Pipelines Guide and

Reference

Ed Tomlinson
Marc Remes

Jeff Hennick

René Jansen

Version 5.01-GA of May 2, 2025

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-3-7

Publication Data

©Copyright The Rexx Language Association, 2011-

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk
14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The
Netherlands.

This edition is registered under ISBN 978-90-819090-3-7

| SBN 978-90-819090-3-7

9 "789081"909037" >

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

1 Introductio

IZ The Pipeline Conceptl

.1 What is a Pipeline?l ..
D .2 Stage{ ..
P.3 Device Driverl ...
D4 Hello world ..
D.5 Pipelines and NetRExxl
b Running Pipelines!
3.1 Configuratior{ ...
3.2 From the NetREXX Workspace (nrws) with direct executiorl
3.3 From the command line with direct executior{
3.4 Compiled pipeline from the command Iine{
3.5 Compiled pipeline from an .njp filei
3.6 Compiled pipeline from an .njp file with additional stage definitions in NetREXXl
ﬁ Stage type;
4.1 Device driversi ...
4.2 Record Selectior{ ..
U3 Filterd . oo
4.4 Other Stages’ ...

b Advanced Pipelines features

b.1 Write your own Filtery e
5.2 Multi-Stream Pipelinesl
5.3 Pipeline Stalls{ ...
h.4 How to use a pipe in a NetREXX progran{
.5 Giving commands to the operating systerr‘
.6 Selecting from relational databasesl

b The Pipes Runnerl

|7 The Pipes Compilet{

b Built-in Stagesl

b Differences with CMS Pipelinesl

II

o A A WW

O O 0 I~

29

31

33

97

Contents

|10 Error Messages’ 99
hl Debugging Pipeline4 101
D11 The dump() SEAZE « « « v o v o e e e e e e e e e 101

I11

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists
the other publicationsin this series, and their roles. These books can be ordered in
convenient hardcopy and electronic formats from the Rexx Language Association.

Programming Guide

The Programming Guide is the one manual
that at the same time teaches programming,
shows lots of examples as they occurin the real
world, and explains about the internals of the
translator and how to interface with it.

Language Reference

Referred to as the NRL, this is meant as
the formal definition for the language,
documenting its syntax and semantics,
and prescribing minimal functionality for
language implementers.

Pipelines Guide & Reference

The Data Flow oriented companion to NetRexx,
with its CMS Pipelines compatible syntax,
is documented in this manual. It discusses
running Pipes for NetRexx in the command
shell and the Workspace, and has ample
examples of defining your own stages in
NetRexx.

Foreword - by Jeff Hennick

Often in programming projects, either in part or in the whole, we are faced with a
collection of objects or text records where each is to be filtered and/or transformed
in some way. Sometimes this is easy, many times there are special considerations
to be handled.

Pipelines is specifically designed to do all the dirty work around this and by
selected small already written and tested programs (called stages). NetRexx Pipe-
lines make this quite easy. And now Pipelines, with over 150 stages, are built into
NetRexx. Custom stages are easily written in NetRexx.

The concept of pipes joining small text record processing programs had its startin
the early 1970s. In the 1980s, IBM greatly expanded the concept with stages that
could have multiple input and output streams of records. And in the 1990s, this
concept was transferred to NetRexx. NetRexx Pipelines, while handling records
nicely, also adds full Java objects. NetRexx also adds some new Rexx and Java
inspired stages.

Note to users coming from IBM CMS Pipelines: While many stages and pipes are
and work identically, there are some inherent differences due to the underlying
operating environments. While some CMS stages are not in NetRexx (APL, CP,
PUNCH, etc.), NetRexx has over 30 new stages — many using concepts from Net-
Rexx’s two parent languages, Rexx and Java.

Pipelines canread and write NetRexx variables and files. Many stages have shorter
abbreviated names also to ease command line typing.

Pipes can be written on-the-fly at the command line, or made more permanent in
files. Like Rexx, these can be written on a single line or in easier to read multiple
lines.

Full documentation, with all the included stages (and the CMS stages not included)
is in the Pipelines Guide and Reference.

iii

Contents

Examples:

This is a classic, as would appear in a file names count.njp, It could be a single
line, and run from the command line would need to be. The “~” is a stage name
(alias comment) so needs to be ended with a “|”. These too could be on their own
lines. The count stage has other options besides words.

pipe (count)

disk input.file | —— Read input file |
count words | —— Count |
console | — Display result

Here is a multi-output stage example. “<” and “>” are aliases for disk read and
write. “?” is the end of a pipe. A word ending in “:” is a label. The “/”s are used to
delineate the data string.

pipe (locrec)
< input.file | Loc: locate /Sid/ | > selected.records ?
Loc: | > discarded.records

In this one, I'll use the LITERAL and SPLIT stages to generate short contained
input records to demonstrate it in action. Note: some systems will require this
on a single line; some will require quote marks around everything but the pipe.

pipe literal aa bb;bb cc;cc dd;dd ee;ee ff;gg hh | —— input data |
split ; | — break the single line into many |
between /c/ /e/ | —— make the selection |
cons | — see the results

the output is

cc dd
dd ee
ee ff

Jeff Hennick, Forth Worth, June 16th, 2023

iv

Chapter 1

Introduction

A Pipeline, or Hartmann Pipelineﬂlﬂ, is a concept that extends and improves pipes
astheyare known from Unix and other operating systems. The name pipe indicates
aninterprocess communication mechanism, as well as the programming paradigm
it has introduced. Compared to Unix pipes, Hartmann Pipelines offer multiple
input- and output streams, more complex pipe topologies, and a lot more.

Pipelines were first implemented on VM/CMS, one of IBM’s mainframe operating
systems. This version was later adapted to run under MUSIC/SP and TSO/MVS
(now z/0S) and has been part of several product configurations. Pipelines are
widely used by VM users, in a symbiotic relationship with REXX, the interpreted
language that also has its origins on this platform.

Pipes for NetRexx is the implementation of Pipelines for the Java Virtual machine.
It is written in NetRexx and pipes and stages can be defined using this language.
It can run on every platform that has a JVM (Java Virtual Machine) installed. This
portable version of Pipelines was started by Ed Tomlinson in 1997 under the name
of njPipes, when NetRexx was still very new, and was open sourced in 2011, soon
after the NetRexx translator itself. The included stages have always been open
source. It was integrated into the NetRexx translator in 2014 and first released
with version 3.04.

Inversion 3.08, there are important improvements that enable pipelines to be run
from the command line, and from the NetRexx REPL program nrws, the NetRexx
Workspace. The pipes compiler has been renamed pipc, while the pipes runner
component keeps using the name pipe.

lhttps ://en.wikipedia.org/wiki/CMS_Pipelines
2This page used to be called Hartmann Pipeline, but was renamed to CMS Pipelines in 2016

1

https://en.wikipedia.org/wiki/CMS_Pipelines

Chapter 2

The Pipeline Concept

2.1 Whatis a Pipeline?

The pipeline terminology is a set of metaphores derived from plumbing. Fitting
two or more pipe segments together yields a pipeline. Water flows in one direction
through the pipeline.

There is a source, which could be a well or a water tower; water is pumped through
the pipe into the first segment, then through the other segments until it reaches
a tap, and most of it will end up in the sink. A pipeline can be increased in length
with more segments of pipe, and this illustrates the modular concept of the pipe-
line.

When we discuss pipelines in relation to computing we have the same basic
structure, but instead of water that passes through the pipeline, data is passed
through a series of programs (stages) that act as filters.

Data must come from some place and go to some place. Analogous to the well or
the water tower there are device drivers that act as a source of the data, where the
tap or the sink represents the place the data is going to, for example to some output
device as your terminal window or a file on disk, or a network destination.

Just as water, data in a pipeline flows in one direction, by convention from the left
to the right.

A pipeline is a sequence of two or more stages. The pipeline specification is pro-
cessed by the pipeline compiler, and consists of a character string. A solid vertical
bar | is used as stage separator (an option allows you to use a different character).B

3In versions before Pipelines for NetRexx 3.08, the default was the exclamation mark (!), which use was discontinued in
favour of conformity with VM/CMS Pipelines.

2.2

2.3

2.4

Chapter 2. The Pipeline Concept

Stage

A program that runsin a pipeline is called a stage. A program can run in more than
one place in a pipeline - these occurrences function independent of each other.

When looking at two adjacent segments in a pipeline, we call the left stage the
producer and the stage on the right the consumer, with the stage separator as the
connector.

Device Driver

A device driver reads from a device (for instance a file, the command prompt, a
machine console or a network connection) or writes to a device; in some cases it
can both read and write. An example of a device drivers are < and > ; these read
and write data from and to files.

A pipeline can take data from one input device and write it to a different device.
Within the pipeline, data can be modified in almost any way imaginable by the
programmer.

The simplest process for the pipeline is to read data from the input side and copy
it unmodified to the output side. Chapter léIl] on page shows the currently
supported input- and output devices. The pipeline compiler connects these pro-
grams; it uses one program for each device and connects them together.

The inherent characteristic of the pipeline is that any program can be connected
to any other program because each obtains data and sends data through a device
independent standard interface. This becomes apparent when data can be in-line
(specified or generated within the pipeline specification), come in (or be output)
to devices like disk or tape, or be handled through a network — all these formats
can be processed by the same stages.

The pipeline usually processes one record (or line) at a time. The pipeline reads a
record for the input, processes it and sends it to the output. It continues until the
input source is drained.

Hello world

The simplest form of a pipeline is shown below in a well known greeting :

pipe literal Hello, world! | console

2.5

2.5. Pipelines and NetRexx

This pipeline consists of two stages: literal Hello, world!, in plumbing terms the
‘'well’, and console, the ’sink’. In this case, both stages are device drivers, literal
pushes the following text into the pipe, and console shows the received text on the
screen. The stages are connected by a | vertical bar, the default stage separator.

Note that the pipeline source contains characters which have special meaning
on the command line in Windows, Linux amd macOS. Therefor it is necessary to
enclose the pipeline source within the appropriate quotes when running a pipe-
line from the command line. That is double quotes ” on Windows, or single quotes
' on Linux and macOS. These quotes are not necessary within the nrws interface

(see).

Pipelines and NetRexx

Internally, the Pipelines engine on NetRexx generates NetRexx source code from
the pipeline source text. This NetRexx source code is compiled as a Java class,
which is eventually run by the Java Virtual Machine.

Stages - these also are NetRexx programs compiled as Java class files - are imple-
mented as threads.

The Java classname is generated randomly, unless a classname is given as first
argument between () round brackets, e.g.
pipe '(hello) literal Hello, world! | console'

More options are available, see 9.

Note, you cannot specify options in NetRexx Workspace pipelines.

3.1

Chapter 3

Running Pipelines

There are anumber of ways to specify and run a pipeline. Alittle setup is necessary.

Configuration

The required configuration is minimal. The NetRexxF.jar (java archive file) needs
to be on the classpath environment variable. (NetRexxC.jar, which is smaller,
will suffice when there is a working javac compiler). Also, the current directory
() needs to be on the classpath. It is convenient to have aliases or shell scripts
defined as abbreviations for the invocation of the pipe (pipe runner), pipc (pipe
compiler) and nrc (netrexx compiler) utility programs. Aliases are preferable
because some shell processors have idiosyncrasies in the treatment of script
arguments. With an alias we can be sure that every NetRexx program sees its
arguments the same way.

.bash_aliases:

alias pipc="java org.netrexx.njpipes.pipes.compiler"
alias pipe="java org.netrexx.njpipes.pipes.runner"
alias nrc="java org.netrexx.process.NetRexxC"

The bash aliases expect classpath to be exported correctly as:
export CLASSPATH=${NETREXX_HOME}/1ib/NetRexxF.jar:.:$CLASSPATH

For Windows, the following works for the pipes runner: file pipe.bat:

@java —cp "SNETREXX_HOMES\lib\NetRexxF.jar;%CLASSPATH%" org.netrexx.njpipes
.pipes.runner %x

For Windows, the following works for the pipes compiler: file pipc.bat:

@java —cp "%NETREXX_HOMES\lib\NetRexxF.jar;%CLASSPATH%" org.netrexx.njpipes
.pipes.compiler %

Chapter 3. Running Pipelines

Both the Windows batch files as well as the Linux shell scripts are shipped in the
bin directory of the NetRexx package.

Do note that the Windows .bat files and Linux shell scripts assume that the NET-
REXX_HOME environment variable is set correctly, that is, to the top of the path
where NetRexx is installed. This prepends the NetRexxF.jar file to an already
existing CLASSPATH. For the development of local classes (that is, all precompiled
pipelines), a dot ('."), needs to be on this CLASSPATH.

These aliases and scripts enable you to run a pipeline from the commandline, by

typing:
pipe 'gen 100 | dup 999 | count words | console'

Remember to use double quotes on Windows shells. When the pipe alias or command
script is not on your path, you can also use:

java org.netrexx.njpipes.pipes.runner 'gen 100 | dup 999 | count words |
console’

In both cases the answer should be 100000 - you have generated one hundred
thousand lines, but fortunately you did not print them, but only counted them. To
see them all, you can insert a | console | stage in between the dup and the count
stage.

After we have verified the working of the command processors, we will discuss in
the next sections which possibilities you have for running pipelines in day-to-day
usage.

From the NetRexx Workspace (nrws) with direct execution

The NetRexx Workspace is the most straightforward , and highly recognizable
for users of CMS Pipelines, as it mimics the way a pipe is run in the CMS 3270
interface. It also yields the best response time, because the NetRexx Workspace
preloads the Pipelines subsystem by executing pipeline '1literal pipelines processor
loaded. | console’ during initialisation.

Note, the nrws.input file in your home directory allows to run more code during
nrws startup.

There is no magic: we execute a pipeline which displays 'Pipe processor loaded".
This loads all necessary classes and leaves them in memory.

Then we can start specifying pipelines at the Ready: prompt.
8

3.3

3.4

3.3. From the command line with direct execution

Workspace for NetRexx 4.05 build 2,156-20230131-1212

Copyright (c) Martin Lafaix 2000

Copyright (c) parts RexxLA 2019,2021

pipelines processor loaded

Ready; pipe literal a man a plan a canal panama | change / // | console
0.991 s

amanaplanacanalpanama

Ready;

Executed this way, the generated class image will not be written to disk. Note that
the pipelines compiler creates NetRexx source code which is then compiled and
run by the pipelines runner. All these are ephemeral within the NetRexx Work-
space.

The timing option is great for prototyping and performance work.

Type exit to leave the NetRexx Workspace.

From the command line with direct execution

When using the CLI pipe command, the rest of the specification needs to be quoted
in the command shells of Linux, Windows and macOS. Windows needs double
quotes, zZVM/CMS does not need quotes, but if they are used they need to be double
qguotes. Linux and macOS can use single or double quotes, in most cases.

$ pipe "literal a man a plan a canal panama | change / // | console"
amanaplanacanalpanama

Executed this way, the generated class image again will not be written to disk.

Compiled pipeline from the command line

In this mode, which uses the pipc command (for pipe compiler), a .class file will
be persisted to disk. This class can be run as many times as needed without the
overhead of compilation. This also would be the right mode for pipes that take
different arguments when re-run.

The pipe name needs to be specified, and will be the class name. When the class
name exists, it will be overwritten.

$ pipc '(aplan) literal a man a plan a canal panama | change / // | cons'
(aplan) 1literal a man a plan a canal panama | change / // | cons

$ 1s aplanx

aplan.class

$ java aplan

3.5

Chapter 3. Running Pipelines

amanaplanacanalpanama

This will yield a aplan.class classfile, which can be executed by the Java Virtual
Machine.

Be sure to leave out the .class suffix when invoking java. Additional options are
available in this mode:

-gen to save the generated .nrx file to disk, default is -nogen
- keep tosave the from the .nrx generated .java source file, default is -nokeep

To specify the literal content from the command line, use the arg() method :

$ pipc '(aplan) literal arg() | change / // | reverse | cons'
(aplan) 1literal arg() | change / // | reverse | cons
$ s aplanx

aplan.class
$ java aplan a man ap
panama

Compiled pipeline from an .njp file

The pipc command accepts a given .njp file as argument.

When compiled from an .njp file, the pipe specification must not be quoted. Pipe-
lines can be specified in so-called Portrait Mode, which is the standard for more
complex pipelines as it is easier to read.

The given .jnp file is compiled and runnable as a Java class file, it is not needed to
specify the .njp file extension.

Note the difference in naming between .jnp and .class file.

$ cat aman.njp
pipe (aplan)

literal a man a plan a canal panama |
change / // |

console |

reverse |

console
$ pipc aman
pipe (aplan) literal a man a plan a canal panama | change / // | reverse |

console | reverse | console

$ 1s aplanx
aplan.class
$ java aplan
amanaplanacanalpanama
amanaplanacanalpanama

10

3.6

3.6. Compiled pipeline from an .njp file with additional stage definitions in NetRexx

Compiled pipeline from an .njp file with additional stage definitions
in NetRexx

When working with .njp files it is possible to create an additional stage in NetRexx,
by coding it in the .njp after the pipeline specification.

The following example lengthl.njp specifies a pipeline in which one of the stages
is defined in the .njp itself. When run, it tries to read the contents of itself and will
output its lines prepended by the line length in decimal and hex.

In fact this is what the NetRexx lengthl class does. The class name must be
identical as the basename of the .njp source file.

$ cat lengthl.njp
pipe (length2)

< lengthl.njp |
lengthl |
console

import org.netrexx.njpipes.pipes.
class lengthl extends stage final

method run()
do
loop forever
line = rexx peekto()
1 = line.length
output(l.right(3) (1.d2x).right(2) line)
readto()
end
catch StageError
rc = rc()
end
exit(rcx(rc<>12))
$ pipc lengthl
pipe (length2) < lengthl.njp | lengthl | console
$ Us length?.class
lengthl.class length2.class
$ java length2
15 F pipe (length2)
17 11 < lengthl.njp |
17 11 1lengthl |
8 8 console
0 0
33 21 import org.netrexx.njpipes.pipes.
33 21 class lengthl extends stage final

0 0

14 E method run()

6 6 do

18 12 loop forever

11

Chapter 3. Running Pipelines

21 15 line = rexx peekto()

16 106 1 = line.length

41 29 output(l.right(3) (1l.d2x).right(2) line)
9 9 readto()

9 9 end

20 14 catch StageError
15 F rc = rc()

7 7 end

21 15 exit(rcx(rc<>12))

Be sure to invoke the right java class, invoking length1 will have the JVM complain
about a non-existing main method.

