NetREXX
Llanguage Reference

Mike Cowlishaw and RexxLA

Version 5.01-GA of May 2, 2025

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-94-648-5133-5

Publication Data

©Copyright The Rexx Language Association, 2011-

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk
14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The
Netherlands.

This edition is registered under ISBN 978-94-648-5133-5

| SBN 978-94-648-5133-5

97789464"851335" >

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

E IntroductioFI

1.1 Language Objectiveﬂl
1.2 Language Conceptsl
1.3 Acknowledgementsl
1.4 Introduction to the current editior{

IZ A Quick Tour of NetREXX|

D.1 NetREXX programs{
P.2 Expressions and variablesi
.3 Control instructionsl
D4 NetREXX arithmetid
D.5 Doing things with strings]
D.6 Parsing strings’
D.7 Indexed strings{
D.8 Arrays’
.9 Things that aren't stringsl
P.10 Extending classe4
D.11 Tracind
D.12 Binary types and conversiony oo
D.13 Exception and error handling
D.14 Summary and Information Sourcesl

b NetREXX Language Definitior{

3.1 Notationg
3.2 Characters and Encodingsl
3.3 Structure and General Synta><l
3.4 Types and Classesl
3.5 Termsl
3.6 Methods and Constructorsi
3.7 Type conversions’
3.8 Expressions and Operatorsl
3.9 Clauses and Instructions’
3.10 Assignments and Variabled,
3.11 Indexed strings and Arrayg oo

h Keyword Instructionsl

4.1

Annotation instructior{

4.2 Address instructior{ .. 83

4.3 Class instructior‘ .. 85
4.4 Do instructior{ ... 90
4.5 Exit instructior{ .. 92
4.6 If instructior{ .. 92
4.7 Import instructior{ ... 94
4.8 Interpret instructior{ .. 96
4.9 lterate instructiorl ... 97
4.10 Leave instructiorl ... 98
1.11 Loop instructior{ .. 99
4.12 Method instructiorl .. 106
4.13 Nop instructior{ .. 112
41.14 Numeric instructior{ .. 113
4.15 Options instructior{ .. 114
1.16 Package instructior{ .. 119
4.17 Parse instructior{ ... 120
4.18 Properties instructior{ 121
4.19 Return instructiorl ... 124
1.20 Say instructior{ .. 125
4.21 Select inStruction L L L L e e e e e e e e e e e e e e e e e e 125
4.22 Signal instruction e e e e e e e e e e e e e e e 129
4.23 Trace instructior{ ... 130
Program structure and conceptsl 137
b.1 Program defaults’ ... 139
5.2 Minor and Dependent cIasses’ 140
.3 Special names and methodsi 144
5.4 JavaBean Supportl ... 148
5.5 Parsing templates! ... 152
6.6 Numbers and /—\rithmetid 160
.7 Binary values and operationsl 171
5.8 Exceptioni ... 174
Built-in methods for NetREXX stringd 179
6.1 abbrev(info [,Iength]j 180

5.4 D2X() . .« o e e e 182
6.5 center(length [pad]) e 182
6.6 centre(length [pad]) e 182
6.7 changestr(needle, newi 183
6.8 charin(name [,start [,Iength]]j 183
6.9 charout(name [string [,start]]i 183
6.10 chars(namei .. 184
6.11 compare(target [,pad]i 184

6.12 copies(ni .. 184

5.13 copyindexed(SUb) « .« . vt e e e
6.14 countstr(needlei ..
515 C2d() -+« e e e
.16 C2X() . . . e e e e e e e e e e e e e e e e e e e
b.17 datatype(optioni ...
5.18 date() - . v v e e e e e e
6.19 delstr(n [,Iength]i ...
6.20 delword(n [,Iength]i ..
5.21 d2b([N]) « .« o e e e e e

6.24 exists(indexj ..
6.25 format([before [,after]]i
6.26 insert(new [,n [length [,pad]]]i
6.27 lastpos(needle [,start]i
6.28 left(length [,pad]i ...
6.29 length() e e e e e e e e e e e
6.30 linein(name [line [,count]]i

6.31 lineout(name [,string, [,Iine]]i
6.32 Iines(namei ..
6.33 lower([n [,Ienfth]]i ..
6.34 max(number) e e e e e e e e e e e e e e
6.35 min(numberi ...
6.36 overlay(new [,n [length [,pad]]]i
6.37 pos(needle [,start]i ..
6.38 reversed ..
6.39 right(length [,pad]) - « « « v v v e e e e
6.40 sequence(finalj ..

6.43 space([n [,pad]]i ..
6.44 stream(name [,operation [,stream_command]]i
6.45 strip([option [,char]]]i
6.46 substr(n [,length [,pad]]i
6.47 subword(n [,Iength]i ..
5.48 HME() « o o e e e e e
6.49 translate(tableo, tablei [,pad]j
65.50 trunc([n]i ...
6.51 upper([n [,Iength]]i ..
b.52 verify(reference [,option [,start]]i
6.53 Word(ni ..
6.54 wordindex(ni ...
6.55 wordlength(ni ...
6.56 wordpos(phrase [,start]i

6.57 words(i ..

Contents

|7 Classic Rexx compatible functions’

7.9 stream(name [,operation [,stream_command]]i

Appendix A - A Sample NetREXX Progran‘l

l3 Appendix B - The netrexx.lang Package{

Y]

Appendix C - Translator Optionsj

Appendix D - Installatiorl

5.58 X2b() « + . e e e e e
5.50 X20() « + e e e e e

6.60 x2d!|n|i

7.1 date() e
7.2 time() . . oo e e
7.3 charin(name [, start [,Iength]]i
7.4 charout(name [,string [,start]]i
7.5 chars(namei
7.6 linein(name [line [,count]]i
7.7 lineout(name [,string, [,Iine]]i
7.8 Iines(namei

7.10 Stream operation4

B.1 Exception cIassesI
B.2 The REXX classl
B.3 REXX constructorsl
B.4 REXX arithmetic methods’
B.5 REXX miscellaneous methods’
B.6 The RExxIO classi
B.7 The REXXREXX cIassI
B.8 The RExXOperators interface classj
B.9 The REXXSet class . . . o v v v e e et

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists
the other publicationsin this series, and their roles. These books can be ordered in
convenient hardcopy and electronic formats from the Rexx Language Association.

Programming Guide

The Programming Guide is the one manual
that at the same time teaches programming,
shows lots of examples as they occurin the real
world, and explains about the internals of the
translator and how to interface with it.

Language Reference

Referred to as the NRL, this is meant as
the formal definition for the language,
documenting its syntax and semantics,
and prescribing minimal functionality for
language implementers.

Pipelines Guide & Reference

The Data Flow oriented companion to NetRexx,
with its CMS Pipelines compatible syntax,
is documented in this manual. It discusses
running Pipes for NetRexx in the command
shell and the Workspace, and has ample
examples of defining your own stages in
NetRexx.

1.1

Chapter 1

Introduction

NetRexx is a general-purpose programming language inspired by two very dif-
ferent programming languages, Rexx and Java". It is designed for people, not
computers. In this respect it follows Rexx closely, with many of the concepts and
most of the syntax taken directly from Rexx or its object-oriented version, Object
Rexx. From Java it derives static typing, binary arithmetic, the object model,
and exception handling. The resulting language not only provides the scripting
capabilities and decimal arithmetic of Rexx, but also seamlessly extends to large
application development with fast binary arithmetic.

The open source reference implementation (version 3 and later) of NetRexx pro-
duces classes for the Java Virtual Machine, and in so doing demonstrates the value
of that concrete interface between language and machine: NetRexx classes and
Java classes are entirely equivalent — NetRexx can use any Java class (and vice
versa) and inherits the portability and robustness of the Java environment.

This document is in three parts:

1. The objectives of the NetRexx language and the concepts underlying its
design, and acknowledgements.

2. An overview and introduction to the NetRexx language.

3. The definition of the language.

Appendices include a sample NetRexx program, a description of an experimental
feature, and some details of the contents of the netrexx.lang package.

Language Objectives

This document describes a programming language, called NetRexx, which is
derived from both Rexx and Java. NetRexx is intended as a dialect of Rexx that

1

1.1.1

Chapter 1. Introduction

can be as efficient and portable as languages such as Java, while preserving the
low threshold to learning and the ease of use of the original Rexx language.

Features of Rexx

The Rexx programming languageﬂ] was designed with just one objective: to make
programming easier than it was before. The design achieved this by emphasizing
readability and usability, with a minimum of special notations and restrictions.
It was consciously designed to make life easier for its users, rather than for its
implementers. One important feature of Rexx syntax is keyword safety. Program-
ming languages invariably need to evolve over time as the needs and expectations
of their users change, so this is an essential requirement for languages that are
intended to be executed from source.

Keywords in Rexx are not globally reserved but are recognized only in context.
This language attribute has allowed the language to be extended substantially
over the years without invalidating existing programs. Even so, some areas of
Rexx have proved difficult to extend — for example, keywords are reserved within
instructions such as do. Therefore, the design for NetRexx takes the concept of
keyword safety even further than in Rexx, and also improves extensibility in other
areas.

The great strengths of Rexx are its human-oriented features, including

 simplicity

coherent and uncluttered syntax

comprehensive stringhandling

case-insensitivity
arbitrary precision decimal arithmetic.

Care has been taken to preserve these. Conversely, its interpretive nature has
always entailed a lack of efficiency: excellent Rexx compilers do exist, from IBM
and other companies, but cannot offer the full speed of statically-scoped langua-
ges such as C2 or Javal.

1Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.

2Kernighan, B. W., and Ritchie, D. M., The C Programming Language (second edition), ISBN 0-13-110362-8, Prentice-
Hall, 1988.

3Gosling, J. A, et al. The Java Language Specification, ISBN 0-201-63451-1, Addison-Wesley, 1996.

1.1. Language Objectives

1.1.2 Influence of Java

The system-independent design of Rexx makes it an obvious and natural fit to
a system-independent execution environment such as that provided by the Java
Virtual Machine (JVM). The JVM, especially when enhanced with “just-in-time”
bytecode compilers that compile bytecodes into native code just before execution,
offers an effective and attractive target environment for a language like Rexx.

Choosing the JVM as a target environment does, however, place significant con-
straints on the design of a language suitable for that environment. For example,
the semantics of method invocation are in several ways determined by the en-
vironment rather than by the source language, and, to a large extent, the object
model (class structure, etc.) of the Java environment is imposed on languages that
use it.

Also, Java maintains the C concept of primitive datatypes; types (such as int, a 32-
bit signed integer) which allow efficient use of the underlying hardware yet do not
describe true objects. These types are pervasive in classes and interfaces written
in the Java language; any language intending to use Java classes effectively must
provide access to these types.

Equally, the exception (error handling) model of Java is pervasive, to the extent that
methods must check certain exceptions and declare those that are not handled
within the method. This makes it difficult to fit an alternative exception model.

The constraints of safety, efficiency, and environment necessitated that NetRexx
would have to differ in some details of syntax and semantics from Rexx; unlike
Object Rexx, it could not be a fully upwards-compatible extension of the language@.
The need for changes, however, offered the opportunity to make some significant
simplifications and enhancements to the language, both to improve its keyword
safety and to strengthen other features of the original Rexx designE. Some additions
from Object Rexx and ANSI Rexx# are also included.

Similarly, the concepts and philosophy of the Rexx design can profitably be applied
to avoid many of the minor irregularities that characterize the C and Java language
family, by providing suitable simplifications in the programming model. For
example, the NetRexx looping construct has only one form, rather than three,
and exception handling can be applied to all blocks rather than requiring an

4Nash, S. C., Object-Oriented REXX in Goldberg, G, and Smith, P. H. III, The Rexx Handbook, pp115-125, ISBN 0-07-
023682-8, McGraw-Hill, Inc., New York, 1992.

5See Cowlishaw, M. F., The Early History of REXX, IEEE Annals of the History of Computing, ISSN 1058-6180, Vol 16,
No. 4, Winter 1994, pp15-24, and Cowlishaw, M. F., The Future of Rexx, Proceedings of Winter 1993 Meeting/SHARE 80,
Volume II, p.2709, SHARE Inc., Chicago, 1993.

6See American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

1.1.3

1.2

Chapter 1. Introduction

extra construct. Also, as in Rexx, all NetRexx storage allocation and de-allocation
is implicit — an explicit new operator is not required.

Further, the human-oriented design features of Rexx (case-insensitivity for iden-
tifiers, type deduction from context, automatic conversions where safe, tracing,
and a strong emphasis on string representations of common values and numbers)
make programming for the Java environment especially easy in NetRexx.

A hybrid or a whole?

As in other mixtures, not all blends are a success; when first designing NetRexx,
it was not at all obvious whether the new language would be an improvement on
its parents, or would simply reflect the worst features of both.

The fulcrum of the design is perhaps the way in which datatyping is automated
without losing the static typing supported by Java. Typing in NetRexx is most
apparent at interfaces — where it provides most value — but within methods it
is subservient and does not obscure algorithms. A simple concept, binary classes,
also lets the programmer choose between robust decimal arithmetic and less safe
(but faster) binary arithmetic for advanced programming where performance is
a primary consideration.

The “seamless” integration of types into what was previously an essentially typeless
language does seem to have been a success, offering the advantages of strong
typing while preserving the ease of use and speed of development that Rexx
programmers have enjoyed.

The end result of adding Java typing capabilities to the Rexx language is a single
language that has both the Rexx strengths for scripting and for writing macros for
applications and the Java strengths of robustness, good efficiency, portability, and
security for application development.

Language Concepts

As described in the last section, NetRexx was created by applying the philosophy
of the Rexx language to the semantics required for programming the Java Virtual
Machine (JVM). Despite the assumption that the JVM is a “target environment”
for NetRexx, it is intended that the language not be environment-dependent; the
essentials of the language do not depend on the JVM. Environment- dependent
details, such as the primitive types supported, are not part of the language speci-

1.2. Language Concepts

fication.

The primary concepts of Rexx have been described before, in The Rexx Language,
butitisworthrepeating them and also indicating where modifications and additions
have been necessary to support the concepts of statically-typed and object-oriented
environments. The remainder of this section is therefore a summary of the principal
concepts of NetRexx.

1.2.1 Readability

One concept was central to the evolution of Rexx syntax, and hence NetRexx
syntax: readability (used here in the sense of perceived legibility). Readability in
this sense is a somewhat subjective quality, but the general principle followed is
that the tokens which form a program can be written much as one might write
them in Western European languages (English, French, and so forth). Although
NetRexx is more formal than a natural language, its syntax is lexically similar to
everyday text.

The structure of the syntax means that the language is readily adapted to a variety
of programming styles and layouts. This helps satisfy user preferences and allows
a lexical familiarity that also increases readability. Good readability leads to
enhanced understandability, thus yielding fewer errors both while writing a pro-
gram and while reading it for information, debugging, or maintenance.

Important factors here are:

1. Punctuation and other special notations are required only when absolutely
necessary to remove ambiguity (though punctuation may often be added
according to personal preference, so long as it is syntactically correct). Where
notations are used, they follow established conventions.

2. The language is essentially case-insensitive. A NetRexx programmer may
choose a style of use of uppercase and lowercase letters that he or she finds
most helpful (rather than a style chosen by some other programmer).

3. The classical constructs of structured and object-oriented programming are
available in NetRexx, and can undoubtedly lead to programs that are easier
to read than they might otherwise be. The simplicity and small number of
constructs also make NetRexx an excellent language for teaching the concepts
of good structure.

4. Loose binding between the physical lines in a program and the syntax of the
language ensures that even though programs are affected by line ends, they
are notirrevocably so. A clause may be spread over several lines or put on just

5

1.2.2

Chapter 1. Introduction

one line; this flexibility helps a programmer lay out the program in the style
felt to be most readable.

Natural data typing and decimal arithmetic

“Strong typing”, in which the values that a variable may take are tightly constrained,
has been an attribute of some languages for many years. The greatest advantage
of strong typing is for the interfaces between program modules, where errors
are easy to introduce and difficult to catch. Errors within modules that would be
detected by strong typing (and which would not be detected from context) are
much rarer, certainly when compared with design errors, and in the majority of
cases do not justify the added program complexity.

NetRexx, therefore, treats types as unobtrusively as possible, with a simple syntax
for type description which makes it easy to make types explicit at interfaces (for
example, when describing the arguments to methods).

By default, common values (identifiers, numbers, and so on) are described in the
form of the symbolic notation (strings of characters) that a user would normally
write to represent those values. This natural datatype for values also supports
decimal arithmetic for numbers, so, from the user’s perspective, numbers look
like and are manipulated as strings, just as they would be in everyday use on
paper.

When dealing with values in this way, no internal or machine representation of
characters or numbers is exposed in the language, and so the need for many data
types is reduced. There are, for example, no fundamentally different concepts
of integer and real; there is just the single concept of number. The results of all
operations have a defined symbolic representation, and will therefore act consis-
tently and predictably for every correct implementation.

This concept also underlies the BASICE language; indeed, Kemeny and Kurtz’s
vision for BASIC included many of the fundamental principles that inspired Rexx.
For example, Thomas E. Kurtz wrote:

“Regarding variable types, we felt that a distinction between ‘fixed’ and

‘floating’ was less justified in 1964 than earlier ... to our potential audience
the distinction between an integer number and a non-integer number

would seem esoteric. A number is a number is a number.”8

7Kemeny, J. G. and Kurtz, T. E., BASIC programming, John Wiley & Sons Inc., New York, 1967.
8Kurtz, T. E., BASIC in Wexelblat, R. L. (Ed), History of Programming Languages, ISBN 0-12-745040-8, Academic Press,
New York 1981.

1.2. Language Concepts

For Rexx, intended as a scripting language, this approach was ideal; symbolic
operations were all that were necessary.

For NetRexx, however, it is recognized that for some applications it is necessary
to take full advantage of the performance of the underlying environment, and so
the language allows for the use and specification of binary arithmetic and types,
if available. A very simple mechanism (declaring a class or method to be binary)
is provided to indicate to the language processor that binary arithmetic and types
are to be used where applicable. In this case, as in other languages, extra care has
to be taken by the programmer to avoid exceeding limits of number size and so
on.

1.2.3 Emphasis on symbolic manipulation

Many values that NetRexx manipulates are (from the user’s point of view, at least)
in the form of strings of characters. Productivity is greatly enhanced if these
strings can be handled as easily as manipulating words on a page or in a text
editor. NetRexx therefore has a rich set of character manipulation operators and
methods, which operate on values of type Rexx (the name of the class of NetRexx
strings).

Concatenation, the most common string operation, is treated specially in NetRexx.
In addition to a conventional concatenate operator (“||”), the novel blank operator
from Rexx concatenates two data strings together with a blank in between. Fur-
thermore, if two syntactically distinct terms (such as a string and a variable name)
are abutted, then the data strings are concatenated directly. These operators
make it especially easy to build up complex character strings, and may at any
time be combined with the other operators.

