s) updated' −− execute update

end

rs.close() −− close the ResultSet
stmt.close() −− close the Statement
updateStmt.close() −− close the PreparedStatement
jdbcCon.close() −− close the Connection
say 'Updated' row 'employees.'

catch e3 = SQLException

102

say 'SQLException(s) caught !'
loop while (e3 \= null)

say 'SQLState:' e3.getSQLState()
say 'Message: ' e3.getMessage()
say 'Vendor: ' e3.getErrorCode()
say
e3 = e3.getNextException()

end
end −− end: empoyees

For database updates, we connect using the driver in the same way (line 23) and
nowprepare the statement used for the databaseupdate (line 50). In this example,
we loop through the cursor of a select statement andupdate the row in line 66. The
executeUpdatemethod of PreparedStatement returns the number of updated rows
as an indication of success.

From JDBC 2.0 on, cursors are updateable (and scrollable, so they canmove back
and forth), so wewould not have to go through this effort - but it is a valid example
of an update statement.

103

Chapter 24

WebSphere MQ

WebSphere MQ (also and maybe better known as MQ Series) is IBM’s messaging
and queing middleware, and is in use at a great many financial institutions and
other companies. It has, from a programming point of view, two API’s: JMS (Java
Messaging Services), a generic messaging API for the Java world, and MQI, which
is older and proprietary to IBM’s product. The below examples show the MQI;
other examples might show JMS applications.

This is the sample Java application for MQI, translated (and a lot shorter) to Net-
Rexx.
import com.ibm.mq.MQException
import com.ibm.mq.MQGetMessageOptions
import com.ibm.mq.MQMessage
import com.ibm.mq.MQPutMessageOptions
import com.ibm.mq.MQQueue
import com.ibm.mq.MQQueueManager
import com.ibm.mq.constants.MQConstants

class MQSample
properties private

qManager = "rjtestqm";
qName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

method main(args=String[]) static binary
m = MQSample()
do
say "Connecting to queue manager: " m.qManager
qMgr = MQQueueManager(m.qManager)

openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF | MQConstants.
MQOO_OUTPUT

say "Accessing queue: " m.qName
queue = qMgr.accessQueue(m.qName, openOptions)

105

Chapter 24. WebSphere MQ

msg = MQMessage()
msg.writeUTF("Hello, World!")

pmo = MQPutMessageOptions()

say "Sending a message..."
queue.put(msg, pmo)

rcvMessage = MQMessage()

gmo = MQGetMessageOptions()

say "...and getting the message back again"
queue.get(rcvMessage, gmo)

msgText = rcvMessage.readUTF()
say "The message is: " msgText

say "Closing the queue"
queue.close()

say "Disconnecting from the Queue Manager"
qMgr.disconnect()
say "Done!"

catch ex=MQException
say "A WebSphere MQ Error occured : Completion Code " ex.

completionCode "Reason Code " ex.reasonCode
catch ex2=java.io.IOException
say "An IOException occured whilst writing to the message buffer: "

ex2
end

This sample connects to the Queue Manager (called rjtestqm) in bindings mode,
as opposed to client mode. Bindings mode is only a connection possibility for
client programs that are running in the same OS image as the Queue Manager,
on the server. Note that the application connects (line 19), accesses a queue (line
23), puts a message (line 32), gets it back (line 39) closes the queue (line 45)
and disconnects (line 48) all without checking returncodes: the exceptionhandler
takes care of this, and all irregulatieswill be reported from the catchMQException
block starting at line 50).

Themainmethod does in this case not follow the canonical form, but has ’binary’
as an extra option.Optionbinary canbedefinedon the command line as anoption
to the translator, as a program option, as a class option and as a method option.
Here the smallest scope is chosen. There is a good reason to make this method
a binary method: accessing a queue in MQ Series requires some options that are
set using a mask of binary flags - this works, in current NetRexx versions, only in
binary mode, because the operators have other semantics in nobinary mode.

106

import com.ibm.mq.

class MessageReader
properties private

qManager = "rjtestqm";
qName = "TESTQUEUE1"

method main(args=String[]) static binary

m = MessageReader()
do
MQEnvironment.hostname = 'localhost'
MQEnvironment.port = int 1414
MQEnvironment.channel = 'CHANNEL1'

−− exit assignment
exits = TimeoutChannelExit()
MQEnvironment.channelReceiveExit = exits
MQEnvironment.channelSendExit = exits
MQEnvironment.channelSecurityExit = exits

say "Connecting to QM: " m.qManager
qMgr = MQQueueManager(m.qManager)

openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF

say "Accessing Queue : " m.qName
queue = qMgr.accessQueue(m.qName, openOptions)

gmo = MQGetMessageOptions() −− essential here is that we have
MQGMO_WAIT; otherwise we cannot timeout

gmo.Options = MQConstants.MQGMO_WAIT | MQConstants.
MQGMO_FAIL_IF_QUIESCING | MQConstants.MQGMO_SYNCPOINT

gmo.WaitInterval = MQConstants.MQWI_UNLIMITED

loop forever
rcvMessage = MQMessage()
queue.get(rcvMessage, gmo)
msgText = rcvMessage.readUTF()
say "Got a message; the message is: " msgText
say

end

catch ex=MQException
say "A WebSphere MQ Error occured : Completion Code " ex.

completionCode "Reason Code " ex.reasonCode
say "Closing the queue"
queue.close()
say "Disconnecting from the Queue Manager"
qMgr.disconnect()
say "Done!"

end

107

Chapter 24. WebSphere MQ

In contrast to theprevious sample theMessageReader sample onlyhasone import
statement. This is always hotly debated in project teams, one school likes the
succinctness of including only the top level import, and only goes deeper when
there is ambiguity detected; another school spells out the all imports to the bitter
end.

The MessageReader sample connects to another queue, called TESTQUEUE1
(specified in line 7) but here we connect in client mode, as indicated by lines 13-15
which specify an MQEnvironment. Other options are using an MQSERVER envi-
ronment variable or a Channel Definition Table.

This program is also uncommon in that it uses MQConstants.MQGMO_WAIT as an
option instead of being triggered as a process by a message on a trigger queue.
Using this option means that the program waits (stays active, not really busy
polling but depending on an OS event) until a newmessage arrives, which will be
processed immediately.

In lines18-21aChannelExit is specified.This exit is show in the followingexample.
import com.ibm.mq.
import java.nio.

class TimeoutChannelExit implements WMQSendExit, WMQReceiveExit,
WMQSecurityExit

properties

tTask = WatchdogTimer
t = java.util.Timer
timeout = long
initialized = boolean

method TimeoutChannelExit()
say "TimeoutChannelExit Constructor Called"
t = java.util.Timer()
timeout = long 15000

method channelReceiveExit(channelExitParms=MQCXP, −
channelDefinition=MQCD, −
agentBuffer=ByteBuffer) returns ByteBuffer

do
this.tTask.cancel() −− cancel the timer task whenever a message is

read
catch NullPointerException −− but catch the null pointer the first time
end
this.tTask = WatchdogTimer()
this.t.schedule(this.tTask,this.timeout)
return agentBuffer

method channelSecurityExit(channelExitParms=MQCXP, −
channelDefinition=MQCD, −

108

agentBuffer=ByteBuffer) returns ByteBuffer
return agentBuffer

method channelSendExit(channelExitParms=MQCXP, −
channelDefinition=MQCD, −
agentBuffer=ByteBuffer) returns ByteBuffer

return agentBuffer

class WatchdogTimer extends TimerTask

method WatchdogTimer()
method run()
say 'WATCHDOG TIMER TIMEOUT: HPOpenView Alert Issued' Date() Time()

MQ Series has traditional channel exits (programs that can look at the message
contents before the application gets to it). In the MQI Java environment there is
something akin to this functionality, but a Java channel exit for MQ Series has to
be defined in the application, as shown in the previous example. The function of
this particular exit is to implement a Watchdog timer - on a separate thread, as
shown in the sample that follows the sample channel exit. The timer threatens
here to have issues a HP OpenView alert, but that part has been left out.

This particular sample has been designed to do something that is normally a
bit harder to do: signal the operations department when something does NOT
happen - here the assumption is that there is a payment going over the queue at
least once every 20minutes - when that does not happen, an alert is issued. With
every message that goes through, the timer thread is reset, and only when it is
allowed to time out, action is undertaken.
import com.ibm.mq.

class MQPubSubSample

properties inheritable
queueManagerName = String
syncPoint = Object()
props = Hashtable
topicString = String
topicObject = String
subscribers = Thread[]
subscriberCount = int

properties volatile inheritable
readySubscribers = int 0 −−must be defined volatile

method MQPubSubSample()
topicString = null
topicObject = System.getProperty("com.ibm.mq.pubSubSample.

topicObject", "TESTTOPIC")
queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.

queueManagerName","rjtestqm")

109

Chapter 24. WebSphere MQ

subscriberCount = Integer.getInteger("com.ibm.mq.pubSubSample.
subscriberCount", 100).intValue()

this.props = Hashtable()
this.props.put("hostname", "127.0.0.1")
this.props.put("port", Integer(1414))
this.props.put("channel", "SYSTEM.DEF.SVRCONN")

method main(agr=String[]) static binary
sample = MQPubSubSample()
sample.launchSubscribers()

/∗
∗ wait until all the subscriber threads have finished the

subscription
∗/
do protect sample.syncPoint
loop while sample.readySubscribers < sample.subscriberCount
do
sample.syncPoint.wait()

catch InterruptedException
end
end −− loop while sample

end −− do

sample.doPublish()

method launchSubscribers()
say "Launching the subscribers"
subscribers = Thread[subscriberCount]

threadNo = int 0
loop while threadNo < this.subscribers.length
this.subscribers[threadNo] = MQPubSubSample.Subscriber("Subscriber"

threadNo)
this.subscribers[threadNo].start()
threadNo = threadNo + 1

end

method doPublish() signals IOException
say "method doPublish started"
destinationType = int CMQC.MQOT_TOPIC
do
queueManager = MQQueueManager(this.queueManagerName, this.props)
messageForPut = MQMessage()
say "∗∗∗Publishing ∗∗∗"
messageForPut.writeString("Hello world!")
queueManager.put(destinationType, topicObject, messageForPut)

catch e=MQException
say "Exception while publishing " e

end

class MQPubSubSample.Subscriber binary dependent extends Thread

properties private

110

myName = String
openOptionsForGet = int CMQC.MQSO_CREATE | CMQC.MQSO_FAIL_IF_QUIESCING

| CMQC.MQSO_MANAGED | CMQC.MQSO_NON_DURABLE

method Subscriber(subscriberName=String)
super(subscriberName)
myName = subscriberName

method run()
do
say myName " − ∗∗∗Subscribing∗∗∗"
queueManager = MQQueueManager(parent.queueManagerName, parent.props)
destinationForGet = queueManager.accessTopic(parent.topicString,

parent.topicObject, CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION,
openOptionsForGet)

do protect parent.syncpoint
parent.readySubscribers = parent.readySubscribers + 1
parent.syncPoint.notify()

end

mgmo = MQGetMessageOptions()
mgmo.options = CMQC.MQGMO_WAIT
mgmo.waitInterval = 30000
say myName " − ∗∗∗Retrieving∗∗∗"
messageForGet = MQMessage()

do protect getClass()
destinationForGet.get(messageForGet, mgmo)

end

messageDataFromGet = String messageForGet.readLine()
say myName " − Got [" messageDataFromGet "]"

catch e=Exception
say myName " " e
e.printStackTrace()

end
parent.readySubscribers = parent.readySubscribers − 1

This sample shows the publish-subscribe interfaces that at some time have been
added to the product. This specific sample shows some Java thread complexity
but is a good example of doing publish/subscribe work in a multithreaded way,
which is a natural fit for this type of work.

111

Chapter 25

MQTT

25.1 Pub/Sub with MQ Telemetry

Publish/subscribe (pub/sub) is a model that lends itself very well to a number
of one publisher, many subscriber type of applications; the tools to enter this
technology have never been as available as they are now. Also, MQTT is a small
protocol that needs to be taken seriously: Facebook has recently become one of
the largest users.

Designed as a low-overhead on-the-wire protocol for brokers in the Internet-of-
things age, MQTT is an exciting new development in theMessaging and Queueing
realm. It is a good choice for any broker functionality, as the minimal message
overhead is 2 bytes, but the maximummessages size, in one of the more popular
open source brokers is a good 250MB, which give you a message size that is a
lot higher than anything possible in the early years of MQ Series back in the
nineties. It is now possible to do development with an entry level, entirely open
source suite, and scale up to commercial, clustered and highly available imple-
mentations when needed, since the protocol has is supported by the base IBM
WebSphere MQ product and is an added deliverable in WSMQ 7.5, after being
available as an installable add-on for several years.

Here I will show how extremely straightforward it is to create a pub/sub appli-
cation using this technology. These examples use NetRexx, the Eclipse PAHO
Java client library and the open source Mosquitto broker; all these components
are completely free and open source. I have installed Mosquitto on my MacBook
using the brew system(fn), which makes it as much trouble as “sudo brew install
mosquitto”. NetRexx is an excellent language for these examples, as it is compact
and avoids the C-inspired ceremony of Java language syntax; if your project
requires Java, you can just save the generated Java source (using the new –

113

Chapter 25. MQTT

keepasjava option).