Note, when coding NetRexx stages in an .jnp file, make sure the pipeline specifi-
cation is separated from the NetRexx code by at least one blank line.

12

4.1

Chapter 4

Stage types

Stages can be categorised in different groups : device drivers, record selection
stages and filters.

Chapter E documents all built-in stages and differences to CMS Pipelines.

For detailed information on the built-in stages, refer to the CMS Pipelines User's
Guide and Reference.

Device drivers

Pipelines for NetRexx contains the following device drivers:

TABLE 1: Device drivers

read from a file

write to a file (which is overwritten if it exists)

>> append to a file (which is created if it does not
exist)

diskr read from a file

diskw write to a file (which is overwritten if it exists)

diska append to a file (which is created if it does not
exist)

diskslow read, create or append to a file

array manipulate arrays

arraya append to an array

arrayr read an array

arrayw write to an array

stem manipulate stems

stema append to a stem

stemr read a stem

stemw write to a stem

vector manipulate vectors

13

Chapter 4. Stage types

vectora append to a vector

vectorr read elements of a vector

vectorw write elements to a vector

var read or set a variable in a NetRexx program

zip compress a set of files (0@ or more) into a zip archive
unzip decompress a set of files (0 or more) from a zip archive
listzip list a zip file directory

console read from, or write to a terminal (window)

hole destroy data

delay suspend stream

literal write the argument string

strliteral | write the argument string

sglselect select from any jdbc souzrce

xrange write a character range

4.2 Record Selection

Various stages can select records and work on data in the pipeline. These are
stages called select, sort, specs, locate, etcetera. For a complete description we
refer to the IBM Pipelines documentation.

These are the main selection stages supported in Pipelines for NetRexx:

TABLE 2: Record selection

between selects records between labels

drop discard records from the beginning or the end of a
file

find select lines

strfind select lines

frlabel select records from the first one with leading string

strfrlabel | select records from the first one with leading string

inside select records between labels

locate select records between labels

nfind select lines using xedit nfind logic

strnfind select lines using xedit nfind logic

nlocate select lines without a string

notinside select records not between labels

outside select records not between labels

pick select records that satisfy a relation

take select records from the beginning or the end of a file

tolabel select records to the first one with leading string

strtolabel | select records to the first one with leading string

sort orders records

spec select records based on a specification list

14

4.3. Filters

’ unique

‘ discard or retain duplicate lines

4.3 Filters

Filters perform an operation on a single stream.

These are the main filters supported in Pipelines for NetRexx:

TaBLE 3: Filters

buffer buffer records

chop truncate the record

join join records

pad expand short records

split split records relative to a target

change substitute contents of records

specs rearrange contents of records

xlate transliterate contents of records

copy copy records

count count lines, words and bytes

dup duplicate the object

reverse reverse contents of records

timestamp | prefix date and time to records

append put output from device driver after data on the primary
input

caseil run selection stage in a case-insensitive manner

not run stages with output streams inverted

prefix block its primary input and executes stage supplied
as an argument

zone run selection stage on subset of input record

elastic buffer sufficient records to prevent stall

fanin concatenate streams

faninany copy records from whichever input stream has one

gate pass records until stopped

juxtapose | preface record with marker

overlay overlay data from input streams

command issue a command and write response to pipeline

4.4 Other Stages

Finally, some other stages are listed below:

15

Chapter 4. Stage types

TABLE 4: Other stages

query check version and level of Pipelines for NetRexx
-- == insert comments into a pipeline
-- insert comments into a pipeline
comment | insert comments into a pipeline

16

5.1

Chapter 5

Advanced Pipelines features

In this chapter we will elaborate on more advanced Pipeline features.

Write your own Filters

So we have seen in the previous examples that it is not too hard to make a simple
pipeline out of things called 'device drivers' (such as command, for OS commands,
'<' for reading files on disk, and literal, for inserting literal strings into a pipeline,
filters, and sinks. When a filter is not delivered in the standard set of stages, it
is very easy to make one yourself in the NetRexx language. The model for this
closely follows the way it is done with CMS Pipelines and Classic Rexx. Imagine,
for the sake of argument (and a simple example@), that you have an assignment to
quickly reverse a string.

/* BAGVENDT REXX —- Reverse the contents of lines in the pipeline x/
signal on error
do forever
'peekto data'
‘output' reverse(data)
‘readto’
end
error: exit RCx(RC<>12)

The peekto reads the input but does not actually commit the read yet, so you can
read it one more time with knowledge about the contents. The output pushes its
argument back into the pipeline. The readto reads and commits the read so the
line is really processed and we can go to the next one.

In NetRexx, that would be about the same, but for some small changes incurred by
the object oriented model of NetRexx, which does not exist in Classic Rexx. Here

4From the document CMS Pipelines Explained, by John P. Hartmann

17

5.2

Chapter 5. Advanced Pipelines features

peekto(), readto() and output() are method calls on the stage object. The stage
object is be made addressable by the import from org.netrexx.njpipes.pipes. (file:
bagvendt.nrx)

import org.netrexx.njpipes.pipes.
class bagvendt extends stage
method run()
loop forever
line = Rexx peekto()
output(line.reverse())
readto()
catch StageError
rc = rc()
end
exit(rcx(rc<>12))

So that would look fairly familiar, and admittedly, a bit easier for us already well
versed in NetRexx. Because the source uses pipe idioms, the regular NetRexx
compiler cannot understand everything, and we need to uses the pipes compiler
pipc to compile this source. This will call the NetRexx and Java compilers at the
appropriate moment. The resulting .class file needs to be on the CLASSPATH en-
vironment variable.

We can test this by building the stage and running the pipeline:

$ nrc bagvendt
NetRexx portable processor 4.05-GA build 2,156-20230131-1212
Copyright (c) RexxLA, 2011,2023. All rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program bagvendt.nrx
=== class bagvendt ===
method run
signals ThreadQ
overrides stage.run
Compilation of 'bagvendt.nrx' successful
$ pipe 'literal a plan | bagvendt | cons'
nalp a

Multi-Stream Pipelines

One of the defining differences with Unix pipes is the possibility to define multi-
stream pipelines. The selection stages from the previous chapter all have secondary
streams. What the selection parameters have discarded, seem to have discarded, is
in reality not gone. In fact, Pipelines for NetRexx throws very little away during
execution.

The way to use the not-selected part of the data through these secondary streams

18

5.2. Multi-Stream Pipelines

is explained in this chapter; it is this capacity that constitutes the freedom to work
with many different streams in one pipeline; where Unix pipes are limited to not
very much more than stdin, stdout, stderr -- Pipelines for NetRexx enables the
user to define as many streams as necessary to accomplish the task at hand in an
efficient manner.

Let us look at a simple selection like the following:

$ pipe "literal foo bar baz frob frobnitz frobbotzim | split | locate /oo/
| cons"
foo

The string that makes it through the locate selection is 'foo' - it is the only string
captured by the /oo/ filter.

Therest of the words is not gone however, and we can use these in further processing
by using the secondary stream that locate provides.

To prepare for this, we give the secondary stream a name by providing a label - a
character string terminated by a : colon. We call it, in absence of any creativity,
restB. Also, we send the selected foo output into a hole stage, where it disappears.

$ pipe "literal foo bar baz frob frobnitz frobbotzim | split | rest: locate
/00/ | hole"

As predicted, there is no output. To get to the rest of the words which are not
selected by locate, we connect the secondary output stream to a new pipe, using
the '?' (the default pipe-end character) and the rest: label like this:

$ pipe "literal foo bar baz frob frobnitz frobbotzim | split | rest: locate
/00/ | hole ? rest: | cons"

bar

baz

frob

frobnitz

frobbotzim

frobbotzim

Instead of sending the original output into a black hole, we could have also gone
further with it, and, for example, reverse it:

$ pipe "literal foo bar baz frob frobnitz frobbotzim | split | rest: locate
/oo/ | reverse | cons ? rest: | cons"

oof

bar

baz

frob

frobnitz

frobbotzim

5often, you will see it being called "a:’

19

5.3

Chapter 5. Advanced Pipelines features

Likewise, we can specify more filter stages in the second, attached pipeline, and
bifurcate the pipeline even further.

$ pipe "literal foo bar baz frob frobnitz frobbotzim | split | rest: locate
/00/ | reverse | cons ? rest: | locate /botzim/ | cons"

oof

frobbotzim

Itisbest practice to define and implement secondary streams when you write your
own stages.

A first label connects to the first streams (in and out) of the stage. A second label
connects to the secondary streams, a third to the next, etc.

As stages are threads there is no guarantee of order of execution of the additional
pipelines:

$ cat multipipe.njp
pipe (multipipe end ?)
literal eno |
a: faninany |
reverse |
cons ?
literal owt]|
a: ?
literal eerht |
a: ?
literal ruof |
a:

$ pipc multipipe

pipe (multipipe end ?) literal eno | a: faninany | reverse | cons ?
literal owt| a: 7? literal eerht | a: ? literal ruof | a:

$ java multipipe

one

four

three

two

$ java multipipe

four

one

three

two

Pipeline Stalls

With multi-stream pipelines a new problem sometimes rears its head - a Pipeline
stall, also called deadlock. This happens when stages wait for input that cannot be
delivered, while the waiting stage itself inhibiting the data to be delivered. We see

20

5.3. Pipeline Stalls

deadlocks also happen in databases and in traffic.

Pipes for NetRexx detects deadlocks and outputs information to allow you to fix
the problem. Consider the following session:

$ pipe 'literal test | a: fanin | cons | a:'
test
Deadlocked in p49b739c

Dumping p49b739c Stall 2000 Monitored by p49b739c

Flag units digit: 1=wait out, 2=wait in, 4=wait any, 8=wait commit
: 10=pending autocommit, 20=pending sever

literal_1
Running rc=0 commit=-1 Flag=201 waits 0 args=test
—> out @ fanin_2 1 test

fanin_2
Running rc=0 commit=-1 Flag=201 waits 0 args=
-> in 0 literal_1 1 test
in 1 cons_3 0 test
—> out ©® cons_3 1 test

cons_3

Running rc=0 commit=-1 Flag=201 waits 0 args=
—> in 0 fanin_2 1 test

—> out 0@ fanin_2 0 test

Dumped Pipe p49b739c Flag 60F rc=16

ThreadQ Thread[#27,Thread-1,5,njPipes]
ThreadQ Thread[#28,Thread-2,5,njPipes]
ThreadQ Thread[#29,Thread-3,5,njPipes]
compiler:RC=16

We can see that there are three stages in the Running state. None have any return
codes set. The Flags tell us that all the stages are waiting for an output to complete.

The '->' arrow shows which stream is selected. From this we can see cons_3 is
trying to output to fanin_2. Unfortunately fanin_2 is waiting for output on stream
0 to complete, it cannot read the data waiting on in stream 1. Hence the stall.

The strings after Dumping and Monitored by are the autogenerated class names.
When you name your pipelines with precompiled pipes yourself, the names you
have given them will be displayed here.

When a stream has data being output, there is a boolean flag following the name of
the stage the stream is connected to. This tracks the peek state of the object. For
an output stream, true means the following stage has peeked at the value. With
input streams, true means the current stage has seen the value.

21

5.4

Chapter 5. Advanced Pipelines features

When a stage is multithreaded, like elastic, you can get flags of 3 or 5. This means
that threads are waiting on output and read, or output and any. When using
multithreaded stages, only one thread should use output unless it is serialized
using protected or syncronized blocks.

When a stage has a pending sever or autocommit, flag bits are set too.

How to use a pipe in a NetRexx program

The following shows how to use a pipe in a NetRexx program:
$ cat testpipe.njp

class testpipe
method testpipe(avar=Rexx)

F
T

Rexx 'abase'
Rexx 1

F[0]=5
F[1]=222
F[2]=3333
F[3]=1111
F[4]=55
F[5]=444

pipe (apipe stall 1000)
stem F | sort | prefix literal {avar} | console | stem T

loop i=1 to T[0]
say 'T['i1']="T[1]
end

method main(a=String[]) static

testpipe('This is prefixed')
exit

$ pipc testpipe

pipe (testpipe_apipe stall 1000) stem F | sort | prefix literal arg(string
‘avar'} | console | stem T

$ java testpipe

This is prefixed

1111

222

3333

444

55

T[1]=This 1is prefixed

T[2]=1111

T[3]=222

T[4]=3333

22

5.4. How to use a pipe in a NetRexx program

T[5]=444
T[6]=55

A couple of things can be seen in this example. First that it is simple to pass
NetRexx variables to pipes using stem. Also look at the phrase {avar?. It passes
the NetRexx variable's value to the stage at runtime. In CMS the pipe would be
qguoted and you would unquote sections to get a similiar effect.

Another thing to note is that the pipe extraction program is fairly smart. It detects
when pipes takes several lines. As long as there are stages, or the current line ends
with a stagesep or stageend character, or the next line starts with a stagesep or
stageend character, the line gets added to the pipe.

The arg(), arg(rexx) or arg(null) methods get the arguments passed to a stage or
pipe. To get the complete rexx string of an argument use arg(). To get the nth word
of a rexx argument use arg(n). When using pipes in netrexx code you can use
arg('name') to get the named argument. If the class of the argument is not rexx
use arg(null) to get the object.

In .njp files you can use {avar} phrase actually just shorthand for arg('avar'). The
following overstem.nrx stage example shows what has to be done in a stage to
access the rexx variables passed by VAR, STEM and OVER. The real 'over' stage is
a bit more complete.

$ cat overstem.nrx
import org.netrexx.njpipes.pipes.
class overstem extends stage final
method run() public
a = getRexx(arg())
loop 1 over a
output(alil])
catch StageError
rc = rc()
end
exit(rcx(rc<>12))
$ nrc overstem
NetRexx portable processor 4.05-GA build 2,158-20230131-1734
Copyright (c) RexxLA, 2011,2023. A1l rights reserved.
Parts Copyright (c) IBM Corporation, 1995,2008.
Program overstem.nrx
=== class overstem ===
method run
signals ThreadQ
overrides stage.run
Compilation of 'overstem.nrx' successful
$ cat overtest.njp
class overtest
method overtest()
S = Rexx "'

23

Chapter 5. Advanced Pipelines features

S[0]=3
S[1]='one'
S[2]="two"'
S[3]="three"’

pipe (aover stall 1000)
stem S | overstem S | console

method main(a=String[]) static
overtest()
exit
$ pipc overtest.njp
pipe (overtest_aover stall 1000) stem S | overstem S | console
$ java overtest
3
one
two
three

The getRexx method is passed the name of a string by the pipe.

If you wish to replace a stream, this can be done using connectors. For example
look at the following fragment:

$ cat calltest.njp
pipe (callt) literal test | calltest {} | console

import org.netrexx.njpipes.pipes.
class calltest extends stage final
method run() public
do
a = arg()
callpipe (cpl) gen {a} | *out@:
loop forever
line = peekto()
output(line)
readto()
end
catch StageError
rc = rc()
end
exit(rcx(rc<>12))
$ pipc calltest.njp
pipe (callt) literal test | calltest arg() | console
callpipe (calltest_cpl) gen arg(string 'a'} | *0_AO:
$ java callt 10

oONOUTEA, WN -

24

5.4. How to use a pipe in a NetRexx program

9
10
test

Running the calltl pipe with an argument of 10 passes the 10 to calltest via and
arg(). Then cpl's gen stage would be passed 'a’ which is set to 10. Since gen
generate numbers in sequence, the console stage of calltl would get the numbers
from 1 to 10. Now cpl ends and calltest's output stream is restored and calltest
unblocks and reads the the literal's data 'test' and passes it to console.

The use of only works when compiling from .njp files. It will not work from the
command line. The njpipes compiler recognizes connectors as labels with the
following forms:

*xin:
*1nN:
*out:
*0UutN

When N is awhole number, the connector connects input or output stream N of the
stage with the connector. When the label is *in or *out, the connector connects the
stages's current input or output stream with the connector. This is used instead
of *: due to the way the compiler/preprocessor works.

If you do not want the stage to wait for the called pipe to complete you can use
addpipe. Here is an example.

$ cat addtest.njp
pipe (addtl debug 0) gen 40 | addtest | console

import org.netrexx.njpipes.pipes.

class addtest extends stage final
method run() public
do
addpipe (locatel debug 0) *out: | locate /0/ | =*out:
loop forever
line = peekto()
output('a 'line)
readto()
end
catch StageError
rc = rc()
end
exit(rcx(rc<>12))
$ pipc addtest
pipe (addtl debug @) gen 40 | addtest | console
addpipe (addtest_locatel debug 0) *xo_A: | locate /0/ | *0_B:
$ ls addxclass
addtl.class addtest.class addtest_locatel.class
$ java addtl

25

5.5

Chapter 5. Advanced Pipelines features

a 10
a 20
a 30
a 40

A quick aside. When writing stages remember that njPipes moves objects through
pipes. Use 'value = peekto()' instead of 'value = Rexx peekto()' when ever possible.
Some of the supplied stages pass objects with classes other than Rexx and forcing
Rexx will cause classCastExceptions. If a stage needs a rexx object try using the
rexx stage modifier to attempt to convert the object.

Serious stage writers will probably want to take a good look at the methods defined
in the NetRexx source package org.netrexx.process.njpipes.stages. There you
will find various methods for parsing ranges. You will also find the stub for the
stageExit compiler exit. It can be used to produce 'on the fly' code at compile
time. You can also use it to change the topology of the unprocessed part of the
pipe. The major use is to allow implementations of stages like prefix, append or
zone. Itis also used to produce better performing stages, for an example see specs.
The compiler also queries the rexxArg() and stageArg() methods. If your stage
expects objects of class Rexx as arguments rexxArg() should return the number
of variables expected. If your stage expects a stage for an argument, stageArg()
should return the word position of the stage.