For example, the say instruction consists of the keyword say followed by any ex-
pression. In this instance of the instruction, if the variable n has the value “6” then

say 'Sorry,' nx100/50'% were rejected’

would display the string
Sorry, 12% were rejected

Concatenation has a lower priority than the arithmetic operators. The order of
evaluation of the expression is therefore first the multiplication, then the division,
then the concatenate-with-blank, and finally the direct concatenation. Since the
concatenation operators are distinct from the arithmetic operators, very natural
coercion (automatic conversion) between numbers and character strings is possible.

7

1.2.4

1.2.5

Chapter 1. Introduction

Further, explicit typecasting (conversion of types) is effected by the same operators,
at the same priority, making for a very natural and consistent syntax for changing
the types of results. For example,

i=int 100/7

would calculate the result of 100 divided by 7, convert that result to an integer
(assuming int describes an integer type) and then assign it to the variable i.

Nothing to declare

Consistent with the philosophy of simplicity, NetRexx does not require that variables
within methods be declared before use. Only the jlar"opertiesE of classes —which may
form part of their interface to other classes — need be listed formally.

Within methods, the type of variables is deduced statically from context, which
saves the programmer the menial task of stating the type explicitly. Of course, if
preferred, variables may be listed and assigned a type at the start of each method.

Environment independence

The core NetRexx language isindependent of both operating systems and hardware.
NetRexx programs, though, must be able to interact with their environment,
which implies some dependence on that environment (for example, binary re-
presentations of numbers may be required). Certain areas of the language are
therefore described as being defined by the environment.

Where environment-independence is defined, however, there may be a loss of
efficiency — though this can usually be justified in view of the simplicity and
portability gained.

As an example, character string comparison in NetRexx is normally independent
of case and of leading and trailing blanks. (The string “ Yes ” means the same as
“yes” in most applications.) However, the influence of underlying hardware has
often subtly affected this kind of design decision, so that many languages only
allow trailing blanks but not leading blanks, and insist on exact case matching. By
contrast, NetRexx provides the human-oriented relaxed comparison for strings
as default, with optional “strict comparison” operators.

9Class variables and instance variables.

1.2. Language Concepts

1.2.6 Limited span syntactic units

1.2.7

The fundamental unit of syntax in the NetRexx language is the clause, which is a
piece of program text terminated by a semicolon (usually implied by the end of a
line). The span of syntactic units is therefore small, usually one line or less. This
means that the syntax parser in the language processor can rapidly detect and
locate errors, which in turn means that error messages can be both precise and
concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its
derivatives) that have large fundamental syntactic units. For these languages, a
small error can often have a major or distributed effect on the parser, which can
lead to multiple error messages or even misleading error messages.

Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool
must, above all, be reliable. In the case of a language this means that it should do
what the user expects. User expectations are generally based on prior experience,
including the use of various programming and natural languages, and on the
human ability to abstract and generalize.

It is difficult to define exactly how to meet user expectations, but it helps to ask the
question “Could there be a high astonishment factor associated with this feature?”.
If a feature, accidentally misused, gives apparently unpredictable results, then it
has a high astonishment factor and is therefore undesirable.

Another important attribute of a reliable software tool is consistency. A consistent
language is by definition predictable and is often elegant. The danger here is
to assume that because a rule is consistent and easily described, it is therefore
simple to understand. Unfortunately, some of the most elegant rules can lead to
effects that are completely alien to the intuition and expectations of a user who,
after all, is human.

These constraints make programming language design more of an art than a
science, if the usability of the language is a primary goal. The problems are further
compounded for NetRexx because the language is suitable for both scripting
(where rapid development and ease of use are paramount) and for application
development (Where some programmers prefer extensive checking and redundant
coding). These conflicting goals are balanced in NetRexx by providing automatic
handling of many tasks (such as conversions between different representations

1.2.8

1.2.9

Chapter 1. Introduction

of strings and numbers) yet allowing for “strict” options which, for example, may
require that all types be explicit, identifiers be identical in case as well as spelling,
and so on.

Be adaptable

Wherever possible NetRexx allows for the extension of instructions and other
language constructs, building on the experience gained with Rexx. For example,
there is a useful set of common characters available for future use, since only
small set is used for the few special notations in the language.

Similarly, the rules for keyword recognition allow instructions to be added whenever
required without compromising the integrity of existing programs. There are no
reserved keywords in NetRexx; variable names chosen by a programmer always
take precedence over recognition of keywords. This ensures that NetRexx pro-
grams may safely be executed, from source, at a time or place remote from their
original writing — even if in the meantime new keywords have been added to the
language.

A language needs to be adaptable because it certainly will be used for applications
not foreseen by the designer. Like all programming languages, NetRexx may (indeed,
probably will) prove inadequate for certain future applications; room for expansion
and change is included to make the language more adaptable and robust.

Keep the language small

NetRexx is designed as a small language. It is not the sum of all the features of
Rexx and of Java; rather, unnecessary features have been omitted. The intention
has been to keep the language as small as possible, so that users can rapidly grasp
most of the language. This means that:

 the language appears less formidable to the new user

« documentation is smaller and simpler

« the experienced user can be aware of all the abilities of the language, and so
has the whole tool at his or her disposal

there are few exceptions, special cases, or rarely used embellishments

the language is easier to implement.

Many languages have accreted “neat” features which make certain algorithms
easier to express; analysis shows that many of these are rarely used. As a rough

10

1.2.10

1.3

1.3. Acknowledgements

rule-of-thumb, features that simply provided alternative ways of writing code
were added to Rexx and NetRexx only if they were likely to be used more often
than once in five thousand clauses.

No defined size or shape limits

The language does not define limits on the size or shape of any of its tokens
or data (although there may be implementation restrictions). It does, however,
define a few minimum requirements that must be satisfied by an implementation.
Wherever an implementation restriction has to be applied, it is recommended
that it should be of such a magnitude that few (if any) users will be affected.

Where arbitrary implementation limits are necessary, the language requires that
the implementer use familiar and memorable decimal values for the limits. For
example 250 would be used in preference to 255, 500 to 512, and so on.

Acknowledgements

Much of NetRexx is based on earlier work, and I am indebted to the hundreds of
people who contributed to the development of Rexx, Object Rexx, and Java.

In the 1990s I gained many insights from the deliberations of the members of
the X3J18 technical committee, which, under the remarkable chairmanship of
Brian Marks, led to the 1996 ANSI Standard for Rexx. Many of the committee’s
suggestions are incorporated in NetRexx.

Equally important have been the comments and feedback from the pioneering
users of NetRexx, and all those people who sent me comments on the language
either directly or in the NetRexx mailing list or forum. I would especially like to
thank Ian Brackenbury, Barry Feigenbaum, Davis Foulger, Norio Furukawa, Dion
Gillard, Martin Lafaix, Max Marsiglietti, and Trevor Turton for their insightful
comments and encouragement.

I also thank IBM; my appointment as an IBM Fellow made it possible to make
the implementation of NetRexx a reality in months rather than years. IBM has
also donated the NetRexx implementation to the Rexx Language Association,
with special thanks due to Matthew Emmons for piloting NetRexx through the
convoluted legal and other processes, and to René Jansen for massaging the
NetRexx reference implementation into shape for its Open Source release.

Finally, this document has relied on old but trusted technology for its creation:

11

1.4

Chapter 1. Introduction

its GML markup was processed using macros originally written by Bob O’Hara,
and formatted using SCRIPT/VS, the IBM Document Composition Facility. Geoff
Bartlett provided critical advice on character sets and fonts for the NetRexx book.
This version uses a set of Rexx programs to translate that same GML markup to
OpenOffice Document Text format (XML files).

Mike Cowlishaw, 1997 and 2009

Introduction to the current edition

After the open sourcing of the NetRexx reference implementation in 2011 the
RexxLA NetRexx ARB (Architecture Review Board), in which Mike Cowlishaw
takes part as Language Architect, took responsibility for the definition of the
language.

For this version of the NetRexx Language Reference, a NetRexx program was used
to translate the original GML markup to XgWTgX. This edition describes the 5.01-
GA version of the language and supercedes all earlier versions.

Version 4, a new major version number of the language translator, signifies a
major milestone in the development of this implementation. Thanks to Marc
Remes, NetRexx now supports the Java Platform Module System (JPMS), which
enables it to compile (or interpret) programs on current JDK versions.

NetRexx 4 depends on JSR 203 (NIO.2) and thus requires a minimum JDK level
of Java 7, whereas NetRexx 3 runs on Java 6. NetRexx 4 compiles and runs on
Java 7/8 (without JPMS) and on Java 9-+d (with JPMS) including the most recent
versions.

René Vincent Jansen, May 2, 2025

10JDK 9,11,13,15 and 17 have been tested.

12

2.1

Chapter 2

A Quick Tour of NetRexx

This chapter summarizes the main features of NetRexx, and is intended to help
you start using it quickly. It is assumed that you have some knowledge of program-
ming in a language such as Rexx, C, BASIC, or Java, but extensive experience with
programming is not needed.

This is not a complete tutorial, though - think of it more as a taster; it covers the
main points of the language and shows some examples you can try or modify. For
full details of the language, consult the next chapters in this book and the NetRexx
Programming Guide.

NetRexx programs

The structure of a NetRexx program is extremely simple. This sample program,
“toast”, is complete, documented, and executable as it stands:

/* This wishes you the best of health. x/
say 'Cheers!’

This program consists of two lines: the first is an optional comment that describes
the purpose of the program, and the second is a say instruction. say simply
displays the result of the expression following it — in this case just a literal string
(you can use either single or double quotes around strings, as you prefer). To
run this program using the reference implementation of NetRexx, create a file
called toast.nrx and copy or paste the two lines above into it. You can then use the
NetRexxC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run
it:

13

2.2

Chapter 2. A Quick Tour of NetRexx

java toast

You may also be able to use the netrexxc or nrc command to compile and run
the program with a single command (details may vary, depending your operating
system):

NetRexxC.sh —-run toast

will compile and run the toast program on a nix-like OS.

netrexxc —exec toast

will interpret the program on a Windows system.
Type nrc -help to list all available options..

Of course, NetRexx can do more than just display a character string. Although
the language has a simple syntax and has a small keyword instruction set, it is
powerful; the reference implementation of the language allows full access to the
large collection of Java programs known as class libraries, and allows new class
libraries to be written in NetRexx. The rest of this overview introduces most of
the features of NetRexx. Since the economy, power and clarity of expression in
NetRexx is best appreciated with use, you are urged to try using the language
yourself.

Expressions and variables

Like say in the “toast” example, many instructions in NetRexx include expres-
sions that will be evaluated. NetRexx provides arithmetic operators (including
integer division, remainder, and power operators), several concatenation operators,
comparison operators, and logical operators. These can be used in any combination
within a NetRexx expression (provided, of course, that the data values are valid
for those operations).

All the operators act upon strings of characters (known as NetRexx strings), which
may be of any length (typically limited only by the amount of storage available).
Quotes (either single or double) are used to indicate literal strings, and are optional
if the literal string is just a number. For example, the expressions:
1 2 1 + 1 3 1
‘2" + 3
2 + 3

would all resultin’5’.

14

2.2. Expressions and variables

The results of expressions are often assigned to variables, using a conventional
assignment syntax:

varl=5 /* sets varl to '5' */
var2=(varl+2)x10 /% sets var2 to '70' x/

You can write the names of variables (and keywords) in whatever mixture of
uppercase and lowercase that you prefer; the language is not case-sensitive. This
next sample program, “greet”, shows expressions used in various ways:

/* A short program to greet you. */
/* First display a prompt: */
say 'Please type your name and then press ENTER:'
answer=ask /* Get the reply into ANSWER x/
/* If nothing was typed, then use a fixed greeting, x/
/* otherwise echo the name politely. x/
if answer='"' then say 'Hello Stranger!'’

else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask”
is a keyword provided by NetRexx) and assigns it to the variable answer. This is
then tested to see if any characters were entered, and different actions are taken
accordingly; for example, if the user typed “Fred” in response to the prompt, then
the program would display:

Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the
string “Hello” to the value of variable answer with a blank in between them (the
blank is here a valid operator, meaning “concatenate with blank”). The string
“” is then directly concatenated to the result built up so far. These unobtrusive
operators (the blank operator and abuttal) for concatenation are very natural and
easy to use, and make building text strings simple and clear.

The layout of instructions is very flexible. In the “greet” example, for instance,
the if instruction could be laid out in a number of ways, according to personal
preference. Line breaks can be added at either side of the then (or following the
else).

In general, instructions are ended by the end of a line. To continue a instruction
to a following line, you can use a hyphen (minus sign) just as in English:

say 'Here we have an expression that is quite long,' -
'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any
blanks around it being replaced by a single blank. The net result is two strings

15

2.3

Chapter 2. A Quick Tour of NetRexx

concatenated together (with a blank in between) and then displayed. When desired,
multiple instructions can be placed on one line with the aid of the semicolon
separator:

if answer='Yes' then do; say 'OK!'; exit; end

Many people find multiple instructions on one line hard to read, but sometimes it
is convenient.

Control instructions

NetRexx provides a selection of control instructions, whose form was chosen for
readability and similarity to natural languages. The control instructions include
if... then... else (as in the “greet” example) for simple conditional processing:

answer="'No'
if answer='Yes' then say "You answered Yes"
else say "You did not answer Yes"

You did not answer Yes

select... when... otherwise... end for selecting from a number of alternatives:

a=1

1=2

select
when a>0 then say 'greater than zero'
when a<@® then say 'less than zero'
otherwise say 'zero'

end

select case i+l
when 1 then say 'one’
when 1+1 then say 'two'
when 3, 4, 5 then say 'many'

end

greater than zero

many

do... end for grouping:

a=4
if a=>3 then do

16

2.3. Control instructions

say 'A is greater than 3; it will be set to zero
a=0
end

A is greater than 3; it will be set to zero

and loop... end for repetition:

/* repeat 10 times; i changes from 1 to 10 x*/
loop i=1 to 10

say 1
end i

O 00 N O a0 A W N R

=
(O]

Theloop instruction can be used to step a variable to some limit, by some increment,
for a specified number of iterations, and while or until some condition is satisfied.
loop forever is also provided, and loop over can be used to work through a
collection of variables.

Loop execution may be modified by leave and iterate instructions that significantly
reduce the complexity of many programs. The select, do, and loop constructs also
have the ability to “catch” exceptions (see on page [3__11.) that occur in the body
of the construct. All three, too, can specify a finally instruction which introduces
instructions which are to be executed when control leaves the construct, regardless
of how the construct is ended.

17

2.4

Chapter 2. A Quick Tour of NetRexx

NetRexx arithmetic

Character strings in NetRexx are commonly used for arithmetic (assuming, of
course, that they represent numbers). The string representation of numbers can
include integers, decimal notation, and exponential notation; they are all treated
the same way. Here are a few:

'1234"
'12.03"
_12"
'120e+7"

The arithmetic operations in NetRexx are designed for people rather than ma-
chines, so are decimal rather than binary, do not overflow at certain values, and
follow the rules that people use for arithmetic. The operations are completely
defined by the ANSI X3.274 standard for Rexx, so correct implementations always
give the same results. An unusual feature of NetRexx arithmetic is the numeric in-
struction: this may be used to select the arbitrary precision of calculations. You may
calculate to whatever precision that you wish (for financial calculations, perhaps),
limited only by available memory. For example:

numeric digits 50
say 1/7

which would display
0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will
within the program. The numeric instruction can also be used to select the
notation (scientific or engineering) used for numbers in exponential format. NetRexx
also provides simple access to the native binary arithmetic of computers. Using
binary arithmetic offers many opportunities for errors, but is useful when perfor-
mance is paramount. You select binary arithmetic by adding the instruction:

options binary

at the top of a NetRexx program. The language processor will then use binary
arithmetic (see page @) instead of NetRexx decimal arithmetic for calculations,
if it can, throughout the program@.

11 The binary keyword can also be used for a Class or a Method statement, and for a do..end block.

18

2.5. Doing things with strings

2.5 Doing things with strings

A character string is the fundamental datatype of NetRexx, and so, as you might
expect, NetRexx provides many useful routines for manipulating strings. These
are based on the functions of Rexx, but usually use a syntax that is more like Java
or other similar languages:

phrase='Now is the time for a party'
say phrase.word(7).pos('r")

Since NetRexx 4.04 the non-object-oriented ’scripting mode’ of using the string
functions is supported:

phrase='Now is the time for a party'
say pos('r', word(phrase,7))

The second line here can be read from left to right as:

take the variable phrase, find the seventh word, and then find the position
of the first “r” in that word.

"

This would display “3” in this case, because “r” is the third character in “party”.

Since NetRexx 4.04 the non-object-oriented Classic Rexx-like 'scripting mode’ of
using the string functions is supported:

phrase='Now is the time for a party'
say pos('r', word(phrase, 7))

In the NetRexx syntax, at each point in the sequence of operations some routine
is acting on the result of what has gone before. These routines are called methods,
to make the distinction from functions (which act in isolation). NetRexx provides
(as methods) most of the functions that were evolved for Rexx, including:

 changestr (change all occurrences of a substring to another)
 copies (make multiple copies of a string)

* lastpos (find rightmost occurrence)

« left and right (return leftmost/rightmost character(s))

« pos and wordpos (find the position of string or a word in a string)
« reverse (Swap end-to-end)

« space (pad between words with fixed spacing)

« strip (remove leading and/or trailing white space)

« verify (check the contents of a string for selected characters)

e word, wordindex, wordlength, and words (work with words).

19

2.6

2.6.1

2.6.2

Chapter 2. A Quick Tour of NetRexx

These and the other string functions, with the parsing described in the next
section, make it especially easy to process text with NetRexx.

Parsing strings

The previous section described some of the string-handling facilities available;
NetRexx also provides string parsing, which is an easy way of breaking up strings
of characters using simple pattern matching.

A parse instruction first specifies the string to be parsed. This can be any term,
but is often taken simply from a variable. The term is followed by a template which
describes how the string is to be split up, and where the pieces are to be put.

Parsing into words

The simplest form of parsing template consists of a list of variable names. The
string being parsed is split up into words (sequences of characters separated by
blanks), and each word from the string is assigned (copied) to the next variable
in turn, from left to right. The final variable is treated specially in that it will be
assigned a copy of whatever is left of the original string and may therefore contain
several words. For example, in:

parse 'This 1s a sentence.' vl v2 v3

the variable vl would be assigned the value “This”, v2 would be assigned the value
“is”, and v3 would be assigned the value “a sentence.”.

Literal patterns

A literal string may be used in a template as a pattern to split up the string. For
example
parse 'To be, or not to be?' wl ', w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point;
each section is then treated in just the same way as the whole string was in the
previous example.

Thus, w1l would be set to “To be”, w2 and w3 would be assigned the values “or” and
“not”, and w4 would be assigned the remainder: “to be?”. Note that the pattern
itself is not assigned to any variable. The pattern may be specified as a variable,
by putting the variable name in parentheses. The following instructions:

20

2.6.3

2.7

2.7. Indexed strings

comma="', "
parse 'To be, or not to be?' wl (comma) w2 w3 w4

therefore have the same effect as the previous example.

Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This
allows strings to be parsed using column positions.

This works in the same way as the string pattern except that it specifies a column
number. So:

parse 'Flying pigs have wings' x1 5 x2

would split the string at the fifth column, so x1 would be "Flyi” and x2 would start
at column 5 and so be "ng pigs have wings”.

Indexed strings

NetRexx provides indexed strings, adapted from the compound variables of Rexx.
Indexed strings form a powerful “associative lookup”, or dictionary, mechanism
which can be used with a convenient and simple syntax.

NetRexx string variables can be referred to simply by name, or also by their name
qualified by another string (the index). When an index is used, a value associated
with that index is either set:

fred=0 —— 1initial value
fred[3]='abc' -—— indexed value

or retrieved:
say fred[3] —— would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index
has not been used to set a value. For example, the program:

bark="'woof"'

bark['pup']="yap"

bark['bulldog']l="grrrrr'

say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

21

Chapter 2. A Quick Tour of NetRexx

Note that it is not necessary to use a number as the index; any expression may
be used inside the brackets; the resulting string is used as the index. Multiple
dimensions may be used, if required:

bark="'woof"

bark['spaniel', 'brown']='ruff’

bark['bulldog']="'grrrrr'

animal='dog'

say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display
ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a
function (called a static method in NetRexx) that removes all duplicate words from
a string of words:

/* justonetest.nrx —— test the justone function. */
say justone('to be or not to be') /x simple testcase */
exit
/* This removes duplicate words from a string, and */
/* shows the use of a variable (HADWORD) which 1is */
/* indexed by arbitrary data (words). */
method justone(wordlist) static
hadword=0 /* show all possible words as new *x/
outlist="" /* initialize the output list =/
loop while wordlist\='"' /* loop while we have data =/
/* split WORDLIST into first word and residue */

parse wordlist word wordlist
if hadword[word] then iterate /x loop if had word x*/
hadword[word]=1 /* remember we have had this word */
outlist=outlist word /% add word to output Llist =/
end

return outlist /x finally return the result */

Running this program would display just the four words “to”, “be”, “or”, and “not”.

Arrays

NetRexx also supports fixed-size arrays. These are an ordered set of items, indexed
by integers. To use an array, you first have to construct it; an individual item may
then be selected by an index whose value must be in the range 0 through n-1,
where n is the number of items in the array:

array=String[3] —— make an array of three Strings
array[0]='String one' -—- set each array item
array[1l]="Another string'

array[2]='foobar'

loop 1=0 to 2 —— display the items

22

2.9

2.9. Things that aren’t strings

say array[i]
end

This example also shows NetRexx line comments; the sequence “- -” (outside of
literal strings or “/*” comments) indicates that the remainder of the line is not
part of the program and is commentary.

NetRexx makes it easy to initialize arrays: a term which is a list of one or more
expressions, enclosed in brackets, defines an array. Each expression initializes
an element of the array. For example:

words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string.
So, for example, the instruction:

say words[1]

would then display
Ffynnon

Things that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and
so on) were expressed as a string of characters. Many things, however, can be
expressed more easily in some other way, so NetRexx allows variables to refer to
other collections of data, which are known as objects.

Objects are defined by a name that lets NetRexx determine the data and methods
that are associated with the object. This name identifies the type of the object, and
is usually called the class of the object.

For example, an object of class Oblong might represent an oblong to be manipu-
lated and displayed. The oblong could be defined by two values: its width and its
height. These values are called the properties of the Oblong class.

Most methods associated with an object perform operations on the object; for
example a size method might be provided to change the size of an Oblong object.
Other methods are used to construct objects (just as for arrays, an object must be
constructed before it can be used). In NetRexx and Java, these constructor methods
always have the same name as the class of object that they build (“Oblong”, in this
case).

Here’s how an Oblong class might be written in NetRexx (by convention, this would

23

Chapter 2. A Quick Tour of NetRexx

be written in a file called oblong.nrx; implementations often expect the name of
the file to match the name of the class inside it):

/* 0blong.nrx —— simple oblong class */
class Oblong

width —— size (X dimension)
height —— size (Y dimension)

/* Constructor method to make a new oblong */

method Oblong(new_width, new_height)
— when we get here, a new (uninitialized) object has been
—— created. Copy the parameters we have been given to the
—— four properties of the object:
width=new_width; height=new_height

/* Change the size of a Oblong */

method size(new_width, new_height) returns 0Oblong
width=new_width; height=new_height
return this —— return the resized object

/* Change the size of a Oblong, relatively x/
method relsize(rel_width, rel_height) returns 0Oblong
width=width+rel_width; height=height+rel_height

return this

/* 'Print' what we know about the oblong x*/
method print()
say 'Oblong' width 'x' height

To summarize:

1. A class is started by the class instruction, which names the class.

2. The class instruction is followed by a list of the properties of the object. These
can be assigned initial values, if required.

3. The properties are followed by the methods of the object. Each method is
introduced by a method instruction which names the method and describes
the arguments that must be supplied to the method. The body of the method
is ended by the next method instruction (or by the end of the file).

The oblong.nrx file is compiled just like any other NetRexx program, and should
create a class file called oblong.class. Here’s a program to try out the Oblong class:

/* tryOblong.nrx — try the Oblong class */
first=0blong(5,3) —— make an oblong
first.print — show it
first.relsize(1l,1).print — enlarge and print again
second=0blong(1,2) —— make another oblong
second.print —— and print it

24

2.9.1

2.10

2.10. Extending classes

When tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-
reference listing available) that the variables first and second have type 0Oblong.
These variables refer to Oblongs, just as the variables in earlier examples referred
to NetRexx strings.

Once a variable has been assigned a type, it can only refer to objects of that type.
This helps avoid errors where a variable refers to an object that it wasn’t meant to.

Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are
in fact classes (you may have noticed that compiling them with the reference im-
plementation creates xxx.class files, where xxx is the name of the source file). The
environment underlying the implementation will allow a class to run as a stand-
alone application if it has a static method called main which takes an array of strings
as its argument.

If necessary (that is, if there is no class instruction) NetRexx automatically adds
the necessary class and method instructions for a stand-alone application, and
also an instruction to convert the array of strings (each of which holds one word
from the command string) to a single NetRexx string.

The automatic additions can also be included explicitly; the “toast” example could
therefore have been written:

/* This wishes you the best of health. *x/
class toast
method main(argwords=String[]) static
arg=Rexx(argwords)
say 'Cheers!’

though in this program the argument string, arg, is not used, which will be indi-
cated in a compile warning, for this (in this case,) superflous assignment.

Extending classes

It is common, when dealing with objects, to take an existing class and extend it.
One way to do this is to modify the source code of the original class — but this is not
always available, and with many different people modifying a class, classes could
rapidly get overcomplicated.

Languages that deal with objects, like NetRexx, therefore allow new classes of
objects to be set up which are derived from existing classes. For example, if you

25

Chapter 2. A Quick Tour of NetRexx

wanted a different kind of Oblong in which the Oblong had a new property that
would be used when printing the Oblong as a rectangle, you might define it thus:

/* charOblong.nrx —— an oblong class with character x/
class charOblong extends Oblong
printchar —— the character for display

/* Constructor to make a new oblong with character x*/
method charOblong(newwidth, newheight, newprintchar)
super(newwidth, newheight) -- make an oblong
printchar=newprintchar —— and set the character
/* 'Print' the oblong */
method print
loop for super.height
say printchar.copies(super.width)
end

There are several things worth noting about this example:

1. The “extends 0Oblong” on the class instruction means that this class is an ex-
tension of the Oblong class. The properties and methods of the Oblong class
are inherited by this class (that is, appear as though they were part of this
class). Another common way of saying this is that “charOblong” is a subclass
of “oblong” (and “Oblong” is the superclass of “charOblong”).

2. This class adds the printchar property to the properties already defined for
Oblong.

3. The constructor for this class takes a width and height (just like Oblong) and
adds a third argument to specify a print character. It first invokes the con-
structor of its superclass (Oblong) to build an Oblong, and finally sets the
printchar for the new object.

4. The new charOblong object also prints differently, as a rectangle of charac-
ters, according to its dimension. The print method (as it has the same name
and arguments — none — as that of the superclass) replaces (overrides) the
print’ method of Oblong.

5. The other methods of Oblong are not overridden, and therefore can be used
on charOblong objects.

The charOblong.nrx file is compiled just like oblong.nrx was, and should create a
file called charOblong.class.

Here’s a program to try it out
/* trycharOblong.nrx — try the charOblong class */

first=char0Oblong(5,3,'#') —— make an oblong
first.print —— show it
first.relsize(1,1).print — enlarge and print again
second=charOblong(1,2,'*"') — make another oblong
second.print —— and print it

26

2.10.1

2.11

2.11. Tracing

This should create the two charOblong objects, and print them out in a simple
“character graphics” form. Note the use of the method relsize from Oblong to
resize the charOblong object.

Optional arguments

All methods in NetRexx may have optional arguments (omitted from the right)
if desired. For an argument to be optional, you must supply a default value. For
example, if the charOblong constructor was to have a default value for printchar,
its method instruction could have been written

method charOblong(newwidth, newheight, newprintchar='X")

which indicates that if no third argument is supplied then ’'x’ should be used. A
program creating a charOblong could then simply write:
first=char0Oblong(5,3) —— make an oblong

which would have exactly the same effect as if 'x’ were specified as the third
argument.

Tracing

NetRexx tracing is defined as part of the language. The flow of execution of pro-
grams may be traced, and this trace can be viewed as it occurs (or captured in
a file). The trace can show each clause as it is executed, and optionally show
the results of expressions, etc. For example, the trace results in the program
“tracel.nrx”:

trace results

number=1/7

parse number before '.' after
say after'.'before

would result in:

--- tracel.nrx
2 *=+ number=1/7
>v> number "0.142857143"
3 *=* parse number before '.' after

>v> before "0"

27

Chapter 2. A Quick Tour of NetRexx

>v> after "142857143"
4 x=x say after'. 'before
>>> "142857143.0"

where the line marked with “~--" indicates the context of the trace, lines marked
with “x=«" are the instructions in the program, lines with “>v>” show results
assigned to local variables, and lines with “>>>” show results of unnamed ex-
pressions.

”

Further, trace methods lets you trace the use of all methods in a class, along with
the values of the arguments passed to each method. Here’s the result of adding
trace methods to the Oblong class shown earlier and then running tryOblong:

“tracel.nrx”:

/* tryOblong.nrx — try the Oblong class */
first=0blong(5,3) —-— make an oblong
first.print —— show it
first.relsize(1l,1).print —— enlarge and print again
second=0blong(1,2) —— make another oblong
second.print —— and print it

would result in:

where lines with “>a>” show the names and values of the arguments.

It is often useful to be able to find out when (and where) a variable’s value is
changed. The trace var instruction does just that; it adds names to or removes
names from a list of monitored variables. If the name of a variable in the current
class or method is in the list, then trace results is turned on for any assignment,
loop, or parse instruction that assigns a new value to the named variable.

Variable names to be added to the list are specified by listing them after the var
keyword. Any name may be optionally prefixed by a — sign., which indicates that
the variable is to be removed from the list.

For example, the program “trace2.nrx”:

trace var a b — now variables a and b will be traced
a=3

b=4

c=5

trace var -b ¢ —— now variables a and c will be traced
a=a+1

28

2.12

2.12. Binary types and conversions

b=b+1
c=c+1
say a b ¢

would result in:

--- trace2.nrx
2 *=% a=3
>v> a "3"
3 *=* b=4
>v> b "4"
6 *=x a=a+1
>v> a "4"
8 *=+ c=c+1

>v> ¢ "6"

When interpreting, the trace int instruction allows to interrupt execution of the
program, and single-step through the program while having access to properties,
variables and methods.

Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive”
binary types, which correspond closely to the binary operations usually available
at the hardware level in computers. For the reference implementation, these types
are:

« byte, short, int, and long — signed integers that will fit in 8, 16, 32, or 64 bits
respectively

e float and double — signed floating point numbers that will fit in 32 or 64 bits
respectively.

 char —an unsigned 16-bit quantity, holding a Unicode character

 boolean — a 1-bit logical value, representing O or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the
covers” in order to achieve maximum efficiency; in particular, they cannot be
constructed like other objects — their value is held directly. This distinction rarely
matters to the NetRexx programmer: in the case of string literals an object is
constructed automatically; in the case of an int literal, an objectis not constructed.

29

2.12.1

Chapter 2. A Quick Tour of NetRexx

Further, NetRexx automatically allows the conversion between the various forms
of character strings in implementationst? and the primitive types. The “golden
rule” thatis followed by NetRexx is that any automatic conversion which is applied
must not lose information: either it can be determined before execution that the
conversion is safe (asin int to String) or it will be detected at execution time if the
conversion fails (as in String to int).

The automatic conversions greatly simplify the writing of programs; the exact
type of numeric and string-like method arguments rarely needs to be a concern of
the programmer. For certain applications where early checking or performance
override other considerations, the reference implementation of NetRexx provides
options for different treatment of the primitive types:

1. options strictassign — ensures exact type matching for all assignments.
No conversions (including those from shorter integers to longer ones) are
applied. This option provides stricter type-checking than most other langua-
ges, and ensures that all types are an exact match.

2. options binary — uses implementation-dependent fixed precision arithmetic
on binary types (also, literal numbers, for example, will be treated as binary,
and local variables will be given “native” types such as int or String, where
possible).

Binary arithmetic currently gives better performance than NetRexx decimal arith-
metic, but places the burden of avoiding overflows and loss of information on the
programmer.

The options instruction (which may list more than one option) is placed before
the first class instruction in a file; the binary keyword may also be used on a class
or method instruction, to allow an individual class or method to use binary arith-
metic.

Explicit type assignment

You may explicitly assign a type to an expression or variable:

i=int 3000000 ——- 'i' is an 'int' with value 3000000
j=int 4000000 —- 'j' is an 'int' with value 4000000
k=int —— 'k' i1s an 'int', with no initial value

say i*j —— multiply and display the result
k=1xj — multiply and assign result to 'k
say k

121n the reference implementation, these are String, char, char{] (an array of characters), and the NetRexx string type,
Rexx.

30

2.12.2

2.13

2.13. Exception and error handling

This example also illustrates an important difference between options nobinary
and options binary. With the former (the default) the say instruction would
display the result “1.20000000E+13” and a conversion overflow would be reported
when the same expression is assigned to the variable k.

With options binary, binary arithmetic would be used for the multiplications,
and so no error would be detected; the say would display “-138625024” (note the
minus sign) and the variable k takes the incorrect result.

Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetRexx.
Those conversions that are necessary for using existing classes (or those that
use options binary) are generally automatic. For example, here is an Applet for
use by Java-enabled browsers:

/* A simple graphics Applet */
class Rainbow extends Applet
method paint(g=Graphics) —-—- called to repaint window
maxx=size.width-1
maxy=size.height-1
loop y=0 to maxy
col=Color.getHSBColor(y/maxy, 1, 1) — new colour
g.setColor(col) -— set it
g.drawLine(0, y, maxx, y) —— fill slice
end y

In this example, the variable col will have type Color, and the three arguments
to the method getHSBColor will all automatically be converted to type float. As no
overflows are possible in this example, options binary may be added to the top of
the program with no other changes being necessary.

Exception and error handling

NetRexx does not have a goto instruction, but a signal instruction is provided
for abnormal transfer of control, such as when something unusual occurs. Using
signal raises an exception; all control instructions are then “unwound” until the
exception is caught by a control instruction that specifies a suitable catch instruc-
tion for handling the exception.

Exceptions are also raised when various errors occur, such as attempting to divide
a number by zero. For example:

say 'Please enter a number:'

31

2.14

Chapter 2. A Quick Tour of NetRexx

number=ask
do
say 'The reciprocal of' number 'is:' 1/number
catch DivideException
say 'Sorry, could not divide "'number'" into 1'
say 'Please try again.'
end

Here, the catch instruction will catch any exception thatis raised when the division
is attempted (conversion error, divide by zero, etc.), and any instructions that
follow it are then executed. If no exception is raised, the catch instruction (and
any instructions that follow it) are ignored.

Any of the control instructions that end with end (do, loop, or select) may be
modified with one or more catch instructions to handle exceptions.

Summary and Information Sources

The NetRexx language, as you will have seen, allows the writing of programs for
the Java environment with a minimum of overhead and “boilerplate syntax”;
using NetRexx for writing Java classes could increase your productivity by 30% or
more. Further, by simplifying the variety of numeric and string types of Java down
to a single class that follows the rules of Rexx strings, programming is greatly
simplified. Where necessary, however, full access to all Java types and classes is
available.

There is a large selection of applications and samples available at http://www.
rosettacode.org, and in the examples directory of the packaged NetRexx zip-file.
The software should run on any platform that has a Java Virtual Machine (JVM)
available.

32

http://www.rosettacode.org
http://www.rosettacode.org

3.1

Chapter 3

NetRexx Language Definition

This part of the document describes the NetRexx language, version 5.01-GA.
This version includes the original NetRexx language referenceld together with
additions made from 1997 through 2000 and previously published in the NetRexx
Language Supplement.

The language is described first in terms of the characters from which it is composed
and its low-level syntax, and then progressively through more complex construc-
tions. Finally, special sections describe the semantics of the more complicated
areas.

Some features of the language, such as options keywords and binary arithme-
tic, are implementation-dependent. Rather than leaving these important aspects
entirely abstract, this description includes summaries of the treatment of such
items in the reference implementation of NetRexx. The reference implementation is
based on the Java environment and class libraries.

Paragraphs that refer to the reference implementation, and are therefore not strictly part
of the language definition, are shown in italics, like this one.

Notations

In this part of the book, various notations such as changes of font are used for
clarity. Within the text, a sans-serif bold font is used to indicate keywords, and an
italic font is used to indicate technical terms. An italic font is also used to indicate
a reference to a technical term defined elsewhere or a word in a syntax diagram that
names a segment of syntax.

Similarly, in the syntax diagrams in this book, words (symbols) in the sans-serif

13The NetRexx Language, M. F. Cowlishaw, ISBN 0-13-806332-X, Prentice-Hall, 1997

33

3.2

3.2.1

Chapter 3. NetRexx Language Definition

bold font also denote keywords or sub-keywords, and words (such as expression)
in italics denote a token or collection of tokens defined elsewhere. The brackets [
and] delimit optional (and possibly alternative) parts of the instructions, whereas
the braces { and } indicate that one of a number of alternatives must be selected.
An ellipsis (...) following a bracket indicates that the bracketed part of the clause
may optionally be repeated.

Occasionally in syntax diagrams (e.g., for indexed references) brackets are "real”
(that is, a bracket is required in the syntax; it is not marking an optional part).
These brackets are enclosed in single quotes, thus: "[" or ']".