Mosquitto(fn) iswrittenbyRoger Light as anopen source equivalent of IBM’s rsmb
(real small message broker) example application, which is free but lacks source
code. It is a small broker application that nevertheless runs production sized
workloads. AsMQTT, as opposed to theMQI or JMSAPI’s you usewhen developing
amessagingapplication, is anon-the-wireprotocol (commercialmessaging systems
tend tohave their own, unpublished, on-the-wireprotocols),weneedanAPI touse
it. ThisAPI consists of a set of calls that do the formatting of themessages to the re-
quirements of the on-the-wire protocol for you. Themessages themselves are just
byte-arrays, which gives you the ultimate freedom in designing their content. It is
not unusual for connected devices to encode their information in a fewbits; on the
otherhand, there is no reasonnot to use extremeverbosity inmessages; as long as
you send the .getBytes that your String yields, MQTT will send it. When encoding
information in a compact way, the protocol design will really pay off, because the
protocol overhead, in comparison with http and other chatty protocols, is very
low. A limited set of quality of service options (qos) will indicate if you want send
and pray, acknowledged delivery or acknowledged one-time-only delivery.

The API library that was chosen for these examples is that from the Eclipse PAHO
project. This project, which is in its early stages, has C, Javascript and Java client
libraries available. I chose the Java client because the JVM environment is where
most of the organizations that I work for will use it. The PAHO Java client library
is donated by IBM and written by Dave Locke; it is in active development. If you
want to see how theprotocolmoves in packets over thenetwork, I can recommend
Wireshark, which does a good job of recognizing them (if you run on the standard
port 1883) and showing you the message types (like ACK) and their bytes.

After having put the NetRexx(.jar) and paho client jars on your classpath, you
are good to go. The first example here is the publisher – this is not a fragment,
but the complete code. For production code we might add some more checks, as
enterprise environments always are prone to suddenly run low on disk space and
suffer missing authorizations, but it works as it stands. Do note that you do not
have to define a message topic in advance – just think of one any use it, at least if
you are in your own environment.WithMosquitto, therewasn’t anything to define
in advance, and the running Publisher (happily lifted from the Java example) in
NetRexx was actually the first time I talked to Mosquitto on my MacBook.
import java.sql.Timestamp
import org.eclipse.paho.client.mqttv3.

class Publish implements MqttCallback

114

25.1. Pub/Sub with MQ Telemetry

method Publish()
conOpt = MqttConnectOptions()
conOpt.setCleanSession(0)
tmpDir = System.getProperty("java.io.tmpdir")
dataStore = MqttDefaultFilePersistence(tmpDir)
clientId = MqttClient.generateClientId()
topicName = "/world"
payload = "hello".toString().getBytes()
qos = 2

do
broker = "localhost"
port = "1883"
brokerUrl = "tcp://"broker":"port
client = MqttClient(brokerUrl,clientId, dataStore)
client.setCallback(this)

catch e=mqttException
say e.getMessage()
e.printStackTrace()

end −− do

client.connect()
log("Connected to "brokerUrl" with client ID "client.getClientId())

−− Get an instance of the topic
topic = client.getTopic(topicName)

message = MqttMessage(payload)
message.setQos(qos)

−− Publish the message
time = Timestamp(System.currentTimeMillis()).toString()
log('Publishing at: 'time' to topic "'topicName'" with qos 'qos)
token = topic.publish(message)

−− Wait until the message has been delivered to the server
token.waitForCompletion()

−− Disconnect the client
client.disconnect()
log("Disconnected")

method log(line)
say line

method messageArrived(t=String,m=MqttMessage)
log("Message Arrived: " t m)

method deliveryComplete(t=IMqttDeliveryToken)
log("Delivery Complete: " t)

method connectionLost(t=Throwable)
log("Connection Lost:" t.getMessage())

115

Chapter 25. MQTT

method main(args=String[]) static
Publish()

Topics can have a hierarchical organization; this structure is put in by composing
trees of topics, which are strings separated by ‘/’. In this way, it is easy to compose
a /news/economics/today topic string that gives some structure to thepublication.
The classification is entirely up to the designer.

Messaging in its original form is an asynchronous technology, and for this reason
the API offers a callback option, where the callback receives the results of your
publish action in an asynchronous way. The broker assigns a message id which
you receive back.

The second source fragment (and again, it is no fragment but the entire applica-
tion program) shows the subscriber.
import java.sql.Timestamp
import org.eclipse.paho.client.mqttv3.

class Subscribe implements MqttCallback

properties private
client = MqttClient
conOpt = MqttConnectOptions()
tmpDir = System.getProperty("java.io.tmpdir")
clientId = MqttClient.generateClientId()
topicName = "/world"
qos = 2

method Subscribe()
do
connectAndSubscribe()

catch mqx=MqttException
log(mqx.getMessage())

end
−− Block until Enter is pressed
log("Press <Enter> to exit");
do
System.in.read()

catch IOException
end

−− Disconnect the client
client.disconnect()
log("Disconnected")

method connectAndSubscribe() signals MqttSecurityException,MqttException
conOpt.setCleanSession(1)
dataStore = MqttDefaultFilePersistence(tmpDir)
do
broker = "localhost"

116

25.1. Pub/Sub with MQ Telemetry

port = "1883"
brokerUrl = "tcp://"broker":"port
client = MqttClient(brokerUrl,clientId, dataStore)
client.setCallback(this)

catch e=mqttException
say e.getMessage()
e.printStackTrace()

end −− do

this.client.connect()
log("Connected to "brokerUrl" with client ID "client.getClientId())

−− Subscribe to the topic
log('Subscribing to topic "'topicName'" qos 'qos)
this.client.subscribe(topicName, qos)

method log(line)
say line

method messageArrived(t=String,m=MqttMessage)
log("Message Arrived: " t m)

method deliveryComplete(t=IMqttDeliveryToken)
log("Delivery Complete: " t)

method connectionLost(t=Throwable)
do
connectAndSubscribe()
catch mqx=MqttException
log(mqx.getMessage())

end

method main(args=String[]) static
Subscribe()

Security is outsideof the scopeof this introductionwhichshowsyou thesourcecode
of a simple pub/sub application, but in Mosquitto the traffic can be secured using
SSL certificates and userid/password combinations; also, the access to topics
can be limited. In terms of availability, the Mosquitto configuration file offers an
opportunity to send all messages for a defined set of topics to another connected
broker, which might be in a different part of the world, or your home, to enable a
redundant setup.While the broker does not offer the queue – transmission queue
- channel setup with retrying channels that MQ does, the client API has some
facilities to locally save the messages and retry if the communication was lost.
Also, the last-will-and-testament facility is something that traditional MQ does
not have.

117

Chapter 26

Component Based Programming:
Beans

JavaBeans is thename for the Javacomponentmodel. It consists of twoconventions,
for the naming of getter and setter methods for properties, and the event mecha-
nism for sending and receiving events. NetRexx adds support for the automatic
generation of getter and setter methods, throught the properties indirect option
on the properties statement.

119

Chapter 27

Interfacing to Scripting Languages

NetRexx contains standardized Java Scripting support, and the NetRexxC.jar file
3.03

is a self-contained javax.script (formerly called JSR223) scripting engine. This
facility opens up a number of possibilities to interface in a standardized manner
with several scripting languages and other infrastructure, and offers an easy way
for including interpreted NetRexx code in JVM applications. JSR223 is a standard
for interacting with scripting languages that consists of:

1. A mechanism to find out for which scripting languages support is available
2. A way to choose one of them
3. An eval() call to dynamically specify and execute a program
4. A bindingsmechanism to bind variable names to values, to exchange objects
with scripts

5. Optionally, a way to execute methods, functions or routines from larger pro-
grams

6. Optionally, away tokeepalreadycompiled scripts around for repeatedexecution
(with associated higher performance)

The JSR223specification17 details thecalls that areavailable in the javax.scripting
package. To use the JSR223 interface, Java 6 or higher is required. The JAR file
specification defines a service as a well-known set of interfaces and (usually)
abstract classes. A service provider is a specific implementation of such a service.
For scripting, the service consists of javax.script.ScriptEngineFactory. All classes
that implement this interface are service providers. Service providers identify
themselvesbyplacingaso-calledprovider-configurationfile inMETA-INF/services.
Its filename corresponds to the fully qualified name of the service class, which is
javax.script.ScriptEngineFactory. Each line of this file contains the fully qualified
nameof a serviceprovider.The factory classof theNetRexxconnector is org.netrexx.jsr223.NetRexxScriptEngineFactory.
17http://www.jcp.org/en/jsr/detail?id=223, now deprecated because every JVM >=9 contains it.

121

http://www.jcp.org/en/jsr/detail?id=223

Chapter 27. Interfacing to Scripting Languages

So the file META-INF/services/javax.script.ScriptEngineFactory contains one line
with exactly this class name.

27.1 Which scripting engines are onmy system?

The number of JSR223 engines available varies per JVM implementation. The
following code can be used to list these.
import javax.script.ScriptEngine
import javax.script.ScriptEngineFactory
import javax.script.ScriptEngineManager

method main(args=String[]) static
manager = ScriptEngineManager()
factories = manager.getEngineFactories()
it=factories.iterator()
loop while it.hasNext()
factory=ScriptEngineFactory it.next()
f=ScriptEngine factory.getScriptEngine()
say "className = " f.getClass.getName
engineName = factory.getEngineName()
engineVersion = factory.getEngineVersion()
if engineVersion = null then engineVersion = ''
langName = factory.getLanguageName()
langVersion = factory.getLanguageVersion()
say "engineName = " engineName engineVersion langName langVersion
say

end

For example, the Java 8 SE version by Oracle onmacOS delivers out of the box:

className = org.netrexx.process.RxScriptEngine
engineName = NetRexx Interpretation Engine V1.0.1 NetRexx 5.01

className = org.netrexx.jsr223.NetRexxScriptEngine
engineName = NetRexx Script Engine V1.0.0 NetRexx 5.01

As one can see, the name of the engine, the language and its release are standard
features for this query. The NetRexxC.jar file on the classpath adds the NetRexx
implementation.Therecanbeanynumberof additional jar archiveson theclasspath
to deliver engines for different JSR223 implementations for different languages.

122

27.2. Selecting an engine

27.2 Selecting an engine

When developing a program one is probably interested in using a specific imple-
mentation, and it is possible to request the loading of a specific JSR223 engine by
name.
import javax.script.

manager = ScriptEngineManager()
nrEngine = manager.getEngineByName("NetRexx")

The language engine can be selected by its short name, so there is no need to
specify the longer name or its version.

27.3 Evaluating a script

This example shows how to do a simple thing that illustrates the value of being
able to do this from other environments: calculating some number with numeric
precision set to some value that other languages cannot handle.
/∗ simple script invocation ∗/
nrEngine.eval('numeric digits 17; say 111111111 ∗ 111111111')

The output from this script would be:

12345678987654321

27.4 Bindings

Bindings are name-value pairs whose keys are strings - they can be of Rexx type.
Their behavior is defined through the javax.script.Bindings interface. As for
ScriptContext, a basic implementation isprovidedcalled SimpleBindings. Although
bindings belong to script contexts, ScriptEngine provides createBindings(), which
returns an uninitialized binding. Another method, getBindings(), exists to return
thebindingsof a certain scope.Thereareat least twoscopes, ScriptContext.GLOBAL_-
SCOPE and ScriptContext.ENGINE_SCOPE. They represent key-value pairs that are
either visible to all instances of a script engine that have been created by the
same ScriptengineManager, or visible only during the lifetime of a certain script
engine instance. The following program illustrates the use of bindings to store a
value, 42, into the binding called answer and then using its retrieved value in the
evaluation of the statement ’say “the answer is” answer ’. The next action uses

123

Chapter 27. Interfacing to Scripting Languages

the handle one for a value of 1, and uses its retrieved value to add it to the value
previously contained in the binding answer.
import javax.script.

nrEngine = ScriptEngineManager().getEngineByName("NetRexx")

/∗ simple script invocation ∗/
nrEngine.eval('numeric digits 17; say 111111111 ∗ 111111111')

/∗ script invocation with bindings ∗/
answer = 42
nrEngine.put("answer", answer)
nrEngine.eval('say ''the answer is ''answer')

one = 1
nrEngine.put("onemore",one)
nrEngine.eval('say ''one more is ''answer+onemore')

Note that in line two, the invocation is shortenedabit bygetting ridof the intermediate
manager object for instantiation of the language interface. Also note that in line
10, we chose, for illustration purposes, to store the one object into the bindings
structure using a different name, onemore. This shows that the string used as
identifier for theobject is just ahandle to it, andnothingmore. Thiswould yield:

12345678987654321
the answer is 42
one more is 43

The different possibilities and language combinations will be discussed in the
paragraphs below.

27.4.1 Obtaining a returncode

The variable binding used for the return code from the NetRexx program is called
returnobject. This program illustrates its use:
import javax.script.

nrEngine = ScriptEngineManager().getEngineByName("NetRexx")

/∗ check returncode ∗/
say nrEngine.eval('NetRexxScriptEngine.instance.put("returnobject", "99")')

99

124

27.5. Interpreted execution of NetRexx scripts from jrunscript

27.5 Interpreted execution of NetRexx scripts from jrunscript

Another way of calling any NetRexx program, for interpretation, is to use the
standard jrunscript executable that is included in Java1.6andbeyond.Forexample,
in the examples/rosettacode directory, one could specify:

jrunscript -l netrexx -cp $CLASSPATH -f RCSortingHeapsort.nrx

The -l option instructs the jrunscript handler to choose NetRexx as its standard
scripting language.ForNetRexx tobeeligible asa scripting language,NetRexxC.jar
mustbeon the jrunscript classpath,which is a separate classpath fromthestandard
one. In this setup, even NetRexx programs with a filename that is not valid as a
classname, can be executed as an interpreted script.