Giving commands to the operating system

The command stage is used to issue commands to the operating system and trap the
output to the pipeline. command can receive its input as parameters, or through the
pipeline. So

pipe literal 1s | command | sort | console

is equivalent to:

pipe command ls | sort | console

Note, on Windows some commands, like dir, do not have a separate executable
file; there is no dir.exe. This can be solved by having the command processor,
cmd.exe start its built-in command. The pipeline would be, for example:

pipe literal cmd /c dir | command | sort | console

26

5.6. Selecting from relational databases

5.6 Selecting from relational databases

Using the built-in sglselect stage you can select data, using SQL, from any jdbc
source available.

An sqlselect.properties file is needed to define the jdbc parameters like the
driver to use, the url of the data source and other arguments, like a password
and tracing options, if needed.

The file looks like this:

jdbcdriver=org.sqlite.JDBC
url=jdbc:sqlite:flightroute-iata.sqgb

This is all that is needed for an sqlite database containing flight data. A simple
select * can then be done with the following pipeline:

pipe literal * from FlightRoute where flight = 'KLM765' | sqlselect |
console

This yields the following output:

FLIGHT--ROUTE-—UPDATETIME—-
KLM765 AUA-BON-AMS 1494132448

Note that from the command line, the quotes around the pipe specification and the
literal string in the SQL statement should be opposite, while when the pipeline is
issued from the Workspace for NetRexx, the pipeline does not have to be quoted,
but the sql string needs double quotes instead of the - for SQL statements- normal
single quotes.

27

Chapter 6

The Pipes Runner

The pipe command alias starts the Pipes Runner, which is a command processor
that can execute a pipe from the command line in an OS shell, the OS being
Windows, Linux or macOSE.

The Pipes Compiler is used in both precompiled and directly executed pipelines.
When you directly execute a pipeline from the commandline or from the nrws
NetRexx workspace, the process is optimized to not persist generated .nrx, .java
and .class files to disk before execution; the whole process runs from memory.

The Pipes Runner uses the Pipes Compiler for this purpose, and as such misses
the options for persistenceﬁ.

A pipe can be run with options prepended within parentheses, like this:
pipe '(testl sep ! stall 2000 debug 63) literal abcde ! console'

The following options are available:

6this is a non-exhaustive list of operating systems
7But specifying them will not generate an error

29

Chapter 6. The Pipes Runner

pipename Specify the name of the generated class file. This can be useful for

debugging purposes but is not mandatory when running a pipe.
An unnamed pipe receives a generated unique name. This option
needs to go first.

sep

The default stage separator is the | (pipe) character; this can be
overridden with the sep option; a pipe called testl which uses an
exclamation mark as separator character, needs the options (test1

sep).

debug

The debug option specifies a bitmask for debugging the execution
of a pipe; (debug 63), for example, generates a rather complete
debugging trail.

end

The default pipe end characteristhe'?' (question mark), which can
be overridden here. Note that the backslash, which is an obvious
pipe end character for the z/VM 3270 interface, is not a good choice
for Windows and Unix shells.

stall

The duration in number of milliseconds of a pipe stall (or deadlock)
detection cycle.

30

Chapter 7

The Pipes Compiler

The pipc command alias starts the Pipes Compiler, The purpose of compiling
a pipeline specification is to produce a .class file for the JVM that can be run
independently and on different machines; only the JVM and the NetRexxC.jar or
the NetRexxF.jar are required to run a precompiled pipe. A set of precompiled
pipes can be shipped as an application.

When precompiling pipes, there are options to save and view the generated NetRexx,
Java files.

A precompiled pipe has the advantage that it can be executed over and over in an
application, without the need to compile it every time; the performance savings
are accumulative in this scenario.

The following options can be used on the pipc command, in addition to the ones
specified in the previous chapter for the Pipes Runner:

-gen Generate the NetRexx source file. The pipeline needs a name.

-keep Keep the Java source which is generated from the NetRexx source.

Example:
pipc —-gen —keep testpipe.njp

This will generate the NetRexx source as well as keep the java source for testpipe.njp.

31

Chapter 8

Built-in Stages

This section describes the set of built-in stages, i.e. the ones that are delivered with
the downloadable open source package. These stages are directly executable from
the NetRexxC.jar file or the NetRexxF.jar file (the latter contains a Java compiler for
use on JRE-only systems). The source of these stages is delivered in the NetRexx
source repository. This repository can be checked out at

git clone https://git.code.sf.net/p/netrexx/code netrexx—code

The source of the stages is in directory

netrexx—code/src/org/netrexx/njpipes/stages

33

Stages Built Into
NetRexx Pipelines 5.01

&

CMS Pipelines V7R1
and Their Differences

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

The » »
The
The »
The

Within the syntax diagram, items on the line are required, items below the line are optional, and items above the line are defaults.

symbol indicates the beginning of the syntax diagram.

» symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.

symbol, at the beginning of a line, indicates that the syntax diagram is continued from the previous line.

» « symbol indicates the end of the syntax diagram.

Pipelines Builtin Stages

12/25/2024

Show Stages Implemented in: ¥ NetRexx Pipelines: ¥ CMS Pipelines:

Show All Details: ¥ (Double click on a row to turn it on/off.)

v Highlight NetRexx Only / CMS Only:

Show Only Changes: ¢ None ¢ 501 c 4.06 ¢ 405 ¢ 3.11 ¢ 3.09

> Replace or Create a File
diskw
filew
3.09 > string—«
I—:gISK
ILE
o delegates to diskw.
>> Append to or Create a File
diska
filea
3.09 > > string—«
|:'EISKA—
ILEA—
o delegates to diska.
>>mdsk Append to or Create a CMS File on a Mode
¢ Not implemented in Netrexx Pipelines.
>>mvs Append to a Physical Sequential Data Set
¢ Not implemented in Netrexx Pipelines.
>>oe Append to or Create an OpenExtensions Text File
* Not implemented in Netrexx Pipelines.
>>sfs Append to or Create an SFS File
¢ Not implemented in Netrexx Pipelines.
>>sfsslow Append to or Create an SFS File

¢ Not implemented in Netrexx Pipelines.

>mdsk Replace or Create a CMS File on a Mode
o Not implemented in Netrexx Pipelines.
>mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set
¢ Not implemented in Netrexx Pipelines.
>oe Replace or Create an OpenExtensions Text File
* Not implemented in Netrexx Pipelines.
>sfs Replace or Create an SFS File
¢ Not implemented in Netrexx Pipelines.
< Read a File
diskr
filer
3.09 - string—=«
|:'EISKR—
ILER—
e Implemented as in CMS; delegates to diskr.
<mdsk Read a CMS File from a Mode
¢ Not implemented in Netrexx Pipelines.
<mys Read a Physical Sequential Data Set or a Member of a Partitioned Data Set
¢ Not implemented in Netrexx Pipelines.
<oe Read an OpenExtensions Text File
* Not implemented in Netrexx Pipelines.
<sfs Read an SFS File
¢ Not implemented in Netrexx Pipelines.
<sfsslow Read an SFS File
¢ Not implemented in Netrexx Pipelines.
-- Comment Stage, No Operation
comment
3.09 NetRexx
5.01 == -
I—COMMENT—-| I-—str'i.ng—-I
e delegates to comment.
¢ Not in CMS Pipelines;
e This is a STAGE, not a programming comment. ltmust-have-a-SPACE-after—:
¢ |t must have either a stageEnd or pipeEnd.
¢ If ended with a stageEnd, it passes records through on primary input to output streams.
e If ended with a pipeEnd, it does NOT pass records through.
¢ If used before a driver stage, it must have a pipeEnd.
3277bfra Convert a 3270 Buffer Address Between Representations
¢ Not implemented in Netrexx Pipelines.
3277enc Write the 3277 6-bit Encoding Vector

e Not implemented in Netrexx Pipelines.

64decode

Decode Base-64 Format

decode64
3.11
—MIME—
»—EELIDECODEJ -
ECODE6L —BASIC—
—URL——
e NOTE: CMS is only 64DECODE, and does not have the options; it does MIME.
e BASIC - Output is mapped to a set of characters lying in A-Za-z0-9+/. The encoder does not add any line feed in
output, and the decoder rejects any character other than A-Za-z0-9+/.
e URL - Output is mapped to set of characters lying in A-Za-z0-9+_. Output is URL and filename safe.
e MIME - Output is mapped to MIME friendly format. Output is represented in lines of no more than 76 characters
each, and uses a carriage return '\r' followed by a linefeed "\n' as the line separator. No line separator is present
to the end of the encoded output.
e 3.11: New to NetRexx. Add MIME, BASIC, & URL options.
? Display Help for Pipelines
ahelp
help
> 2(3) <
—HELP— —worad
—AHELP— —BUILTINS—(1)—
—MENU—(1)
—COMMANDS—(1)——
—HOST—(1)
—MESSAGES—(1)—
—OTHER—(1)
—SYNTAX—(1)
—MSG—(1)—number
—number—(1)
—SQL—(1)—string
—SQLCODE—(1)
I—rnumber—I
(1) cMS Pipelines only. Not yet in NetRexx Pipelines.
(2) If primary output is connected, lines are propagated,
otherwise they are sent to the console by "say."
(3) ? is the default pipeEnd character. Here it is useful
only when a different pipeEnd is defined.
abbreviation Select Records that Contain an Abbreviation of a Word in the First Positions
abbreviatio
abbreviati
abbreviat »»—ABBREViation—(1) "
abbrevi I—wo;d
abbrev l—numbe; l
ANYcase—(2)—
ASEANY:
ASEIGNORE—
TGNORECASE—]
ASELESS———
¢ (1) ABBREViation must be ABBREV in CMS
¢ (2) ANYcase must be ANYCASE in CMS
acigroup Write ACI Group for Users
¢ Not implemented in Netrexx Pipelines.
addrdw Prefix Record Descriptor Word to Records
¢ Not implemented in Netrexx Pipelines.
adrspace Manage Address Spaces

o Not implemented in Netrexx Pipelines.

aftfst

Write Information about Open Files

o Not implemented in Netrexx Pipelines.

aggrce Compute Aggregate Return Code
»>—AGGRC—>~«

ahelp Display Help for Pipelines

help

?

»»———AHELP
—HELP— —woxrd

—7—(3)— —BUILTINS—(1)—
—MENU—(1)

—COMMANDS—(1)——
—HOST—(1)

—MESSAGES—(1)—
—OTHER—(1)—
—SYNTAX—(1)
—SG—(1)—number
—number—(1)
—SQL—(1)—string

—SQLCODE—(1) |—n r—l
umbe

(1) cMS Pipelines only. Not yet in NetRexx Pipelines.

(2) If primary output is connected, lines are propagated,
otherwise they are sent to the console by "say."

(3) ? is the default pipeEnd character. Here it is useful

only when a different pipeEnd is defined.

all
4.05

Select Lines Containing Strings (or Not)

»—ALL | expression |—><
—%debug—{ (6)
—%dump——{ (7)
L—%see—— (8)

Notes:

e (1) "expression" consists of one or more delimitedstrings separated by logical ANDs, ORs, and NOTSs, and
grouped, if needed, by parentheses.

e (2)"&"is used for AND.

¢ (3) Since "|" is the default stage separator, "!" may be used for OR.

e (4) Since NetRexx uses "(" and ")" for options -- which are not used in the ALL stage -- "[" and "]" must be used
for parentheses.

¢ (5) CMS Pipelines, having originated on 3270 terminals, uses "=" for NOT. This symbol is not readily typed on
terminals running NetRexx Pipelines, so as alternatives, "\\", used by NetRexx, (it needs to be doubled to
"escape" it) or "A", used by KEX, NOT symbols may be used as alternatives.

e (6) %debug (must be lowercase) NetRexx Pipelines writes the logic line to the file ALL.DEBUG in the current
directory. Windows may make it all.debug . CMS Pipelines writes the constructed pipeline (of LOCATE and
NLOCATE stages) to ALL DEBUG A.

e (7) %dump (must be lowercase) - writes to the primary output stream as the first record. NetRexx Pipelines
writes the logic line. CMS Pipelines writes constructed pipeline.

* (8) %see (must be lowercase) - NetRexx Pipelines Only. Writes the logic line to the standard output (terminal).

e CMS Pipelines uses is own logic order. NetRexx Pipelines uses regular NetRexx logic.

Examples:

e literal NetRexx is Good,NetRexx is Great,NetRexx is Fantastic |
split , |
all /a/ |
cons

P»NetRexx is Great
>NetRexx is Fantastic

e literal NetRexx is Good,NetRexx is Great,NetRexx is Fantastic |
split , |
all / G/ & [/oo/ ' /F/] |

cons

P»NetRexx is Good

literal NetRexx is Good,NetRexx is Great,NetRexx is Fantastic |
split , |
all /R/ & [/oo/ ! /F/] |

cons

P»NetRexx is Good
»NetRexx is Fantastic

alter Change the contents of records, from one character to another

—NetRexXx

=1
] I

T
charl r 0_| char2: -
ecimal— ecimal—
hex hex
Xhex: Xhex:

¢ An variation on the theme of Xedit's ALTER.

e There are pairs of char1s and char2s, optionally separated by commas.

e For each pair of char1 and char2, this changes ALL char1s to char2, like Xedit's 4th and 5th parameters were 1
and 1.

e The chars can be single characters, 2 or 3 digit decimal numerical representations, or beginning with H, h, X, or
x hexidecimal representations.

e Also see TRANSLATE / XLATE.

¢ Not in CMS Pipelines.

FRO
»>—ALTER [M_|

alserv Manage the Virtual Machine's Access List

¢ Not implemented in Netrexx Pipelines.

apldecode Process Graphic Escape Sequences, Old APL language

* Not implemented in Netrexx Pipelines.

aplencode Generate Graphic Escape Sequences, Old APL language

e Not implemented in Netrexx Pipelines.

append Put Output from a Device Driver after Data on the Primary Input Stream

»>—APPEND—string——— <

array Read or Erase and Write an Array

»»—ARRAY—netrexx_array_name—————<

¢ Pipes for NetRexx
o If this is the first stage in a pipe, it reads the netrexx_array _name from the parent NetRexx program and puts the
members into the pipe one record at a time.
o If this is any stage but the first in a pipe, it writes the records to the netrexx_array _name in the parent NetRexx
program.
o This ERASES the netrexx_array_name before writing the first record.
o Except for this, this stage is identical to ARRAYA.

Examples:

class testpipe
method testpipe()

F = Rexx 'abase' -- Two NetRexx stem variables of objects
T = Rexx 1 -- with default type Rexx, we needn't specify it
F[0]=5 -- Fill the first stem variable
F[1]=222
F[2]=3333
F[3]=1111
F[4]=55
F[5]=444
pipe (apipe stall 1000)
stem F | -- read a NetRexx array to objects (records) |
sort | -- sort column-wise |
console | -- show them sorted |
stem T ?

-- write them to the NetRexx array

loop i=1 to T[O]
say 'T['i']="T[i]
end

exit

method main(a=String[]) static
testpipe ()

PS > pipc testpipe.nrx
pipe (testpipe apipe stall 1000) stem F | sort | console | stem T
PS > java testpipe

1111
222

3333

444

55

T[1]=
T[2]=1111
T[3]=222
T[4]=3333
T[5]=444
T[6]=55
PS >

arraya Read or Addto Write an Array

»>—ARRAYA—netrexx_array_name————><

¢ Pipes for NetRexx
o If this is the first stage in a pipe, it reads the netrexx_array _name from the parent NetRexx program and puts the
members into the pipe one record at a time.
e If this is any stage but the first in a pipe, it adds the records to the nefrexx_array _name in the parent NetRexx
program.
o This ADDS to the netrexx_array_name.
o Except for this, this stage is identical to ARRAY.

Examples: See ARRAY.

asatomc Convert ASA Carriage Control to CCW Operation Codes. Old printer control

e Not implemented in Netrexx Pipelines.

asmcont Join Multiline Assembler Statements

e Not implemented in Netrexx Pipelines.

asmfind Select Statements from an Assembler File as XEDIT Find

¢ Not implemented in Netrexx Pipelines.

asmnfind Select Statements from an Assembler File as XEDIT NFind

¢ Not implemented in Netrexx Pipelines.

asmxpnd Expand Joined Assembler Statements

¢ Not implemented in Netrexx Pipelines.

beat Mark when Records Do not Arrive within Interval

e Not implemented in Netrexx Pipelines.

between Select Records Between Labels
3.09
»—BETWEEN—]| case | elimitedStringl numbex -
Xhexstringl———| [—delimitedString2—
hexstringl——— [Xhexstring2——
binstringl——— [—Hhexstring2——
binstring2——
case:
I I
ANYcase——
ASEANY-:
ASEIGNORE—
TGNORECASE—
ASELESS——
bfs Read or Append File in the Hierarchical File System
hfs
¢ Not implemented in Netrexx Pipelines.
bfsdirectory Read Contents of a Directory in a Hierarchical File System
bfsdir
hfsdirectory « Not implemented in Netrexx Pipelines.
hfsdir
bfsquery Write Information Obtained from OpenExtensions into the Pipeline
bfsqg
hfsquery ¢ Not implemented in Netrexx Pipelines.
hfsq
bfsreplace Replace the Contents of a File in the Hierarchical File System
bfsrep
hfsreplace ¢ Not implemented in Netrexx Pipelines.

hfsrep

bfsstate

Obtain Information about Files in the Hierarchical File System

bfsstat
hfsstate o Not implemented in Netrexx Pipelines.
hfsstat
bfsxecute Issue OpenExtensions Requests
bfsx
hfsxecute ¢ Not implemented in Netrexx Pipelines.
hfsx
block Block to an External Format

o Not implemented in Netrexx Pipelines.
browse Display Data on a 3270 Terminal
brw

¢ Not implemented in Netrexx Pipelines.
buffer Buffer Records

»—-BUFFER I—n T -
umbex
I—delimitedStrinq—'

cl4to38 Combine Overstruck Characters to Single Code Point. Old printer.
casei Run Selection Stage in Case Insensitive Manner

»»>—CASET

I—ZONE—I inputRange |—I @D I—REVERSE—I (@D
;tdgc =
I—st:r'i.ngJ

¢ (1) CMS Pipelines only.

change Substitute Contents of Records

»—CHANGE
I—| anycase |—I inputRange——

L range 1 -

I—FROMTO—(l)'l

| changeString |
rFROI"I—(l)-I TO-(1)
delimi tedStrina—I;I—delimi tedStrin

OR—(1) m_()
I_F -I numorst

changeString:
|—delimiter—string—delimiter—string—delimiter—|

anycase:
I—RESPECTCASE—(1)1

ANYcase———
ASEANY-
ASEIGNORE

TGNORECASE

ASSLESS—————

¢ (1) NetRexx Pipelines only.

changeparse Change the contents of records, using Rexx Parse. Calculations can be done.
changepars
—NetRexx

changepar
changepa RO T!
changep »—CHANGEParse—I_i—I—parse_temp'l.ate_Dstring—I_;._l—output_temp'Late_Dstring—>
3.11

I—BY—by_NetRexx_DstringJ

I—FIRST—Fix‘st_NetRexx_DstringJ I—FINALLY—Fina.'l.l.y_templ.a.te_Dstx‘ingJ

e Records are parsed via the parse_template_delimited_string.

e Variables are named $n, where nis 1 to 9.

e The by_NetRexx_delimited_string is interpreted. This is 0 or more semicolon separated NetRexx statements,
probably using the $n variables, which can have the value altered.