Note that the keywords and sub-keywords in the syntax diagrams are not case-
sensitive: the symbols "IF” ”If” and ”iF” would all match the keyword shown in a
syntax diagram as if.

99,99

Note also that most of the clause delimiters (”;”) shown can usually be omitted as
they will be implied by the end of a line.

Characters and Encodings

In the definition of a programming language it is important to emphasize the
distinction between a character and the coded representation i (encoding) of a
character. The character "A”, for example, is the first letter of the English (Roman)
alphabet, and this meaning is independent of any specific coded representation
of that character. Different coded character sets (such as, for example, the ASCII
i3 and EBCDIC L4 codes) use quite different encodings for this character (decimal
values 65 and 193, respectively). Except where stated otherwise, this book uses
characters to convey meaning and not to imply a specific character code (the
exceptions are certain operations that specifically convert between characters
and their representations). At no time is NetRexx concerned with the glyph (actual
appearance) of a character.

Character Sets

Programming in the NetRexx language can be considered to involve the use of
two character sets. The first is used for expressing the NetRexx program itself,
and is the relatively small set of characters described in the next section. The

14These terms have the meanings as defined by the International Organization for Standardization, in ISO 2382 :cit.Data
processing - Vocabulary:ecit..

15 American Standard Code for Information Interchange.

16 Extended Binary Coded Decimal Interchange Code.

34

3.3

3.3.1

3.3. Structure and General Syntax

second character set is the set of characters that can be used as character data
by a particular implementation of a NetRexx language processor. This character
set may be limited in size (sometimes to a limit of 256 different characters, which
have a convenient 8-bit representation), or it may be much larger. The Unicode B4
character set, for example, allows for 1,114,112 code points, of which currently
128,000 are defined as characters. These are represented, depending on the
serialization format, in one to four bytes.

Usually, most or all of the characters in the second (data) character set are also
allowed within a NetRexx program, but only within commentary or immediate
(literal) data. The NetRexx language explicitly defines the first character set,
in order that programs will be portable and understandable; at the same time
it avoids restrictions due to the language itself on the character set used for
data. However, where the language itself manipulates or inspects the data (as
when carrying out arithmetic operations), there may be requirements on the data
character set (for example, numbers can only be expressed if there are digit cha-
racters in the set).

Structure and General Syntax

A NetRexx program is built up out of a series of clauses that are composed of:
zero or more blanks (which are ignored); a sequence of tokens (described in this
section); zero or more blanks (again ignored); and the delimiter ”;” (semicolon)
which may be implied by line-ends or certain keywords. Conceptually, each clause
is scanned from left to right before execution and the tokens composing it are

resolved.

Identifiers (known as symbols) and numbers are recognized at this stage, com-
ments (described below) are removed, and multiple blanks (except within literal
strings) are reduced to single blanks. Blanks adjacent to operator characters (see
page léIl]) and special characters (see page) are also removed.

Blanks and White Space

Blanks (spaces) may be freely used in a program to improve appearance and
layout, and most are ignored. Blanks, however, are usually significant

 within literal strings (see below)

17 The Unicode Standard, version 6.0., The Unicode Consortium, Mountain View, 2011, ISBN 09781936213016.

35

3.3.2

Chapter 3. NetRexx Language Definition

« between two tokens that are not special characters (for example, between two
symbols or keywords)

« between the two characters forming a comment delimiter

« immediately outside parentheses ("(” and ”)”) or brackets ("[” and "]”).

For implementations that support tabulation (tab) and form feed characters, these
characters outside of literal strings are treated as if they were a single blank;
similarly, if the last character in a NetRexx program is the End-of-file character
(EOF, encoded in ASCII as decimal 26), that character is ignored.

Comments

Commentary is included in a NetRexx program by means of comments. Two forms
of comment notation are provided: line comments are ended by the end of the line
on which they start, and block comments are typically used for more extensive
commentary.

Line comments Aline comment is started by a sequence of two adjacent hyphens
(“—-"); all characters following that sequence up to the end of the line are then
ignored by the NetRexx language processor.

Example:

i=j+7 —-- this line comment follows an assignment

Block comments A block comment is started by the sequence of characters ”/*”,
and is ended by the same sequence reversed, "*/”. Within these delimiters
any characters are allowed (including quotes, which need not be paired).
Block comments may be nested, which is to say that ”/*” and ”*/” must pair
correctly. Block comments may be anywhere, and may be of any length. When
a block comment is found, it is treated as though it were a blank (which may
then be removed, if adjacent to a special character).

Example:

/* This 1s a valid block comment x/

The two characters forming a comment delimiter (”/*” or ”¥*/”) must be
adjacent (that is, they may not be separated by blanks or a line-end).

Shebang NetRexx supports shebang on supported operating systems/shells. A
shebang defines the first line in a script as #! followed by the program which
executes the script. The translator ignores such line. It is mostly relevant
when interpreting NetRexx programs:

$ cat hello.nrx
#!/usr/bin/env nr

36

3.3.3

3.3. Structure and General Syntax

class hello
method main(args=String[]) static
say 'Hello world!'
$ chmod 755 hello.nrx
$./hello.nrx
Hello world!
The script uses the 'bin/nr’ script, which starts the translator as interpreter.

When execute access is set, the script can be executed as such.

Note: It is recommended that NetRexx programs start with a block comment
that describes the program. Not only is this good programming practice, but
some implementations may use this to distinguish NetRexx programs from other
languages. Implementation minimum: Implementations should support nested
block comments to a depth of at least 10. The length of a comment should not be
restricted, in that it should be possible to "comment out” an entire program.

Tokens

The essential components of clauses are called tokens. These may be of any length,
unless limited by implementation restrictions, B8 and are separated by blanks,
comments, ends of lines, or by the nature of the tokens themselves.

The tokens are:

Literal strings A sequenceincluding any characters that can safely be represented
in an implementation B9 and delimited by the single quote character (’) or the
double-quote (). Use ”” to include a ” in a literal string delimited by ”, and
similarly use two single quotes to include a single quote in a literal string
delimited by single quotes. A literal string is a constant and its contents will
never be modified by NetRexx. Literal strings must be complete on a single
line (this means that unmatched quotes may be detected on the line that they
occur). Any string with no characters (i.e., a string of length 0) is called a null
string.

Examples:

"Fred'
IAyI

18Wherever arbitrary implementation restrictions are applied, the size of the restriction should be a number that is
readily memorable in the decimal system; that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512,
the number 250 is more "natural” than 256, and so on. Limits expressed in digits should be a multiple of three.

19Some implementations may not allow certain “control characters” in literal strings. These characters may be included
in literal strings by using one of the escape sequences provided.

37

Chapter 3. NetRexx Language Definition

TABLE 1: Escape sequences

\t the escape sequence represents a tabulation (tab) character

\n the escape sequence represents a new-line (line feed) character

\r the escape sequence represents a return (carriage return) character

\f the escape sequence represents a form-feed character

\” the escape sequence represents a double-quote character

\ the escape sequence represents a single-quote character

\\ the escape sequence represents a backslash character

\- the escape sequence represents a “null” character (the character whose encoding

equals zero), used to indicate continuation in a say instruction

\O(zero) the escape sequence represents a "null” character (the character whose encoding

equals zero); an alternative to \-

\xhh the escape sequence represents a character whose encoding is given by the two

hexadecimal digits ("hh”) following the ”x”. If the character encoding for the imple-
mentation requires more than two hexadecimal digits, they are padded with zero
digits on the left.

\uhhhh the escape sequence represents a character whose encoding is given by the four

hexadecimal digits ("hhhh”) following the "u”. It is an error to use this escape if the
character encoding for the implementation requires fewer than four hexadecimal
digits.

"Don't Panic!"
"ix
'You shouldn''t' /* Same as "You shouldn't" x/
v /* A null string */

Within literal strings, characters that cannot safely or easily be represented
(for example “control characters”) may be introduced using an escape se-
quence. An escape sequence starts with a backslash (”\”), which must then
be followed immediately by one of the following (letters may be in either
uppercase or lowercase) - see table @

Hexadecimal digits for use in the escape sequences above may be any decimal
digit (0-9) or any of the first six alphabetic characters (a-f), in either lowercase
or uppercase.

Examples:

'You shouldn\'t' /* Same as "You shouldn't" x/

'"\x6d\u0066\x63' /* In Unicode: 'mfc' =/

"\\\u005C' /* In Unicode, two backslashes x/

Implementation minimum: Implementations should support literal strings
of at least 100 characters. (But note that the length of string expression
results, etc., should have a much larger minimum, normally only limited by
the amount of storage available.)

38

3.3. Structure and General Syntax

Text literal strings A ’text’ literal string is delimited by three double-quote cha-
racters at the end of a line and another sequence of three double-quote cha-
racters at the start of a line. White space after the starting triple double-
guotes and before the ending triple double-quotes is neglected.

Lines within the ””””’s are not parsed and are copied unmodified into a string
literal, standard escape sequences are honoured (e.g. \t, \n), but are mostly
unnecessary. The new-line characters at the start and end of the text literal
strings are not copied.

Text literal strings allow to easily use multi-line text and formatted code,
without the need to massage the text into a plain string literal.

Text literal strings can be used anywhere a string literal can be used. In fact,
they are string literal tokens.

Precedence is given to string literal parsing, thus not every triple ” is recogni-
zed as the start of a text literal string. That is, a triple ” could be a double-quote
character at the end of a double-quoted literal string.

Examples:
"a string with one """ /* a string literal with one double-quote */
"a string with two """"" /x with two double-quotes */

this 1s a "text string literal"
of three lines

<html>
<body>
example text
</body>
</html>

Symbols Symbols are groups of characters selected from the Roman alphabet
in uppercase or lowercase (A-Z, a-z), the Arabic numerals (0-9), or the cha-
racters underscore, dollar, and eurold ("_$ €”) Implementations may also
allow other alphabetic and numeric characters in symbols to improve the
readability of programs in languages other than English. These additional
characters are known as extra letters and extra digits. b1
Examples:

DanYrOgof

minx

20Note that only UTF8-encoded source files can currently use the euro character.

211t is expected that implementations of NetRexx will be based on Unicode or a similarly rich character set. However,
portability to implementations with smaller character sets may be compromised when extra letters or extra digits are
used in a program.

39

Chapter 3. NetRexx Language Definition

Elan

$Virtual3D

A symbol may include other characters only when the first character of the
symbol is a digit (0-9 or an extra digit). In this case, it is a numeric symbol - it
may include a period (”.”) and it must have the syntax of a number. This may
be simple number, which is a sequence of digits with at most one period (which
may not be the final character of the sequence), or it may be a hexadecimal
or binary numeric symbol(see page) , or it may be a number expressed in
exponential notation.

A number in exponential notation is a simple number followed immediately
by the sequence "E” (or "e”), followed immediately by a sign ("+” or ”-”), 22
followed immediately by one or more digits (Which may not be followed by
any other symbol characters).

Examples:

1

1.3

12.007

17.3E-12

3e+12

0.03E+9

When extra digits are used in numeric symbols, they must represent values in
the range zero through nine. When numeric symbols are used as numbers,
any extra digits are first converted to the corresponding character in the
range 0-9, and then the symbol follows the usual rules for numbers in NetRexx
(that is, the most significant digit is on the left, efc.).

In the reference implementation, the extra letters are those characters (excluding A-
Z, a-z, and underscore) that result in 1 when tested with
java.lang.Character.isJavaldentifierPart. Similarly, the extra digits are those cha-
racters (excluding 0-9) that result in 1 when tested with java.lang.Character.isDigit.
The meaning of a symbol depends on the context in which it is used. For
example, a symbol may be a constant (if a number), a keyword, the name of a
variable, or identify some algorithm.

It is recommended that the dollar and euro only be used in symbols in me-
chanically generated programs or where otherwise essential. The NetRexx
translator internally uses $0n and $n - where n is one or more digits - as class
constants and temporary variables. It is advisable not use such symbols as
property variable names, as this may create conflicts in specific circumstan-
ces.

22The sign in this context is part of the symbol; it is not an operator.

40

3.3.4

3.3. Structure and General Syntax

Implementation minimum: Implementations should support symbols of
at least 50 characters. (But note that the length of its value, if it is a string
variable, should have a much larger limit.)

Operator characters The characters + - x % |/ & \= < > are used (sometimes in

combination) to indicate operations (see page @) in expressions. A few of
these are also used in parsing templates, and the equals sign is also used to
indicate assignment. Blanks adjacent to operator characters are removed, so,
for example, the sequences:

345>=123
345 >=123
345 >= 123
345 > = 123

are identical in meaning. Some of these characters may not be available in all
character sets, and if this is the case appropriate translations may be used.

Note: The sequences ”-",”/*”, and ”*/” are comment delimiters, as described
earlier. The sequences "++” and ”\\” are not valid in NetRexx programs.

Special characters The characters., ;) (][together with the operator characters

have special significance when found outside of literal strings, and constitute
the set of special characters. They all act as token delimiters, and blanks adjacent
to any of these (except the period) are removed, except that a blank adjacent
to the outside of a parenthesis or bracket is only deleted if it is also adjacent
to another special character (unless this is a parenthesis or bracket and the
blank is outside it, too). Some of these characters may not be available in all
character sets, and if this is the case appropriate translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:
'REPEAT' B + 3;

This is composed of six tokens: a literal string, a blank operator (described later),
a symbol (which is probably the name of a variable), an operator, a second symbol
(anumber), and a semicolon. The blanks between the "B” and the ”+” and between
the ”+” and the ”3” are removed. However one of the blanks between the ’'REPEAT’
and the "B” remains as an operator. Thus the clause is treated as though written:
'REPEAT' B+3;

Implied semicolons and continuations

A semicolon (clause end) is implied at the end of each line, except if:

41

Chapter 3. NetRexx Language Definition

1. The line ends in the middle of a block comment, in which case the clause
continues at the end of the block comment.

2. The last token was a hyphen. In this case the hyphen is functionally replaced
by a blank, and hence acts as a continuation character.

This means that semicolons need only be included to separate multiple clauses
on a single line.

Notes:

1. A comment is not a token, so therefore a comment may follow the
continuation character on a line.

2. Semicolons are added automatically by NetRexx after certain instruction
keywords when in the correct context. The keywords that may have this effect
are else, finally, otherwise, then; they become complete clauses in their own
right when this occurs. These special cases reduce program entry errors
significantly.

3.3.5 The case of names and symbols

In general, NetRexx is a case-insensitive language. That is, the names of keywords,
variables, and so on, will be recognized independently of the case used for each
letter in a name; the name "Swildon” would match the name "swilDon”.

NetRexx, however, uses names that may be visible outside the NetRexx program,
and these may well be referenced by case-sensitive languages. Therefore, any
name that has an external use (such as the name of a property, method, construc-
tor, or class) has a defined spelling, in which each letter of the name has the case
used for that letter when the name was first defined or used.

Similarly, the lookup of external names is both case-preserving and case-insensitive.
If a class, method, or property is referenced by the name "Foo”, for example, an
exact-case match will first be tried at each point that a search is made. If this
succeeds, the search for a matching name is complete. If it does not succeed, a
case-insensitive search in the same contextis carried out, and if one item is found,
then the search is complete. If more than one item matches then the reference is
ambiguous, and an error is reported.

Implementations are encouraged to offer an option that requires that all name

42

3.3.6

3.3. Structure and General Syntax

matches are exact (case-sensitive), for programmers or house-styles that prefer
that approach to name matching.

Hexadecimal and binary numeric symbols

A hexadecimal numeric symbol describes a whole number, and is of the form nXstring.
Here, nis a simple number with no decimal part (and optionalleading insignificant
zeros) which describes the effective length of the hexadecimal string, the X (which
may be in lowercase) indicates that the notation is hexadecimal, and string is a
string of one or more hexadecimal characters (characters from the ranges "a-f”,
"A-F”, and the digits "0-9”).

The string is taken as a signed number expressed in n hexadecimal characters.
If necessary, string is padded on the left with ”0” characters (note, not "sign-
extended”) to length n characters.

If the most significant (left-most) bit of the resulting string is zero then the number
is positive; otherwise it is a negative number in twos-complement form. In both
cases it is converted to a NetRexx number which may, therefore, be negative. The
result of the conversion is a number comprised of the Arabic digits 0-9, with no
insignificant leading zeros but possibly with a leading ”-".

The value n may not be less than the number of characters in string, with the single
exception that it may be zero, which indicates that the number is always positive
(as though n were greater than the the length of string).

Examples:

1x8 == -8
2x8 == §
2x08 == 8
0x08 == §
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF0O81 == -3967

8xF081 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except
that the identifying character is B or b, and the digits of string must be either 0 or
1, each representing a single bit.

43

3.4

Chapter 3. NetRexx Language Definition

Examples:

1b0 == 0
1bl == -1
0b10 == 2
0b100 == 4
4b1000 == -8
8B1000 == 8

Note: Hexadecimal and binary numeric symbols are a purely syntactic device for
representing decimal whole numbers. That is, they are recognized only within the
source of a NetRexx program, and are not equivalent to a literal string with the
same characters within quotes.

Types and Classes

Programs written in the NetRexx language manipulate values, such as names,
numbers, and other representations of data. All such values have an associated
type (also known as a signature).

The type of a value is a descriptor which identifies the nature of the value and the
operations that may be carried out on that value.

A type is normally defined by a class, which is a named collection of values (called
properties) and procedures (called methods) for carrying out operations on the pro-
perties.

For example, a character string in NetRexx is usually of type Rexx, which will
be implemented by the class called Rexx. The class Rexx defines the properties
of the string (a sequence of characters) and the methods that work on strings.
This type of string may be the subject of arithmetic operations as well as more
conventional string operations such as concatenation, and so the methods imple-
ment string arithmetic as well as other string operations.

The names of types can further be qualified by the name of a package where the
class is held. See the package instruction for details of packages; in summary, a
package name is a sequence of one or more non-numeric symbols, separated by
periods. Thus, if the Rexx class was part of the netrexx.lang package, B4 then its
qualified type would be netrexx.lang.Rexx.

In general, only the class name need be specified to refer to a type. However, if a
class of the same name exists in more than one known (imported) package, then
the name should be qualified by the package name. That is, if the use of just the

23 This is in fact where it may be found in the reference implementation.

44

3.4.1

3.4.2

3.4. Types and Classes

class name does not uniquely identify the class then the reference is ambiguous
and an error is reported.

Primitive types

Implementations may optionally provide primitive types for efficiency. Primitive
types are ”built-in” types that are not necessarily implemented as classes. They
typically represent concepts native to the underlying environment (such as 32-bit
binary integer numbers) and may exhibit semantics that are different from other
types. NetRexx, however, makes no syntax distinction in the names of primitive
types, and assumes hinary constructors (see page) exist for primitive values.

Primitive types are necessary when performance is an overriding consideration,
and so this definition will assume that primitive types corresponding to the com-
mon binary number formats are available and will describe how they differ from
other types, where appropriate.