27.6 Using AppleScript onmacOS

OnmacOS you can run an AppleScript using NetRexx.
import javax.script.
−− does not work in recents macos versions

/∗
Instead of ScriptEngine engine = mgr.getEngineByName("AppleScript"); you

must use:
ScriptEngine engine = mgr.getEngineByName("AppleScriptEngine");

In your src directory create directory META−INF
In your src directory create directory META−INF/services
Create file META−INF/services/javax.script.ScriptEngineFactory
In this file is one line:
apple.applescript.AppleScriptEngineFactory
∗/

appleEngine = ScriptEngineManager().getEngineByName("AppleScriptEngine")
context = appleEngine.getContext()
bindings = context.getBindings(ScriptContext.ENGINE_SCOPE)
bindings.put("javax_script_function", "getName")
bindings.put(ScriptEngine.ARGV, 'Stranger')

appleScript = 'on getName(default_) \n'−
'tell application "Finder" \n'−
'display dialog "What is your name?" default answer default_ with

icon note \n'−
'set myName to the text returned of the result \n'−
'delay 0.5 \n'−

125

Chapter 27. Interfacing to Scripting Languages

'display dialog "Hi there, " & myName & "! Welcome to AppleScript
!" with icon note \n'−

'end tell\n'−
'return myName\n'−

'end getName'

result = appleEngine.eval(appleScript,context)
say result

The AppleScript interpreter expects end-of-line characters at the end of every
line, somake sure to include them in your script. The above script shows it is fairly
straightforward to put a dialog box with a question on the screen. The example
shows how to give an argument (ARGV) to a method, and how to put the method
name in the bindings object in order to return the result upon evaluation.

27.7 Execution of NetRexx scripts from ANT tasks

The jsr223 engine enables us to execute NetRexx scripts from the ant18 building
tool using the <script> tag. This was already possible using the BSF library, where
NetRexx was one of the originally supported languages, but has become more
straightforward with jsr223 scripting.
<project name="MyProject" basedir=".">
<description>
demonstration of ant jsr223 netrexx scripting

</description>

<property name="divider" value="81" />
<script language="netrexx" manager="javax">
say "100/"divider '= ' 100/divider

</script>
</project>

Note that properties can be set in other parts of the ant xml file and used in the
ant script. This script yields the following output:

Buildfile: /Users/rvjansen/apps/netrexx-code/documentation/pg/tex/book/
antscript.xml
[script] 100/81 = 1.2345679

BUILD SUCCESSFUL
Total time: 0 seconds

18http://ant.apache.org

126

http://ant.apache.org

27.8. Integration of NetRexx scripting in applications

The task may use the BSF scripting manager or the JSR 223 manager that is
included in JDK6 and higher. This is controlled by the manager attribute. The
JSR 223 scripting manager is indicated by ”javax”, as shown on line 7.

All items (tasks, targets, etc) of the running project are accessible from the script,
using either their name or id attributes (as long as their names are considered
valid Java identifiers, that is). This is controlled by the ”setbeans” attribute of the
task. The name ”project” is a pre-defined reference to the Project, which can be
used instead of the project name. The name ”self” is a pre-defined reference to
the actual <script>-Task instance. From these objects you have access to the Ant
Java API.

A classpath for execution of the script can be set using the classpath attribute. A
script contained in a separate file can be executed using the src attribute.

27.8 Integration of NetRexx scripting in applications

Several applications offer a facility to script functionality using the javax.scripting
interface, akin to theway applications use the RexxSAA interface for this purpose.

27.9 Interfacing with ooRexx using BSF4ooRexx

BSF is a system for language interaction that originated in a research project
at IBM, and predates JSR223 (and certainly its implementation in Java 6) for a
number of years. BSF 2.x has its own interface, while modern BSF versions are
an implementation of the JSR223 interfaces. BSF4ooRexx enables a bidirectional
interface between ooRexx and Java, and enables one to use the large class library
support for Java in ooRexx programs, but likewise the execution of ooRexx code
from Java (including NetRexx) programs. BSF4ooRexx contains some special
support for JVM programs written in NetRexx.

27.10 General scripting implementation notes

This section describes some notes pertaining to specific Scripting for NetRexx
design and implementation decisions.

. All engine scope bindings are passed to the script as variables - note that
binding names containing periods have the periods changed to underscores

127

Chapter 27. Interfacing to Scripting Languages

to be legal variable names.. The NetRexx script engine is reused unless the script returned via an ”exit”
statement and the bindings are persistent which means that scripts will see
the bindings (Objects) created by previous scripts. Arguments are passed both as the normal arg string and as the array binding
javax.script.argv i.e. script variable javax_script_argv.. Scripts are executed via the NetRexxA API for interpreting a program from a
string so they are not written to files.. The current version of the engine has no other optimization and only support
forbareminimumjavax.scripting features (Nocompilable, invokeable, preparse
or caching or user profiles or console, etc.).. When running as anAnt Script task, propertieswhosenames containperiods
are not passed to the bindings andmust be accessed via
project.getProperty(’some.name’) The workaround is to define a local Ant
property as a global first and the scriptengine will overlay the global value
with the local value in the bindings map. When running as an Ant Script task, properties can be set via
project.setProperty(’some.name’, ’some value’). Script parms can be passed in an ”arg” binding. Parse flags can be passed
with a ”netrexxflags” binding or in Ant with the usual ”ant.netrexx.verbose”,
etc properties.. Ant scripts can use the nested classpath facility - It is automatically added to
the classpath that NetRexx scans. Likewise any path segments from a thread
context URLclassloader are added.. The engine will run programs (ie that have amain class) as well as scripts but
bindings cannot then be auto added to the program namespace so programs
have to load bindings like this:
NetRexxScriptEngine.getObject(”objectname”)

128

Chapter 28

NetRexx Tools

28.1 Editor support

This chapter lists editors that have plugin support for NetRexx, ranging from
syntax coloring to full IDE support (specified), and Rexx friendly editors, that are
extensible using Rexx as a macro language (which can be the first step to provide
NetRexx editing support).

28.1.1 JVM - All Platforms

JEdit Full support for NetRexx source code editing, to be found at http:
//www.jedit.org.

NetRexxDE A revisionswith additions of theNetRexx plugin for jEdit,moving
to a full IDE for NetRexx. http://kenai.com/projects/netrexx-misc

Eclipse Eclipse has a NetRexx plugin that provides a complete IDE en-
vironment for the development of NetRexx programs (in alpha
release) by Bill Fenlason. The project is situated at SourceForge
(http://eclipsenetrexx.sourceforge.net/).

28.1.2 Linux

Emacs netrexx-mode.el (in the NetRexx package in the tools directory) runs
on GNU Emacs, which is installed by default on most Linux developer
distributions.

vim vi with extensions

129

http://www.jedit.org
http://www.jedit.org
http://kenai.com/projects/netrexx-misc
http://eclipsenetrexx.sourceforge.net/

Chapter 28. NetRexx Tools

28.1.3 MSWindows

Emacs netrexx-mode.el (in the NetRexx package in the tools directory)
runs onGNUEmacs forWindows. http://www.gnu.org/software/emacs/
windows/faq.html.

vim vi with extensions

28.1.4 macOS

Aquamacs A version of Emacs that is integrated with the macOS Aqua look
and feel. (http://www.aquamacs.org). NetRexx mode is included in
the NetRexx package in the tools directory.

Emacs netrexx-mode.el (in the NetRexx package) runs on GNUEmacs for
macOS. http://www.gnu.org/software/emacs.

Vim Vi with extensions

28.2 Java to Nrx (java2nrx)

When working on a piece of Java code, or an example written in the language,
sometimes it would be good if we could see the source in NetRexx tomake itmore
readable.This is exactlywhat java2nrxbyMarcRemesdoes. It hasa Java1.5parser
and an Abstract Syntax Tree that delivers a translation to NetRexx, to the extend
of what is currently supported under NetRexx.

At themoment it is tobe foundat gitclonegit://git.code.sf.net/p/netrexx/codenetrexx-code
in the tools directory.

It is started by the java2nrx.sh script; for convenience, place java2nrx.sh and
java2nrx.jar in the same directory. NetRexxC and java must be available on the
path.

130

http://www.gnu.org/software/emacs/windows/faq.html
http://www.gnu.org/software/emacs/windows/faq.html
http://www.aquamacs.org
http://www.gnu.org/software/emacs
git clone git://git.code.sf.net/p/netrexx/code netrexx-code

Chapter 29

Using Eclipse for NetRexx
Development

This is a guide for first timeEclipseusers to set up aNetRexxdevelopment project.
It is not a beginners guide to Eclipse, but is intended to explain how to download
the NetRexx compiler source from SVN to be able to modify and build it using
Eclipse19.

It is detailed and hopefully foolproof for someone who has never used Eclipse. It
assumes a Windows user, but if you are a Linux or Mac user, you will no doubt
understand what to do.

This guide is for Eclipse 4.2 (Juno), written August, 2012. New Eclipse releases
occur every 4months, so theremay be differences depending onwhat the current
version is.

29.1 Downloading Eclipse

There aremany different preconfigured versions of Eclipse. As you becomemore
experienced with it you may wish to use a different distribution, but the one
specified here makes some things simple. It does contain some things that you
may never use.

1. Make anew folder for the project. Name it appropriately (e.g. EclipseNetRexx)
2. Browse to eclipse.org, and click on “Download”.
3. Download the version named ECLIPSE IDE FOR JAVA DEVELOPERS for your
your operating system.

4. The download is about 150 MB.
19If you have questions or comments, feel free to contact Bill Fenlason at billfen@hvc.rr.com.

131

Chapter 29. Using Eclipse for NetRexx Development

5. Unzip the downloaded file into your project folder.

29.2 Setting up the workspace

There are different strategies for managing Eclipse workspaces. Eclipse defaults
to putting the workspace in your Windows documents folder - probably not what
you want to do. The following is perhaps the most simple way.

1. Open the project folder. It will now contain a folder named eclipse.
2. Add a new folder named “workspace” in the project folder to go along with
the eclipse folder.

3. Open the eclipse folder, and create a shortcut to eclipse.exe.
4. Move the shortcut to the desktop and rename it to something like “Eclipse
NetRexx”.

5. Close the project folder, and double click the shortcut to start Eclipse.
6. The “Select a workspace” dialog comes up - don’t use the default.
7. Browse to the workspace folder that you just created and select it.
8. Click (check) the “Use this as the default” box, and click OK.

29.3 Shellshock

If youhaveneverusedEclipse, it canbeabit overwhelming. It is rather complicated,
and has endless options, etc. In addition there are at least a thousand different
plugins.

You will be greeted by a Welcome screen - you may find it interesting or boring.
Exit from it via tback to thewelcome screen from:MainMenu ->Help ->Welcome.

29.4 Installing Git

Modern versions of Eclipse come with Git support built in. If not, install it from
the Eclipse Marketplace.

132

29.5. Downloading the NetRexx project from the Git repository

29.5 Downloading the NetRexx project from the Git repository

The Git repository on SourceForge contains the NetRexx compiler/translator,
documentation, examples, etc. These instructions assume you want only the
compiler project.

1. The NetRexx Git repository clobe command is: gitclonegit://git.code.sf.
net/p/netrexx/codenetrexx-code

2. Copy it (for pasting) from above, or get it from the kenai or netrexx.org site.

29.6 Setting up the builds

Ant support is built into Eclipse, but it must be configured to be able to access the
bootstrap NetRexx compiler.

1. Double click on the build.xml file name in the package explorer. Note that its
icon is an ant.

2. The build file will open in an editor window.
3. Right click in the window to bring up a context menu, and select Run As -> 2
Ant Build

4. Do NOT select 1 Ant Build.
5. The Ant configuration dialog comes up - it will show you all the targets, etc.
6. Click on the Classpath tab, and then click on User Entries.
7. Now click on Add External Jars to bring up the Jar Selection dialog.
8. Navigate to the lib folder in the project folder. Make sure you are not in the
build folder.

9. Double click on NetRexxC.jar to select it.
10. Click on the Refresh tab, and check the Refresh resources on completion box.
11. Click Run to build the distribution. The messages will appear in the console

listing below.
12. The java doc step may fail.
13. Close the build.xml file (X on the tab).

You can configure the ant build by using the configuration dialog in Run As -> 2
Ant Build. You may want to check “compile” and “jars” to run those steps. Use
Apply to save the configuration.

There are two different builds. The second build.xml file is in the project -> tools
-> ant-task folder. Open it up and repeat the above steps for that build.xml file.

133

git clone git://git.code.sf.net/p/netrexx/code netrexx-code
git clone git://git.code.sf.net/p/netrexx/code netrexx-code

Chapter 29. Using Eclipse for NetRexx Development

Each build file has its own ant configuration, and once set selecting Run As -> 1
Ant Build will run it. Or just hit F11.

29.7 Using the NetRexx version of the NetRexx Ant task

The above process uses the standard NetRexx Ant task, not the new one. To use
the new one:

1. Main Menu -> Window -> Preferences -> Ant -> Runtime.
2. Open up and select Ant Home Entries. Then click on Add External Jars
3. Navigate to the lib folder in the project and select ant-netrexx.jar
4. The jar will appear at the bottom of the list.
5. Use the UP button to move it up (ahead) of the apache ant version, click OK

29.8 Setting up the Eclipse NetRexx Editor Plugin (Optional)

The NetRexx Editor plugin provides syntax coloring and error checking for nrx
files, as well as one click compiling and translating.

1. Click on Main Menu -> Help -> Eclipse MarketPlace.
2. Type NetRexx in the search box and hit enter.
3. Click the Install button next to the Eclipse NetRexx package.
4. Click Next, Accept the License, Finish, OK to unsigned content, and Yes to
restart Eclipse.