¢ Other variables may be used, and are persistent while the stage is active, so can be used as accumulators.

e The values of the variables are put into the output_template_delimited_string replacing $n.

e For a literal $n that won't be changed, use $$n.

o A first_NetRexx_delimited_string, if present, is interpreted before reading any record from the primary input
steam. This is 0 or more semicolon separated NetRexx statements, probably using the $n variables. Any
variables used in the by NetRexx_delimited string must be defined here.

¢ Afinally_template_delimited_string, if present, is written as a final output record after the primary input stream is
finished, using the $n's.

¢ Any keyword phrases must, in any order, follow any non-keyworded FROM & TO phrases.

¢ This is NetRexx Pipelines only, not in CMS.

Examples:

e changeparse / 2 $1 +1/ /The second letter is "$1". $$1 won't be changed./

¢ changeparse from / 2 $1 +1/ to /The second letter is "$1". $$1 won't be changed./

¢ changeparse from / . $2 . 50 $5 +5 / to /The product is $1/ by /$1 = $2 * $5/

¢ changeparse from / . $2 . 50 $5 +5 / ,
to /The product is $1/ ,
by /$1 = $2 * $5;83 = $3 + $1/ ,
first /$3 = 0/ ,
finally /$3 is the total/

changeregex Substitute Contents of Records using Java Regular Expressions

changerege NetRexx

changereg

changere I:F ROM_—] [:Tt] NE:
changer »>—CHANGERegex: elimitedString—(1) e'l.'i.mitedString—(z)—-E-—N
3.09 ALL-

¢ Uses the Java RegEx classes and its dialect of RegEx. See Java's Pattern class and replaceFirst and
replaceAll methods of String for full documentation.

e (1) First, FROM, delimitedString is a Java RegEx expresion for what is to be replaced.

e (2) Second, TO, delimitedString is the replacement string. It may contain elements from the first one.

e Ths is NetRexx Pipelines only, not in CMS.

chop Truncate the Record
truncate
truncat
trunca —380
trunc > |_ CHOP <
TRUNCat —snumbex
—| stringtarget |—
stringtarget:
| target [—|
ANYcase— I—BEFORE—I I—NOTJ
ASEANY-:
ASEIGNORE— —snumber— L-AFTER—
IGNORECASE—
ASELESS——
target:
| xrange |
I—I—_STRin?_:]—delimitedStrina—-‘
-ANYo
cipher Encrypt and Decrypt Using a Block Cipher
¢ Not implemented in Netrexx Pipelines.
ckddeblock Deblock Track Data Record
¢ Not implemented in Netrexx Pipelines.
cmd Issue OS Commands, Write Response to Pipeline
command
CMD -
OMI"IAND—J I—str'i.ng—J
e input stream 0 is for commands
e input stream 1 is stdin
e output stream 0 is stdout
e output stream 1 is the return code
e output stream 2 is stderr
cms Issue CMS Commands, Write Response to Pipeline '

collate Collate Streams
3.11

I—NOPAD—
»>—COLLATE

I—STOP ANYOFJ I—PAD—xarc— I—| anycase I—I

I—MASTER DETAIL——

l—inputRang= |_ l I:gASTER—
'i.nputRangeJ ETAIL
I:;;ASTER—

I—SEParator—delimitedString—(1) (2)—-|

anycase:
ESPECTCASE—(1
| I—R (1)

-ANYcase———————
ASEANY-
ASEIGNORE

TGNORECASE
ASSLESS—

¢ (1) NetRexx Pipelines only.
e (2) delimitedString record is put before each Master Record

(or after if DETAIL MASTER order) on the primary output stream.
e 3.11 New to NetRexx Pipelines. Add SEParator option.

combine Combine Data from a Run of Records

»>—COMBINE Or -
—1 -al ——
-AND———
—numbex Xclusiveor—

* XClusiveor—
L KEYLENgth—number— IRST—(2)—
rALLEOF—(l)-I AST—(2)——

—STOP—(1)
I—ANYEOF—(1)-|

¢ (1) Only for use with secondary input streams. Only options from this column usable with any secondary input
streams.
(This is poorly documented in CMS Pipelines. This is a best guess of their intentions.)

¢ (2) Not usable with STOP and secondary streams.

command Issue OS Commands, Write Response to Pipeline
cmd

i Egﬁg% I—str'i.ng—I .

input stream 0 is for commands
input stream 1 is stdin

output stream 0 is stdout

output stream 1 is the return code
output stream 2 is stderr

comment Comment stage
NetRexx

3.09

5.01 ——|_—C0IVIIVIENT J
] - I—string—l

Not in CMS Pipelines;

This is a STAGE, not a programming comment. it-must-have-a SPACE-after—-

It must have either a stageEnd or pipeEnd.

If ended with a stageEnd, it passes records through on primary input to output streams.
If ended with a pipeEnd, it does NOT pass records through.

If used before a driver stage, it must have a pipeEnd.

compare Compare Primary and Secondary Streams, Write the Result
—NetRexx
—TRINARY—l (@D I—PAD SPACE
»»—COMPARE: _| <
—BINARY- 2 I—PAD—M— I—ECHO—I

—ANY delimitedStrin 4) (5)
—EQUAL delimitedString—)
—LESS delimitedString—— (3) (W)
—IORE delimitedString—— (3) (W)
—NOTEQUAL delimitedString— w)

e (1) -1 = Primary is shorter/less, 0 = equal, 1 = Secondary is shorter/less
e (2) 0 = equal, 1 = not equal
e (3) Primary is LESS/shorter (or MORE/longer) than secondary
e (4) DStrings can use any of the following escapes (or the lowercase) for the unequal situation:
o \C (count) for the record number,
o \B (byte) for column number
\P (primary) for the primary stream record
\S (secondary) for the secondary stream record
\L (Least) for the stream number that is shorter, -1 if equal
\M (Most) for the stream number that is longer, -1 if equal
¢ (5) Equal or not, this DString precedes any of the others.
¢ (6) This is NetRexx Pipelines only, not included in CMS
e (7) In reporting \P & \S, control charactors, except new line, \n, are transliterated to [blob, 219.d2¢()]
e (8) Without ECHO, this stops and reports at first non-compare. With ECHO, each primary input is reported; after
first non-compare primary input stream records continue to be read and reported, but no testing is done.
e (9) Options work in any order
e Input streams:
o 0: Data 1
o 1: Data 2
e Output streams:
o 0: Result (single record, possibly multiple lines)
o 1: Last primary record read at first no match, or end of stream
o 2: Last secondary record read at first no match, or end of stream

o]

o O O

configure Set and Query CMS Pipelines Confguration Variables

o Not implemented in Netrexx Pipelines.

console

Read or Write the Terminal in Line Mode

consol
conso
cons > l_goNSo'l.: _I _|
cons TERMinal |:50F—dehm1ted5tr1n l:gR-Fix:,—delimitedStrin (1)
terminal OEOF Romp
termina
termin -«
termi IRECT—(2)
term ASYNchronously—(2)-
3.11 ARK—(2)
¢ (1) NetRexx only
On first stage, delimitedString is put out as a prompt
On other stages, each line is prefixed with delimitedString
Outout to next stage does NOT include delimitedString
Either keyword can be used for either stage
e (2) CMS only
copy Copy Records, Allowing for a One Record Delay
»—COPY——— <
count Count Lines, Blank-delimited Words, and Bytes
»—COUNT—I— HARACTErs I «
HARS———
YTES——
—WORDS—————
INES
ECORDS
—MINline—————
—MAXline—————
cp Issue CP Commands, Write Response to Pipeline

¢ Not implemented in Netrexx Pipelines.

crc Compute Cyclic Redundancy Code
4.05
I—CRC—32
»>—CRC I |
—APPEND RC-16—(1)—
—Each = RC-16I—(1)
I—CRCFIRST—(l) | CITT-16—(1)—]
—ADDLENgth—(1) KSUM—(1)
| Custom (1) |—
Custom: (1)
| 16—BIT- exString | I |
gty —ADDLENgt h——————]
—COMPLEMENT:
—PRELOAD—hexString—
—REFLIN
—REFLOUT:
—XOROUT—hexString—
¢ (1) Not implemented in Netrexx Pipelines.
¢ (2) CRC stage uses secondary output, if connected.
dam Pass Records Once Primed
»r—DAM -
dateconvert Convert Date Formats
dateconver
dateconve
dateconv

3.09

»>—DATECONVert .

rSHOrtdate ISOdate |

'l.nputRange—(3)J

I—WINDOW 50—

rISOdate— |:ﬁgINDOW—signednumber—
| Inputformat | O ASEYEAR—yearnumbe:
—PREFACE— | Outputformat |-—
ouw——(5)
_APPEND—
—MIDNIGHT—(4)—
L —rmeour— —NooN—(4) ‘
Inputformat, Outputformat:
SHOrtdate } mm/dd/yy hh:mm:ss.uuuuuu
USA_SHORT }
REXX_DATE_U }
FULldate } mm/dd/yyyyyyy hh:mm:ss.uuuuuu
USA }
ISO_SHORT yy—-mm—-dd hh:mm:ss.uuuuuu
ISOdate yyyyyyy-mm—dd hh:mm:ss.uuuuuu
DB2_SHORT yy—mm—-dd—hh.mm.ss.uuuuuu
DB2 yyyyyyy-mm—dd—hh.mm.ss . uuuuuu
VMDATE (2)
NORMAL dd mmm yyyyyyy hh:mm:ss.uuuuuu
CSL_SHORT } yy/mm/dd hh:mm:ss.uuuuuu
REXX_DATE_O }
CsL yyyyyyy/mm/dd hh:mm:ss.uuuuuu
PIPE_SHORT yymmddhhmms suuuuuu
PIPE } yyyymmddhhmmssuuuuuu
REXX_DATE_S }
EURSHORT dd.mm.yy hh:mm:ss.uuuuuu
EUR dd.mm.yyyyyyy hh:mm:ss.uuuuuu

JULTIAN_SHORT

yy.ddd hh:mm:ss.uuuuuu

deal

P

Ped-dyT-Tally o

== -5 tpdt Streams U

TOD_ABSOLUTE 7 (2)

TADARG

b 8 £9)

TUURDOS

SCIENTIFIC'A§§BI3EEL§.EO€2)

5 \ v

2)

SCIA
EOSIQEAL

}=s70 ALLEOF—(2)
TOD_RELATIVE 1 '(22 ANYEOF:

TODREL

SCIENTIFIC_&EEEMBERQ“'"?%— |

SCIREL
MET (2)

The Follow.ﬁEE\c(H%MBATLgTREEL*X, or Rx

REXX_DATE_IF;S

SSeT T EAE

¥} oQ

; EEELEASE—
ATCH—(1)—

fggAMid—inputRang

REXX_DATE_C STRI
REXX_DATE_D ddd hh:mm:ss.uuuuui
REXX_DATE_E dd/mm/yy hh:mm:ss.uuuuuu

*RENNN AR i Nediexx £dpsiinAPyyyyyy hh:mm:ss.uuuuuu

RENPATH S

*RENCeD/aE dspabesy

yyddd hh:mm:ss.uuuuuu
eRe Kieads J2EAlunay not see a sever immediately, as the seve

reEskmMolitesked. This canmtmmARi CEUFUANWERT work in unexpected ways.
RFYY_DATF_N_JHORI_dd_mmm_y_y_hh_:_mm +SS . uuuuuu

REXX_DATE_N
REXX_DATE_W

ring thread can

dd mmm yyyy hh:mm:ss.uuuuuu

wwwwwwwww Coutput only)

o (1
. (2
. (3
. (4

~— — ~— ~—

: SPACE is optional here.

Not implemented in NetRexx Pipelines at this time; mainly mainframe useful only.
: NetRexx Pipelines uses IRange which gives a superset of range options.
: NetRexx Pipelines only. What time to assume if blank time on input.

¢ (5): NetRexx Pipelines only.
o Use current local date time.

deblock Deblock External Data Formats

—FIXED—Eiumbe; I
J—PAD—xorc—L 1)

»>—DEBLOCK: -

I—TERI"IINATEJ I—EOF—

[N o)

RLF
INEND xorxc

STRING—delimitedString—

¢ CMS has many more mainframe centric formats that NetRexx Pipelines does not process.
¢ (1) Not CMS Pipelines

decode64 Decode Base-64 Format
64decode
3.11
—MIME—
ECODEGL. -
LIDECODE —BASIC—
—URL——

e NOTE: CMS is only 64DECODE, and does not have the options; it does MIME.

e BASIC - Output is mapped to a set of characters lying in A-Za-z0-9+/. The encoder does not add any line feed in
output, and the decoder rejects any character other than A-Za-z0-9+/.

e URL - Output is mapped to set of characters lying in A-Za-z0-9+_. Output is URL and filename safe.

e MIME - Output is mapped to MIME friendly format. Output is represented in lines of no more than 76 characters
each, and uses a carriage return \r' followed by a linefeed "\n' as the line separator. No line separator is present
to the end of the encoded output.

¢ 3.11: New to NetRexx. Add MIME, BASIC, & URL options.

delay Suspend Stream
4.05

»>—DELAY-

EACH—(2) (&)
r] (&D)

]

numberHr : numberMin : numberSec |_ J
—numbexrMin : numberSec——————— ONCE—(2) (1)
—numberSec (1)

¢ (1) Arguments are NetRexx Pipelines only, not CMS. CMS (and NetRexx when there is no argument) reads
delays as the first word of each record.
When arguments are present, they follow the CMS conventions for the delay time in records. The + indicates a
duration, no + means time of day. The objects do NOT have the delay as the first word.
Clock hours are 24h, so 2pm is 14, and are for the next 24 hours if before "now."
Seconds can have decimal point and milliseconds.
In relative times, the number of seconds and minutes are not limited to 60; so 120 seconds is the same as 2
minutes.

e (2) Used only for "relative time." EACH, the default, delays before each object; ONCE delays only the first
object.

e Uses Java's Thread.sleep() method and may not be exact in fractional seconds.

devinfo Write Device Information

¢ Not implemented in Netrexx Pipelines.

dfsort Interface to DFSORT/CMS

e Not implemented in Netrexx Pipelines.

diage4 Submit Diagnose E4 Requests

¢ Not implemented in Netrexx Pipelines.

dict Read or Write a Dictionary
hash NetRexx
»—EﬁICT ame—«
AS
¢ Pipes for NetRexx only.
dicta Write a Dictionary
hasha NetRexx
»—EaICTA ame—<
ASHA:
e Pipes for NetRexx only.
dictr Read a Dictionary
hashz NetRexx
»—EﬁICT ame—«
ASH
¢ Pipes for NetRexx only.
dictw Write a Dictionary
hashw NetRexx
»_EﬁICT amne—«
ASH
¢ Pipes for NetRexx only.
digest Compute a Message Digest
»—DIGEST SHAL -
—SHA224—— —APPEND—(1)
—SHA256——— —V/ERIFY—(1)
—SHA38L——— 0T—(1)—
—SHA512
—H1D 5———————————
—MD2—(2)
—SHA512/224—(2)—
—SHA512/256—(2)—
(1) cMS Pipelines only.
(2) NetRexx Pipelines only (dependent on the JVM implementation).
NetRexx Pipelines returns the bytearray as a HEX string
CMS returns a char array into the pipeline
disk Read a File
file

»—EgISK string—-<
ILE

e Asin CMS, equivalent to diskr (Pipes for NetRexx Only) or <.

diska Append to or Create a File
filea
>>
> ISKA—p—string—~«
ILEA—]
> S
diskback Read a File Backwards
fileback
¢ Not implemented in Netrexx Pipelines.
diskfast Read, Create, or Append to a File
filefast
¢ Not implemented in Netrexx Pipelines.
diskid Map CMS Reserved Minidisk
¢ Not implemented in Netrexx Pipelines.
diskr Read a File
filer
<
- ISKR—T—string——«
ILER—
e As in CMS, equivalent to diskr (Pipes for NetRexx Only) or <.
diskrandom Random Access a File
filerandom
o Not implemented in Netrexx Pipelines.
diskslow Read, Create, or Append to a File
fileslow
»—EgISKSLO string—<
ILESLO
diskupdate Replace Records in a File
fileupdate
¢ Not implemented in Netrexx Pipelines.
diskw Replace or Create a File
filew
>
- DISKW string—<
|:FILEW—
S —
display Output to Web Browser

3.11

—NetRexx
»>—-PDISPLAY-

A —TEXT—
[l

| pRE— L0PTIONs—QString—]
L HTML—
L NONE—
| TABLE—
L noTAG—

I—TITLE—QSt_rv.'n,q—l
LSTYLE—QMQ—I

. tml
—FILETYPE Strin

I—PipeDisp—
—FILENAME
I—QSt_ring—

o DISPLAY works similar to and as a replacement for CONSOLE for output. But instead of going to the terminal
window, it goes to a HTML file browser tab. This allows for HTML+CSS tags to control fonts, colors, and layout.
¢ |To work, these are required outside Pipelines and NetRexx:
o A working HTML browser program
o The operating system to associate the filetype "html" with the browser, so the Pipelines stage
"COMMAND PipeDisp.html" does call the browser and display the file.
o The system have a Temp directory, known to Java.

e The DISPLAY stage overwrites the named file, by default PipeDisp.html, in the system Temp directory, then
calls the COMMAND stage to display it. The file is not erased automatically by this stage.

e Each DISPLAY stage invocation opens a new browser tab, which remains open.

e The AS option causes the data to be surrounded by html tags.

o The default TEXT or PRE puts on <pre> and </pre>. Most browsers use:
= Fixed width font
= Display all the white spaces: line feeds and multiple spaces
o HTML uses <html> and </html>. Most browsers use:
= Variable width font
= Consolidate strings of white space into a single space
= All the HTML tags
o TABLE uses <table> and </table>
= Expects the data records to begin with <tr><td> (or <tr><th>)
o NOTAG uses <pre> & </pre>, but first converts all & characters to the entity & and < characters
to < so HTML tags are not processed.
o NONE uses no extra tags. Most browsers use:
= HTML display

e OPTIONs QString is included in the opening tag for the AS option. This could be CLASS, STYLE, or other
options.

e TITLE QString adds <title>delimitedString</title> to the beginning of the output. This should show as the title in
the browser's tab.