In the reference implementation, the names of the primitive types are:
boolean char byte short int long float double

where the first two describe a single-bit value and Unicode character respectively, and the
remainder describe signed numbers of various formats. The main difference between these
and other types is that the primitive types are not a subclass of Object, so they cannot be
assigned to a variable of type Object or passed to methods "by reference’. To use them in this
way, an object must be created to "wrap” them, Java provides classes for this (for example,
the class Long).

Dimensioned types

Another feature that is provided for efficiency is the concept of dimensioned types,
which are types (normal or primitive) that have an associated dimension (in the
sense of the dimensions of an array). Dimensioned values are described in detail
in the section on Arrays (see page @) .

The dimension of a dimensioned type is represented in NetRexx programs by
square brackets enclosing zero or more commas, where the dimension is given
by the number of commas, plus one. A dimensioned type is distinct from the type
of the same name but with no dimensions.

Examples:

45

3.4.3

3.5

3.5.1

Chapter 3. NetRexx Language Definition

Rexx
int
Rexx[]
int[,,]

The examples show a normal type, a primitive type, and a dimensioned version of
each (of dimension 1 and 3 respectively). The latter type would result from con-
structing an array thus:

myarray=int[10,10,10]

That is, the dimension of the type matches the count of indexes defined for the
array.

Minor and Dependent classes

A minor class in NetRexx is a class whose name is qualified by the name of another
class, called its parent. This qualification is indicated by the form of the name of
the class: the short name of the minor class is prefixed by the name of its parent
class (separated by a period). For example, if the parent is called Foo then the full
name of a minor class Bar would be written Foo.Bar.

A dependent class is a minor class that has a link to its parent class that allows a
child object simplified access to its parent object and its properties.

These refinements of classes and are described in the section Minor and Dependent

classes (see page) .

Terms

A term in NetRexx is a syntactic unit which describes some value (such as a literal
string, a variable, or the result of some computation) that can be manipulated in
a NetRexx program.

Terms may be either simple (consisting of a single element) or compound (consisting
of more than one element, with a period and no other characters between each
element).

Simple terms

A simple term may be:
46

3.5.2

3.5. Terms

A literal string (see page E?I) - a character string delimited by quotes, which is

a constant.

« A symbol (see page @) . A symbol that does not begin with a digit identifies a
variable, a value, or a type. One that does begin with a digit is a numeric symbol,
which is a constant.

« A method call (see page @) , which is of the form

symbol ([expression[,expression]...])

 An indexed reference (see page @) , which is of the form &4
symbol'['[expression[,expression]...]"]"’

« An array initializer (see page) , which is of the form

I

"["expression[,expression]...’]

» A sub-expression (see page @) , which consists of any expression enclosed
within a left and a right parenthesis.

Blanks are not permitted between the symbol in a method call and the ”(”, or be-
tween the symbol in an indexed reference and the "[”.

Within simple terms, method calls with no arguments (that is, with no expressions
between the parentheses) may be expressed without the parentheses provided
that they refer to a method in the current class (or to a static method in a class
used by the current class) and do not refer to a constructor (see page E?I) . An im-
plementation may optionally provide a mechanism that disallows this parenthe-
sis omission.

Compound terms

Compound terms may start with any simple term, and, in addition, may start
with a qualified class name (see page) or a qualified constructor (see page
@) . These last two both start with a package name (a sequence of non-numeric
symbols separated by periods and ending in a period).

This first part of a compound term is known as the stub of the term. Example
stubs:

"A string"
Arca

12.10

paint(g)
indexedVar[i+1]
("A" "string")

24The notations [’ and ']’ indicate square brackets appearing in the NetRexx program.

47

3.5.3

Chapter 3. NetRexx Language Definition

java.lang.Math —— qualified class name
netrexx.lang.rexx(1l) -- qualified constructor

All stubs are syntactically valid terms (either simple or compound) and may
optionally be followed by a continuation, which is one or more additional non-
numeric symbols, method calls, or indexed references, separated from each other
and from the stub by connectors which are periods. Example compound terms:

"A rabbit".word(2).pos('b")
Fluffy.left(3)

12.10.max(j)
paint(g).picture
indexedVar[i1+1].length

("A" "string").word(1l)
java.lang.Math.PI
java.lang.Math.log(10)

Within compound terms, method calls with no arguments (that is, with no ex-
pressions between the parentheses) may be expressed without the parentheses
provided that they do not refer to a constructor (see page [EZ?I) . For example, the
term:

Thread.currentThread().suspend()

could be written:
Thread.currentThread. suspend

An implementation may optionally provide a mechanism that disallows this pa-
renthesis omission.

Evaluation of terms

Simple terms are evaluated as a whole, as described below. Compound terms
are evaluated from left to right. First the stub is evaluated according to the rules
detailed below. The type of the value of the stub then qualifies the next element
of the term (if any) which is then evaluated (again, the exact rules are detailed
below). This process is then repeated for each element in the term.

For instance, for the example above:
"A rabbit".word(2).pos('b")

the evaluation proceeds as follows:

1. The stub (A rabbit”) is evaluated, resulting in a string of type Rexx.
2. Because that string is of type Rexx, the Rexx class is then searched for the
word method. This is then invoked on the string, with argument 2. In other

48

3.5. Terms

words, the word method is invoked with the string ”A rabbit” as its current
context (the properties of the Rexx class when the method is invoked reflect
that value).
This returns a new string of type Rexx, “rabbit” (the second word in the
original string).

3. In the same way as before, the pos method of the Rexx class is then invoked
on the new string, with argument "b”.
This returns a new string of type Rexx, ”3” (the position of the first "b” in the
previous result).

This value, ”3”, is the final value of the term.

Theremainder of this section gives the details of term evaluation; it is best skipped
on first reading.

3.5.4 Simple term evaluation

All simple terms may also be used as stubs, and are evaluated in precisely the
same way as stubs, as described below. For example, numeric symbols are evaluated
as though they were enclosed in quotes; their value is a string of type Rexx.

In binary classes (see page 88) , however, simple terms that are strings or numeric
symbols are given an implementation-defined string or primitive type respecti-
vely, as described in the section on Binary values and operations (see page)

3.5.5 Stub evaluation

A term’s stub is evaluated according to the following rules:

o If the stub is a literal string, its value is the string, of type Rexx, constructed
from that literal.

o Ifthe stubisanumeric symbol, its value is the string, of type Rexx, constructed
from that literal (as though the literal were enclosed in quotes).

o If the stub is an unqualified method or constructor call, or a qualified con-
structor call, then its value and type is the result of invoking the method
identified by the stub, as described in Methods and Constructors (see page @) .

o Ifthe stubis a (non-numeric) symbol, then its value and type will be determi-
ned by whichever of the following is first found:

1. A local variable or method argument within the current method, or a
property in the current class.

49

Chapter 3. NetRexx Language Definition

2. A method whose name matches the symbol, and takes no arguments,
and that is not a constructor, in the current class. B3 If the stub is part
of a compound symbol, then it may also be in a superclass, searching
upwards from the current class.

3. A static or constant property, or a static method, Bd whose name matches
the symbol (and that takes no arguments, if a method) in a class listed
in the uses phrase of the class instruction. Each class from the list is
searched for a matching property or method, and then its superclasses
are searched upwards from the class in the same way; this process is
repeated for each of the classes, in the order specified in the list.

4. One of the allowed special words described in Special words and methods
(see page) , such as this or version.

5. The short name of a known class or primitive type (in which case the stub
has no value, just a type).

o Ifthe stubis an indexed reference, then its value and type will be determined
by whichever of the following is first found:

1. The symbol naming the reference is an undimensioned local variable
or method argument within the current method, or a property in the
current class, which has type Rexx. In this case, the reference is to an
indexed string (see page [75) ; the expressions within the brackets must be
convertible to type Rexx, and the type of the result will be Rexx.

2. The symbol naming the reference is a dimensioned local variable or
method argument within the current method, or a property in the current
class. In this case, the reference is to an array (see page E?I) , and the ex-
pressions within the brackets must be convertible to whole numbers
allowed for array indexes. The type of the result will have the type of the
array, with dimensions reduced by the number of dimensions specified
in the stub. For example, if the array foo was of type Baal,,,] and the stub
referred to foo[1,2], then the result would be of type Baal,]. It would have
been an error for the stub to have specified more than four dimensions.

3. The symbol naming the reference is the name of a static or constant
property in a class listed in the uses phrase of the class instruction. Each
class from the list is searched in the same way as for symbols, above. The
reference may be to an indexed string or an array, as for properties in the
current class.

4. The symbol naming the reference is the name of a primitive type or
the short name of a known class, and there are no expressions within

25Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.
26Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.

50

3.5.6

3.5. Terms

the brackets (just optional commas). In this case, the stub describes a
dimensioned type (see page @

5. The symbol naming the reference is the name of a primitive type or is
the short name of a known class, and there are one or more expressions
within the brackets. In this case, the reference is to an array constructor
(see page ; the expressions within the brackets must be convertible to
non-negative whole numbers allowed for array indexes, and the value is
an array of the specified type, dimensions, and size.

o If the stub is a sub-expression, then its value and type will be determined by
evaluating the expression (see page within the parentheses.

« If the stub starts with the name of a package, then it will either describe a
qualified type (see page @) or a qualified constructor (see page [5__71) . Its type
will be same in either case, and if a constructor then its value will be the value
returned by the constructor.

If the stub is not followed by further segments, the final value and type of the term
is the value and type of the stub.

Continuation evaluation

Each segment of a term’s continuation is evaluated from left to right, according to
the type of the evaluation of the term so far (the continuation type) and the syntax
of the new segment:

« Ifthe segmentis a method call, then its value and type is the result of invoking
the matching method in the class defining the continuation type (or a super-
class or subclass of that class), as described in Methods and Constructors (see
page @) . Note that method calls in term continuations cannot be construc-
tors.

« If the stub is an indexed reference, then it will refer to a property in the class
defining the continuation type (or a superclass of that class). That property
will either be an undimensioned NetRexx string (type Rexx) or a dimensioned
array. In either case, it is evaluated in the same way as an indexed reference
found in the stub, except that it is not necessarily in the current class, cannot
be an array constructor, and cannot result in a dimensioned type.

- If the segment is a symbol, then it refers to either a property or a method in
the class defining the continuation type (or a superclass of that class). B7

27Unless parenthesis omission is disallowed by an implementation option, such as options strictargs, in which case it
can only be a property.

51

3.5.7

3.6

Chapter 3. NetRexx Language Definition

The search for the property or method starts with the class defining the
continuation type. If a property name matches, it is used; if not, a method
of the same name and having no arguments (or only optional arguments)
will match. If neither property nor method is found, then the same search is
applied to each of the continuation class’s superclasses in turn, starting with
the class that it extends.

As a convenient special case, if the property or method is not found, then if
the segment is the final segment of the term and is the simple symbol length
and the continuation type is a single-dimensioned array, then the segment
evaluates to the size of the array. This will be a non-negative whole number
of an appropriate primitive type (or of type Rexx if there is no appropriate

type).

The final value and type of the term is the value and type determined by the
evaluation of the last segment of the continuation.

Arrays in terms

If a partially-evaluated term results in a dimensioned array (see page @) ,its type
is treated as type Object so that evaluation of the term can continue. For example,
in

ca=char[] "tosh"
say ca.toString()

the variable ca is an array of characters; in the expression on the second line the
method toString() of the class Object will be found. bd

Methods and Constructors

Instructions in NetRexx are grouped into methods, which are named routines that
always belong to (are part of) a class.

Methods are invoked by being referenced in a term (see page @) , which may be
part of an expression or be a clause in its own right (a method call instruction). In
either case, the syntax used for a method invocation is:

symbol ([expression[,expression]...])

281n the reference implementation, this would return an identifier for the object.

52

3.6. Methods and Constructors

The symbol, which must be non-numeric, is called the name of the method. It is
important to note that the name of the method must be followed immediately
by the ”(”, with no blank in between, or the construct will not be recognized as
a method call (a blank operator would be assumed at that point instead). The ex-
pressions (separated by commas) between the parentheses are called the argu-
ments to the method. Each argument expression may include further method calls.
The argument expressions are evaluated in turn from left to right and the resul-
ting values are then passed to the method (the procedure for locating the method
is described below). The method then executes some algorithm (usually depen-
dent on any arguments passed, though arguments are not mandatory) and will
eventually return a value. This value is then included in the original expression
just as though the entire method reference had been replaced by the name of a
variable whose value is that returned data.

For example, the substr method is provided for strings of type Rexx and could be
used as:

c="abcdefghijk'
a=c.substr(3,7)
/* would set A to "cdefghi" x/

Here, the value of the variable c is a string (of type Rexx). The substr (substring)
method of the Rexx class is then invoked, with arguments 3 and 7, on the value
referred to by c. That is, the the properties available to (the context of) the substr
method are the properties constructed from the literal string ’abedefghijk’. The
method returns the substring of the value, starting at the third character and of
length seven characters.

A method may have a variable number of arguments: only those required need be
specified. For example, ’ABCDEF’.substr(4) would return the string ’‘DEF’, as the
substr method will assume that the remainder of the string is to be returned if no
length is provided.

Method invocations that take no arguments may omit the (empty) parentheses in
circumstances where this would not be ambiguous. See the section on Terms (see
page @) for details.

Implementation minimum: At least 10 argument expressions should be allowed
in a method call.

53

3.6.1

3.6.2

Chapter 3. NetRexx Language Definition

Method call instructions

When a clause in a method consists of just a term, and the final part of the term is
a method invocation, the clause is a method call instruction:

symbol ([expression[,expression]...]);

The methodis being called as a subroutine of the current method, and any returned
value is discarded. In this case (and in this case only), the method invoked need
not return a value (that is, the return instruction that ends it need not specify an
expression). B4

A method call instruction that is the first instruction in a constructor (see below)
can only invoke the special constructors this and super.

Method resolution (search order)

Method resolution in NetRexx proceeds as follows:

« If the method invocation is the first part (stub) of a term, then:

1. The current class is searched for the method (see below for details of
searching).

2. If not found in the current class, then the superclasses of the current class
are searched, starting with the class that the current class extends.

3. If still not found, then the classes listed in the uses phrase of the class
instruction are searched for the method, which in this case must be a
static method (see page . Each class from the list is searched for the
method, and then its superclasses are searched upwards from the class;
this process is repeated for each of the classes, in the order specified in
the list.

4. If still not found, the method invocation must be a constructor (see below)
and so the method name, which may be qualified by a package name,
should match the name of a primitive type or a known class (type). The
specified classis then searched for a constructor that matches the method
invocation.

 Ifthe method invocation is not the first part of the term, then the evaluation of
the parts of the term to the left of the method invocation will have resulted in

29 A method call instruction is equivalent to the call instruction of other languages, except that no keyword is required.

54

3.6. Methods and Constructors

a value (or just a type), which will have a known type (the continuation type).
Then:
1. The class that defines the continuation type is searched for the method
(see below for details of searching).
2. If not found in that class, then the superclasses of that class are searched,
starting with the class that that class extends.
If the search did not find a method, an error is reported.
If the search did find a method, that is the method which is invoked, except
in one case:

« If the evaluation so far has resulted in a value (an object), then that value
may have a type which is a subclass of the continuation type. If, within
that subclass, there is a method that exactly overrides (see page @) the
method that was found in the search, then the method in the subclass is
invoked.

This case occurs when an object is earlier assigned to a variable of a type
which is a superclass of the type of the object. This type simplification hides
the real type of the object from the language processor, though it can be de-
termined when the program is executed.

Searching for a method in a class proceeds as follows:

1. Candidate methods in the class are selected. To be a candidate method:

« the method must have the same name as the method invocation (inde-
pendent of the case (see page @) of the letters of the name)

« the method must have the same number of arguments as the method in-
vocation (or more arguments, provided that the remainder are shown as
optional in the method definition)

« it must be possible to assign the result of each argument expression to
the type of the corresponding argument in the method definition (if strict
type checking is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the method
was not found.

3. If there is just one candidate method, that method is used; the search is
complete.

4. If there is more than one candidate method, the sum of the costs of the con-
versions (see page @) from the type of each argument expression to the type
of the corresponding argument defined for the method is computed for each
candidate method.

5. The costs of those candidates (if any) whose names match the method invo-

55

3.6.3

Chapter 3. NetRexx Language Definition

cation exactly, including in case, are compared; if one has a lower cost than
all others, that method is used and the search is complete.

The costs of all the candidates are compared; if one has a lower cost than all
others, that method is used and the search is complete.

If there remain two or more candidates with the same minimum cost, the
method invocation is ambiguous, and an error is reported.

Note: When a method that is not an exact match to a call is found in a class, super-
classes of that class are also searched for methods which may have a lower-cost of
conversion and the method with the lowest cost, hence the closest match, is used
to resolve the search.

The current method of method resolution has been chosen to maximize intero-
perability with Java-language programs.

Method overriding

A method is said to exactly override a method in another class if

1.
2.
3.

the method in the other class has the same name as the current method

the method in the other class is not private

the other classis a superclass of the current class, or is a class that the current
class implements (or is a superclass of one of those classes).

. thenumber and type of the arguments of the method in the other class exactly

match the number and type of the arguments of the current method (where
subsets are also checked, if either method has optional arguments).

For example, the Rexx class includes a substr (see page @) method, which takes
from one to three strings of type Rexx. In the class:

class mystring extends Rexx
method substr(n=Rexx, length=Rexx)

return this.reverse.substr(n, length)

method substr(n=int, length=int)

return this.reverse.substr(Rexx n, Rexx length)

the first method exactly overrides the substr method in the Rexx class, but the
second does not, because the types of the arguments do not match.

30This in contrast to all versions before 3.02, where this rule was: When a method is found in a class, superclasses of that
class are not searched for methods, even though a lower-cost method may exist in a superclass.. The latter was chosen to guard the
program optimally against changes in superclasses.

56

3.6. Methods and Constructors

A method that exactly overrides a method is assumed to be an extension of the
overridden method, to be used in the same way. For such a method, the following
rules apply:

« It must return a value of the same type@ as the overridden method (or none,
if the overridden method returns none).

- It must be at least as visible as the overridden routine. For example, if the
overridden routine is public then it must also be public.

« If the overridden method is static then it must also be static.

« If the overridden method is not static then it must not be static.

« If the underlying implementation checks exceptions (see page) , only
those checked exceptions that are signalled by the overridden method may
be left uncaught in the current method.

3.6.4 Return Types

3.6.5

NetRexx allows covariant return types such as have been allowed in Java since
the version 1.5 release. Prior to Java 1.5, in order for a method to override or im-
plement a method from another class, the return type of the methods had to be
an exact match. Since the Java 1.5 release, methods which override a superclass
method or implement an interface class method are allowed to have a return type
which is a subclass of the return type of the method replaced or implemented. An
exact match is no longer required.

Constructor methods

As described above, methods are usually invoked in the context of an existing
value or type. A special kind of method, called a constructor method, is used to
actually create a value of a given type (an object).