5. Click Main Menu -> Window -> Preferences -> NetRexx Editor to explore it

134

Chapter 30

Platform dependent issues

30.1 Mobile Platforms

Android™is a version of Linuxwith a runtime consisting of a variant of Java, and is
friendly to NetRexx programs. Indeed, with NetRexx performing so much better
than the closest competition (jRuby, jython) on these devices, there might be a
bright future for NetRexx in these environments.

However, there are some drawbacks, caused by the security architecture put in
place. Free, unfettered programming like one can do on a desktop machine is a
rare occurrence on these devices, and to get programs running on them requires
some knowledge of the security architecture that has been put in place formobile
operating systems.

While Apple development still employs a closed model that allows programming
only by buying a license with accompanying certificates, and vetting by the App
Store employees, and an assumption you will program in Objective-C, Android
allows programming but not as straightforward as we know it. To make simple
command-line NetRexx programs, both device types need to be rooted to allow
optimal access. Android allows the installation of applications without vetting
by third parties, but dictates a programming model that incurs some overhead -
which is a drawback for the occasional scripter.

30.1.1 Android

Thesecuritymodel ofAndroid isbasedon leastneededprivilegeand is implemented
by assigning each application a different userid, so that applications on the same
device (be it a phone or a tablet) cannot get to each others data. The consequence
of this is that simple NetRexx programming and scripting on the device itself is

135

Chapter 30. Platform dependent issues

limited, however developing complete applications in NetRexx is not.

30.1.2 Apple IOS

There is a number of ways NetRexx can be run on Apple IOS devices (iPhone
and iPad). Both have drawbacks. With ISH, a 32-bit version of Linux is started on
an emulated X86 processor; this has dire consequences for performance. The
’Jailbreak’ solution runs with much better performance, but this approach is
rather volatile and cannot be guaranteed to be feasible in the future, because
Apple is actively fixing the holes that allow it.

ISH

The ISHapplicationdelivers aLinuxshell onemulatedhardware.TheNetRexxC.jar
can be transferred with scp to the storage of ISH, from where it can be run. It
needs highermemory heap allocations than the standard; -Xms128M -Xmx128M
is recommended here. Do not expect performance corresponding to the native
ARM hardware in your device.

Jailbreak

Note: this chapter is out of date. Nonewithstanding the current intention of Apple
to only allow Swift an d Objective-C as programming languages on the iPhone and
iPad, NetRexx on IOS works fine. This is what one should do to make it work:

1. Jailbreak20 the device. This is necessary until amore sensible setup is used. I
used Spirit; it synchs the phone with the hack and then Cydia is installed, an
application that does package management the Debian way

2. Choose the ”developer profile” on Cydia when asked. This applies a filter to
the packages shown (or rather it doesn’t) - but you need to do it in order to see
the prerequisites

3. OpenTerminal will help you to do command line operations on the phone
itself

4. Theprerequisites are a JavaVM (JamVMinstalls aVMandClassPath, theopen
Java implementation) and Jikes, the Java compiler written in C and compiled
to the native instruction set of the phone, which is ARM - most processors

20Note that jailbreaking an iPhone is against Apple’s End Use License Agreement) and might be illegal in some
jurisdictions.

136

30.2. IBMMainframe: Using NetRexx programs in z/OS batch

implementing this have Jazelle, a specials instructionset to accelerate Java
bytecode. However, this feature is seldom used.

The phone can also be logged on to using ssh from your desktop. Do not forget to
change the password for the ’root’ user and the ’mobile’ user, as instructed in the
Cydia package.Note that this type of informationwill canbemade inaccurate very
swiftly.

When this is done, NetRexxC.jar can be copied to the phone. I did this using
’scp NetRexxC.jar mobile@10.0.0.76:’ (use the password you just set for this
userid) (and because my router assigned 10.0.0.76 to the phone today). I crafted
a small ’nrc’ script that does a translate and then a Java compile using jikes (and
I actually wrote this on the phone using an application called ’iEdit’ - nano, vim
and other editors are also available but I found the keyboard scheme to type in
ctrl-characters a bit tedious - you type a ’ball’ character and then the desired ctrl
char, while shifting the virtual keyboard through different modes):

nrc:

java -cp ~/NetRexxC.jar COM.ibm.netrexx.process.NetRexxC $*

Now we can do a compile of the customary hello.nrx with ’./nrc -keep -nocompile
hello’ (notice that this is all in the home directory of the ’mobile’ user, just like the
jar that I just copied. The resulting hello.java.keep can then bemv’ed to hello.java
and compiled with ’jikes hello.java’. This produces a class that can be run with
’java -cp NetRexxC.jar hello’

30.2 IBMMainframe: Using NetRexx programs in z/OS batch

Traditionally the mainframe was a batch oriented environment, and much of the
workload that counts still executes in this way. To be able to use NetRexx with Job
Control Language (JCL) in batch address spaces, accessing traditional datasets
and interacting with the console when needed, we need to know a bit more. This
will be explained in these paragraphs.

A standard component of z/OS since version 1.8 or so is jzos, which acts as glue
between the unix-like abstractions the JVM works with and the time tested way
of working on z/OS, with its SAM and VSAM datasets, its Partitioned Data Set
(PDS) file organization, the ICF Catalogs and console address space; all of which
in existence long before Java reared its head in our IT environments.

Themanuals will teach you that there are several ways to interact withHFS/OMVS

137

Chapter 30. Platform dependent issues

resources in JCL, but the alternatives to jzoshave somany drawbacks that it is the
only sensible way to run NetRexx programs in the batch environment.

30.2.1 Example

//AB2217N1 JOB (7355,710,TC78JAN),'PGM',MSGCLASS=X,NOTIFY=AB2217
//JAVA EXEC PROC=JVMPRC60,
// JAVACLS='HelloWorld'
//STDENV DD ∗
. /etc/profile
export JAVA_HOME=/usr/lpp/java/J6.0
export PATH=/bin:"${JAVA_HOME}"/bin
LIBPATH=/lib:/usr/lib:"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH":"${JAVA_HOME}"/lib/s390
LIBPATH="$LIBPATH":"${JAVA_HOME}"/lib/s390/j9vm
LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin/classic
export LIBPATH="$LIBPATH":
APP_HOME=$JAVA_HOME
CLASSPATH=$APP_HOME:"${JAVA_HOME}"/lib:"${JAVA_HOME}"/lib/ext
for i in "${APP_HOME}"/∗.jar; do

CLASSPATH="$CLASSPATH":"$i"
done

export CLASSPATH="$CLASSPATH":
IJO="−Xms16m −Xmx128m"
export IBM_JAVA_OPTIONS="$IJO "
//

138

Chapter 31

Building the NetRexx translator

It is easy to build the NetRexx translator from source. Prerequisites are:

1. A Java Virtual Machine
2. A Git client

NetRexx can be built on all platforms it runs on. NetRexx has been bootstrapped
since 1996 and subsequently has been used to compile itself. Every checkout of
the source code contains the ’bootstrap’ compiler, which is normally the previous
release version. Only the official release branches contain the same release of the
compiler - to prove that it still can compile itself on release. Theoretically, it is
possible to break things by introducing changes that preclude the compiler to
compile itself - it is our job that these changes arenot released to awider audience,
but rolled back in time.

31.1 Repository

The NetRexx source code repository is hosted at the SourceForge Git repository.
To get the code on your system, you should register at the NetRexx project at
SourceForce and clone the repository using Git. For this version management
package there are many graphical user interfaces, but what is shown here, is the
command line version. Choose a suitable place as working directory - you can
later move it around as you please.

git clone https://git.code.sf.net/p/netrexx/code netrexx-code

Note: This will checkout the whole repository to your local system; including
previous versions, experimental branches and personal sandboxes of other

139

Chapter 31. Building the NetRexx translator

developers.

Themasterbranchcontains themost current versionof the sourcecode, including
the documentation, examples and test cases.

31.2 The buildfile

The official buildfile is called build.xml and the ”Another Neat Tool” ant utility is
used for building NetRexx from source. This build.xml contains tasks to build a
number of targets, as listed below:

ant -p
Buildfile: ./netrexx-code/build.xml

Main targets:

apidocs create API documentation
clean delete all built files
clean.jar delete built jars
clean.javadocs delete built javadocs
clean.process delete built translator files
clean.runtime delete built runtime files
clean.tests delete test files
compile compile all (except tests)
compile.process compile translator
compile.runtime compile runtime
compile.tests compile tests
default build and test distribution
init Set build number and document version level
jars create jars
package build distribution package
post.jar.prepare post jar build - define new NetRexx compiler
setecj set compiler to ecj
setjavac set compiler to javac
showprops Displays default property settings
tests compile and run tests
withecj build and test distribution with ecj

140

31.2. The buildfile

withjavac build and test distribution with javac
withjavadocs build distribution and javadocs with test
Default target: default

To build the translator, make sure that the top level directory that is cloned from
git is the current directory, and issue the command:

ant

If the short-hand ant script is not available in your build environment, use the
NetRexx supplied ant-launcher.jar located in the ./ant directory

java -jar ant/ant-launcher.jar

This will build the default target, which runs the following tasks in sequence :
setecj, prepare, compile.runtime, compile.process, compile, init, jars, post.jar.prepare,
compile.tests, -checkRunTestsRequired, run.tests, tests and withecj.

The compiler/translator is built from source and creates a ./build directory in
the current directory. The NetRexxC.jar, NetRexxF.jar and NetRexxR.jar file are
created in the ./build/lib directory by the archiving process which is started by
the jars ant-task. These new jar files can be used immediately, by having them
(NetRexxC.jar will suffice) on the classpath.

The NetRexx source files are located in the src directory.

The ./src/netrexx/langdirectory contains thecoreofNetRexx, ./src/org/netrexx/process
contains the translator, compiler and interpreter. The ./src/org/netrexx/jsr223
directory contains the framework which provides NetRexx as a JSR223 scripting
language, and ./src/org/netrexx/njppipes holds the sourcecode for the NetRexx
Pipelines compiler and stages.

The default build process produces the following jar files:

141

Chapter 31. Building the NetRexx translator

NetRexxC.jar This jar includes the core NetRexx classes and the NetRexx
translator, compiler and interpreter. Include this jar in your
classpath if you have a Java Development Kit (JDK) installed
in your build system and you want to compile (or interpret)
NetRexx programs.
The jar also contains theNetRexx implementation of CMSPipe-
lines, nrws, the NetRexx workspace, and the NetRexx JSR223
Scripting Engine.

NetRexxF.jar This jar file contains the same as NetRexxC.jar with addition to
a slightly modified Eclipse Java compiler. Use this jar file if you
only have a Java runtime (i.e. no javac).

NetRexxR.jar This jar file contains the core of NetRexx. Ship this jar file with
anycompiledNetRexxprogramwhere youexpectNetRexxC.jar
or NetRexxF.jar to be absent.

For a virgin start, issue

ant clean

to remove all previously built files.

There is no target defined to build the documentation, which is built manually
using theTextTools/build.rexxprogram(seehttps://github.com/RexxLA/TextTools).

The documentation is however handled by the package target, where all genera-
tedpdfs from documentation/nrl, documentation/pg, documentation/ug, documentation/njpipes
are archived in the NetRexx distribution zip file.

31.3 Testing

Testing is included in a normal build. When testing, the newly built NetRexxC.jar
file is used in the classpath.

All NetRexx files located in directories src/org/netrexx/diag and test are run to
test all instructions and features. Any obvious, and non-obvious, possible code
error in the NetRexx core and translator source is very likely to be detected by the
tests.

142

31.4. Preparing a new release

31.4 Preparing a new release

When preparing to release a new version, whether major or minor, update file
org/netrexx/process/NrVersion.nrx.

Its privateproperties version, mod and procdateare referencedduring thegeneration
of documentation and other target files.

The following
class NrVersion
properties private
version = '4.06'
procdate = '03 Mar 2024'
copyright = 'Copyright (c) RexxLA, 2011,2024. All rights reserved.\

nParts Copyright (c) IBM Corporation, 1995,2008.'
mod = 'GA'

builds NetRexx-4.06-GA.

31.5 Package a new release

As a final verification, copy the newly built NetRexxC.jar and NetRexxF.jar from
the ./build/lib directory to the ./lib directory, and build the NetRexx translator
using the new jar files by issuing ant clean default.

Next, build the documentation from the ./documentation directories.

Finally, create the release package by issuing ant package.

The NetRexx release package is delivered as a zip file, containing the following:

1. The NetRexxC.jar, NetRexxF.jar and NetRexxR.jar files
2. Thedocumentationpdfs from ./documentation/nrl, ./documentation/pg, ./documentation/ug,

./documentation/njpipes.
3. The tools directory with a number of utilities
4. A large number of examples in the examples directory
5. The bin directory with scripts to launch the translator
6. The readme file and release notes

Normally only beta and General Available (GA) builds are published on https://
netrexx.org.

143

https://netrexx.org
https://netrexx.org

Chapter 32

Date and Time Arithmetic

NetRexx inherited 4.02theClassicRexxDate andTimeclasses RexxDateand RexxTime in
order tomake it easier for Rexx users to do Date and Time arithmetic in a familiar
fashion. The implementation does not use Java Date logic (which changed over
the years and became, from the Rexx users point of view, vastly more complex).
The results are equal to those of the mainstream Classic Rexx implementations.