Note: This officially should go into a HEAD section; here it won't be there. Most modern browsers will honor it
anyplace in the file. If it is not honored as a tag, QString will be the top line of the display.

e STYLE QString adds <link rel="stylesheet" href="QString"> to the beginning of the output. This should include
and use the named stylesheet. The name may have relative path names, or be an absolute file name. If there
are spaces, enclose it in quotes.

Note: This officially should go into a HEAD section; here it won't be there. Most modern browsers will honor it
anyplace in the file. If it is not honored as a tag, it will not show -- except in the NOTAG option. The file itself is

copied from its stated focation into the system Temp directory, overwriting any existing file. This file is not erased
automatically by this stage.
QString: It is optional to enclose the name in quotes, but quotes are required if the name includes spaces.

e FILETYPE may be used to change the default "html". This permits use of other types that MAY be preprocessed
if the system, external to Pipelines, is set up to recognize it, for example, "JSP" or "PHP". A "dot" is optional;
only one will be used.

Note: filetypes other than .html may be handled by the system by some program other than the browser.
QString: It is optional to enclose the type in quotes.

e FILENAME may be used to write and display another file. It may include a path designation, either absolute or

relative. A relative path is based on the working directory. If no path is specified in the name, the system Temp

drop Discard Records from the Beginning or the End of the File
FIRST —1
»>—DROP [_|—I . -
I—LAST —snumber—(1)- I—BYTES
¢ (1) CMS: must be positive.
NetRexx Pipelines: negative reverses FIRST/LAST, so DROP FIRST -3 is the same as DROP LAST 3.

duplicate Copy Records
duplicat
duplica
duplic —T—
dupli »»—DUPlicate—(1) ~
dupl —number—|
dup %

— _1_

e (1) CMS is DUPIlicat due to 8-character name limitation

elastic Buffer Sufficient Records to Prevent Stall
»—F | ASTIC———— =«
encode64 Encode to Base-64 Format
64encode — NetRexx
3.11
I—MIIVIE—
>-—|:2LIENC0DE -
NCODEGI-lJ I:ﬁASIC—
RL—

e NOTE: CMS is only 64DECODE, and does not have the options; it does MIME.

e BASIC - Output is mapped to a set of characters lying in A-Za-z0-9+/. The encoder does not add any line feed in
output, and the decoder rejects any character other than A-Za-z0-9+/.

e URL - Output is mapped to set of characters lying in A-Za-z0-9+_. Output is URL and filename safe.

e MIME - Output is mapped to MIME friendly format. Output is represented in lines of no more than 76 characters
each, and uses a carriage return \r' followed by a linefeed "\n' as the line separator. No line separator is present
to the end of the encoded output.

e 3.11: New to NetRexx. Add MIME, BASIC, & URL options.

eofback Run an Output Device Driver and Propagate End-of-File Backwards
¢ Not implemented in Netrexx Pipelines.

escape Insert Escape Characters in the Record
o Not implemented in Netrexx Pipelines.

fanin Concatenate Streams

»>—FANIN -

[rean]

strean

faninany Copy Records from Whichever Input Stream Has One
»>—TFANINANY: -
I—STRICT—(1)—I
e (1) CMS only.
fanintwo Pass Records to Primary Output Stream
fanout Copy Records from the Primary Input Stream to All Output Streams
I—STOP—ALLEOF
»=—TFANOUT T
STO -ANYEOF-
ALLOF—(1)—
umber—————
e (1) CMS only
fanouttwo Copy Records from the Primary Input Stream to Both Output Streams
fbaread Read Blocks from a Fixed Block Architecture Drive
¢ Not implemented in Netrexx Pipelines.
fbawrite Write Blocks to a Fixed Block Architecture Drive
¢ Not implemented in Netrexx Pipelines.
fblock Block Data, Spanning Input Records
»>—FBLOCK—number
I—:corc—|
file Read or Write a File
disk
»—EEILE string—-«
ISK
filea Append to or Create a File
diska
>>
> ILEA—T—string——
ISKA—
> S
fileback Read a CMS file backwards
diskback
¢ Not implemented in Netrexx Pipelines.
filedescriptor | Read or Write an OpenExtensions File that Is Already Open
¢ Not implemented in Netrexx Pipelines.
filefast Read or write a CMS file
diskfast
¢ Not implemented in Netrexx Pipelines.
filer Read a File
file
disk
diskr - ILER—7—string— <
< ISKR—
filerandom Read specific records from a CMS file

diskrandom

fileslow Read, Create, or Append to a File
diskslow
>'—|:EILESLO||:::|—String—><
ISKSLO
filetoken Read or Write an SFS File That is Already Open
e Not implemented in Netrexx Pipelines.
fileupdate Change records in a CMS file
diskupdate
filew Replace or Create a File
diskw
>
> FILEW string—«
|:DISKW—
S ——
fillup Pass Records To Output Streams
¢ Not implemented in Netrexx Pipelines.
filterpack Manage Filter Packages
¢ Not implemented in Netrexx Pipelines.
find Select Lines by XEDIT Find Logic
> FIND -
I—string—I
fitting Source or Sink for Copipe Data
« Not implemented in Netrexx Pipelines.
fmtfst Format a File Status Table (FST) Entry
¢ Not implemented in Netrexx Pipelines.
frlabel Select Records from the First One with Leading String
fromlabel
»=——FRLABEL: «
I—string—I
fromlabel Select Records from the First One with Leading String
frlabel
»»———-FROMLABEL -
I—str'i.ng—l
frtarget Select Records from the First One Selected by Argument Stage
> RTARGET stage -
._EEROIVITARGe l—operands—-|
fullscreen Full screen 3270 Write and Read to the Console or Dialled/Attached Screen
fullscree
fullscre ¢ Not implemented in Netrexx Pipelines.
fullscr
fullscrq Write 3270 Device Characteristics
¢ Not implemented in Netrexx Pipelines.
fullscrqg Write 3270 Device Characteristics
¢ Not implemented in Netrexx Pipelines.
fullscrs Format 3270 Device Characteristics

* Not implemented in Netrexx Pipelines.

gate Pass Records Until Stopped
»—=GATE -
I—STRICT—I
gather Copy Records From Input Streams
e Not implemented in Netrexx Pipelines.
gen Generate a Sequence of Numbers Starting with 1
NetRexx
T»—GEN—number—N
¢ Not implemented in CMS Pipelines.
getfiles Read Files
getfiles
getfile
getfil »>—GETfiles -
getfi
getf
get
getovers Write the Contents of Objects
NetRexx
(»—GETOVERS—N
e Input stream 0 should contain rexx objects. The getovers stage will output the index and contents of the stem on
stream 0. If output stream 1 is connected, the root is placed there. Any severed streams will cause then stage to
exit. Passing a non rexx object will cause the stage to exit with return code 13.
¢ Pipes for NetRexx only.
getstems Write the Contents of Members of Stems

NetRexx
(»—GETSTEI"IS—><

¢ Input stream 0 should contain rexx objects containing stems. The getstems stage will output the contents of the
stem on stream O. If output stream 1 is connected, the root is placed there. Any severed streams will cause then
stage to exit. Passing a non rexx stem object will cause the stage to exit with return code 13.

¢ Pipes for NetRexx only.

grep Select Lines by a Regular Expresion
regex |
3.09 NetRexx
- REP regex_Dstring—(1)—-«
._E::EGEX—I l—(—l options_string I—)J
options_string:
| —|
—Numbers (&))
—Befor 1 3
e—Enumber—l
—Afte 1 3
umber—-I
—Contex 1 w)
umber—-I
—0Separator (5
—Separato (5)
I\—E\:le7.'l.m1.tedStr'u.ng—-|
—Tertiary (6)
—COUnt 7N
o NetRexx Pipelines only.
e Records matching the RegEx are put out on primary output.
e Records not matching are put out on secondary, if connected, or discarded.
[]
. (1) Regex_string is a Java RegEx expresion. Null string passes all records.
¢ (2) Records are prefaced with records number, 10 characters, right justified.
¢ (3) Number of records put out after a matching record.
e (4) Number of records put out before and after a matching record.
¢ (5) Inserted before a group of "before records" or the found record with "after records."
e (6) Send all matching records (no numbers) to tertiary output stream, if connected.
e (7) Only a count of matches is put out on the primary output stream. (Other options probably should not be used
with this.)
hash Read or Write a Dictionary
cEcE NetRexx
»—EgAS ame—<«
ICT-
¢ Pipes for NetRexx only.
hasha Write a Dictionary
i) NetRexx
ASHA: ame—><«
ICTA
e Pipes for NetRexx only.
hashr Read a Dictionary
ol NetRexx
> ASH ame—><
ICT
¢ Pipes for NetRexx only.
hashw Write a Dictionary
e told 7 NetRexx
> ASH ame—><
ICT!

e Pipes for NetRexx only.

help Display Help for Pipelines
ahelp
?
> HELP
|:AHELP— —wora
?7—(3)— —BUILTINS—(1)—
—HMENU—(1)
—COMMANDS—(1)—
—HOST—(1)
—MESSAGES—(1)—
—OTHER—(1)—
—SYNTAX—(1)
—1SG—(1)—number
—number—(1)
—SQL—(1)—string
—SQLCODE—(1)
I—number—J
(1) CMS Pipelines only. Not yet in NetRexx Pipelines.
(2) If primary output is connected, lines are propagated,
otherwise they are sent to the console by "say."
(3) ? is the default pipeEnd character. Here it is useful
only when a different pipeEnd is defined.
hfs Read or Append File in the Hierarchical File System
bfs
¢ Not implemented in Netrexx Pipelines.
hfsdirectory Read Contents of a Directory in a Hierarchical File System
hfsdir
bfsdirectory * Not implemented in Netrexx Pipelines.
bfsdir
hfsquery Write Information Obtained from OpenExtensions into the Pipeline
hfsq
bfsquery ¢ Not implemented in Netrexx Pipelines.
bfsqg
hfsreplace Replace the Contents of a File in the Hierarchical File System
hfsrep
bfsreplace * Not implemented in Netrexx Pipelines.
bfsrep
hfsstate Obtain Information about Files in the Hierarchical File System
hfsstat
bfsstate ¢ Not implemented in Netrexx Pipelines.
bfsstat
hfsxecute Issue OpenExtensions Requests
hfsx
bfsxecute ¢ Not implemented in Netrexx Pipelines.

bfsx

hlasm Interface to High Level Assembler
¢ Not implemented in Netrexx Pipelines.
hlasmerr Extract Assembler Error Messages from the SYSADATA File
¢ Not implemented in Netrexx Pipelines.
hole Destroy Data
»=—HOLE -
hostbyaddr Resolve IP Address into Domain and Host Name
3.09
»=——HOSTBYADDR -
I—INCLUDEIP—I 1)
e (1) Optional parameter not present in VM/CMS version
o INCLUDEIP - Also include the IP address along with the hostname.
Output: <hostname>/<ip address>
Example: dns.google/8.8.8.8
e Known issues: The underlying Java method getByName/getHostName does not appear to handle IPv6
addresses in any known and consistent manner. Could be related to a host configuration issue but googling
shows odd and inconsistent results for getting around this.
hostbyname Resolve a Domain Name into an IP Address
3.09
»>—HOSTBYNAME -
I—INCLUDENAI"IE—I 1)
e (1) Optional parameter not present in CMS Pipelines
e Arguments: INCLUDENAME - Also include the name of the host on output.
e Output: <hostname>/<ip address>
Example: dns.google/8.8.8.8
hostid Write TCP/IP Default IP Address
3.09
»=—HOSTID] -
I—USERid—word—(l)
e (1) The USERId option available under CMS Pipelines is not applicable and is ignored in NetRexx Pipelines
hostname Write TCP/IP Host Name
3.09

A

»~—HOSTNAME
I—INCLUDEIP—(l)J I—USERid—word—(2)—'

¢ (1) Optional parameter not present in VM/CMS version

¢ (2) The USERId option available under CMS is not applicable and is ignored in NetRexx Pipelines

e Arguments: INCLUDEIP - include the IP address of the system in the response in the form <hostname>/<ip
address>

htmlrows
htmlrow
3.11

Convert rows to HTML format

—NetRexXx

rSEParator " —

l—ROW—QSt—ring—' l—SEParator—QSt_ring—‘
l—HEAD—QSt_ringJ I—DATA—QSt_ring—, i

¢ HTMLROWS reads rows from its primary input stream and writes them to its primary output stream, altering
them to have the proper HTML tags for TABLE ROWS.
e |l.e., it converts
abc,mnop,xyz
into
<tr><td>abc</td><td>mnop</td><td>xyz</td></tr>
e The SEPARATOR QStirng, by default the comma character, can be specified.
e There are options to put additional data inside the tags. This could be used for class or style tag options, for
example.
o ROW QString : puts its information into the <tr>-tags
o DATA QString : puts its information into the <td>-tags
o HEAD QString : puts its information into the <th>-tags (1)
e QString is a quoted string of characters. The quote marks may be either single or double, but must match. If
there are no spaces in the string, the quote marks are optional.
e (1) If there is a HEAD option, the first row read has <th>-tags instead of <td>-tags. It must have a QString of at
least "". Succeeding rows have the standard <td>-tags.

»>—HTHMLROWS

httpsplit

Split HTTP Data Stream

¢ Not implemented in Netrexx Pipelines.

iebcopy

Process IEBCOPY Data Format

¢ Not implemented in Netrexx Pipelines.

if

Process Records Conditionally

¢ Not implemented in Netrexx Pipelines.

immemd

Write the Argument String from Immediate Commands

« Not implemented in Netrexx Pipelines.

insert

Insert String in Records

EFORE—

»>—TINSERT—delimitedStrin

\

L arrER— I—inputRange—'

e insert a string into a record before or after the record content. Will be much more efficient than specs especially
if the input is a Byte][]

inside

Select Records between Labels

»»—TNSIDE: delimitedStrin numbex -
-ANYcase— Edelimi tedStrin

ASEANY-
ASEIGNORE—]
IGNORECASE—
ASELESS———

instore Load the File into a storage Buffer
¢ Not implemented in Netrexx Pipelines.
ip2socka Build sockaddr_in Structure
¢ Not implemented in Netrexx Pipelines.
ispf Access ISPF Tables
* Not implemented in Netrexx Pipelines.
jeremy Write Pipeline Status to the Pipeline
¢ Not implemented in Netrexx Pipelines.
join Combine Records
—1
T I—COUNTJ —number—————————
—&EYLENgth—number—
l—delimitedStrin I—TERM - e—l | I—number—I)
inat
joincont Join Continuation Lines
rTRAILING—'
T IOTNCoNT ANYCase—] Lot |jANGE—inputRange—| LoeLay
ASEANY— EADING—
ASEIGNORE—
TGNORECASE—
ASELESS—
m—dellmltedStrlng I—KEEPJ I—delimitedString—I)
juxtapose Preface Record with Marker
»»—JUXTAPOSe I—COUNT—J -
ldrtbls Resolve a Name from the CMS Loader Tables
¢ Not implemented in Netrexx Pipelines.
listcat Obtain Data Set Names
¢ Not implemented in Netrexx Pipelines.
listdsi Obtain Information about Data Sets
¢ Not implemented in Netrexx Pipelines.
listispf Read Directory of a Partitioned Data Set into the Pipeline

¢ Not implemented in Netrexx Pipelines.

listpds Read Directory of a Partitioned Data Set into the Pipeline
¢ Not implemented in Netrexx Pipelines.
listzip List the Files in a Zipped File
NetRexx
(»—LISTZIP—zipFi lellame————~
literal Write the Argument String
»——1 ITERAL «
I—sr‘:r'i.ngJ
locate Select Lines that Contain a String
locat
loca
loc »—1/ ocate
lo ANYCase MIXED—(1) LMMQ—‘ LANYo-f—-‘
1 ASEANY: ONEs—(1)
ASEIGNORE— ZEROs—(1)
TGNORECASE—
ASELESS——

l—delimitedString—I

(1) Not in NetRexx Pipelines, yet.
e [2] IBM documentation has this as "LOCATE" rather than "Locate". But the abbreviations work in both systems.

lookup Find Records in a Reference Using a Key Field

—NetRexXx

»»>—1_ 00KUP
I—COUNTJ I—ANYCASE—I I—AUTOADDJ I—BEFOREJ

I—KEYONLYJ I—SETCOUNTJ I—INCREI"IENTJ I—TRACKCOUNTJ

l—inputRang= |_
inputRange—

—DETAIL MASTER
—DETAIL ALLMASTER PAIRWISE—
—DETAIL ALLMASTER—————
—DETAIL
—MASTER DETAIL
—MASTER
—ALLMASTER DETAIL PAIRWISE—
—ALLMASTER DETAIL:
—ALLMASTER

in stream O are detail records

in stream 1 are master records
in stream 2 adds to masters

in stream 3 delete from masters

out stream 0 are matched records

out stream 1 are unmatched detail records

out stream 2 are unmatched or counted master records
out stream 3 deleted masters

out stream 4 duplicate masters

out stream 5 unmatched master deletes

lookup does not consider an unconnected output stream an error. It does proprogate EOFs from output streams.