Constructor methods always have the same short name as the class in which
they are found, and construct and return a value of the type defined by that class
(sometimes known as an instance of that class). If the class is part of a package,
then the constructor call may be qualified by the package name.

Example constructors:

File('Dan.yr.0gof")

java.io.File('Speleogroup.letter")
Rexx('some words"')
netrexx.lang.Rexx(1)

3lobserving what is stated in the next paragraph

57

Chapter 3. NetRexx Language Definition

There will always be at least one constructor if values can be created for a class.
NetRexx will add a default public constructor that takes no arguments if no con-
structors are provided, unless the components of the class are all static or constant,
or the class is an interface class.

All constructors follow the same rules as other methods, and in addition:

1. Constructor calls always include parentheses in the syntax, even if no argu-
ments are supplied. This distinguishes them from a reference to the type of
the same name.

2. Constructors must call a constructor of their superclass (the class they extend)
before they carry out anyinitialization of their own. This is so any initialization
carried out by the superclass takes place, and at the appropriate moment.
Only after this call is complete can they make any reference to the special
words this or super (see page) .

Therefore, the first instruction in a constructor must be either a call to the
superclass, using the special constructor super() (with optional arguments),
or a call to to another constructor in the same class, using the special con-
structor this() (with optional arguments). In the latter case, eventually a con-
structor that explicitly calls super() will be invoked and the chain of local con-
structor calls ends.

As a convenience, NetRexx will add a default call to super(), with no argu-
ments, if the first instruction in a constructor is not a call to this() or super().

3. The properties of a constructed value are initialized, in the order given in the
program, after the call to super() (whether implicit or explicit).

4. By definition, constructors create a value (object) whose type is defined by
the current class, and then return that value for use. Therefore, the returns
keyword on the method instruction (see page [LO6) that introduces the con-
structor is optional (if given, the type specified must be that of the class).
Similarly, the only possible forms of the return instruction used in a con-
structor are either “return this;”, which returns the value that has just been
constructed, or just “return;”, in which case, the "this” is assumed (this form
will be assumed at the end of a method, as usual, if necessary).

Here is an example of a class with two constructors, showing the use of this() and
super(), and taking advantage of some of the assumptions:
class MyChars extends SomeClass

properties private

/* the data 'in' the object x/
value=char[]

58

3.7

3.7. Type conversions

/* construct the object from a char array */
method MyChars(array=char[])

/* initialize superclass */

super()

value=array —— save the value

/* construct the object from a String */
method MyChars(s=String)

/x convert to char[] and use the above x*/
this(s.toCharArray())

Objects of type MyChars could then be created thus:
myvar=MyChars("From a string”)

or by using an argument that has type charf].

Type conversions

As described in the section on Types and classes (see page @, all values that are
manipulated in NetRexx have an associated type. On occasion, a value involved
in some operation may have a different type than is needed, and in this case
conversion of a value from one type to another is necessary.

NetRexx considerably simplifies the task of programming, without losing robust-
ness, by making many such conversions automatic. It will automatically convert
values providing that there is no loss of information caused by the automatic
conversion (or if there is, an exception would be raised).

Conversions can also be made explicit by concatenating a type to a value (see page
b6) and in this case less robust conversions (sometimes known as casts) may be
effected. See below for details of the permitted automatic and explicit conver-
sions.

Almost all conversions carry some risk of failure, or have a performance cost, and
so it is expected that implementations will provide options to either report costly
conversions or require that programmers make all conversions explicit. ¢ Such
options might be recommended for certain critical programming tasks, but are
not necessary for general programming.

32n the reference implementation, options strictassign may be used to disallow automatic conversions.

59

3.7.1

Chapter 3. NetRexx Language Definition

Permitted automatic conversions

In general, the semantics of a type is unknown, and so conversion (from a source
type to a target type) is only possible in the following cases:

« The target type and the source type are identical (the trivial case).

« The target type is a superclass of the source type, or is an interface class im-
plemented by the source type. This is called type simplification, and in this case
the valueis not altered, no information is lost, and an explicit conversion may
be used later to revert the value to its original type.

« The source type has a dimension, and the target type is Object.

e The source type is null and the target type is not primitive.

« The target and source types have known semantics (that is, they are "well-
known” to the implementation) and the conversion can be effected without
loss of information (other than knowledge of the original type). These are
called well-known conversions.

Necessarily, the well-known conversions are implementation-dependent, in that
they depend on the standard classes for the implementation and on the primitive
types supported (if any). Equally, it is this automatic conversion between strings
and the primitive types of an implementation that offer the greatest simplifications
of NetRexx programming.

For example, if the implementation supported an int binary type (perhaps a 32-
bit integer) then this can safely be converted to a NetRexx string (of type Rexx).
Hence a value of type int can be added to a number which is a NetRexx string
(resulting in a NetRexx string) without concern over the difference in the types of
the two terms used in the operation.

Conversely, converting a long integer to a shorter one without checking for trun-
cation of significant digits could cause a loss of information and would not be
permitted.

In the reference implementation, the semantics of each of the following types is known to
the language processor (the first four are all string types, and the remainder are known as
binary numbers):

 netrexx.lang.Rexx - the NetRexx string class

* java.lang.String - the Java string class

e char - the Java primitive which represents a single character
 char[] - an array of chars

 boolean - a single-bit primitive

60

3.7. Type conversions

byte, short, int, long, - signed integer primitives (8, 16, 32, or 64 bits)

« float, double - floating-point primitives (32 or 64 bits)

Under the rules described above, the following well-known conversions are permitted:

Rexx to binary number, char[], String, or char
String to binary number, char[], Rexx, or char
char to binary number, char[], String, or Rexx
char(] to binary number, Rexx, String, or char
binary number to Rexx, String, char|[], or char

binary number to binary number (if no loss of information can take place - no sign,
high order digits, decimal part, or exponent information would be lost)

Notes:

1.

Some of the conversions can cause a run-time error (exception), as when a string
represents a number that is too large for an int and a conversion to int is attempted,
or when a string that does not contain exactly one character is converted to a char.

. The boolean primitive is treated as a binary number that may only take the values 0

or 1. A boolean may therefore be converted to any binary number type, as well as any of
the string (or char) types, as the character "0” or 1", Similarly, any binary number or
string can be converted to boolean (and must have a value of 0 or 1 for the conversion
to succeed).

The char type is a single-character string (it is not a number that represents the
encoding of the character).

3.7.2 Permitted explicit conversions

Explicit conversions are permitted for all permitted automatic conversions and,
in addition, when:

The target type is a subclass of the source type, or implements the source
type. This conversion will fail if the value being converted was not originally
of the target type (or a subclass of the target type).

Both the source and target types are primitive and (depending on the imple-
mentation) the conversion may fail or truncate information.

The target type is Rexx or a well-known string type (all values have an explicit
string representation).

61

Chapter 3. NetRexx Language Definition

3.7.3 Costs of conversions

All conversions are considered to have a cost, and, for permitted automatic con-
versions, these costs are used to select a method for execution when several
possibilities arise, using the algorithm described in Methods and Constructors (see

page b4) .
For permitted automatic conversions, the cost of a conversion from a source type to

a target typewill range from zero through some arbitrary positive value, constrained
by the following rules:

« The cost is zero only if the source and target types are the same, or if the
source type is null and the target type is not primitive.

« Conversions from a given primitive source type to different primitive target
types should have different costs. For example, conversion of an 8-bit number
to a 64-bit number might cost more than conversion of a 8-bit number to a
32-bit number.

« Conversions that may require the creation of a new object cost more than
those that can never require the creation of a new object.

« Conversions that may fail (raise an exception) cost more than those that may
require the creation of an object but can never fail.

Within these constraints, exact costs are arbitrary, and (because they mostly
involve implementation-dependent primitive types) are necessarily implementation-
dependent. The intent is that the "best performance” method be selected when
there is a possibility of more than one.

3.8 Expressions and Operators

Many clauses can include expressions. Expressions in NetRexx are a general me-
chanism for combining one or more data items in various ways to produce a result,
usually different from the original data. Expressions consist of one or more terms
(see page @) , such as literal strings, symbols, method calls, or sub-expressions,
and zero or more operators that denote operations to be carried out on terms. Most
operators act on two terms, and there will be at least one of these dyadic operators
between every pair of terms. B3 There are also prefix (monadic) operators, that
act on the term that is immediately to the right of the operator. There may be
one or more prefix operators to the left of any term, provided that adjacent prefix

330ne operator, direct concatenation, is implied if two terms abut (see page El]) .

62

3.8.1

3.8. Expressions and Operators

operators are different.

Evaluation of an expression isleft toright, modified by parentheses and by operator
precedence (see page @) in the usual “algebraic” manner. Expressions are wholly
evaluated, except when an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate and its value
(and the type of that value) are determined.

The result of any operation is also a value, which may be a character string, a data
object of some other type, or (in special circumstances) a binary representation
of a character or number. The type of the result is well-defined, and depends on
the types of any terms involved in an operation and the operation carried out.
Consequently, the result of evaluating any expression is a value which has a known

type.
Note that the NetRexx language imposes no restriction on the maximum size of

results, but there will usually be some practical limitation dependent upon the
amount of storage and other resources available during execution.

Operators

The operators in NetRexx are constructed from one or more operator charac-
ters (see page @) Blanks (and comments) adjacent to operator characters have
no effect on the operator, and so the operators constructed from more than one
character may have embedded blanks and comments. In addition, blank charac-
ters, where they occur between tokens within expressions but are not adjacent to
another operator, also act as an operator. The operators may be subdivided into
five groups: concatenation, arithmetic, comparative, logical, and type operators.
The first four groups work with terms whose type is "well-known” (that is, strings,
or known types that can be be converted to strings without information loss). The
operations in these groups are defined in terms of their operations on strings.

Concatenation

The concatenation operators are used to combine two strings to form one string
by appending the second string to the right-hand end of the first string. The
concatenation may occur with or without an intervening blank: Concatenation
without a blank may be forced by using the || operator, but it is useful to remember
that when two terms are adjacent and are not separated by an operator, B4 they

34This can occur when the terms are syntactically distinct (such as a literal string and a symbol).

63

Chapter 3. NetRexx Language Definition

TABLE 2: Concatenation operators

(blank) Concatenate terms with one blank in between.

1 Concatenate without an intervening blank.

(abuttal) Concatenate without an intervening blank.

TABLE 3: Arithmetic operators

+ Add
- Subtract
Multiply
/ Divide
% Integer divide. Divide and return the integer part of the result.
// Remainder. Divide and return the remainder (this is not modulo, as the result may

be negative).

Power. Raise a number to a whole number power.

Prefix- Same as the subtraction: "0-number”.

Prefix + Same as the addition: "0+number”.

will be concatenated in the same way. This is the abuttal operation. For example,
if the variable Total had the value '37.4’, then Total’%’ would evaluate to '37.4%".
Values that are not strings are first converted to strings before concatenation. The
concatenation operators are listed in table @

Arithmetic

Character strings that are numbers (see page @) may be combined using the
arithmetic operators listed in table . The section on Numbers and Arithmetic (see
page @) describes numeric precision, the format of valid numbers, and the
operation rules for arithmetic. Note that if an arithmetic result is shown in expo-
nential notation, then it is likely that rounding has occurred.

In binary classes (see page 88) , the arithmetic operators will use binary arithme-
tic if both terms involved have values which are binary numbers. The section on
Binary values and operations (see page) describes binary arithmetic.

Comparative

The comparative operators compare two terms and return the value ’1’ if the
result of the comparisonis true, or’0’ otherwise. Two sets of operators are defined:

64

3.8. Expressions and Operators

TABLE 4: Normal comparative operators

= Equal (numerically or when padded, etc.).

\= Not equal (inverse of =).
> Greater than.
< Less than.

><, <> Greater than orless than (same as "Not equal”).

>=,\< Greater than or equal to, not less than.

<=,\> Lessthan or equal to, not greater than.

TABLE 5: Strict comparative operators

== Strictly equal (identical).

== Strictly not equal (inverse of ==).

>> Strictly greater than.

<< Strictly less than.

>>=,\<< Strictly greater than or equal to, strictly not less than.

<<=,\>> Strictly less than or equal to, strictly not greater than.

the strict comparisons (listed in table E) and the normal comparisons (listed in
table @). The strict comparative operators all have one of the characters defining
the operator doubled. The ”"==", and ”"\==" operators test for strict equality or
inequality between two strings. Two strings must be identical to be considered
strictly equal. Similarly, the other strict comparative operators (such as ”>>” or
”<<”) carry out a simple left-to-right character-by-character comparison, with
no padding of either of the strings being compared. If one string is shorter than,
and is a leading sub-string of, another then it is smaller (less than) the other.
Strict comparison operations are case sensitive, and the exact collating order
may depend on the character set used for the implementation. B3 For all the other
comparative operators, if both the terms involved are numeric, Bd a numeric com-
parison (in which leading zeros are ignored, etc.) is effected; otherwise, both terms
are treated as character strings. For this character string comparison, leading
and trailing blanks are ignored, and then the shorter string is padded with blanks
on the right. The character comparison operation takes place from left to right,
and is not case sensitive (that is, "Yes” compares equal to "yes”). As for strict
comparisons, the exact collating order may depend on the character set used for
the implementation.

35For example, in an ASCII or Unicode environment, the digits 0-9 are lower than the alphabetics, and lowercase
alphabetics are higher than uppercase alphabetics. In an EBCDIC environment, lowercase alphabetics precede uppercase,
but the digits are higher than all the alphabetics.

36That is, if they can be compared numerically without error.

65

Chapter 3. NetRexx Language Definition

TABLE 6: Boolean operators

& And. Returns 1 if both terms are true.

| Inclusive or. Returns 1 if either term is true.

&& Exclusive or. Returns 1 if either (but not both) is true.

Prefix\ Logical not. Negates; 1 becomes 0 and vice versa.

The equal and not equal operators ("=", "==", ”\=", and ”\==") may be used to
compare two objects which are not strings for equality, if the implementation
allows them to be compared (usually they will need to be of the same type). The
strict operators test whether the two objects are in fact the same object, B1 and
the normal operators may provide a more relaxed comparison, if available to the
implementation. Bd

In binary classes (see page) ,all the comparative operators will use binary arith-
metic to effect the comparison if both terms involved have values which are binary
numbers. In this case, there is no distinction between the strict and the normal
comparative operators. The section on Binary values and operations (see page)
describes the binary arithmetic used for comparisons.

Boolean

A character string is taken to have the value "false” if it is ’0’, and "true” if it is ’1’.
The logical operators take one or two such values (values other than ’0’ or ’1’ are
not allowed) and return ’0’ or ’1’ as appropriate. The Boolean operators are listed
in table B In binary classes (see page @) , the logical operators will act on all bits
in the values if both terms involved have values which are boolean or integers. The
section on Binary values and operations (see page describes this in more detail.

Type

Several of the operators already described can be used to carry out operations
related to types. Specifically:

« Any of the concatenation operators may be used for type concatenation, which
concatenates a type to a value. All three operators (blank, ”||”, and abuttal)
have the same effect, which is to convert (see page @) Bd the value to the

37Note that two distinct objects compared in this way may contain values (properties) that are identical, yet they will not
compare equal as they are not the same object.

38n the reference implementation, the equals method is used for normal comparisons. Where not provided by a type, this is imple-
mented by the Object class as a Strict comparison.

39This is sometimes known as casting

66

3.8.2

3.8. Expressions and Operators

type specified (if the conversion is not possible, an error is reported or an
exception is signalled). The type must be on the left-hand side of the operator.
Examples:

String "abc”
int (a+l1)
long 1
Exception e

InputStream myfile

« Atypeon the left hand side of an operator that could be a prefix (+, - or \) type
concatenation after the prefix operator is applied to the right-hand operand,
as though an explicit concatenation operator were placed before the prefix
operator.

For example:

x=int -y

means that -y is evaluated, and then the result is converted to int before
being assigned to x. Bd The ”less than or equal” and the “greater than or
equal” operators ("<=" and ”>=") may be used with a type on either side of
the operator, or on both sides. In this case, they test whether a value or type
is a subclass of, or is the same as, a type, or vice versa. Examples:

if i<=0bject then say 'I is an Object’
if String>=i then say 'I is a String’

if String<=0bject then say 'String is an Object’

The precedence of these operators is not affected by their being used with types
as operands.

Numbers

The arithmetic operators above require that both terms involved be numbers;
similarly some of the comparative operators carry out a numeric comparison
if both terms are numbers. Numbers are introduced and defined in detail in
the section on Numbers and arithmetic (see page @) . In summary, numbers are
character strings consisting of one or more decimal digits optionally prefixed by
a plus or minus sign, and optionally including a single period (”.”) which then
represents a decimal point. A number may also have a power of ten suffixed in
conventional exponential notation: an "E” (uppercase or lowercase) followed by
a plus or minus sign then followed by one or more decimal digits defining the

40This could also have been written x=int (-y).

67

3.8.3

Chapter 3. NetRexx Language Definition

power of ten. Numbers may have leading blanks (before and/or after the sign, if
any) and may have trailing blanks. Blanks may not be embedded among the digits
of a number or in the exponential part. Examples:

1191
'-17.9'
'127.0650'
"73e+128’
"+ 7.9E-5 '
"OOE+000"

Note that the sequence -17.9 (without quotes) in an expression is not simply a
number. It is a minus operator (which may be prefix minus if there is no term to
the left of it) followed by a positive number. The result of the operation will be a
number. A whole number (see page) in NetRexx is a number that has a zero (or
no) decimal part.

Implementation minimum: All implementations must support 9-digit arithme-
tic. In unavoidable cases this may be limited to integers only, and in this case the
divide operator (”/”) must not be supported. If exponents are supported in an im-
plementation, then they must be supported for exponents whose absolute value
is at least as large as the largest number that can be expressed as an exact integer
in default precision, i.e., 999999999.

Parentheses and operator precedence

Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

« When parentheses are encountered, other than those that identify method
calls (see page @) , the entire sub-expression delimited by the parentheses is
evaluated immediately when the term is required.

« When the sequence
term,; operator, term, operator, term;

is encountered, and operator; has a higher precedence than operator;, then
the operation (term, operator, terms) is evaluated first. The same rule is
applied repeatedly as necessary. Note, however, that individual terms are
evaluated from left to right in the expression (that is, as soon as they are
encountered). It is only the order of operations that is affected by the pre-
cedence rules.