Here are some examples how to use the NetRexx built-in functions to solve usual
date calculation and conversion problems:
/∗ get today's date in 'Base' date format ∗/
today = Date('Base')

/∗ calculate next day ∗/
tomorrow = today + 1

/∗ calculate previous day ∗/
yesterday = today − 1

say 'today :' date('n',today,'b')
say 'tomorrow :' date('n',tomorrow,'b')
say 'yesterday:' date('n',yesterday,'b')

today : 2 May 2025
tomorrow : 3 May 2025
yesterday: 1 May 2025

/∗ To any format supported by the Rexx Date built−in function: ∗/

today = Date('b')

ISOdate = Date('s', today, 'b')
say ISOdate

145

Chapter 32. Date and Time Arithmetic

USdate = Date('u',today, 'b')
say USdate

Ndate = Date('n', today, 'b')
say Ndate

20250502
05/02/25
2 May 2025

/∗ The day within the year of today ∗/

day = Date('Days')
say Day

122

/∗ the date difference: number of days between dates ∗/
today = date('b')
days = today − Date('b', '19620310', 's')
say days

23064

/∗ weekday of a particular date ∗/
/∗ returns 'Wednesday' ∗/
weekday = Date('w', '07/15/98', 'u')
say weekday

/∗ returns 2, 0 = Monday, 6 = Sunday ∗/
dayOfWeek = Date('b', '07/15/98', 'u')//7
say dayOfWeek

Wednesday
2

146

32.1. Epoch

32.1 Epoch

The start date of the Rexx (Date) function (01/01/0001) is different from the Posix
(unix-linux) epoch (01/01/1970).With this algorithmPosix epochbaseddates can
be used with NetRexx.
/∗ convert from the unix epoch to a basedate ∗/
/∗ for example, for a file date ∗/
lm = Rexx File('unixepoch.nrx').lastModified()
−− time is in unix epoch
lm = lm/1000
if lm==0 then do
say 'filedate not found'
exit

end
days = lm / (3600∗24)
days=days.trunc()
remainder = lm −(days ∗ 24 ∗ 3600)
baserex = date('b',19700101,'s')
baserex = baserex + days −− add the days between rexx and unix epoch

(719162)
newdate = Date('s',baserex,'b')
hh = remainder % 3600
remainder2 = remainder − (hh∗3600)
mm = remainder2 % 60
ss = remainder2 − (mm∗60)
parse newdate year +4 month +2 day +2 .
say year'−'month'−'day hh.right(2,'0')':'mm.right(2,'0')':'ss.trunc().right

(2,'0') 'UTC'

2025-05-02 13:47:00 UTC

(The built-in RexxStream stream function has this already built in:
/∗ get the date the file "profile.txt" was last modified ∗/
filedate = stream("unixepoch.nrx", 'c', 'QUERY TIMESTAMP')
/∗ returns the date in ISO format ∗/
say filedate

2025-05-02 13:46:57 UTC

see page 65 for more examples of NetRexx Stream I/O.)

147

Chapter 33

The NetRexx Workspace - nrws

A read-evaluate-print 3.08loop, or REPL, is a very popular way for users to familiarize
themselves with the language21 and design and/or prototype programs. Martin
Lafaix has contributed such a facility already in the year 2000, but the inclusion
of hisWorkspace for NetRexx took some time. The JSR-199 scripting facility, which
was added to the distribution earlier, could do something akin to this, but could
not remember variable values over executions. The requirement to fix this issue,
and the wish to have some facility that can execute Pipes for NetRexx in the
fastest possible way, led to the resurrection of this nearly 20-year old code, with
some updates for command history (up- down arrowing through it) and -editing,
included multiline-editing. The NetRexx workspace has a requirement of Java 8.

33.1 Installation

nrws is included in bothNetRexxF.jar andNetRexxC.jar.WhereverNetRexxworks,
its workspace will work. It is advisable to have a shortcut for starting it. In the
bin directory (for windows users) a nrws.bat batchfile can be found. In that same
directorya .bash_aliasesfile canbe found,whichaddsanrwscommand forunixlike
systems likeLinuxandmacOS.Bothare short formsof running javaorg.vpad.extra.workpad.Workspace.
For the Windows operating environment jansi support must be available on the
CLASSPATHenvironment variable, as indicated in the nrws.barwindows batchfile
in the bin directory.

21for example, Python, Ruby, Swift and Elixir have them, and there are used in all introductory literature

149

Chapter 33. The NetRexx Workspace - nrws

33.2 Starting nrws

To begin using Workspace for NetRexx, issue the command nrws to the operating
system shell. There is a brief pause, some start-up messages, and then the first
frame appears.

Thestandardprompt (whichcanbemodified invariousways, through thenrws.properties
file in the home directory) has a left and a right component. On the left side, the
default is Ready;. On the right side, the default is the timing of the executed step.
The Workspace can also be configured to show the current computation step in
the current frame. The concepts of computation step and frame will be explained
shortly.

When you want to enter input to Workspace for NetRexx, you do so on the same
line after the left prompt. The ”1” in the right prompt is that computation step
number and is incremented after you enter Workspace for NetRexx statements.
Note, however, that a system command such as)clear all may change the step
number in other ways.

33.3 Exit nrws

To exit from Workspace for NetRexx, type exit and press the Enter key, or type
)quit at the input prompt and press the Enter key. It is possible to configure this to
display the following message:

Please enter ”y” or ”yes” if you really want to leave the interactive
environment and return to the operating system.

You should enter yes, for example, to exit Workspace for \nr{}.

The is also a)pquit systemcommand that always protects your exit from thework-
space.

Because Workspace for NetRexx runs on a number of different machines and
platforms, operating system shells and windowing environments, there is no
standard appearance. You are to experiment with profiles and schemes for shells;
one favourite is dark solarized (shown). You can also change the way that Work-
space for NetRexx behaves via system commands described later in this chapter
and in Appendix A. System commands are special commands, like)set, that
begin with a closing parenthesis and are used to change your environment. For
example, youcanset a systemvariable so that youarenotprompted for confirmation
when you want to leave Workspace for NetRexx.

150

33.4. Exploring the NetRexx language

You are ready to begin your journey into theworld ofWorkspace forNetRexx. Let’s
proceed to the first step.

33.4 Exploring the NetRexx language

TheNetRexx language is a rich language for performing interactive computations
and for building components for the Java libraries. For a full description, please
consult the The NetRexx Language definition.

33.5 Arithmetic Expressions

For arithmetic expressions, use the ”+” and ”-” operators as in mathematics. Use
”*” for multiplication, ”/” for division, and ”**” for exponentiation. When an ex-
pression contains several operators, those of highest precedence are evaluated
first. For arithmetic operators, ”**” has highest precedence, ”*” and ”/” have the
next highest precedence, and ”+” and ”-” have the lowest precedence.

say 1 + 2 - 3 / 4 * 3 ** 2 - 1
-4.75

NetRexx puts implicit parentheses around operations of higher precedence, and
groups those of equal precedence from left to right. The above expression is
equivalent to this.

say ((1 + 2) - ((3 / 4) * (3 ** 2))) - 1
-4.75

If anexpressioncontains subexpressionsenclosed inparentheses, theparenthesized
subexpressions are evaluated first (from left to right, from inside out).

say 1 + 2 - 3 / (4 * 3 ** (2 - 1))
2.75

33.6 Some Types

Everything in NetRexx has a type. The type determines what operations can be
performed on an object and how the object can be used. For the following, please
keep in mind that sometimes a variable needs to be assigned a type first.

151

Chapter 33. The NetRexx Workspace - nrws

33.7 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like keywords, the name of
variables or to identify some algorithm.

Asymbolhasanamebeginningwithanuppercaseor lowercasealphabetic character,
’$’, ’(Euro)’, or ’_’. Successive characters (if any) can be any of the above, or digits.
Case is by default undistinguished : the symbol points is no different from the
symbol Points.

A symbol can be used inWorkspace for NetRexx as a variable. A variable refers to
a value. To assign a value to a variable, the operator ”=” is used. A variable initially
has no restriction on the kinds of values to which it can refer.

This assignment gives the value 4 to a variable names x:

x = 4

To restrict the type of objects that can be assigned to a variable, use a declaration:

y = int

The declaration for y forces values assigned to y to be converted to integer values.
If no such conversion is possible, NetRexx refuses to assign a value to y:

y = 2/3
java.lang.NumberFormatException: Decimal part non-zero: 0.666666667

A type declaration can also be given togetherwith an assignment. The declaration
can assist NetRexx in choosing the correct operations to apply:

f = float 2/3

Any number of expressions can be given on input line. Just separate them by
semicolons.

These two expressions have the same effect as the previous single expression:

f = float; f = 2/3

152

33.8. Conversion

33.8 Conversion

Objects of one type can usually be ”converted” to objects of several other types. To
convert an object to a new type, prefix the expression with the desired type.

say int sin(PI)
0

SomeconversionscanbeperformedautomaticallywhenNetRexx tries to evaluate
input. Other conversions must be explicitly requested.

33.9 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the
arithmetic operator ”+” or ”-” between the two arguments denoting the values.
To use most of other NetRexx operations, however, you use another syntax: write
the name of the operation first, then an open parenthesis, then each arguments
separated by commas, and, finally, a closing parenthesis.

This calls the operation sqrt with the single integer argument 120:

say sqrt(120)
10.95445115010332

This is a call to max with the two integer arguments 125 and 7:

say max(125, 7)
125

This calls an hypothetical quatern operation with four floating-point arguments:

quatern(3.4, 5.6, 2.9, 0.1)

If the operation has no arguments, you can omit the parenthesis. That is, these
two expressions are equivalent:

say random()

and

say random

153

Chapter 33. The NetRexx Workspace - nrws

33.10 Long Lines

When you enter expressions from your keyboard, there will be time when they
are too long to fit on one line. Workspace for NetRexx does not care how long your
lines are, so you can let them continue from the rightmargin to the left side of the
next line.

Alternatively, youmaywant to enter several shorter lines and haveWorkspace for
NetRexx glue them together. To get this glue, put an hyphen (-) at the end of each
line you wish to continue.

say 2 -
+ -
3

is the same as if you had entered

say 2 + 3

Comment statements begin with two consecutive hyphens and continue until the
end of the line.

say 2 + 3 -- this is rather simple, no?

The third way to accomplish this is to use the built-in multiline editing facility.
Just press [Esq]-[Enter] to continuewith thenext line of amultiline block -with the
first [Enter] key the whole block will be passed to the Workspace. These multiline
blocks can also be recalled and edited with arrow-up.

33.11 Numbers

Workspace for NetRexx distinguishes very carefully between different kinds of
numbers, how they are represented and what their properties are.

33.12 Data Structures

Workspace for NetRexx has a large variety of data structures available. Many
data structures are particularly useful for interactive computation and others are
useful for building applications. The data structures of Workspace for NetRexx
are organized into class hierarchies.

154

33.12. Data Structures

Aone-dimensional array is themost commonly used data structure inWorkspace
for NetRexx for holding objects all of the same type. One-dimensional arrays are
inflexible—they are implemented using a fixed block of storage. They give equal
access time to any element.

Write an array of elements using square brackets with commas separating the
elements:

a = [1, -7, 11]

The index of the first element is zero. This is the value of the third element:

say a[2]
11

An importantpoint about arrays is that theyaremutable: their constituent elements
can be changed in place:

a[2] = 5; say a[0] a[1] a[2]
1 -7 5

Examplesofdatatypes similar toone-dimensional arraysare: StringBuffer (arrays
of characters), and BitSet (represented by array of bits).

say BitSet(32)
{}

A list is anotherdata structureused tohold objects.Unlike arrays, lists cancontain
elements of different non-primitive types. Also, lists are usually flexible.

A simpleway to create a list is to apply the operation asList to an array of elements.

Avector is a crossbetweena list andaone-dimensional array. Likeaone-dimensional
array, a vector occupies a fixed block of storage. Its block of storage, however,
has room to expand! When it gets full, it grows (a new, larger block of storage is
allocated); when it has too much room, it contracts.

This creates a vector of three elements:

f = Vector(asList([2, 7, -5]))

The addAll method inserts a list at a specified point. To insert some elements be-
tween the second and third elements, use:

f.addAll(2, asList([11, -3])); say f
[2, 7, 11, -3, -5]

155

Chapter 33. The NetRexx Workspace - nrws

Vectors are used to implement ”stacks”. A stack is an example of a data structure
where elements are ordered with respect to one another.

An easy way to create a stack is to first create an empty stack and then to push
elements on it:

s = Stack(); s.push(”element1”); s.push(”element2”); s.push(”element3”)

This loop extracts elements one-at-a-time from s until the stack is exhausted,
displaying the elements starting from the top of the stack and going down to the
bottom:

loop while \ s.empty; say s.pop; end
element3
element2
element1

(!!! to be continued)

33.13 Expanding to Higher Dimensions

Togethigherdimensional aggregates, youcancreateone-dimensional aggregates
with elements that are themselves aggregates, for example, arrays of arrays,
vectors of sets, and so on.

(!!! to be continued)

33.14 Writing Your Own Functions

Java provides youwith a very large library of predefined operations and objects to
computewith. Youcanuse the JavaClassLibraries to createnewobjectsdynamically
ofquite arbitrary complexity.Moreover, the librariesprovidesawealthof operations
that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some
NetRexx programs to tackle your application. Workspace for NetRexx allows you
to write functions interactively, thereby effectively extending the system library.
Here I give a few simple examples, leaving the details to The NetRexx Language
reference manual and related publications.