lookup

Find Records in a Reference Using a Key Field
—CMS

»>— OOKUP
I—COUNTJ I—I"IAXcount—numbe:n:‘—I I—INCREI"IENT—I

I—NOPAD—

I—SETCOUNT—I I—TRACKCOUntJ LPADm— I—ANYcaseJ

AUTOADD—m—— I—|-(EY0NLYJ I—STRICTJ
EFORE

EILIN
FLOOR

> I
I—tnputRang:
I—i nputRange—J

—DETAIL MASTER

—DETAIL ALLMASTER PAIRWISE—
—DETAIL ALLMASTE
—DETAIL
—MASTER DETAIL:
—MASTER
—ALLMASTER DETAIL PAIRWISE—
—ALLMASTER DETAIL:

—ALLMASTER

in stream 0 are detail records

in stream 1 are master records
in stream 2 adds to masters

in stream 3 delete from masters

out stream 0 are matched records

out stream 1 are unmatched detail records

out stream 2 are unmatched or counted master records
out stream 3 deleted masters

out stream 4 duplicate masters

out stream 5 unmatched master deletes

lookup does not consider an unconnected output stream an error. It does proprogate EOFs from output streams.

maclib

Generate a Macro Library from Stacked Members in a COPY File

¢ Not implemented in Netrexx Pipelines.

mapmdisk

Map Minidisks Into Data spaces

¢ Not implemented in Netrexx Pipelines.

mctoasa

Convert CCW Operation Codes to ASA Carriage Control

¢ Not implemented in Netrexx Pipelines.

mdiskblk

Read or Write Minidisk Blocks

¢ Not implemented in Netrexx Pipelines.

mdskrandom
mdskrand

Random Access a CMS File on a Mode

* Not implemented in Netrexx Pipelines.

mdskslow

Read, Append to, or Create a CMS File on a Mode

¢ Not implemented in Netrexx Pipelines.

mdskupdate Replace Records in a File on a Mode
mdskupda
¢ Not implemented in Netrexx Pipelines.
members Extract Members from a Partitioned Data Set
member
¢ Not implemented in Netrexx Pipelines.
merge Merge Streams
* Not implemented in Netrexx Pipelines.
mgsc Issue Commands to a WebSphere MQ Queue Manager
¢ Not implemented in Netrexx Pipelines.
nfind Select Lines by XEDIT NFind Logic
notfind
\IFIND -
I—NOTFIND—I I—string—'
ninside Select Records Not between Labels
notinsid
notinside
3.09 »—ExINSIDE delimitedStrin umbex «
OTINSID ANYcase— I:ge7.':'.m1'.tedStr'i.n
ASEANY—
TGNORECASE—]
ASEIGNORE—
ASELESS——
nlocate Select Lines that Do Not Contain a String
notlocate
- LOCATE
.—EmOTLOCATE—I ANYCase— IXED—(1) LMMQJ
ASEANY-: NEs—(1)
ASEIGNORE— ZEROs—(1)
TGNORECASE—
ASELESS——
I—ANYo-I'—I l—delimitedString—I
e (1) Not in NetRexx Pipelines, yet.
noEofBack Pass Records and Ignore End-of-file on Output
»>—NOEOFBACK———————«
nop No Operation
—NetRexx
»»r—\| QP <
¢ Pipes for NetRexx only.
not Run Stage with Output Streams Inverted

»>—\0T—stage
o I—operands—'

notfind Select Lines by XEDIT NFind Logic
nfind
»—EmOTFIND «
FIND—I I—st:z"i.ng—l
notinside Select Records Not between Labels
notinsid
ninside
> OTINSIDe delimitedStrin umbex -
INSIDE—I -ANYcase— I::;e'l.'im*i.tedStr'i.n
ASEANY—
TGNORECASE—
ASEIGNORE—
ASELESS——
notlocate Select Lines that Do Not Contain a String
nlocate
> OTLOCATE
LOCATE—I ANYCase—] IXED—(1) LMMQJ
ASEANY- NEs—(1)
ASEIGNORE— ZEROs—(1)
TGNORECASE—
ASELESS——
I—ANYo-I'—I l—delimitedString—I
¢ (1) Not in NetRexx Pipelines, yet.
nucext Call a Nucleus Extension
« Not implemented in Netrexx Pipelines.
optcdj Generate Table Reference Character (TRC)
¢ Not implemented in Netrexx Pipelines.
outside Select Records Not between Labels
»>—OUTSIDE delimitedStrin numbex
-ANYcase— elimitedStrin
ASEANY——
ASEIGNORE—
TGNORECASE—]
ASELESS——
outstore Unload a File from a storage Buffer
¢ Not implemented in Netrexx Pipelines.
over Write the Values of Stems

¢ Obsolete. Now use varover. over is now an alias for overlay..

overlay Overlay Data from Input Streams
overla

overl
over rNOHOLD—(l)— rPAD—Cl)'l —BLANK—
»>—O0VERlay

I—H0LD—(1)— —xorc—
L spacE—(1)

BLANK

l—TRANSparent—Ezor?—(l)J I—STRING—delimitedString—(l)(2)"
SPACE

HOLD keeps the last record from each stream, except primary, and uses it if the stream ends.
TRANSPARENT means that character can be different from the PAD character.

If omitted, it is the same as PAD character.

e dstream can be used instead of a non-primary stream.

¢ (1) NetRexx Pipelines only

¢ (2) same as highest (+1) stream; implies HOLD

overstr Process Overstruck Lines

¢ Not implemented in Netrexx Pipelines.

pack Pack Records as Done by XEDIT and COPYFILE

« Not implemented in Netrexx Pipelines.

pad Expand Short Records

[Right— LANK

»—PAD numbex
l—Le-Ft— l—m—MODULOJ LM_
umbe

parcel Parcel Input Stream Into Records

¢ Not implemented in Netrexx Pipelines.

parse
3.09
4.05

Rearrange Contents of Records

—NetRexXx
»>——PARSE: arse_template_Dstrin

I—IZmETREXX etRexx_statement Dstr'i.ng—|

l-output template Dst:r"i.ng—I

I—FI NALLY—/NetRexx_statement Dstr‘c‘.ng—-|

Records are parsed via the parse_template_delimited_string.

Variables are named _n, where nis 1 to 9.

The values of the variables are put into the output_template_delimited_string replacing _n.

For a literal _n that won't be changed, use __n.

The two NetRexx_statement_Dstrings are single statements, or multiple statements separated by ";"s.

[e]

[e]

[e]

o

The _n variables can be used and changed.

The string \n will split the string into separate ouput records.

The special indexed REXX variable COUNTER]] is also available in these Dstrings. This is specific to

a PARSE stage, but persists between records. All the indexed values are initiated to 0. Both indexes and
values can be strings.

This is powerful and has the possibility of doing damage to your pipe.

You have been warned!

If the NR NetRexx_statement_Dstring returns a value, it is used as the output instead of the optional
output_template_Dstring.

The FINALLY's statement_Dstring is executed after the last input record has been processed. The value
returned is put out as an "extra" output record.

(As of 4.05) Variable names of "$n" are depreciated, and can not be used with NETREXX or FINALLY options.
NetRexx Pipelines only.

Examples:

[e]

[e]

[e]

parse / 2 _1 +1/ /The second letter is "_1". 1 won't be changed./
parse /2 _1 +1/ NR /counter[l]=counter[1]+1l; _9=counter([1l]/ /_9/
FINALLY /return "Count:" _9/
PARSE / 1 2 2 +1 3/,
NR /if _2.datatype('L') then counter['c'] = counter['c'] + 1; _2 = 2.upper/ ,
/ 123/,
FINALLY /return counter['c'] 'Changed to upper'/

pause

Signal a Pause Event

* Not implemented in Netrexx Pipelines.

pdsdirect
pds

Write Directory Information from a CMS Simulated Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.

pick
4.05

Select Lines that Satisfy a Relation

—NOPAD——

»~——PICK
—PAD—xorc— INENUMBERS—(1) (3)— I—| ANYcase |—l
N—C1)(3)

| List |—7—=

FROM
Lro—! Larrer
—WHILE
——| Fromto |

Fromto:

| —FROM | List | TO | List |—
L —arreR— L —arrer—

OUNT—humbex

List:

| Test |—I|
L List | AND—(L)
==

Test:
|—| RangeString |—|:| NonEqualOp |—| RangeSter
| EqualOp |—]| CommaList |

CommalList:

(3)(6)
,—()
| | RangeString |——|

RangeString:

inputRange——|

I—PREVIOUS—(2) 3)

I—NOFIRST—(S) (3)—
—delimitedStrin
—number+—(_u4)

EqualOp:
"strict"
== A== << <<= >> >>= IN NOTIN \== (3) "== (3)

"numeric"
= A= < <= > >= \=(3) *= (3)

ANYcase:
ANYcase CASEANY CASEIGNORE CASELESS IGNORECASE

¢ (1) NetRexx only. Inserts the original record number followed by a SPACE at the beginning of each output
record.

¢ (2) NetRexx only. Uses the data from the previous record. Before the first record, this is Rexx "".

¢ (3) NetRexx Pipelines only. Not yet in CMS Pipelines.

e (4) CMS Pipelines only. Not yet in NetRexx Pipelines.

¢ (5) NetRexx Only. Uses first record data for first record instead of previous "".

e (6) CMS uses ",", NetRexx does not. CMS limits RangeStrings to right side, NetRexx allows them on the left,
too.
CMS also allows only == or === with RangeStrings. NetRexx permits any comparison op. NetRexx concats the
several ranges for comparison.

pickparse Select Lines that Satisfy Relations using Rexx Parse
3.09
NetRexx
—ONE | (2) |
»>——PTICKPARSE parse_Dstring «
—ALL |:éogic Dstring—
I—SINGLE—I LSE—(1)
e Records are parsed via the parse_delimited_string.
e Variables are named $n, where nis 1 to 9.
e The values of the variables are put into the logic_delimited_string replacing $n and evaluated. If TRUE, the
record is put out on the stream numbered by the dstring's position.
e The stream for a Dstring of ELSE is used if no previous logic Dstring is TRUE.
o If there is no specific ELSE, there is an implied one at the end; if that stream is not connected, the record is
discarded.
¢ If ONE then the record is put out on, at most, one stream: the first one matched.
¢ If ALL then the record is put out on all streams matched.
o If SINGLE then the records are all put out on the primary output stream.
e The parse_delimited_string and logic_delimited_string(s) follow normal NetRexx rules.
¢ (1) Implied ELSE after last specified dstring.
¢ (2) Up to 10 logic_Dstrings may be specified to go to up to 11 ouput streams (including an implied ELSE).
¢ Not implemented in CMS Pipelines.
Pickparse permits selecting records by a NetRexx logical expression, using parts of the record selected by a Rexx
PARSE template.
A simple example has two delimited strings, a Rexx template and a logical expression:
pickparse / . . $3 . 50 $5 +5 / / $3 < $5 /
The parse template selects the 3rd word, and the 5 characters starting in column 50. the variable names are a dollar
sign and a digit. Then those variables can be used in the logic expression. When run, and records matching the
logic expression are written to the primary output stream, others to the secondary. If either stream is not connected,
the corresponding records are discarded.
There can be multiple logic expressions, each in its own delimited string. Parenthetical expressions may be used.
Records are matched to each in turn. Any records matching are written to that output stream, if connected.
With the option ONE, the default, each record is written to one output stream: the first one it matches. With the
option ALL, the matching goes on and a record could be written to multiple output streams.
There is an implicit or explicit ELSE as the last logic expression. Records that have not matched any of the previous
expressions match this and are written or discarded depending on if the stream is connected or not.
The parse template can define up to 9 separate zones, $1 to $9. The variables $_n are also available for the logic
expressions; they are the values from the previous record. Initially these are ™.
There can be up to 10 output streams defined, and up to 9 logic expressions plus ELSE.
pipcmd Issue Pipeline Commands
¢ Not implemented in Netrexx Pipelines.
pipestop Terminate Stages Waiting for an External Event
e Not implemented in Netrexx Pipelines.
polish Reverse Polish Expression Parser
¢ Not implemented in Netrexx Pipelines.
predselect Control Destructive Test of Records
predsel
¢ Not implemented in Netrexx Pipelines.
preface Put Output from a Device Driver before Data on the Primary Input Stream

e Not implemented in Netrexx Pipelines.

prefix

Stop and Run a Stage First, Before Continuing

NetRexx
(»—PREFIX—striny -

¢ Blocks its primary input and excutes stage supplied as an argument. The output from this stage are put to the
primary output stream. When its compete the primary input is shorted.
¢ Not implemented in CMS Pipelines.

printmc

Print Lines

¢ Not implemented in Netrexx Pipelines.

punch

Punch Cards

¢ Not implemented in Netrexx Pipelines.

gpdecode

Decode to Quoted-printable Format

¢ Not implemented in Netrexx Pipelines.

gpencode

Encode to Quoted-printable Format

¢ Not implemented in Netrexx Pipelines.

gsam

Read or Write Physical Sequential Data Set through a DCB

¢ Not implemented in Netrexx Pipelines.

query

Obtain Information From Pipelines

VVERSION——q

>>—Quer-y -
EVEL

SOURCE—(1)—

SGLEVEL—(2)—

SGLIST—(2)—

¢ (1) Not CMS
¢ (2) Not NetRexx Pipelines

random
3.09

Generate Pseudorandom Numbers

»»>—~RANDOM -

—I—max_numbe; l

Lseed_snumber—

¢ NetRexx Pipelines will be a different sequence than CMS gives with the same seed.

reader

Read from a Virtual Card Reader

¢ Not implemented in Netrexx Pipelines.

readpds

Read Members from a Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.

regex Select Lines by a Regular Expresion
grep _
3.09 NetRexx
»—I:gEGEX o] Tegex Dstring—(1)—=~
P—I (—| options_string |—)
options_string:
|— L
—Numbers (&))
—Befor 1 3
e—Enumber—l
—Afte 1 3
umber—-I
—Contex 1 w)
umber—-I
—0Separator (5)
—Separato (5)
I_E\:le7.'l.m'4.tedStr'|.ng—-|
—Tertiary (6)
—COUnt 7N
o NetRexx Pipelines only.
e Records matching the RegEx are put out on primary output.
e Records not matching are put out on secondary, if connected, or discarded.
[]
. (1) Regex_string is a Java RegEx expresion. Null string passes all records.
¢ (2) Records are prefaced with records number, 10 characters, right justified.
¢ (3) Number of records put out after a matching record.
e (4) Number of records put out before and after a matching record.
¢ (5) Inserted before a group of "before records" or the found record with "after records."
e (6) Send all matching records (no numbers) to tertiary output stream, if connected.
e (7) Only a count of matches is put out on the primary output stream. (Other options probably should not be used
with this.)
retab Replace Runs of Blanks with Tabulate Characters
¢ Not implemented in Netrexx Pipelines.
reverse Reverse Contents of Records
»=—-REVERSE -
rexx Run a REXX Program to Process Data
¢ Not implemented in Netrexx Pipelines.
rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

¢ Not implemented in Netrexx Pipelines.

runpipe

Issue Pipelines, Intercepting Messages

o Not implemented in Netrexx Pipelines.

scm

Align REXX Comments

¢ Not implemented in Netrexx Pipelines.

sec2greg

Convert Seconds Since Epoch to Gregorian Timestamp

* Not implemented in Netrexx Pipelines.

select
4.06
5.01

Select Records using user logic

NetRexx

—ETRUE'Fa'LS
TF

»»—SELECT: T/F_NetRexx_Dstrin -
ULTIpl I—Di 1t_NetRexx_Dstrin
OT:

¢ Using the default TRUEfalse, or TF, option, records are selected by evaluating the NetRexx
T/F_Delimited_string. The Dstring is placed in a method that supplies the record in the variable rec. The
previous record is in prev. The method returns 1 to select the record to the primary output stream,. or 0 to send it
to the secondary stream.

¢ Using the NOT option reverses the logic, and unmatched records are sent to the primary output stream.

¢ Alternatively, using the MULTIple or NOT option, with a Digit NetRexx_Dstring, which evaluates to a 0 to 9
digit, the method can return the number of any output stream. Again, the record in the variable rec, previous
record is in prev. (Note: failure to use the MULTIple option with multiple outputs will reverse the primary output
stream, 0, and the secondary, 1.)

¢ Any other return value results in the record being discarded.

¢ Any record sent to a disconnected stream is discarded.

e Caution: Since any NetRexx statement can be used, this is powerful and could cause problems. Also, due to
the late compiling, at stage run time, debugging can be difficult. The reported line numbers have nothing to do
with your code.

¢ 5.01 adds the four options.

Examples:
select true /return rec.pos('2') > 0/

select multiple /parse rec 2 r +1;parse prev 2 p +1; return r \= p/

serialize

Convert Objects to/from a Single Text String
NetRexx

»—SERIALIZE _I
I—c'l.assname—(l)

o (1
° (2
e (3
o (4

classname if class is specified deserialize input to objects of this type - otherwise serialize input objects.
Pipes for NetRexx only.

For some reason readObject does not like more than one object network in its stream. Block multiple objects.
See examples/serialize_tests01.njp

~— — ~— ~—

sfsback

Read an SFS File Backwards

¢ Not implemented in Netrexx Pipelines.

sfsdirectory

List Files in an SFS Directory

¢ Not implemented in Netrexx Pipelines.

sfsrandom

Random Access an SFS File

¢ Not implemented in Netrexx Pipelines.

sfsupdate

Replace Records in an SFS File

¢ Not implemented in Netrexx Pipelines.

snake Build Multicolumn Page Layout
3.09
»>—SNAKE—number_cols
I—number_row; . T
page_seperator DString—(1)
¢ (1) NetRexx Pipelines only. Appears first, last, and between pages.
Avoid \ as escape terms maybe added in the future. \n for newline is OK.
Your system may require \\n .
sockalip Format sockaddr_in Structure
¢ Not implemented in Netrexx Pipelines.
sort Order Records

—NetRexx
SORT:
[_ [REXX 10000 _J Lfiﬂpgtﬂgngg—J
()
I—class—(z)J |—s-i.ze—
r—Ascending—(l)—1 r—STRICT—{H)——1
L—Descending—(l)J I--SINGLEOK-—Cs)J L—TOLERANT—(S)J

o(']
0(2

May come before inputRange, for backwards compatibility.
Requires that you implement another sortClass with a name begining with 'sort'
¢ (3) Suppresses error message if only one record to sort for Rexx objects.
o (4) Uses strict Rexx comparisons rather than tolerant.
¢ (5) Uses tolerant Rexx comparisons rather than strict.

o Numerics are compared numerically.

o Strings are compared caseless.

o Leading blanks are ignored.
e Uses sortClass class as Interface Class for Generic Sort Objects

and sortRexx class to Sort Rexx Text Objects

~— — ~— ~—

—CMS
I—NOPAD—
»>—SORT:
IZSOUNT I—PAD—:corc:— I—ANYcaseJ
NIQu
—Ascending
—Descending
Ascending—j
inputRange
I—Desc:enclim_;,— HOPAD—
AD—xorc—

space Space Words Like REXX

3.09
&D)
1 —BLANK
»>—SPACE [
number— |—xorc
‘ elimitedString—
STRin
2
—BLANK
—xorc
I——ANYo-F—-
|_ delimitedString—
ALLof—(3)—

e (0) The order is the reverse of CHANGE!