68

3.8. Expressions and Operators

TABLE 7: Operator precedence

Prefix operators +-\

Power operator

Multiplication and division *and/

Addition and subtraction +-

Concatenation (blank) || (abuttal)
Comparative operators ===><<=>=<< \>> elc.
And &

Or, exclusive or | &&

M atad)
A

For example, (multiply) has a higher precedence than ”+” (add), so 3+2%*5 will
evaluate to 13 (rather than the 25 that would result if strict left to right evaluation
occurred). To force the addition to be performed before the multiplication the ex-
pression would be written (3+2)*5, where the first three tokens have been formed
into a sub-expression by the addition of parentheses. The order of precedence of
the operators is (highest at the top) is listed in table @

If, for example, the symbol a is a variable whose value is ’3’, and day is a variable
with the value 'Monday’, then:

a+5 = '8

a-4x2 = '-5'

a/’2 = '1.5'

a\%2 = ']

0.5%x2 = '0.25"

(a+l)>7 = '0' /* that is, False x/
st = '1' /* that is, True x/
o=t = '0' /* that is, False x/
L\ =" = '1' /* that is, True =x/
(a+1)=x3=12 = '] /* that i1s, True x/
'077'>"11" = '1' /* that i1s, True x/
'077'>>"'11" = '0' /* that is, False */
'abc'>>'ab' = '1' /x that is, True x/
'"If it is' day == 'If it is Monday'

day.substr(2,3) == ‘ond'

‘I'day'!" == '!Monday!"'

Note: The NetRexx order of precedence usually causes no difficulty, as it is the
same as in conventional algebra and other computer languages. There are two
differences from some common notations; the prefix minus operator always
has a higher priority than the power operator, and power operators (like other
operators) are evaluated left-to-right. Thus

-3%%x2 == 9 /* not -9 %/

69

Chapter 3. NetRexx Language Definition

-(2+1)x%2 == 9 /* not -9 %/
2x*x2x%3 == 64 /* not 256 %/

These rules were found to match the expectations of the majority of users when
the Rexx language was first designed, and NetRexx follows the same rules.

Clauses and Instructions

Clauses (see page @) arerecognized, and can usefully be classified, in the following
order:

Null clauses A clause that is empty or comprises only blanks, comments, and
continuations is a null clause and is completely ignored by NetRexx (except
that if it includes a comment it will be traced, if reached during execution).

Note: A null clause is not an instruction, so (for example) putting an extra
semicolon after the then or else in an if instruction is not equivalent to
putting a dummy instruction (as it would be in C or PL/I). The nop instruction
is provided for this purpose.

Assignments Single clauses within a class and of the form term=expression; are

instructions known as assignments (see page El]) . An assignment gives a
variable, identified by the term, a type or a new value.
In just one context, where property assignments are expected (before the first
method in a class), the ”=" and the expression may be omitted; in this case,
the term (and hence the entire clause) will always be a simple non-numeric
symbol which names the property

Method call instructions A method call instruction (see page @) isaclause within
amethod that comprises a single term thatis, orends in, a method invocation.

Keyword instructions A keyword instruction consists of one or more clauses, the
first of which starts with a non-numeric symbol which is not the name of a
variable or property in the current class (if any) and is immediately followed
by a blank, a semicolon (which may be implied by the end of a line), a literal
string, or an operator (other than ”=", which would imply an assignment). This
symbol, the keyword, identifies the instruction.

Keyword instructions control the external interfaces, the flow of control, and

so on. Some keyword instructions (see page) (do, if, loop, Or select) can

70

3.10

3.10. Assignments and Variables

include nested instructions.

Assignments and Variables

A variable is a named item whose value may be changed during the course of
execution of a NetRexx program. The process of changing the value of a variable
is called assigning a new value to it.

Each variable has an associated type, which cannot change during the execution
of a program; therefore, the values assigned to a given variable must always have
a type that can safely be assigned to that variable.

Variables may be assigned a new value by the method or parse instructions, but the
most common way of changing the value of a variable is by using an assignment
instruction. Any clause within a class and of the form:

assignment;
where assignment is:

term=expression

is taken to be an assignment instruction. The result of the expression becomes the
new value of the variable named by the term to the left of the equals sign. When
the term is simply a symbol, this is called the name of the variable. Example:

/* Next line gives FRED the value 'Frederic' x*/
fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9). &

Within a NetRexx program, variable names are not case-sensitive (for example,
the names fred, Fred, and FRED refer to the same variable). Where public names
are exposed (for example, the names of properties, classes, and methods, and in
cross-reference listings) the case used for the name will be that used when the
name was first introduced (first” is determined statically by position in a pro-
gram rather than dynamically).

Similarly, the type of a NetRexx variable is determined by the type of the value

4“lwithout this restriction on the first character of a variable name, it would be possible to redefine a number, in that for
example the assignment "3=4;” would give a variable called ”3” the value ’4’.

71

Chapter 3. NetRexx Language Definition

of the expression that is first assigned to it. 24 For subsequent assignments, it is
an error to assign a value to a variable with a type mismatch unless the language
processor can determine that the value can be assigned safely to the type of the
variable.

In practice, this means that the types must match exactly, be a simplification, or
both be "well-known” types such as Rexx, String, int, etc., for which safe conver-
sions are defined. The possibilities are described in the section on Conversions (see

page 59) . B3

For example, if there are types (classes) called ibm.util.hex, RunKnown, and
Window, then:

hexy=ibm.util.hex(3) —— 'hexy' has type 'ibm.util.hex'
rk=RunKnown() — 'rk' has type 'RunKnown'
fred=Window(10, 20) —— 'fred' has type 'Window'
s="Los Lagos" —— 's' has type Rexx

j=5 -—— 'j' has type Rexx

The first three examples invoke the constructor method for the type to construct a
value (an object). A constructor method always has the same name as the class to
which it belongs, and returns a new value of that type. Constructor methods are
described in detail in Methods and Constructors (see page @) .

The last two examples above illustrate that, by default, the types of literal strings
and numbers are NetRexx strings (type Rexx) and so variables tend to be of type
Rexx. This simplifies the language and makes it easy to learn, as many useful
programs can be written solely using the powerful Rexx type. Potentially more
efficient (though less human-oriented) primitive or built-in types for literals will
be used in binary classes (see page @) If the examples above were in a binary class,
then, in the reference implementation, the types of s andj would have been java.lang.String
and int respectively.

A variable may be introduced ("declared”) without giving it an initial value by
simply assigning a type to it:

i=int

r=Rexx

f=java.lo.File

”__»

Here, the expression to the right of the ”=" simply evaluates to a type with no value.

42Since NetRexx infers the type of a variable from usage, substantial programs can be written without introducing explicit
type declarations, although these are allowed.

43Implementations may provide for a stricter rule for assignment (where the types must be identical), controlled by the
options instruction.

72

3.10. Assignments and Variables

3.10.1 The use and scope of variables

NetRexx variables all follow the same rules of assignment, but are used in diffe-
rent contexts. These are:

Properties Variables which name the values (the data) owned by an object of the
type defined by the class are called properties. When an object is constructed
by the class, its properties are created and are initialized to either a default
value (null or, for variables of primitive type, an implementation-defined
value, typically O) or to a value provided by the programmer.

The attributes of properties can be changed by the properties instruction (see
page . For example, properties may also be constant, which means that
they are initialized when the class is first loaded and do not change thereafter.

Method arguments When a method is invoked, arguments may be passed to it.
These method arguments are assigned to the variables named on the method
instruction (see page [LO6) that introduces the method.

Local variables Variables that are known only within a method are called local
variables; each time a method is invoked a distinct set of local variables is
available. Local variables are normally given an initial value by the programmer.
If they are not, they are initialized to a default value (null or, for variables of
primitive type, an implementation-defined value, typically 0).

In order for types to be determined and type-checking to be possible at “compile-
time”, and easily determined by inspection, the use and type of every variable is
determined by its position in the program, not by the order in which assignments
are executed. That is, variable typing is static.

The visibility of a variable depends on its use. Properties are visible to all me-
thods in a class; method arguments and local variables are only visible within the
method in which they appear. In particular:

« Within a class, properties have unique names (they cannot be overridden by
method arguments or by local variables within methods); this avoids error-
prone ambiguity.

« Within a method, a method argument acts like a local variable (that is, it is
in the same name-space as local variables, and can be assigned new values);
it can be considered to be a local variable that is assigned a value just before
the body of the method is executed. There cannot be both a method argument
and a local variable in a method with the same name.

- Within methods, variables can take only one type, the type assigned to them
when first encountered in the method (in a strict ”"physical” sense, that is, as

73

3.10.2

Chapter 3. NetRexx Language Definition

parsed from top to bottom of the program and from left to right on each line).
Since methods tend to be small, there is no local scoping of variables inside
the constructs within a method. 4

Thus, in this example:

method iszero(x)
if x=0 then qualifier='is zero'
else qualifier='is not zero'
say 'The argument' qualifier'.'
the variable qualifier is known throughout the method and hence has a
known type and value when the say instruction is executed.

To summarize: a symbol that names a variable in the current class either refers to
a property (and in any use of it within the class refers to that property), or it refers
to a variable that is unique within a method (and any use of the name within that
method refers to the same variable).

Note: Avariable isjust aname, or "handle” for a value. It is possible for more than
one variable to refer to the same value, as in the program:

first="'A string'
second=first

Here, both variables refer to the same value. If that value is changeable then a
change to the value referred to by one of the variable names would also be seen if
the value is referred to by the other. For example, sub-values of a NetRexx string
can be changed, using Indexed references (see page @) , S0 a change to a sub-value
of first would also be seen in an identical indexed reference to second.

Terms on the left of assignments

In an assignment instruction, the term to the left of the equals sign is most com-
monly a simple non-numeric symbol, which always names a variable in the current
class. The other possibilities, as seen in the example below, are:

1. The term is an indexed reference (see page @) , to an existing variable that
refers to a string of type Rexx or an array (see page @) . The variable may
be in the current class, or be a property in a class named in the uses phrase
of the class instruction for the current class.

44Unlike the block scoping of PL/I, C, or Java.

74

3.11

3.11. Indexed strings and Arrays

2. Thetermisacompound term (see page [7]) that ultimately refers to a property
(see above) in some class (which may be the current class). This property
cannot be a constant.

Examples:

r=Rexx "'

r['foo']="?" —-— 1indexed string assignment
s=String[3]

s[0]="test' —-— array assignment
Sample.value=1 —— property assignment
this.value=1 —— property assignment
super.value=1 —— property assignment

The last two examples show assignments to a property in the current class or in
a superclass of the current class, respectively. Note that references to properties
in other classes must alway be qualified in some way (for example, by the prefix
super.). The use of the prefix this. for properties in the current class is optional.

Indexed strings and Arrays

Any NetRexx string (that is, a value of type Rexx), has the ability to have sub-values,
values (also of type Rexx) which are associated with the original string and are
indexed by an index string which identifies the sub-value. Any string with such
sub-values is known as an indexed string.

The sub-values of a NetRexx string are accessed using indexed references, where
the name of a variable of type Rexx is followed immediately by square brackets
enclosing one or more expressions separated by commas: E

r

symbol'[' [expression[, expression]...]"']

It is important to note that the symbol that names the variable must be followed
immediately by the ”[”, with no blank in between, or the construct will not be
recognized as an indexed reference. The expressions (separated by commas) be-
tween the brackets are called the indexes to the string. These index expressions
are evaluated in turn from left to right, and each must evaluate to a value is of
type Rexx or that can be converted to type Rexx.

The resulting index strings are taken "as-is” - that is, they must match exactly in
content, case, and length for a reference to find a previously-set item. They may

45The notations [’ and ']’ indicate square brackets appearing in the NetRexx program.

75

Chapter 3. NetRexx Language Definition

have any length (including the null string) and value (they are not constrained to
be just those strings which are numbers, for example).

If a reference does not find a sub-value, then a copy of the non-indexed value of
the variable is used. Example:

surname="'Unknown' —— default value
surname['Fred']='Bloggs'

surname['Davy']="'Jones'

try="'Fred'

say surname[try] surname['Bert']

would say "Bloggs Unknown”.

When multiple indexes are used, they indicate accessing a hierarchy of strings.
A single NetRexx string has a single set of indexes and subvalues associated with
it. The sub-values, however, are also NetRexx strings, and so may in turn have
indexes and sub-values. When more than one index is specified in an indexed
reference, the indexes are applied in turn from left to right to each retrieved sub-
value.

For example, in the sequence:

X=I?I

x['foo', 'bar']="'O0OK'
say x['foo', 'bar'l]
y=x["'foo"]

say y['bar']

both say instructions would display the string "OK”. Indexed strings may be
used to set up “associative arrays”, or dictionaries, in which the subscript is not
necessarily numeric, and thus offer great scope for the creative programmer. A
useful application is to set up a variable in which the subscripts are taken from
the value of one or more variables, so effecting a form of associative (content
addressable) memory. Notes:

1. A variable of type Rexx must have been assigned a value before indexing is
used on it. This is the value that is used as the default value whenever an
indexed reference finds no sub-value.

2. The indexes, and hence the sub-values, of a Rexx object can be retrieved in
turn using the over (see page @) keyword of the loop instruction.

3. The exists method (see page @) of the Rexx class may be used to test
whether an indexed reference has an explicitly-set value.

4. Assigning null to an indexed reference (for example, the assignment
switch[7]=null;) drops the sub-value; until set to a new value, any reference
to the sub-value (including use of the exists method) will return the same

76

3.11. Indexed strings and Arrays

result as when it had never been set.

3.11.1 Arrays

In addition to indexed strings, NetRexx also includes the concept of fixed-size
arrays, which may be used for indexing values of any type (including strings).

Arrays are used with the same syntax and in the same manner as indexed strings,
butwith important differences that allow for compactimplementations and access
to equivalent data structures constructed using other programming languages:

1. The indexes for arrays must be whole numbers that are zero or positive. There
will usually be an implementation restriction on the maximum value of the
index (typically 999999999 or higher).

2. The elements of an array are considered to be ordered; the first element has
index 0, the second 1, and so on.

3. An array is of fixed size; it must be constructed before use.

4. Variables that are assigned arrays can only be assigned arrays (of the same
dimension, see below) in the future. That is, being an array changes the type
of a value; it becomes a dimensioned type (see page @) .

Array references use the NetRexx indexed reference syntax defined above. The
same syntax is used for constructing arrays, except that the symbol before the
left bracket describes a type (and hence may be qualified by a package name).
The expression or expressions between the brackets indicate the size of the array
in each dimension, and must be a positive whole number or zero:

arg=String[4] —— makes an array for four Strings
arg=java.io.File[4] —- makes an array for four Files
i=int[3] —-— makes an array for three 'int's

(Anotherway of describing this is that array constructorslook justlike other object
constructors, except that brackets are used instead of parentheses.)

Once an array has been constructed, its elements can be referred to using brackets
and expressions, as before:

1[2]=3 —- sets the '2'-indexed value of 'i'
j=1[2] —- sets 'j' to the '2'-indexed value of '’

Regular multiple-dimensioned arrays may be constructed and referenced by
using multiple expressions within the brackets:

i=int[2,3] —- makes a 2x3 array of 'int' type objects
i[1,2]=3 —— sets the '1,2'-indexed value of '{i'
j=1[1,2] —— sets 'j' to the '1,2'-indexed value of '{i'

77

Chapter 3. NetRexx Language Definition

As with indexed strings, when multiple indexes are used, they indicate accessing

a hierarchy of arrays (the underlying model is therefore of a hierarchy of single-
dimensioned arrays). When more than one index is specified in an indexed reference
to an array, the indexes are applied in turn from left to right to each array.

As described in the section on Types (see page @) , the type of a variable that refers
to an array can be set (declared) by assignment of the type with array notation that
indicates the dimension of an array without any sizes:

k=int[] —— one-dimensional array of 'int' objects
m=float[,,] —— 3-dimensional array of 'float' objects

The same syntax is also used when describing an array type in the arguments of
a method instruction or when converting types. For example, after:

gg=char[] "Horse"

the variable gg has as its value an array of type char[] containing the five charac-
tersH,o,r, s, and e.

3.11.2 Array initializers

An array initializer is a simple term which is recognized if it does not immediately
follow (abut) a symbol, and has the form kd

’

"["expression[,expression]..."]

An array initializer therefore comprises a list of one or more expressions, separated
by commas, within brackets. When an array initializer is evaluated, the expres-
sions are evaluated in turn from left to right, and all must result in a value. An
array is then constructed, with a number of elements equal to the number of ex-
pressions in the list, with each element initialized by being assigned the result of
the corresponding expression.

The type of the array is derived by adding one dimension to the type of the result
of the first expression in the list, where the type of that expression is determined
using the same rules as are used to select the type of a variable when it is first
assigned a value(see page . All the other expressions in the list must have types
that could be assigned to the chosen type without error.

For example, in

varl=['aa', 'bb', 'cc']
var2=[char 'a', 'b', 'c']
var3=[String 'a', 'bb', 'c']

46The notations '[' and ']’ indicate square brackets appearing in the NetRexx program.

78

3.11. Indexed strings and Arrays

vard=[1, 2, 3, 4, 5, 6]
var5=[[1,21, [3,4]]

the types of the variables would be Rexx[], char[], String[], Rexx[], and Rexx[,]
respectively. In a binary class in the reference implementation, the types would
be String[], char[], String[], int[], and int[,].

Array initializers are most useful for initializing properties and variables, but like
other simple terms, they may start a compound term.

So, for example
say [1,1,1,1].1length

would display 4. Note that an array of length zero cannot be constructed with an
array initializer, as its type would be undefined. An explicitly typed array con-
structor (for example, int[0]) must be used.

79

Chapter 4

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword
thatidentifies the instruction. Some keyword instructions affect the flow of control;
the remainder just provide services to the programmer. Some keyword instruc-
tions (do, if, 1loop, or select) can include nested instructions. Appendix A (see page
) includes an example of a NetRexx program using many of the instructions
available. As can be deduced from the syntax rules described earlier, a keyword
instruction is recognized only if its keyword is the first token in a clause, and if
the second token is not an ”=" character (implying an assignment). It would also
not be recognized if the second token started with ”(”, ”[”, or ”.” (implying that the
first token starts a term). Further, if a current local variable, method argument,
or property has the same name as a keyword then the keyword will not be recog-
nized. This important rule allows NetRexx to be extended with new keywords in

the future without invalidating existing programs.

Thus, for example, this sequence in a program with no say variable:

say 'Hello'
say('1")
say=3

say 'Hello’

would be a say instruction, a call to some say method, an assignment to a say
variable, and an error. In NetRexx, therefore, keywords are not reserved; they may
be used as the names of variables (though this is not recommended, where known
in advance). Certain other keywords, known as sub-keywords, may be known within
the clauses of individual instructions - for example, the symbols to and while in
the loop instruction. Again, these are not reserved; if they had been used as names
of variables, they would not be recognized as sub-keywords. Blanks adjacent
to keywords have no effect other than that of separating the keyword from the
subsequent token. For example, this applies to the blanks next to the sub-keyword

81

4.1

Chapter 4. Keyword Instructions

while in

loop while a=3

Here atleast one blank was required to separate the symbols forming the keywords
and the variable name, a. However the blank following the while is not necessary
in

loop while 'Me'=a

though it does aid readability.

Annotation instruction

An annotation®? starts with an @ (commercial at sign) and is passed through
unchanged@ To interpret a program with an annotation is an error.