We begin by looking at several ways that the factorial function can be defined. The

156

33.15. A Typical Session

first way is to use an if-then-else instruction.

method fact(n) static; if n < 3 then return n; else return n*fact(n-1)

say fact(50)
30414093201713378043612608166064768844377641568960512000000000000

A second definition directly uses iteration.

method fac(n) static; a = 1; loop i = 2 to n; a = a * i; end; return a

say fac(50)
30414093201713378043612608166064768844377641568960512000000000000

(!!!to be continued)

33.15 A Typical Session

(12) ->)clear all
(1) -> f = Frame()
(2) -> f.setTitle(”Hello world!”)
(3) -> f.setSize(200, 300)
(4) -> f.setPosition(20, 20)
2 +++ f.setPosition(20, 20)

+++ ^^^^^^^^^^^
+++ Error: The method ’setPosition(byte,byte)’ cannot be found in

class ’java.awt.Frame’ or a superclass
(5) -> f.setLocation(20, 20)
(6) -> f.setVisible(1)
(7) -> l = Label(’Hi there’)
(8) -> say f.getLayout
java.awt.BorderLayout[hgap=0,vgap=0]
(9) -> f.add(l, BorderLayout.CENTER)
(10) -> f.doLayout
(11) ->
(12) -> l.setForeground(Color.red)
(13) -> f.dispose
(14) ->)quit

157

Chapter 33. The NetRexx Workspace - nrws

33.16 Running Pipelines

When an input is not a NetRexx clause, or prefixed by an ’)’ (and it is a system
command, see next section) the only allowed command is ’pipe’22. This enables
us to run a pipeline exactly as one would do in z/VM CMS. The built-in NetRexx
Pipelines component is used to execute a pipeline like one cando in the command
shell of the operating system, but with quotes. More about Pipelines can be found
in the Pipelines Guide and Reference. If you are used to running pipelines on CMS,
you can just go ahead and try a few things.

33.17 System Commands

We conclude our tour of Workspace for NetRexx with a brief discussion of system
commands. Systemcommands are special statements that startwith a closing pa-
renthesis (”)”). Theyareused to control or display yourWorkspace forNetRexxen-
vironment, start operating system commands and leave Workspace for NetRexx.
For example,)system is used to issue commands to the operating system from
Workspace for NetRexx. Here is a brief description of some of these commands.

Perhaps the most important user command is the)clear all command that
initializes your environment. Every section and subsection in this document has
an invisible)clear all that is read prior to the examples given in the section.
)clear all gives youa fresh, empty environmentwithnouser variables definedand
the step number reset to 1. The)clear command can also be used to selectively
clear values and properties of system variables.

Another useful system command is)read. A preferred way to develop an applica-
tion in Workspace for NetRexx is to put your interactive commands into a file,
say my.input file. To get Workspace for NetRexx to read this file, you use the
system command)read my.input. If you need to make changes to your approach
ordefinitions, go intoyour favorite editor, changemy.input, then issue tgecommand
again.

Other systemcommands include:)history, todisplayprevious input lines;)display,
to display properties and values of workspace variables; and)what.

This concludeyour tourofWorkspace forNetRexx.Todisembark, issue the system
command)quit to leave Workspace for NetRexx and return to the operating
system.
22Or, since NetRexx 4.04, ’exit’, to enable easy quitting nrws.

158

33.18. Input Files and NetRexx Files

33.18 Input Files and NetRexx Files

This sectiondiscusseshow to collectWorkspace forNetRexx statements andcom-
mands into files and then read the contents into the workspace. I also discuss
NetRexx files, which are a variation of input files.

33.19 Input Files

In this section it is explainedwhat an input file is andwhy youwouldwant to know
about it. It is shown where Workspace for NetRexx looks for input files and how
you can direct it to look elsewhere, and also how to read the contents of an input
file into the workspace and how to use the history facility to generate an input file
from the statements you have entered directly into the workspace.

An input file contains NetRexx expressions and system commands. Anything that
you can enter directly toWorkspace for NetRexx can be put into an input file. This
is how input functions and expressions can be saved that you wish to read into
Workspace for NetRexx more than one time.

To read an input file intoWorkspace for NetRexx, use the)read system command.
For example, you can read a file in a particular directory by issuing

)read /nrws/src/input/matrix.input

The ”.input” is optional; this also works:

)read /nrws/src/input/matrix

What happens if you just enter)read matrix.input or even)read matrix? Work-
space for NetRexx looks in your current working directory for input files that
are not qualified by a directory name. Typically, this directory is the directory
from which you invoked Workspace for NetRexx. To change the current working
directory, use the)cd system command. The command)cd by itself shows the
current working directory. To change it to the src/input subdirectory for user
”bar”, issue

)cd /user/bar/src/input

Workspace for NetRexx looks first in this directory for an input file. If it is not
found, it looks in the system’s directories, assuming you meant some input file

159

Chapter 33. The NetRexx Workspace - nrws

that was provided with Workspace for NetRexx.

If you have the Workspace for NetRexx history facility turned on (which it is by
default), you can saveall the lines youhaveentered into theworkspacebyentering

)history)write

Workspace forNetRexx tells youwhat input file to edit to see your statements. The
file is in your home directory or in the directory you specified with)cd.

33.20 The nrws.input File

When Workspace for NetRexx starts up, it tries to read the input file nrws.input
from your home directory. If there is no workspace.input in your home directory,
it reads the copy located in its own src/input directory. The file usually contains
system commands to personalize your Workspace for NetRexx environment. In
the remainder of this section Imention a few things that users frequently place in
their nrws.input files.

If you do not want to be prompted for confirmation when you issue the)quit
system command, place)set quit unprotected in workspace.input. If you then
decide that you do want to be prompted, issue)set quit protected. This is the
default setting so thatnewusersdonot leaveWorkspace forNetRexx inadvertently.

To see the other system variables you can set, issue)set.

33.21 The nrws.properties File

In this file, that is looked for in the home directory, a few parameters can be
specified. For example,

settings.prompt=nrws>
settings.timer=on
settings.quit=unprotected

indicates that the prompt will be nrws>, and the right side of the screen shows
the command exection time instead of the frame name. Further more, the)quit
system command (see next) quits immediately instead of prompting.

160

33.22. The nrws.history file(s)

33.22 The nrws.history file(s)

For easy command history retrieval (using the arrow keys) the Workspace for
NetRexx stores executed commands in anrws.history file in the current directory.
This is by design not a user global file, but is written to (and read from) the
current directory because it is plausible that different projects call for diffe-
rent command history. When the settings.history property in nrws.properties
in the home directory is set to off, a nrws.history file is not written. This setting
influences all window buffers in the workspace.

33.23 Workspace for NetRexx System Commands

This chapter describes system commands, the command-line facilities used to
control theWorkspace forNetRexxenvironment.Thefirst section is an introduction
and discusses the common syntax of the commands available.

33.24 Introduction

System commands are used to perform Workspace for NetRexx environment
management. Among the commands are those that displaywhat has beendefined
orcomputed, setupmultiple logicalWorkspace forNetRexxenvironments (frames),
clear definitions, readfiles of expressions andcommand, showwhat functions are
available, and terminate Workspace for NetRexx.

Each command listing begins with one or more syntax pattern descriptions plus
examples of related commands. The syntax descriptions are intended to be easy
to read and do not necessarily represents the most compact way of specifying all
possible arguments andoptions; thedescriptionsmayoccasionally be redundant.

All system commands begin with a right parenthesis which should be in the first
available column of the input line (that is, immediately after the input prompt, if
any). System commands may be issued directly to Workspace for NetRexx or be
included in .input files.

A system command argument is a word that directly follows the command name
and is not followed or preceded by a right parenthesis. A system command option
follows the commandand is directly precededby a right parenthesis. Optionsmay
have arguments: they directly follow the option. This examplemaymake it easier
to remember what is an option and what is an argument:

161

Chapter 33. The NetRexx Workspace - nrws

)syscmd arg1 arg2)opt1 opt1arg1 opt2arg2)opt2 opt2arg1 ...

In the systemcommanddescriptions, optional argumentsandoptionsareenclosed
in brackets (”[” and ”]”). If an argument or option name is in italics, it is meant to
be a variable andmust have some actual value substituted for it when the system
command call is made. For example, the syntax pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not
to use the)quietly option. Thus

)read foo.input

is a valid instance of the above pattern.

System commands names and options may be abbreviated and may be in upper
or lower case. The case of actual arguments may be significant, depending on the
particular situation (such as in file names). System command names and options
may be abbreviated to the minimum number of starting letters so that the name
or option is unique. Thus

)s Integer

is not a valid abbreviation for the)set command, because both)set and)show
beginwith the letter ”s”. Typically, twoor three letters are sufficient fordisambiguating
names. In my descriptions of the commands, I have used no abbreviations for
either command names or options.

In some syntax descriptions I use a vertical line ”|” to indicate that you must
specify one of the listed choices. For example, in

)set foobar on | off

only on and off are acceptable words for following foobar. I also sometimes use
”...” to indicate that additional arguments or options of the listed formare allowed.
Finally, in the syntax descriptions I may also list the syntax of related commands.

33.25)cd

Command Syntax:

)cd
)cd directory

162

33.26.)clear

Command Description:

This command sets the Workspace for NetRexx working directory. The current
directory is used for looking for input files (for)read) and for writing history input
files (for)history)write).

If used with no argument, this command shows the current working directory. If
an argument is used, it must be a valid directory name. Except for the ”)” at the
beginning of the command, this has the same syntax as the operating system cd
command.

Also See: ’)history’, and ’)read’.

33.26)clear

Command Syntax:

)clear all
)clear properties all
)clear properties obj1 [obj2 ...]

Command Description:

This command is used to remove functions and variable declarations, definitions
and values from the workspace. To empty the entire workspace and reset the step
counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter ”p”.

)clear p all
)clear p x
)clear p x y f

163

Chapter 33. The NetRexx Workspace - nrws

The)display names and)display properties commands may be used to see what
is currently in the workspace.

Also See: ’)display’, ’)history’.

33.27)display

Command Syntax:

)display all
)display properties
)display properties all
)display properties [obj1 [obj2 ...]]
)display type all
)display type [obj1 [obj2 ...]]
)display names

Command Description:

This command is used to display the contents of the workspace and signatures of
functions with a given name.

The command

)display names

list the names of all user-defined objects in the workspace. This is useful if you do
not wish to see everything about the objects and need only be reminded of their
names.

The commands

)display all
)display properties
)display properties all

all do the same thing: show thevalues and typesof all variables in theworkspace. If
youhavedefined functions, their signatures anddefinitionswill also bedisplayed.

To showall information about a particular variable or user functions, for example,
something named d, issue

)display properties d

The word properties may be abbreviated to the single letter ”p”.

164

33.28.)frame

)display p all
)display p
)display p d

To just show the declared type of d, issue

)display type d
)display t d

Also See: ’)clear’, ’)history’, ’)set’, ’)show’, ’)what’.

33.28)frame

Command Syntax:

)frame new frameName
)frame drop [frameName]
)frame next
)frame last
)frame names
)frame import frameName [objectName1 [objectName2 ...]]
)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you
get when you start the system. You can have as many frames as you want, within
the limits of your computer’s storage, paging space, and so on. Each frame has its
own step number, environment and history. You can have a variable named a in
one frame and it will have nothing to do with anything that might be called a in
any other frame.

To find out the names of all frames, issue

)frame names

It will indicate the name of the current frame.

You can create a new frame ”quark” by issuing

)frame new quark

If you wish to go back to what you were doing in the ”initial” frame, use

)frame next

165

Chapter 33. The NetRexx Workspace - nrws

or

)frame last

to cycle through the ring of available frames to get back to ”initial”.

If you want to throw away a frame (say ”quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

You can bring things from another frame by using)frame import. For example, to
bring the f and g from the frame ”quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame ”quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There is one)set flag to make it easier to tell were you are.

)set message prompt frame

will give a prompt that looks like

initial (1) -> _

when you start up. In this case, the frame name and step make up the prompt.

Also See: ’)history’, ’)set’

33.29)help

Command Syntax:

)help
)help commandName

Command Description:

This command displays help information about system commands. If you issue

)help

a list of possible commandswill be shown.Youcanalsogive thenameorabbreviation

166

33.30.)history

of a system command to display information about it. For example,

)help clear

will display the description of the)clear system command.

33.30)history

Command Syntax:

)history)on
)history)off
)history)show [n]
)history)write historyInputFileName
)set history on | off
)set history write protected | unprotected

Command Description:

The history facility within Workspace for NetRexx allows you to restore your en-
vironment to that of another session and recall previous computational results.
Additional commands allow you to create an .input file of the lines typed toWork-
space for NetRexx.

Workspace for NetRexx saves your input if the history facility is turned on (which
is the default). This information is saved if either of

)set history on
)history)on

has been issued. Issuing either

)set history off
)history)off

will discontinue the recording of information.

Each frame has its own history database.

The options to the)history commands are as follows:

)on

will start the recording of information. If the workspace is not empty, you will
be asked to confirm this request. If you do so, the workspace will be cleared and

167

Chapter 33. The NetRexx Workspace - nrws

history datawill begin being saved. You can also turn the facility on by issuing)set
history on.

)off

will stop the recording of information. The)history)show commandwill not work
after issuing this command. Note that this commandmay be issued to save time,
as there is some performance penalty paid for saving the environment data. You
can also turn the facility off by issuing)set history off.

)show [n]

can show previous input lines.)show will display up to twenty of the last input
lines (fewer if you haven’t typed in twenty lines).)show nwill display up to n of the
last input lines.)write historyInputFile creates an .input file with the input typed
since the start of the session/frame or the last)clear all. If historyInputFile does
not contain a period (”.”) in the filename, .input is appended to it. For example,
)history)write chaos and)history)write chaos.input both write the input lines to
a file called chaos.input in your current working directory. You can edit this file
and then use)read to haveWorkspace for NetRexx process the contents. Also See:
’)frame’, ’)read’, ’)set’.