¢ (1) the replacement char/string

e (2) the char/chars that will be stripped and replaced

¢ (3) NetRexx Pipelines only, not CMS. The dstring is treated as a single unit for stripping or replacing
spec Rearrange Contents of Records
specs
4.05
Fields and
Separators
NetRexx and
COUNTERS
comma

separators

STOP—ALLEOF—— (3)

»»—SPECs |— L
STOP—EANYEOF 3 COUNTERS—number—I (12)
n—_l (3)
>—|:—| Grou, | -
p | -
—READ (5) I—(l),—l(l-l)(13)
—READSTOP
—WRITE
—SELECT streamnunt
streamid— 3)
IRST
SECOND——
—PAD chax
exchaH
LANK—
SPACE
ORDSEParator chax 7
S hexchar—
IELDSEparator— LANK:
S SPACE
TAB——
hexstring— (W)
qword—— (4)(8)
Group:
|—] Id |—]| Input |—]| Conversion |—]| Output |—]| Alignment | |
c1y-,—
Id:
|-letter—(2) (14)—:—(1)—|
Input:
| —rWords—(1)—wnumberrange
—Fields—(1)—fnumberrange
—cnumberrange
—delimitedStrin
—Xhexstring
—Hhexstring
—Bbinstring
I—FROI"I—l—‘ I—BY—l
ECNO
UI"IBER—I l—FROM—fromnum-J I—BY—bynumJ
—TODclock 3)

- (4)(15)

Conversion:

I [
l—STRIP—I —B2C:
—B2D)
—B2X)
—C2B
—C2D
—C2F (3)
—C2T: (3)
—C2P 3)
l—(z)(scale)J :)
—C2V- (3)
—C2X
—D2C
—D2X-)
—F2C (3)
—I2C (3)
—P2C (3)
l—(2)(sca7.e)J :)
—\/2C (3)
—X2B:)
—X2C
—X2D)
—F2T (3)
—LOWER W)
—UPPER W)
—STRING (4)(11)

ETREXX: elimitedStrin (4)(10)
gr T ()
Output:

| flext: |
I—(2) . nJ

—NEXTWord

—NWord—J I—(2) . n—-I

—columnrang

Alignment:

—Left—
I I
—Center—
—Centre—
—Right—

Ranges (cnumberrange, fnumberrange, wnumberrange):

| snumbex (2) |
l_—*—l (2) numbex

spill

Spill Long Lines at Word Boundaries

- J—(z)znumbe:—

Not implemented in Netrexx Pipelines.
(1(3 Blanks are optional in this position.

(2) Blanks are not allowed here.

(3) CMS only. Not yet implemented in NetRexx Pipelines

(4) NetRexx Pipelines only. Not yet implemented in CMS

(5) NetRexx Pipelines only. READ is giving the same output as READSTOP when the streams are different
length.

(6) This senses if it is the first stage, but comment stages will fool it into not producing any output.

(7) CMS Pipelines, without documenting it, places this right by default NetRexx Pipelines follows the
documentation and places this left by default. Specify the alignment you want to override these defaults.

(8) A gword is an optionally quoted word, with single or double marks. If it contains spaces or begins with a
quote mark, it must be quoted. It can not start with a space (the quote mark will be considered a single
character, and rest gibberish). If is unquoted and an even number of hexadecimal characters, it will be used as
a hexchar or hexstring.

(9) CMS has a mini-programming language built in. It uses Field Identifiers and Control Breaks, Counters, and
Structured Data.

NetRexx does not yet have any of these features.

(10) The delimited string is any valid NetRexx code. [Yes, you can get in trouble!] It is put into a method and
executed for each record. The selected input data is in the variable DATA. The returned string is output. The

split

Split Records Relative to a Target

»>—SPLIT
ANYcase I—NINimum—number—|

ASEANY-
ASEIGNORE—
IGNORECASE—
ASELESS———

—AT:

LANK

AFTER—

target:

» I_BEFORE—- I—NOT—J I—I target |
snumber—J

| I xrange
I_STRim_., :le'l.'i.m'i.tedStr'i.na—-I
ANYo

I:numbezt:I

sql Interface to SQL
3.09
1
T T LC i
(—| options |-) sql_statement_string—(3)
options:
- L
/sqlselect.properties/- J
—PROPERTIES—Eﬁlename Qword—('7)——|—(5)-
|——HEADERS—-
(5)(6)
I—NOHEADERS—-
—COUNT2SECondary—(5) (11)
—URL—Qwoxra—(5) (7)
—JDBCDRIVER—Qword—(5) (7)
—DBMS—Qworad—(5) (7) (8)
—DB_NAME—Qword—(5) (7) (8)
—USER—Qword—(5) (7)(8) (10)
—PASS—Qworad—(5) (7) (8) (10)
¢ uses jdbc to select from any jdbc enabled dbms
o properties file (sqlselect.properties default) is read from the secondary input stream to find jdbcdriver name, url,
user, pass
e sample properties file:
#JDBC driver name
#Tue Feb 03 23:29:43 GMT+01:00 1998
jdbcdriver=com. imaginary.sql .msql.MsqlDriver
url=jdbc:msql://localhost:1114/TESTDB
the following are not needed for some DBMS, ex: SQLite
user=db_user name
pass=password_ for_ db
[]
o if this file is not found default (compiled in) values are used
¢ (1) when using a sql select * (all columns) from the commandline, quote the query as in
java pipes.compiler (query) "sql select * from dept | console"
¢ (2) the netrexx/jdbc combination is extremely case sensitive for column and table names
e (3) this sql_select_string executed, then statements are read from the primary input stream.
this is optional in NetRexx Pipelines only.
e (4) CMS does not use the stream input
¢ (5) NetRexx Pipelines only
e (6) CMS Pipelines is implyed HEADERS only.
e (7) A Qword is an optionally quoted word. If it contains spaces, it must be quoted.
¢ (8) EXPERIMENTAL Subject to change. DBMS is the kind of database, e.g. SQLite. DB_name is the file name.
These are used in place of URL and JDBCDRIVER. SQLite is the only one tested as of 8/15/20.
e (9) the SQLSELECT stage uses HEADERS as the default.
e (10) USER & PASS are needed for some DBMSs and not others, ex. SQLite.
e (11) the count or other output from non-select statements goes to the secondary output stream if connected, or
is discarded. Otherwise it goes to the primary.
[]
e Priority order for URL, JDBCDRIVER and DBMS, DB_NAME (first one found rules):
1. option in the SQL command string
2. from secondary input stream
3. from "sql.properties" file or from file specified by PROPERTIES option
4. Builtin
sqlcodes Write the last 11 SQL Codes Received

Not implemented in Netrexx Pipelines.

sglselect

Query a Database and Format Result

»»—SQLSELECT:
I—(—I options |—)J
SELECT =t
[1 L1,
sql_se7.ect_statement_sf:r'ing—(3)—I
options:

/sqlselect.properties/- _J
—PROPERTIES ilename Oword—('7)—-—|—(5)-
|——NOHEADERS—

(5)(6)

|—HEADERS—-
—URL—Qworad—(5) (7)
—JDBCDRIVER—Qword—(5) (7)
—DBMS—Qwoxrad—(5) (7)(8)
—DB_NAME—Qword—(5) (7) (8)
—USER—Qwora—(5) (7)(8)(10)
+—PASS—Qword—(5) (7) (8)(10)

¢ (1) when using a sqlselect * (all columns) from the commandline, quote the query as in java pipes.compiler
(query) "sqlselect * from dept | console"

¢ (2) the netrexx/jdbc combination is extremely case sensitive for column and table names

e (3) if no sql_select_string is specified, it is read from the primary input stream.
this is optional in NetRexx Pipelines only. CMS does not use the stream input.

e (4) a maximum of only one record is ever read from the primary input stream.

¢ (5) NetRexx Pipelines only

e (6) CMS Pipelines is implied HEADERS only.

e (7) A Qword is an optionally quoted word. If it contains spaces, it must be quoted.

e (8) EXPERIMENTAL Subject to change. DBMS is the kind of database, e.g. SQLite. DB_name is the file name.
These are used in place of URL and JDBCDRIVER. SQLite is the only one tested as of 8/15/20.

e (9) the SQL stage uses NOHEADERS as the default.

e (10) USER & PASS are needed for some DBMSs and not others, ex. SQLite.

e Priority order for URL, JDBCDRIVER, DBMS, DB_NAME, USER, & PASS (first one found rules):

option in the SQL command string

from secondary input stream

from "sqlselect.properties” file or from file specified by PROPERTIES option

Builtin

rON=

stack Read or Write the Program Stack
¢ Not implemented in Netrexx Pipelines.

starmon Write Records from the “MONITOR System Service
¢ Not implemented in Netrexx Pipelines.

starmsg Write Lines from a CP System Service

* Not implemented in Netrexx Pipelines.

starsys Write Lines from a Two-way CP System Service

¢ Not implemented in Netrexx Pipelines.

state Provide Information about CMS Files

¢ Not implemented in Netrexx Pipelines.

state Verify that Data Set Exists

¢ Not implemented in Netrexx Pipelines.

statew Provide Information about Writable CMS Files

¢ Not implemented in Netrexx Pipelines.

stem Retrieve or Set Variables in a REXX or CLIST Variable Pool
—NetRexXx

»>—STEM—sten -

—CMS

»>—STEM—sten
|-_—:;RODUCER— I—number—I I—NOI"ISG233—I

AIN—
I——SYMBOLIC— .
l—DIRECT— |-_—|I:}PPEND—
ROM—numbexr—
stfle Store Facilities List

¢ Not implemented in Netrexx Pipelines.

storage Read or Write Virtual Machine Storage

¢ Not implemented in Netrexx Pipelines.

strasmfind Select Statements from an Assembler File as XEDIT Find

¢ Not implemented in Netrexx Pipelines.

strasmnfind Select Statements from an Assembler File as XEDIT NFind

o Not implemented in Netrexx Pipelines.

strfind Select Lines by XEDIT Find Logic
»»>———STRFIND delimitedString———— >~
ANYcase—
ASEANY—
TIGNORECASE—]
ASEIGNORE—
ASELESS——
strfrlabel Select Records from the First One with Leading String
strfrlabe
strfrlab
strfromlabel STRFROIVILABEL—l rINCLUSIVe—l
- STRFRLABel: delimitedString——<
ANYcase— I—EXCLUSIVe—I
ASEANY—
TGNORECASE—]
ASEIGNORE—
ASELESS——

strfromlabel

Select Records from the First One with Leading String

strfrlabel
strfrlabe
strfrlab STRFRLABe'L—l INCLUSIV
»—|:STRFROMLABEL [e—| delimitedStrin -
—ANYcase— I—EXCLUSIVe—I
[—CASEANY—
—IGNORECASE—
—CASEIGNORE—
—CASELESS——
strip Remove Leading or Trailing Characters
I—BOTH—
»>—STRIP
I—| case |—| |:LEADING— |:'“I;0—_]
TRAILING— OoT
I—BLANK
-)
target |
I—number—I @D
case:
I I
—ANYCase—
——CASEANY-
——CASEIGNORE—
—IGNORECASE—
—CASELESS
target:
| AL ang: I
I—ESTRi?g_—I—delimitedStrin
-ANYo
¢ (1) Not implemented in Netrexx Pipelines.
strliteral Write the Argument String
strlitera
strliter
strlite »>—STRLITeral -
strlit I—PREFACE—I l—delimitedStrinq—I

—IFEMPTY:-

I—APPEND—I I—CONDitiona.'LJ

strnfind Select Lines by XEDIT NFind Logic
»>—STRNFIND delimitedStrin -
ANYcase
ASEANY-:
TGNORECASE—
ASEIGNORE—
ASELESS—
strtolabel Select Records to the First One with Leading String
strtolabe
strtolab
rINCLUSIVe—l
»>—STRTOLABel delimitedStrin -
ANYcase— I—EXCLUSIVeJ
ASEANY—
TIGNORECASE—
ASEIGNORE—
ASELESS—
structure Manage Structure Defnitions
struct
¢ Not implemented in Netrexx Pipelines.
strwhilelable | Select Run of Records with Leading String
strwhilelabl
strwhilelab
strwhilela rINCLUSIVe—|
strwhilel »>—STRWHILElabel delimitedString—«
strwhile -ANYcase— I—EXCLUSIVe—l
3.09 ASEANY—
TIGNORECASE—
ASEIGNORE—]
ASELESS—
stsi Store System Information
¢ Not implemented in Netrexx Pipelines.
subcom Issue Commands to a Subcommand Environment
o Not implemented in Netrexx Pipelines.
substring Write substring of record
substr
¢ Not implemented in Netrexx Pipelines.
synchronise Synchronise Records on Multiple Streams
sync
synchronize e Not implemented in Netrexx Pipelines.
synchronize Synchronise Records on Multiple Streams
sync
synchronise ¢ Not implemented in Netrexx Pipelines.
sysdsn Test whether Data Set Exists
¢ Not implemented in Netrexx Pipelines.
sysout Write System Output Data Set
e Not implemented in Netrexx Pipelines.
sysvar Write System Variables to the Pipeline

¢ Not implemented in Netrexx Pipelines.

tag Surrounds Input Records with a HTML tag and its End Tag
3.11
NetRexx
»>—TAG—word -
I—string—I
¢ Outputs a record: <word string>, then passes through all records on its primary input, and finally a record:
</word>.
tags Surrounds Input Records with HTML tags and their End Tags
3.11
NetRexx
»>—TAGS—delimitedString -
—deelimitedStrian‘
e Outputs a record for each delimitedString: <delimitedString>, then passes through all records on its primary
input, and finally a record for each, in reverse order: </first_word_of_delimitedString>.
¢ Any delimitedString may be a single word.
take Select Records from the Beginning or End of the File
IRST —1
»>—TAKE I_F _|—I | -
l—LAST —number——— I—BYTEs(l)
—snumber(2)
e (1) CMS must be BYTES
¢ (2) Not CMS; NetRexx Pipelines: minus reverses first/last
tape Read or Write Tapes
¢ Not implemented in Netrexx Pipelines.
tcpchsum Compute One's complement Checksum of a Message
* Not implemented in Netrexx Pipelines.

tcpclient Connect to a TCP/IP Server and Exchange Data

»>—TCPCLIENT—IPaddress—number—

—| Deblock |
—EMSGSFuU—(1)
—GETSOCKName—(1)
—GREETING
—KEEPALIVe
—L_INGER—number

ANY————
—LOCALIPaddress—-EHOSTID 1
TPaddress—

—LOCALport—number—(1)
—NODELAY—(2)
—ONERESPONSE:
—OOBINLINE—(1)
—REUSEADDR—(1)

—SECURE (1)
I—GETSECINFO—J SAFE—
NSAFE—

~
/

—SF—(1)
—SFu—(1)
—STATistics—(1)
—TIMEOUT—number
—USERid—word—(1)

Deblock:
| —DEBLOCK RLF

INEND
l—xorc—I

SF-
SFLk
STRING—delimitedString—

I—GROUP—cle'LimitevaISi::lc‘ing—I

e (1) CMS Pipelines Only.
¢ (2) NetRexx Pipelines Only.

The options implemented are similar to the CMS definition.

linger - wait a bit before terminating the last read (units SECONDS)

timeout - wait this long before timing reads out (units MS)

deblock - If deblock is omitted a copy stage is used.

group - similar to CMS. A delimited string containing a stage is expected. You can use a run of stages, but its is
dangerous since you don't know the stage sep character being used...

greeting - expect a greeting message and discard it

nodelay - use the nodelay option

keepalive - enable keep alive socket option

oneresponse - synchronize cmds/replys

tcpdata Read from and Write to a TCP/IP Socket

»>—TCPDATA I I «
—| Deblock |—
—GETSOCKName—(1)———
—GREETING—(1)
—KEEPALIVe—(1)
—LINGER—number———————
—N\ODELAY—(2)
—ONERESPONSE
—O0O0BINLINE—(1)
—REUSEADDR—(1)
—SF—(1)
—SFu—(1)
SECURE (1)-
TLSLABEL—wor
—STATistics—(1)—
—TIMEOUT—(2)

Deblock:
| —DEBLOCK: RLF-

INEND
I—:corc:—I

SF
SFL
STRING—delimitedString—

I—GROUP—cIel.imitedStringJ

e Simple tcpdata implementation.
e (1) CMS Pipelines Only
e (2) NetRexx Pipelines Only
o linger - wait a bit before terminating the last read (units SECONDS)
timeout - wait this long before timing reads out (units MS)
deblock - If deblock is ommited a copy stage is used.
group - similiar to cms. A delimited string containing a stage is expected. You can use a run of stages, but its
is dangerous since you to know the stage sep character being used...
nodelay - use the nodelay option
o oneresponse - synchronize requests/replies

o O O

o]

tcplisten Listen on a TCP Port

»>—TCPLISTEN—nNumber | I -
ACKLOG—number
—GETSOCKName—(2)

-ANY:
—LOCALIPaddress—-EHOSTID——(z)—
TPaddress—

—REUSEADDR—(2)
—STATistics—(2)
—USERid—word—(2)
—TIMEOUT—number—(1)

e (1) NetRexx Pipelines only.

e (2) CMS Pipelines only.

e Simple tcplisten implementation. You can only supply the port and a timeout value. Its ignored unless tcplisten's
output stream has been severed, in which case tcplisten terminates.

e If input stream 0 is connected, tcplisten does a peekto before calling the accept method. The object is consumed
after the output of the socket object returns.

terminal Read or Write the Terminal in Line Mode
termina
termina
termin TERIVI:Lna'L
termi ONSo'l. |:50F—dehm1ted5tr1n I—PR-F1x:,—¢:le'l.'l.mw.tedstr't.ng—(1)J
term OEOF Romp
console
consol -«
conso IRECT—(2)
cons ASYNchronously—(2)-
cons ARK—(2)
3.11
¢ (1) NetRexx only
On first stage, delimitedString is put out as a prompt
On other stages, each line is prefixed with delimitedString
Outout to next stage does NOT include delimitedString
Either keyword can be used for either stage
e (2) CMS only
threeway Split record three ways
¢ Not implemented in Netrexx Pipelines.
timestamp Prefix the Date and Time to Records
timestam
timesta
timest (1) 2)
times »>—TINMEstamp ~
time I—s—|] —
numbex |_
I—number—‘
—SHOrtdate (3/09/46 23:59:59)
—ISOdate (19u6—03—09 23:59:59)
—FULLdate (3/09/1946 23:59:59)
—STAndard (19u460309235959)
—STRing—delimitedString—(3)—
e (1) First character, from right, to include, <= 16
e (2) Count of characters to include. <= 16 - (1). Default = (1)
* (3)
o %% A single %.
o %Y Four digits year including century (0000-9999).
o %y Two-digit year of century (00-99).
o %m Two-digit month (01-12).
o %n Two-digit month with initial zero changed to blank (1-12).
o %d Two-digit day of month (01-31).
o %e Two-digit day of month with initial zero changed to blank (1-31).
o %j Julian day of year (001-366).
o %H Hour, 24-hour clock (00-23).
o %k Hour, 24-hour clock with leading zero blank (0-23).
o %M Minute (00-59).
o %S Second (00-60).
o %F Equivalent to %Y-%m-%d (the ISO 8601 date format).
o %T Short for %H:%M:%S.
o %t Tens and hundredth of a second (00-99).
tokenise Tokenise Records
tokenize
—//—(1)
TOKENISE -
TOKENIZE—l |—-:1e'l.'l.m'l.t:edStr'l.ng—(1)J I—dellmttedStrtng—I
¢ (1) In CMS Pipelines, the first delimited string is required. In NetRexx Pipelines, it defaults to // if no second
string.

tolabel

Select Records to the First One with Leading String

tolabe
tolab
»>—TOLABel: I—string—l -
totarget Select Records to the First One Selected by Argument Stage
»»—TOTARGET stage I—operand s—l

trackblock Build Track Record

¢ Not implemented in Netrexx Pipelines.
trackdeblock Deblock Track

* Not implemented in Netrexx Pipelines.
trackread Read Full Tracks from ECKD Device

¢ Not implemented in Netrexx Pipelines.
tracksquish Squish Tracks

¢ Not implemented in Netrexx Pipelines.
trackverify Verify Track Format

o Not implemented in Netrexx Pipelines.
trackwrite Write Full Tracks to ECKD Device

¢ Not implemented in Netrexx Pipelines.
trackxpand Unsquish Tracks

« Not implemented in Netrexx Pipelines.
translate Transliterate Contents of Records
translat
transla
zgz%zl i ;Eﬁ'l:l'éht—cl tinputRange— I—| default—table |J
xlate

I I
L

xrange—xrange—l

default-table:

inputRange—I—)—

|—pF—UPper—(1)
— OWer—(1)

—A2E (2)

—F2A (2)
—TINput—(3)

—OUTput—(3)

TO n—(3)—
I—FROM—I I—CODEPAGE—I

Notes:

e (1) UTF-16 (ASCII) in NJPipes, probably EBCIDIC in CMS.

¢ (2) In Netrexx Pipelines. EBCDIC to ASCII or ASCII to EBCDIC. Maybe in CMS, the documentation is unclear.

¢ (3) Not yet in NetRexx Pipelines

¢ [4] NetRexx Pipelines only: The secondary input stream is not yet supported.

trfread Read a Trace File
o Not implemented in Netrexx Pipelines.
truncate Truncate the Record
truncat
trunca
trunc —30
chop > TRUNCate -
I:CHO —snumbex
—| stringtarget |—
stringtarget:
] | target |—]|
ANYcase— J I—BEFORE—| | I—NOT
ASEANY-
ASEIGNORE— l—snumberJ I—AFTER—l
TIGNORECASE—
ASELESS—
target:
| I AL angc R I
I_STRing de'l.'i.mf.f:edStrmg—|
-ANYo
tso Issue TSO Commands, Write Response to Pipeline
¢ Not implemented in Netrexx Pipelines.
udp Read and Write an UDP Port
e Not implemented in Netrexx Pipelines.
unique Discard or Retain Duplicate Lines
uniqu
uniqg

—PAD—xorc—

—ANOPAD—
”—UNIQU:
I—COUNT—I —PAD—xorc— ANYcase—
ASEANY-
ASEIGNORE—
TGNORECASE—
ASELESS——
—LAST—
I—I uniqueRanges |J —STNGLEs—
—FIRST
—MULTiple—]
—PAIRWise—
uniqueRanges:
I—EinputRang.; _l |
(—l—mm l)
—N\OPAD——

unpack Unpack a Packed File

¢ Not implemented in Netrexx Pipelines.

untab Replace Tabulate Characters with Blanks

¢ Not implemented in Netrexx Pipelines.

unzip Extract Files From a ZIP Archive
NetRexx

»—UNZIP _J
|—-Filename—(1)

Notes:

(1) If flename is not specified, it is read from the primary input stream. Succeeding input objects are ignored.
The extracted file names are passed to the primary output stream.

Any existing files will be replaced.

This is NetRexx Pipelines only.

update Apply an Update File

¢ Not implemented in Netrexx Pipelines.

urldeblock Process Universal Resource Locator

* Not implemented in Netrexx Pipelines.

uro Write Unit Record Output

¢ Not implemented in Netrexx Pipelines.

utf Convert between UTF-8, UTF-16, and UTF-32

¢ Not implemented in Netrexx Pipelines.

var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

»>—\/AR—Worad __I
—PRODUCER—(1)— L—numberh(l)
—MAIN—(C1)

—SYMBOLIC—(1)—

-

I—NOI"ISG233—(1)—-I —DIRECT—(1)— LTRACKING—(l)—I

¢ In NetRexx Pipelines, this can only read vars. It must be the first stage in a pipe.
e (1) CMS Pipelines only.

vardrop Drop Variables in a REXX Variable Pool

¢ Not implemented in Netrexx Pipelines.

varfetch Fetch Variables in a REXX or CLIST Variable Pool

e Not implemented in Netrexx Pipelines.

varload Set Variables in a REXX or CLIST Variable Pool

¢ Not implemented in Netrexx Pipelines.

varover Write the Values of Stems
3.09

NetRexx
(»—VAROVER—varlllame—N

¢ NetRexx Pipelines only; not CMS Pipelines
¢ If the secondary output stream is connected, the root is passed on it.

varset Set Variables in a REXX or CLIST Variable Pool

¢ Not implemented in Netrexx Pipelines.

vchar Recode Characters to Different Length

o Not implemented in Netrexx Pipelines.

vector Read or Write an Array of Vectors

NetRexx
T»—VECTOR—name—><

¢ Pipes for NetRexx only.

vectora Add to an Array of Vectors

NetRexx
(»—'\IECTORA—na.me—N

¢ Pipes for NetRexx only.

vectorr Read From an Array of Vectors

NetRexx
T»—VECTORR—name—N

¢ Pipes for NetRexx only.

vectorw Write to an Array of Vectors

NetRexx
T»—'\IECTORW—name—N

¢ Pipes for NetRexx only.

verify Verify that Record Contains only Specified Characters

3.09
— (@D
»»—V\ERIFY- = delimitedStrin -
-ANYCASE— inputRange—I l—character—rang (1)

ASEANY—
ASEIGNORE—
TIGNORECASE—
ASELESS——

o (1
e (1
o (1
e (1

NetRexx Pipelines only

character-range is xorc-xorc

Examples: A-Z 0-9 c-g a4-ba; 16-bit Unicode characters or hex numbers

Any number greater than zero, any order, of delimitdStrings and character-ranges are allowed.

~—~ — — ~—

vmc Write VMCF Reply

* Not implemented in Netrexx Pipelines.

vmcdata Receive, Reply, or Reject a Send or Send/receive Request

¢ Not implemented in Netrexx Pipelines.

vmclient Send VMCF Requests

¢ Not implemented in Netrexx Pipelines.
vmclisten Listen for VMCF Requests

¢ Not implemented in Netrexx Pipelines.
waitdev Wait for an Interrupt from a Device

* Not implemented in Netrexx Pipelines.
warp Pipeline Wormhole

¢ Not implemented in Netrexx Pipelines.
warplist List Wormholes

e Not implemented in Netrexx Pipelines.
whilelabel Select Run of Records with Leading String
3.09

»>—WHILELABEL — g—l -

wildcard Select Records Matching a Pattern

* Not implemented in Netrexx Pipelines.
writepds Store Members into a Partitioned Data Set

¢ Not implemented in Netrexx Pipelines.
xab Read or Write External Attribute Buffers

¢ Not implemented in Netrexx Pipelines.
xedit Read or Write a File in the XEDIT Ring

e Not implemented in Netrexx Pipelines.

xlate Transliterate Contents of Records
translate
translat
transla > XLAT..
transl TRANS'l..a.te—| |:1n inputRange |—| default—table I—I
trans
1 nputRange—I—)—
[l -
I—xrange—zrange—l
default-table:
|——uPper—(1) |
—1_ OWer—(1)
—A2E: (2)
—E2A (2)
—INput—(3)
—OUTput—(3)
|—FROM—J I—CODEPAGE
Notes:
e (1) UTF-16 (ASCII) in NJPipes, probably EBCIDIC in CMS.
¢ (2) In Netrexx Pipelines. EBCDIC to ASCII or ASCII to EBCDIC. Maybe in CMS, the documentation is unclear.
¢ (3) Not yet in NetRexx Pipelines
¢ [4] NetRexx Pipelines only: The secondary input stream is not yet supported.
xmsg Issue XEDIT Messages
¢ Not implemented in Netrexx Pipelines.
xpndhi Expand Highlighting to Space between Words
e Not implemented in Netrexx Pipelines.
xrange Write a Range of Characters
3.09
»>—XRANGE: -
—xrange——
—xorc—xorc—
o NetRexx uses UTF-16 (ASCIl) and CMS uses EBCDIC

zip Add Files To a new ZIP Archive

NetRexx
»>~—7ZIP -«
I—name—(l)J

¢ (1) name is the zip file name. If not provided, the first entry on the primary input stream is used.
¢ (1) If no extension is provided in name, ".ZIP" is added.

(1) Any existing file is replaced.

Subsquent records on the primary input stream are filenames to be added to the Zip archive file.
File names added passed out on primary out stream.

NetRexx Pipelines only.

zone Run Selection Stage on Subset of Input Record

TrolE I—inputRange—, |—CASEI—I I—REVERSE—,

stage N
I—operands—l

_rexx Cast Input and/or Output of a Stage to Type Rexx

—NetRexx
—BOTH——

»p—_ REXX: S tag e <
L-T-I(“,J I—operands‘—I

UT

ROM_—|

_string Cast Input and/or Output of a Stage to Type String
—NetRexx
—BOTH———
”__STRING :tagc <J
I_IN I—operands—|
T

UT-
ROi;I:I

Chapter 9

Differences with CMS Pipelines

The goal of this implementation is to be as close as possible to the the CMS version
of Pipelines. A few differences are unavoidable.

The character set is Unicode and not EBCDIC, as Unicode is the character set
of the underlying Java platform

As shells are different, many 3270 related stages are not implemented
Pipes need to be quoted on the Windows and Unix command lines; the Work-
space for NetRexx (nrws) environment is an exception to this rule

The mainframe is record-oriented in many stages, Pipelines for NetRexx does
an approximation of this

Pipelines on the mainframe is an interpreted language with components as
the scanner and the dispatcher; the NetRexx version is compiled to Java .class
files by pipc, the pipes compiler, and dispatched as threads by the JVM.

The mainframe pipes dispatcher is not multiprocessor enabled. In Pipelines
for NetRexx all tasks (stages) are dispatched over all available processors in
parallel.

The fact that pipes run from NetRexx implies that they can be used in Java
source. In previous releases there was more direct support for this; this has
lapsed due to changes in the way a java toolchain works. This support can be
restored in future releases.

To put the content of a NetRexx variable in a pipe specification in a NetRexx
program, there is a §* mechanism. In CMS the pipe would be quoted in the
Rexx source and you would unquote sections to get a similar effect.

97

Chapter 10

Error Messages

The pipes compiler can issue the following error messages:

TABLE 5: Pipes compiler error messages.

Msg Meaning

pipc0O0le Name of pipe is missing

pipcO02e Runaway time must be numeric

pipc003e Stall time must be numeric

pipc004e Debug level must be numeric, found “1vl'

pipcOO5e Pipe statement within a pipe
specification

pipcO06e Cache must be followed by a valid symbol,
found “work'

pipcO07e Append or prefix stages cannot be labeled
‘stg.word(1)'

pipcOO8e Missing stage/pipe after "stg.word(1)'

pipcO09e Missing range and/or stage/pipe after
‘stg.word(1)'

pipc010e Specs has only one output stream, NOT
requires two

pipcOlle Pipe definition ‘stg' must be terminated
by ‘pend'

pipc0l12e Pipe definition ‘stg' must define a pipe

pipcOl13e Label "label' already used

pipc0l4de Label "label' must not be numeric

pipcOl15e Pipe ‘"stg' cannot be labeled

pipcOlée Connectors must be named

pipc017e Label ‘label' not defined

pipc018e Use a nop stage between ‘label'’
definition a second use

pipcO19e Expected a colon after 'stg.word(1)'

pipc020e Pipe as stage definition ‘"stg' is missing
a period

99

Chapter 10. Error Messages

Msg Meaning

pipc02le ‘parms' incorrect. Use: {({class?
tsize)} {A

pipc022e Need to use a nop stage between
"s[c[i,3-1]11" "ssep' “s[c[i,7]1]'

pipc023e Problem reading group rc='r'

pipc024e ‘w' is unrecognized

pipcO25w Warning: could not delete "fileid'

pipc026e ‘key' is only valid in a class

pipcO27w Warning - Possible netrexx exit in
‘arg() ' at 1!

pipc028e Pipe name and parms must be on same line
as ‘key'

pipc029e Pipe name missing for ‘key'

pipcO30e Body of ‘wp' is empty

pipc03le : connectors not implemented. Use in: or
*out:

pipc032e Connector ‘'wl' should start with in or
out

pipc033e Missing colon at “wil'

pipc034e Connect "wl' cannot contain a period

pipcO35e cannot connect "in' to an input stream
with “key'

pipc036e Pipe fragment “sub' needs atleast one
‘sep’

pipc037e Cannot connect ‘out' to an output stream
with “key'

pipc038e A object name cannot contain spaces,
found: ‘a'

pipc039e Duplicate pipe as stage at 'stg'

pipc040e Missing ":' in connector at ‘stg'

pipc04le Cannot define connectors as stage labels
in “stg'

pipcO42w StageExits overloaded at ‘stg'

pipcO43e Stage constructor must be (), found:
‘stg!

pipc044i Building pipe ‘name'

pipc045i Processing ‘w' .njp

pipc046e "file' is unrecognized. Does the file
exist?

pipc047e An .nrx file exists. Please move it out
of the way.

pipc048e Run method not overridden by stage or
pipe

pipc049e No outputs for eofReport(current) to
report on

pipc050e No outputs for eofReport(all)to report on

pipcO5le Invalid parm for eofReport

100

111

Chapter 11

Debugging Pipelines

To find out whhat is happening in a pipeline, you can specify debug options.

Option Effect

1 Show all pipes starting

2 Show all pipes ending

4 Show all stages starting

8 Show all stages stopping

16 Show all Commit requests

32 Show all Commit
completions

64 Show StageErrors raised

via stage's

Error(int,String) method B
128 Show the argument that

each stage is receiving.E

To create a flag to see all stages starting and stopping you would add 8+4 and use:

- pipe (apipe debug 12)

The dump() stage

The second option is to use the invoke the dump() method in a stage. This dumps
the status of the pipe using the same format you see when a pipe deadlocks. Using
dump() does not normally cause a pipe to terminate. Once in a while dump()
will generate an exception. This happens since dump() does not use protect or
synchronize so it does not stall.

8The stage class uses Error for all its StageError signals
9Handy since shells have a habit of doing unexpected thing to arguments. (try: java findtext exit .nrx vs java findtext “exit
.nrx”)

101

List of tables

1 Device dTIVETS . . v v o vt e e e e e e e 13
D RecordSelection v v i 14
...................................... 15
U OtherStages . . v v v vt e e e e 16
5 Pipes compiler error messages| oe ot e e 99

103

Index

NetRexx Workspace, E
built-in stages, @

deadlock, @
device driver, @

filter stages, @
label, [L9
multi-stream pipelines, @

nrws, g
nrws.input, E

other stages, E

pipe command, E
pipes runner, @

record selection stages, @

stall, E

105

Pipelines Guide and Reference

| SBN 978-90-819090- 3-7

789081"909037" >

106

	Introduction
	The Pipeline Concept
	What is a Pipeline?
	Stage
	Device Driver
	Hello world
	Pipelines and NetRexx

	Running Pipelines
	Configuration
	From the NetRexx Workspace (nrws) with direct execution
	From the command line with direct execution
	Compiled pipeline from the command line
	Compiled pipeline from an .njp file
	Compiled pipeline from an .njp file with additional stage definitions in NetRexx

	Stage types
	Device drivers
	Record Selection
	Filters
	Other Stages

	Advanced Pipelines features
	Write your own Filters
	Multi-Stream Pipelines
	Pipeline Stalls
	How to use a pipe in a NetRexx program
	Giving commands to the operating system
	Selecting from relational databases

	The Pipes Runner
	The Pipes Compiler
	Built-in Stages
	Differences with CMS Pipelines
	Error Messages
	Debugging Pipelines
	The dump() stage