33.31)import

Command Syntax:

)import query
)import package packageName
)import class fullClassName
)import drop packageOrFullClassName

Command Description:

This command is used to query, set and remove imported packages.

Whenusedwith the query argument, this commandmaybeused to list the names
of all imported packages and classes.

The following command lists all imported packages and classes.

)import query

To remove an imported package or class, the remove argument is used. This is
usually only used to correct a previous command that imported a package or a

168

33.32.)numeric

class. If, in fact, the imported package or class does exist, you are prompted for
confirmation of the removal request. The following command will remove the
imported package com.foo.bar from the system:

)import drop com.foo.bar

Also See: ’)set’

33.32)numeric

Command Syntax:

)numeric
)numeric digits number
)numeric form scientific | engineering
)set numeric digits number
)set numeric form scientific | engineering

Command Description:

(!!! just like the numeric instruction)

33.33)options

Command Syntax:

)options
)options)default
)options option [)off]
)set option option on | off

Command Description:

This command is used to specify the options in usewhile interpreting statements.

To list all active options, simply issue

)options To restore options to their defaults settings, issue

)options)default

The possible value for option are

binary

169

Chapter 33. The NetRexx Workspace - nrws

decimal
explicit
strictargs
strictassign
strictcase
strictsignal
default :

nobinary
decimal
noexplicit
nostrictargs
nostrictassign
nostrictcase
nostrictsignal

Also See: ’)set’

33.34)package

Command Syntax:

)package
)package)default
)package packageName
)set package default | packageName

Command Description:

(!!! just like the package instruction)

33.35)pquit

Command Syntax:

)pquit

Command Description:

This command is used to terminate Workspace for NetRexx and return to the
operating system.Other thanby redoing all your computations, you cannot return

170

33.36.)quit

to Workspace for NetRexx in the same state.

)pquit differs from the)quit in that it always asks for confirmation that you want
to terminate Workspace for NetRexx (the ”p” is for ”protected”). When you enter
the)quit command, Workspace for NetRexx responds

Please enter ”y” or ”yes” if you really want to leave the interactive environment
and return to the operating system. If you respond with y or yes, Workspace for
NetRexx will terminate and return you to the operating system (or the environ-
ment fromwhich you invoked the system). If you respondedwith something other
that y or yes, then Workspace for NetRexx would still be running.

Also See: ’)history’, ’)quit’, ’)system’.

33.36)quit

Command Syntax:

)quit
)set quit protected | unprotected

Command Description:

This command is used to terminate Workspace for NetRexx and return to the
operating system.Other thanby redoing all your computations, you cannot return
to Workspace for NetRexx in the same state.

)quit differs from the)pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise,)quitwillmakeWorkspace forNetRexx terminate and
return you to the operating system (or the environment from which you invoked
the system).

The default setting is)set quit protected so that)quit and)pquit behave the same
way. If you do issue

)set quit unprotected

I suggest that you do not (somehow) assign)quit to be executed when you press,
say, a function key.

Also See: ’)history’, ’)pquit’, ’)system’.

171

Chapter 33. The NetRexx Workspace - nrws

33.37)read

Command Syntax:

)read [fileName]
)read [fileName] [)quiet] [)ifthere]

Command Description:

This command isused to read .inputfiles intoWorkspace forNetRexx.Thecommand

)read matrix.input

will read the contents of the file matrix.input into Workspace for NetRexx. The
”.input” file extension is optional. See Section 3.1 for more information about
.input files.

This command remembers the previous file you read. If you do not specify a file
name, the previous file will be read.

The)ifthere option checks to see whether the .input file exists. If it does not, the
)read command does nothing. If you do not use this option and the file does not
exist, you are asked to give the name of an existing .input file.

The)quiet option suppresses output while the file is being read.

Also See: ’)history’

33.38)set

Command Syntax:

)set
)set label1 [... labelN]
)set label1 [... labelN] newValue

Command Description:

The)set command isused toviewor set systemvariables that controlwhatmessages
are displayed, the type of output desired, the status of the history facility, and so
on.

The following arguments are possible:

)set diag on | off

172

33.38.)set

enablesordisables verbose reportingof somerun-timeerrors. (Used fordebugging
purpose.)

)set display depth depth

specify the maximum number of elements to display when showing an array.
(Default value is 10.)

)set display depth

show the current display depth.

)set display level number

specify themaximumnumber of nested arrays to display when showing an array.
(Default value is 4.)

)set display level

show the current display level.

)set history write protected | unprotected

specify whether or not to prompt for confirmation when attempting to overwrite
an existing file with)history)write.

)set history on | off

enables or disables history.

)set import add class className
)set import add package packageName
)set import drop class className
)set import drop package packageName

adds or removes specified class or package from import list.

)set import

shows the currently imported statements.

)set interpreter on | off

set the interpreter status. If on, then valid statements will be executed. If off, then
noexecutionwill be attempted. (Mostly used for debuggingpurpose, or if youwant
to use Workspace for NetRexx on a pre-java2 platform.)

)set message prompt default

173

Chapter 33. The NetRexx Workspace - nrws

)set message prompt frame
)set message prompt label label

set the prompt status (frame displays the current frame name).

)set message prompt

shows the current prompt status.

)set numeric digits number

set the default numeric digits (i.e., for the current frame and all subsequent
frames).

)set numeric digits

shows the current default numeric digits value.

)set numeric form scientific | engineering

set thedefaultnumeric form(i.e., for thecurrent frameandall subsequent frames).

)set numeric form

shows the current default numeric form.

)set option option on | off

set thedefault activity of optionoption (i.e., for thecurrent frameandall subsequent
frames). option being one of : binary, decimal, explicit, strictargs, strictassign,
strictcase, or strictsignal.

)set option option

shows the current option status.

)set package default
)set package packageName

set the current package name.

)set package

shows the current package name.

)set parser quiet | verbose

disablesor enables verboseoutput fromtheparser. (Used fordebuggingpurposes.)

174

33.39.)show

)set quit protected | unprotected

set the quit status.

)set quit

shows the current quit status.

)set screen width number

set the screen width (in character).

)set screen width

shows the screen width.

)set show all | declared

set the amount of information displayed by the)show command.

)set show

shows the current show status.

)set trace
)set trace all | off | methods | results

set the default trace level (i.e., for the current frame and all subsequent frames).

)set use add className
)set use drop className

adds or removes specified class name from use list.

)set use

shows the current use list. Also See: ’)quit’, ’)show’

33.39)show

Command Syntax:

)show nameOrAbbrev
)show nameOrAbbrev)operations
)show nameOrAbbrev)attributes
)set show all | declared

175

Chapter 33. The NetRexx Workspace - nrws

Command Description:

This commands displays information about classes. If no options are given, the
)operations option is assumed. For example,

)show Rectangle
)show Rectangle)operations
)show java.awt.Rectangle
)show java.awt.Rectangle)operations

each display basic information about the java.awt.Rectangle class constructors
and then provide a listing of operations.

The basic information displayed includes the signature of the constructors and
the operations.

Also See: ’)display’, ’)set’

33.40)synonym

Command Syntax:

)synonym
)synonym synonym fullCommand
)what synonyms

Command Description:

This command is used to create short synonyms for system command expres-
sions. For example, the following synonyms might simplify commands you often
use.

)synonym prompt set message prompt
)synonym mail system mail
)synonym ls system ls

Oncedefined, synonymscanbeused inplace of the longer commandexpressions.
Thus

)prompt frame

is the same as the longer

)set message prompt frame

176

33.41.)system

To list all defined synonyms, issue either of

)synonym
)what synonym

To list, say, all synonyms that contain the substring ”ap”, issue

)what synonym ap

Also See: ’)set’, ’what’

33.41)system

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while
remaining inWorkspace forNetRexx.ThecmdExpression ispassed to theoperating
system for execution.

If you execute programs that misbehave you may not be able to return to Work-
space for NetRexx. If this happens, you may have no other choice than to restart
Workspace forNetRexxandrestore theenvironmentvia)history)restore, if possible.

Also See: ’)pquit’, ’)quit’

33.42)trace

Command Syntax:

)trace
)trace off
)trace all
)trace methods
)trace results
)trace var [var1 [var2 ...]]

Command Description:

177

Chapter 33. The NetRexx Workspace - nrws

This command is used to trace the execution of statements and functions defined
by users.

To list all currently enabled trace functions, simply issue

)trace

To untrace everything that is traced, issue

)trace off

(!!! to be continued, just like the trace instruction)

33.43)use

Command Syntax:

)use query
)use add className
)use drop className

Command Description:

(!!! like the uses phrase in class instruction)

33.44)what

Command Syntax:

)what commands pattern1 [pattern2 ...]
)what synonym pattern1 [pattern2 ...]
)what things pattern1 [pattern2 ...]
)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are
all strings and, if present, restrict the contents of the lists. Only those items that
contain one or more of the strings as substrings are displayed. For example,

)what synonyms

displays all command synonyms,

178

33.44.)what

)what synonyms ver

displays all command synonyms containing the substring ”ver”,

)what synonyms ver pr

displays all command synonyms containing the substring ”ver” or the substring
”pr”. Output similar to the following will be displayed

—————— System Command Synonyms ——————

user-defined synonyms satisfying patterns: ver pr

)apr)what things
)apropos)what things
)prompt)set message prompt

Several other things can be listed with the)what command:

commands displays a list of system commands available. To get a description of
a particular command, such as ”)what”, issue)help what. synonyms lists system
command synonyms. things displays all of the above types for items containing
the pattern strings as substrings. The command synonym)apropos is equivalent
to)what things. Also See: ’)display’, ’)set’, and ’)show’

179

Chapter 34

Translator inner workings

The translator source is part of the package org.netrexx.process, located in the
./src/org/netrexx/process directory of the git repository.
The runtime support, including the Rexx type, is in the package netrexx.lang in
./src/netrexx/lang.

This chapter documents the inner workings of the translator. Its purpose is to
assist with debugging serious problems or ease the introduction to the toolset for
programmers who want to help the open source effort forwards.

To delve deeper into the inner workings of the translator, you are encouraged
to read the NetRexx source files, a great resource to discover the language’s
potential.
Also take a look at Kermit Kiser’s ./documentation/pg/NetRexxCLogic.odg Open
DocumentGraphicsfile, and theNetRexxUMLdiagramsat ./examples/uml. Finally,
running the translator with -diag and -verbose5 arguments is very informative.

34.1 Translating, compiling and interpreting

The translator (see RxTranslator.nrx) passes four times through the NetRexx
source files.

. pass 0 : tokenises the source and parses prolog (options, package and import
statements) and class instructions. pass 1 : processes resolution of properties and methods. pass 2 : parses method bodies and generates Java code. pass 3 : code interpretation. pass 4 : code compilation

181

Chapter 34. Translator inner workings

Pass 3 and 4 are mutually exclusive, the presence of the -exec argument triggers
interpretation as pass 3 (see RxInterpreter.nrx), otherwise the generated Java
source code is compiled into Java class file(s) as pass 4.

Generally, the translator source files can be categorised in two sections. Nr*.nrx
files are implementations of the RxClauseParser interface, which all define the
following methods

1. scan(), called three times (pass 0, 1 and 2), lexical syntax scan of the NetRexx
clause

2. getAssigns(), returns names of variables which received new values, mostly
null

3. generate(), generates Java source code from the NetRexx clause during pass
4

4. interpret(), interprets theNetRexxclause, calledby RxInterpreter.nrxonpass
3

The remaining Rx*.nrx files are supporting input/output streaming, parsing and
other translator functionality.

The following tables list all translator source files with their main function.

182

34.1. Translating, compiling and interpreting

TABLE 1: Clause parser source files

RxClauseParser.nrx The interface used to group classes that parse and process individual
clauses

NrAddress.nrx An object that represents a parsed Address clause

NrAnnotate.nrx An object that represents a parsed Annotation clause

NrAssign.nrx An object that represents a parsed assignment instruction

NrBlock.nrx An object that represents a generalised block start clause, extended by
NrDo, NrLoop, and NrSelect

NrCatch.nrx An object that represents a parsed Catch clause

RxClass.nrx An object that represents a parsed Class clause

NrDo.nrx An object that represents a parsed Do clause

NrElse.nrx An object that represents a parsed Else clause

NrEnd.nrx An object that represents a parsed End clause

NrExit.nrx An object that represents a parsed Exit clause

NrFinally.nrx An object that represents a parsed Finally clause

NrIf.nrx An object that represents a parsed If clause

NrImport.nrx An object that represents a parsed Import instruction

NrInterpret.nrx An object that represents a parsed Interpret clause

NrIterate.nrx An object that represents a parsed Iterate clause

NrLeave.nrx An object that represents a parsed Leave clause

NrLevel.nrx An object that represents a traversable stack

NrLoop.nrx An object that represents a parsed Loop instruction

NrMethodcall.nrx An object that represents a method call instruction

RxMethod.nrx An object that represents a Method instruction, extended by NrMethod

NrMethod.nrx An object that represents a Method instruction

NrNop.nrx An object that represents a parsed Nop clause

NrNumeric.nrx An object that represents a parsed Numeric instruction

NrOptions.nrx An object that represents a parsed Options instruction

NrOtherwise.nrx An object that represents a parsed Otherwise clause

NrPackage.nrx An object that represents a parsed package instruction

NrParse.nrx An object that represents a parsed Parse instruction

NrProperties.nrx An object that represents a parsed properties instruction

NrReturn.nrx An object that represents a parsed Return instruction

NrSay.nrx An object that represents a parsed Say clause

NrSelect.nrx An object that represents a parsed Select clause

NrSignal.nrx An object that represents a parsed Signal instruction

NrThen.nrx An object that represents a parsed Then instruction

NrTrace.nrx An object that represents a parsed Trace instruction

NrWhen.nrx An object that represents a parsed When clause
183

Chapter 34. Translator inner workings

TABLE 2: Class related translator source files

RxClasser.nrx The generalised class processor. The RxClasser object handles
everything to dowith classes: finding them, testing for them, and
so on.

RxClassImage.nrx An object that processes class files (or file images)

RxClassInfo.nrx An object that describes what we know about a class

RxClassPool.nrx The pool of RxClassInfo objects

RxPersistClass.nrx An object that persists class files

RxMapClassLoader.nrx A class loader that loads classes from amap

RxByteArrayJavaClass.nrx Represents a Java class as a byte array

RxType.nrx Describes the class and dimensions of an item (object or
primitive).

RxField.nrx An object that represents a known field, this can refer to a
property or a method

184

34.1. Translating, compiling and interpreting

TABLE 3: Translation and parsing source files

NetRexxC.nrx A command shell to translate and compile or interpret one or more
NetRexx programs

RxTranslator.nrx An instance of a Venta translator, the ’boss’. Compilation occurs here
unless -exec

RxFlag.nrx An object that describes the per-program or per-compile flags

RxParser.nrx The program parser for NetRexx, called three times, once for each pass.
Its provider is RxClauser, which supplies tokenised clauses on demand

RxClauser.nrx The lexical processor for NetRexx syntax. Given a streamer object which
supplies lines of source code, the clauser object will parse the input
lines and supply logical NetRexx clauses, expressed as a RxClause object
(primarily an array of RxTokens)

RxClause.nrx An object that represents a tokenised clause

RxToken.nrx An object that represents a token in the input source file

RxExprParser.nrx Parses an expression and constructs the corresponding RxCode object

RxTermParser.nrx Parses a term and constructs the corresponding RxCode object

RxCursor.nrx An object that represents the current context of execution or parsing.
This may be either during initial parsing or per-thread while executing.

RxCode.nrx An object that represents a sequence of code. Depending on the kind of
the code, this may correspond to program, class, or method-level data,
for example Java sourcecode, bytecodes, constants, etc.

RxExpr.nrx An object that represents a parsed expression

RxArray.nrx An object that represents a parsed array reference

RxTracer.nrx Manages code generation for tracing

RxModel.nrx Generates amodel of a NetRexx program fromRxClauser clauses, cleans
code written in different styles, and indents for good code folding in your
favorite editor

185

Chapter 34. Translator inner workings

TABLE 4: Interpretation related source files

NetRexxA.nrx NetRexx external API to translate and interpret one or more
NetRexx programs

NetRexxInterpreter.nrx An early version of NetRexxA.nrx

NetRexxI.nrx NetRexx internalAPI to support the compiled interpret instruc-
tion

RxInterpreter.nrx The interpreter object, it takes requests (equivalent to
execution requests in java.lang.reflect) and executes them,
either using the reflection API or using direct interpretation for
local classes

RxInterpreterHelper.nrx The interpreter helper object, allows RxInterpreter to run as
nodecimal

RxSignal.nrx An object that represents an active Exception during execution

RxSignalPend.nrx An object that wraps an invocation target Exception so we can
tunnel it upwards without checking

RxScriptEngine.nrx AJSR223 javax.script implementation supporting the compiled
interpret instruction

RxScriptEngineFactory.nrx The factory object which exposes metadata describing
RxScriptEngine

RxProxy.nrx The Proxy object, provides a proxy class as a byte array

RxProxyLoader.nrx The ProxyLoader factory, used for loading proxies of local
classes

186

34.1. Translating, compiling and interpreting

TABLE 5: Other miscelaneous source files

NrVersion.nrx Implements all metadata associated with a NetRexx
translator version

RxProcessor.nrx Processor-level constants and repository of the master
change list

RuntimeConstants.nrx The Java RuntimeConstants

NetRexxC.properties The NetRexxC messages master file, each line is a
single message, indexed by key

NrAnsi.nrx Implements support for ANSI control sequences

RxMessage.nrx Displays an error or warning message, identified by a
key in NetRexxC.properties

RxError.nrx Processes a compile-time error, constructs an
RxMessage

RxWarn.nrx Display an warning message during parsing

RxQuit.nrx Processes a Quit (terminal error)

RxBabel.nrx The interface that defines themethods that implement
language-specific utility routines

NrBabel.nrx Implements language-specific utility routines

RxSource.nrx The interface that defines a valid program source

RxFileReader.nrx Makes a file into an RxSource

RxStreamer.nrx Manages the output streams for a program

RxChunk.nrx An object that represents an output (Java) code chunk

RxException.nrx An object that represents an exception reference

RxProgram.nrx An object that describes per-program data

RxMessageOutput.nrx The interface to RxProgram

RxForwardingJavaFileManager.nrx Forwards calls to Java FileManager

RxInMemoryJavaFileObject.nrx Provides Java source code as a CharSequence

RxConverter.nrx Amaker object that costs and effects conversions

RxConvert.nrx An object that describes the cost of a conversion and
the procedure to be used to effect the conversion.

RxVariable.nrx An object that represents a variable local to a class, can
be an argument to a method, a class property or local
variable

RxVarpool.nrx An object that manages and maintains RxVariables,
exists on the class and method level

187

Chapter 34. Translator inner workings

34.2 Method resolution

Method resolution in NetRexx proceeds as follows:

. If the method invocation is the first part (stub) of a term, then:
1. The current class is searched for the method (see below for details of
searching).

2. If not found in the current class, then the superclasses of the current class
are searched, starting with the class that the current class extends.

3. If still not found, then the classes listed in the uses phrase of the class
instruction are searched for the method, which in this case must be a
static method. Each class from the list is searched for the method, and
then its superclasses are searched upwards from the class; this process
is repeated for each of the classes, in the order specified in the list.

4. If still not found, themethod invocationmust be a constructor (see below)
and so the method name, which may be qualified by a package name,
should match the name of a primitive type or a known class (type). The
specifiedclass is thensearched for aconstructor thatmatches themethod
invocation.. If themethod invocation is not the first part of the term, then the evaluation of

the parts of the term to the left of themethod invocation will have resulted in
a value (or just a type), which will have a known type (the continuation type).
Then:
1. The class that defines the continuation type is searched for the method
(see below for details of searching).

2. If not found in that class, then the superclasses of that class are searched,
starting with the class that that class extends. If the search did not find a
method, an error is reported. If the search did find a method, that is the
method which is invoked, except in one case:

3. If the evaluation so far has resulted in a value (an object), then that value
may have a type which is a subclass of the continuation type. If, within
that subclass, there is a method that exactly overrides the method that
was found in the search, then the method in the subclass is invoked.

This case occurs when an object is earlier assigned to a variable of a type which is
a superclass of the type of the object. This type simplification hides the real type
of the object from the language processor, though it can be determined when the
program is executed. Searching for a method in a class proceeds as follows:

188

34.2. Method resolution

1. Candidate methods in the class are selected. To be a candidate method:. the method must have the same name as the method invocation (inde-
pendent of the case (see page 44) of the letters of the name). the methodmust have the same number of arguments as themethod in-
vocation (or more arguments, provided that the remainder are shown as
optional in the method definition). it must be possible to assign the result of each argument expression to
the type of the corresponding argument in themethod definition (if strict
type checking is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the method
was not found.

3. If there is just one candidate method, that method is used; the search is
complete.

4. If there is more than one candidate method, the sum of the costs of the con-
versions from the type of each argument expression to the type of the corres-
ponding argument defined for the method is computed for each candidate
method.

5. The costs of those candidates (if any) whose names match the method invo-
cation exactly, including in case, are compared; if one has a lower cost than
all others, that method is used and the search is complete.

6. The costs of all the candidates are compared; if one has a lower cost than all
others, that method is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost, the
method invocation is ambiguous, and an error is reported. Note: When a
method is found in a class, superclasses of that class are not searched for
methods, even though a lower-cost method may exist in a superclass.

Note that until version 3.01 of the NetRexx translator a slightly different way
of method resolution was used. There is a very small (and almost improbable)
chance of encountering differences when recompiling very old sources.

189

Index

NetRexxA, API, 33
NetRexxA, class, 33
NetRexxC, class, 23
NetRexxC, scripts, 24

ant, 29
applets for the Web, writing, 97
application programming interface, for

interpreting, 33
ArchText example, 97

binary arithmetic, used for Web applets, 97
build systems, 27

command, for compiling, 23
compiling, NetRexx programs, 23
compiling,multiple programs, 25
compiling,options, 25
compiling,packages, 26
completion codes, from translator, 24
constructor, in NetRexxA API, 34

EXECIO, 65

file specifications, 24
flags, 24

getClassObject method, in NetRexxA API, 35

HTTP server setup, 97

Interactive tracing, 87
interpreting,API, 33
interpreting,using the NetRexxA API, 33
interpreting/API example, 34

NervousTexxt example, 97
NetRexxA/constructor, 34
nrc scripts, 24

option words, 24

packages, compiling, 26
parse method, in NetRexxA API, 35
projects, compiling, 26

ref /API/application programming interface, 33
return codes, from translator, 24
RexxDate, 145
RexxTime, 145
runtime/web server setup, 97
RxModel, 20

scripts, NetRexxC, 24
scripts, nrc, 24

using the translator, 23
using the translator, as a Compiler, 23

Web applets, writing, 97
Web server setup, 97
WordClock example, 97

191

NetRexx
Programming Guide

9 789081 909006

ISBN 978-90-819090-0-6

192

	Meet the Rexx Family
	Once upon a Virtual Machine
	Once upon another Virtual Machine
	Features of NetRexx

	Learning to program
	Console Based Programs
	Comments in programs
	Strings
	Clauses
	When does a Clause End?
	Long Lines
	Loops
	Special Variables

	NetRexx as a Scripting Language
	A Scripting Example
	Automatic 'Uses'
	No 'return'

	NetRexx as an Interpreted Language
	Source Code Formatting
	RxModel
	Beyond RxModel

	Using the translator
	Using the translator as a compiler
	The translator command
	Compiling multiple programs and using packages

	Using build systems - ANT
	In-source, no packages
	With package structure

	Using the NetRexxA API
	The NetRexxA constructor
	The parse method
	The getClassObject method

	Calling non-JVM programs
	Using NetRexx classes from Java
	Classes
	Classes
	Dependent Classes
	Properties

	Using Packages
	The package statement
	Translator performance consequences
	Some NetRexx package history

	JPMS, The Java Platform Module System
	CLASSPATH
	Adding modules to a compile run

	Programming Patterns
	Singleton
	Observable and Events
	Recursive Parse
	More Observer/Observable

	Incorporating Class Libraries
	A Word About Java Generics
	The Collection Classes

	Stream I/O
	Lines() and Linein()
	Chars() and CharIn()

	Java Input and Output
	The File Class
	Object Oriented I/O using Serialization
	Using the SAY instruction to write lines to a file
	Using RexxIO.forEachLine

	Algorithms in NetRexx
	Factorial
	Fibonacci

	Using Parse
	Literal Parsing
	Positional Parsing
	Variable Templates

	Using Trace
	Tracing Program Statements
	Tracing Variables
	Interactive tracing
	Examples
	Tracing Notes

	Concurrency
	Threads

	Using NetRexx for Web applets
	Database Connectivity with JDBC
	WebSphere MQ
	MQTT
	Pub/Sub with MQ Telemetry

	Component Based Programming: Beans
	Interfacing to Scripting Languages
	Which scripting engines are on my system?
	Selecting an engine
	Evaluating a script
	Bindings
	Interpreted execution of NetRexx scripts from jrunscript
	Using AppleScript on macOS
	Execution of NetRexx scripts from ANT tasks
	Integration of NetRexx scripting in applications
	Interfacing with ooRexx using BSF4ooRexx
	General scripting implementation notes

	NetRexx Tools
	Editor support
	Java to Nrx (java2nrx)

	Using Eclipse for NetRexx Development
	Downloading Eclipse
	Setting up the workspace
	Shellshock
	Installing Git
	Downloading the NetRexx project from the Git repository
	Setting up the builds
	Using the NetRexx version of the NetRexx Ant task
	Setting up the Eclipse NetRexx Editor Plugin (Optional)

	Platform dependent issues
	Mobile Platforms
	IBM Mainframe: Using NetRexx programs in z/OS batch

	Building the NetRexx translator
	Repository
	The buildfile
	Testing
	Preparing a new release
	Package a new release

	Date and Time Arithmetic
	Epoch

	The NetRexx Workspace - nrws
	Installation
	Starting nrws
	Exit nrws
	Exploring the NetRexx language
	Arithmetic Expressions
	Some Types
	Symbols, Variables, Assignments, and Declarations
	Conversion
	Calling Functions
	Long Lines
	Numbers
	Data Structures
	Expanding to Higher Dimensions
	Writing Your Own Functions
	A Typical Session
	Running Pipelines
	System Commands
	Input Files and NetRexx Files
	Input Files
	The nrws.input File
	The nrws.properties File
	The nrws.history file(s)
	Workspace for NetRexx System Commands
	Introduction
)cd
)clear
)display
)frame
)help
)history
)import
)numeric
)options
)package
)pquit
)quit
)read
)set
)show
)synonym
)system
)trace
)use
)what

	Translator inner workings
	Translating, compiling and interpreting
	Method resolution

	Index