Example:

/* standard annotations like @Override and @Deprecated are */
/* used, as are some custom ones */
/* (those need to be compiled first to be used) x/

options binary
@Author(name="Class Author")
class AnnotateTest
properties private unused
propz

a = ArrayList()

test = TreeMap()

@SuppressWarnings("unchecked")
method main(args=String[]) static
say 'hello annotations'
t=AnnotateTest()
t.old()

@Override
method toString() returns String
return 'Annotations'

@Deprecated

47The Annotation instruction is not part of the original NetRexx language but is added due to the fact that Java programs
sometimes require the use of annotations.

48dependent on the setting of option -annotations, which is the default. When option -noannotations is in effect, no
annotations are passed through. In this case, no @SuppressWarnings("unchecked”) annotations are generated on me-
thods, which might lead to (harmless) javac warnings.

82

4.2. Address instruction

method old() /*x a comment with an @ in i1t */
say 'do no use anymore'

@Author(name "Jane Doe")

@Author(name "John Doe")
method repeating()

say 'repeating annotations'

@Author(name = "Fifi the Cat", date = "2016-01-01")
method parameters()
say 'parameters are possible, but all on one line'

4.2 Address instruction

address [environment] [[expression]] [with fragment]
where fragment is

input [stem stem]
[stxream stream]
output [APPEND|REPLACE] [stem stem]
[stream stream]
error [APPEND|REPLACE] [stem stem]
[stxream stream]

where environment is a native executable or script on the path,
stem is an indexed string as described below

and stream is a valid filename.

The address instruction allows easy interaction with external programs such as
Operating System shells, or any program that reads input from standard input.
Environment represents an external command with expression being commands to
be executed by the environment.

The keyword address temporarily or permanently changes the destination of com-
mands. Commands are strings sent to an external environment. You can send
commands by specifying clauses consisting of only an expression or by using the
Address instruction.

To send a single command to a specified environment, code an environment, a

83

Chapter 4. Keyword Instructions

literal string or a single symbol, which is taken to be a constant, followed by an
expression.

The environment name is the name of an external procedure or process that can
process commands.

The expression is evaluated to produce a character string value, and this string is
routed to the environment to be processed as a command.

After execution of the command, environment is set back to its original state.
The default environment is SYSTEM, which is the shell on most operating systems.
Specifying address with only an environment changes the default environment.

After execution, the most recent return code is in the variable RC.

Any expression which is not intercepted by the translator as a NetRexx clause, is
sent to the address environment. Without with-fragment, the environment sends
the expression to STDIN of the external process or procedure for execution, any
output received on STDOUT is printed on the console.

I/O can be redirected when submitting commands to an external environment.
The submitted command’s input stream can be taken from an existing stream or
from a set of compound variables with a common stem. In the latter case (that
is, when a stem is specified as the source for the commands input stream) whole
number tails are used to order input for presentation to the submitted command.

Stem[0] must contain a whole number indicating the number of compound variables
tobe presented, and stem[1] through stem[n] (Where n=stem[0]) are the compound
variables to be presented to the submitted command.

Similarly, the submitted command’s output and error stream can be directed to a
stream, or to a set of compound variables with a given stem. In the latter case (i.e.,
when a stem is specified as the destination) compound variables will be created
to hold the standard output, using whole number tails as described above.

Output redirection can specify a REPLACE or APPEND option, which controls
positioning prior to the command’s execution. REPLACE is the default.

Specifying one of INPUT, OUTPUT or ERROR subkeywords more than once is
an error. Specifying a with fragment without expression, permanently sets I/0
redirection for subsequent ‘addressed’ expressions.

Address processing can be switched off by the noaddress option.

Example:

'echo "Hello world"'
say RC
address bash 'echo "Hello world"'

84

4.3. Class instruction

address cat
'"Hello world'

address 'bash'
'echo "Hello world"'

exitcode=4
‘exit '||exitcode
say RC

The program greets the world 4 times, and shows usage of special variable Rc.

Example with redirection:

/* rexx address capability */
outstem=""

address cmd with output stem outstem
"dir'

loop i=1 to outstem[0]
say outstem[1i]
end

say 'the number of elements is:' outstem[0]

Class instruction

class name [visibility] [modifier] [binary] [deprecated]
[extends classname]
[uses useslist]

[implements interfacelist];
where visibility is one of:
private
public

shared

and modifier is one of:

85

4.3.1

Chapter 4. Keyword Instructions

abstract
adapter
final

intexrface

and useslist and interfacelist are lists of one or more classnames,

separated by commas.

The class instruction is used to introduce a class, as described in the sections
Types and Classes (see page @) and Program structure (see page , and define its
attributes. The class must be given a name, which must be different from the name
of any other classes in the program. The name, which must be a non-numeric
symbol, is known as the short name of the class.

A classname can be either the short name of a class (if that is unambiguous in the
context in which it is used), or the qualified name of the class - the name of the
class prefixed by a package name and a period, as described under the package

instruction (see page).
The body of the class consists of all clauses following the class instruction (if any)
until the next class instruction or the end of the program.

The visibility, modifier, and binary keywords, and the extends, uses, and implements
phrases, may appear in any order.

Visibility
Classes may be public, private, Or shared:

A public class is visible to (that is, may be used by) all other classes.

A private class is visible only within same program and to classes in the same
package (see page .

* A shared class is also visible only within same program and to classes in the
same package. kg

A program may have only one public class, and if no class is marked public then
the first is assumed to be public (unless it is explicitly marked private).

49The shared keyword on the class instruction means exactly the same as the keyword private, and is accepted for
consistency with the other meanings of shared.

86

4.3. Class instruction

4.3.2 Modifier

Most classes are collections of data (properties) and the procedures that can
act on that data (methods); they completely implement a datatype (type), and
are permitted to be subclassed. These are called standard classes. The modifier
keywords indicate that the class is not a standard class - it is special in some way.
Only one of the following modifier keywords is allowed:

abstract An abstract class does not completely implement a datatype; one or more
of the methods that it defines (or which it inherits from classes it extends or
implements) is abstract - that is, the name of the method and the types of
its arguments are defined, but no instructions to implement the method are
provided.
Since some methods are not provided, an object cannot be constructed from
an abstract class. Instead, the class must be extended and any missing me-
thods provided. Such a subclass can then be used to construct an object.
Abstract classes are useful where many subclasses can share common data
or methods, but each will have some unique attribute or attributes (data
and/or methods). For example, some set of geometric objects might share
dimensions in X and Y, yet need unique methods for calculating the area of
the object.

adapter An adapter class is a class that is guaranteed to implement all unimple-
mented abstract methods of its superclasses and interface classes that it
inherits or lists as implemented on the class instruction.
If any unimplemented methods are found, they will be automatically genera-
ted by the language processor. Methods generated in this way will have the
same visibility and signature as the abstract method they implement, and if
a return value is expected then a default value is returned (as for the initial
value of variables of the same type: that is, null or, for values of primitive type,
an implementation-defined value, typically 0). Other than possibly returning
a value, these methods are empty; that is, they have no side-effects.
An adapter class provides a concrete representation of its superclasses and
the interface classes it implements. As such, it is especially useful for imple-
menting event handlers and the like, where only a small number of event-
handling methods are needed but many more might be specified in the
interface class that describes the event model. B
An adapter class cannot have any abstract methods.

final A finalclassis considered to be complete; it cannot be subclassed (extended),

50For example, see the "Scribble” sample in the NetRexx package.

87

4.3.3

4.3.4

4.3.5

Chapter 4. Keyword Instructions

and all its methods are considered complete. Bl

interface An interface class is an abstract class that contains only abstract method
definitions and/or constants. That is, it defines neither instructions that im-
plement methods nor modifiable properties, and hence cannot be used to
construct an object.
Interface classes are used by classes that claim to implement them (see the
implements keyword, described below). The difference between abstract and
interface classes is that the former may have methods which are not abstract,
and hence can only be subclassed (extended), whereas the latter are wholly
abstract and may only be implemented.

Binary

The keyword binary indicates that the class is a binary class. In binary classes,
literal strings and numeric symbols are assigned native string or binary (primitive)
types, rather than NetRexx types, and native binary operations are used to imple-
ment operators where possible. When binary is not in effect (the default), terms in
expressions are converted to NetRexx types before use by operators. The section
Binary values and operations (see page) describes the implications of binary
classes in detail.

Individual methods in a class which is not binary can be made into binary methods
using the binary keyword on the method instruction (see page [L06) .

Deprecated

The keyword deprecated indicates that the class is deprecated, which implies that a
better alternative is available and documented. A compiler can use this information
to warn of out-of-date or other use that is not recommended.

Extends

Classes form a hierarchy, with all classes (except the top of the tree, the Object
B2 class) being a subclass of some other class. The extends keyword identifies
the classname of the immediate superclass of the new class - that is, the class

51This modifier is provided for consistency with other languages, and may allow compilers to improve the performance
of classes that refer to the final class. In many cases it will reduce the reusability of the class, and hence should be avoided.
52In the reference implementation, java.lang.Object.

88

4.3.6

4.3.7

4.3. Class instruction

immediately above it in the hierarchy. If no extends phrase is given, the superclass
is assumed to be Ohject (or null, in the case where the current class is Object).

Uses

The uses keyword introduces a list of the names of one or more classes that will
be used as a source of constant (or static) properties and/or methods.

When a term (see page @) starts with a symbol, method call, or indexed reference
that is not known in the current context, each class in the useslist and its super-
classes are searched (in the order specified in the useslist) for a constant or static
method or property that matches the item. If found, the method or property is
used just as though explicitly qualified by the name of the class in which it was
found.

The uses mechanism affects only the syntax of terms in the current class; it is not
inherited by subclasses of the current class.

Implements

The implements keyword introduces a list of the names of one or more interface
classes (see above). These interface classes are then known to (inherited by) the
current class, in the order specified in the interfacelist. Their methods (which are
all abstract) and constant properties act as though part of the current class, unless
they are overridden (hidden) by a method or constant of the same name in the
current class.

If the current class is not an interface class then it must implement (provide non-
abstract methods for) all the methods inherited from the interface classes in the
implements list.

Interface classes, therefore, can be used to:

1. Define a common set of methods (possibly with associated constants) that will
be implemented by other classes.
2. Conveniently package collections of constants for use by other classes.

The implements list may not include the superclass of the current class.

89

4.4

4.4.1

Chapter 4. Keyword Instructions

Do instruction

do [label name] [protect term] [binary];
instructionlist
[catch [vare =] exception;
instructionlist]...
[finally([;]
instructionlist]

end [name];
where name is a non-numeric symbol

and instructionlist is zero or more instructions

The do instruction is used to group instructions together for execution; these are
executed once. The group may optionally be given a label, and may protect an
object while the instructions in the group are executed; exceptional conditions
can be handled with catch and finally.

The most common use of do is simply for treating a number of instructions as
group.

Example:
/* The two instructions between DO and END will both x*/
/* be executed if A has the value 3. */
if a=3 then do

a=a+2

say 'Smile!’
end

Here, only the first instructionlist is used. This forms the body of the group.

The instructions in the instructionlists may be any assignment, method call, or
keyword instruction, including any of the more complex constructions such as
loop, if, select, and the do instruction itself.

Label phrase

If 1abel is used to specify a name for the group, then a leave which specifies
that name may be used to leave the group, and the end that ends the group may
optionally specify the name of the group for additional checking.

90

4.4.2

4.4.3

4.4.4

4.4. Do instruction

Example:

do label sticky
x=ask
if x="'quit' then leave sticky
say 'x was' X

end sticky

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is not
just a type and is not of a primitive type; while the do construct is being executed,
the value (object) is protected - that is, all the instructions in the do construct have
exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Exceptions in do groups

Exceptions that are raised by the instructions within a do group may be caught
using one or more catch clauses that name the exception that they will catch. When
an exception is caught, the exception object that holds the details of the exception
may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always
be executed at the end of the group, even if an exception is raised (wWhether caught
or not).

The Exceptions section (see page has details and examples of catch and
finally.

Binary

A group of one or more statements in a do binary group will follow the semantics
of binary statements in binary classes or methods; the scope is limited to the do
binary group.

91

4.5

4.6

Chapter 4. Keyword Instructions

Exit instruction

exit [expression];

exit is used to unconditionally leave a program, and optionally return a result to
the caller. The entire program is terminated immediately.

If an expression is given, it is evaluated and the result of the evaluation is then
passed back to the caller in an implementation-dependent manner when the pro-
gram terminates. Typically this value is expected to be a small whole number;
most implementations will accept values in the range 0 through 250. If no ex-
pression is given, a default result (which depends on the implementation, and is
typically zero) is passed back to the caller.

Example:

j=3
exit j*4
/* Would exit with the value '12' x/

"Running off the end” of a program is equivalent to the instruction return;. In
the case where the program is simply a stand-alone application with no class or

method instructions, this has the same effect as exit, in that it terminates the whole
program and returns a default result.

If instruction

if expression[;]
then[;] instruction

[else[;] instruction]

The if construct is used to conditionally execute an instruction or group of in-
structions. It can also be used to select between two alternatives. The expression
is evaluated and must result in either O or 1. If the result was 1 (true) then the in-
struction after the then is executed. If the result was O (false) and an else was given
then the instruction after the else is executed. Example:

if answer='Yes' then say 'OK!'
else say 'Why not?'

92

4.6.1

4.6. If instruction

Remember that if the else clause is on the same line as the last clause of the then
part, then you need a semicolon to terminate that clause. Example:
if answer='Yes' then say 'OK!'; else say 'Why not?'

The else binds to the nearest then at the same level. This means that any if that is
used as the instruction following the thenin an if construct thathas anelse clause,
must itself have an else clause (which may be followed by the dummy instruction,
nop). Example:

if answer='Yes' then if name='Fred' then say '0OK, Fred.'
else say 'OK.'
else say 'Why not?'

To include more than one instruction following then or else, use a grouping in-
struction (do, loop, or select). Example:

if answer='Yes' then do
say 'Line one of two'
say 'Line two of two'
end

In this instance, both say instructions are executed when the result of the if ex-
pressionis 1.

Short circuit evaluation

Multiple expressions, separated by commas, can be given on the if clause, which
then has the syntax:

if expression[, expression]... [;]

In this case, the expressions are evaluated in turn from left to right, and if the
result of any evaluation is 1 then the test has succeeded and the instruction
following the associated then clause is executed. If all the expressions evaluate
to 0 and an else was given then the instruction after the else is executed.

Note that once an expression evaluation has resulted in 1, no further expressions
in the clause are evaluated. So, for example, in:

—— assume 'name' is a string
if name=null, name='"' then say 'Empty'

then if name does not refer to an object it will compare equal to null and the say
instruction will be executed without evaluating the second expression in the if
clause.

93

4.7

Chapter 4. Keyword Instructions

Notes:

1. An instruction may be any assignment, method call, or keyword instruction,
including any of the more complex constructions such as do, 1oop, select, and
the ifinstructionitself. A null clause is not an instruction, however, so putting
an extra semicolon after the then or else is not equivalent to putting a dummy
instruction. The nop instruction is provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause. This
allows the expression on the if clause to be terminated by the then, without a
”;” being required - were this not so, people used to other computer languages

would be inconvenienced. Hence the symbol then cannot be used as a variable

name within the expression. B3

Import instruction

import name;

where name is one or more non-numeric symbols separated by periods,

with an optional trailing period.

The import instruction is used to simplify the use of classes from other packages.
If a class is identified by an import instruction, it can then be referred to by its
short name, as given on the class instruction (see page) , as well as by its fully
qualified name.

There may be zero or more import instructions in a program. They must precede
any class instruction (or any instruction that would start the default class).

In the following description, a package name names a package as described under
the package instruction (see page). The import name must be one of:

A qualified class name, which is a package name immediately followed by a
period which is immediately followed by a short class name - in this case, the
individual class identified is imported.

« A package name - in this case, all the classes in the specified package are

94

4.7. Import instruction

imported. The name may have a trailing period.

« Apartial package name (a package name with one or more parts omitted from
the right, indicated by a trailing period after the parts that are present) - in
this case, all classes in the package hierarchy below the specified point are
imported.

Examples:

import java.lang.String
import java.lang
import java.

The first example above imports a single class (which could then be referred to
simply as ”String”). The second example imports all classes in the ”java.lang”
package. The third example imports all classes in all the packages whose name
starts with ”java.”.

When a class is imported explicitly, for example, using

import java.awt.List

this indicates that the short name of the class (List, in this example) may be
used to refer to the class unambiguously. That is, using this short name will not
report an ambiguous reference warning (as it would without the import instruc-
tion, because a java.util.List class was added in Java 1.2).

It follows that:

« Two classes imported explicitly cannot have the same short name.

« No class in a program being compiled can have the same short name as a
class that is imported explicitly.

because in either of these situations a use of the short name would be ambiguous.

Note also that an explicit import does not import the minor or dependent classes
associated with a name; they each require their own explicit import (unless the
entire package is imported).

In the reference implementation, the fundamental NetRexx and Java package hierarchies
are automatically imported by default, as though the instructions:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.
import javax.swing

95

4.8

Chapter 4. Keyword Instructions

had been executed before the program begins. For JDK 9+ environments, NetRexx looks for
packages and classes in JPMS’ jrt./ file system In addition, classes in the current (working)
directory are imported if no package instruction is specified. If a package instruction is
specified then all classes in that package are imported.

Interpret instruction

interpret expression;

The interpret instruction is used to process instructions at run-time. Expression
is evaluated and interpreted within the current context of the running program.

The expression must be one or more valid clauses separated by a semicolon ;,
syntactically correct, properly ended - in short, anything that may be written
within a do block.

When this is not the case, the keywordinterpret instruction will signal an Inter-
pretException exception.

The interpret instruction has read-write access to properties and variables, and
can invoke methods on these (when visibility and modifier attributes are suitable).
New variables can be declared and worked with within the interpret instruction,
but are inexistent after the instruction.

The following examples show some of the capabilities:

FRED=""

data='FRED'
interpret data '= 4'
say FRED

will output 4.

You can even interpret the interpret instruction, as in:

FRED=""
interpret "data = 'FRED'; interpret data '= 4';"
say FRED

which will also output ’4".

Loop constructs must be complete:

interpret ‘'loop for 3; say "Hello there!"; end'

96

4.9

4.9. Iterate instruction

will send its greetings three times.

The return instruction is not supported and generates an InterpretException
exception.

Likewise, signaling exceptions is not supported in the interpret instruction, and
starting threads from the instruction is nondeterministic and unpredictable and
should be avoided.

Iterate instruction

iterate [name];

where name is a non-numeric symbol.

iterate alters the flow of control within a loop construct. It may only be used in
the body (the first instructionlist) of the construct.

Execution of the instruction list stops, and control is passed directly back up to the
loop clause just as though the last clause in the body of the construct had just been
executed. The control variable (if any) is then stepped (iterated) and termination
conditions tested as normal and the instruction list is executed again, unless the
loop is terminated by the loop clause.

If no name is specified, then iterate will step the innermost active loop.

If a name is specified, then it must be the name of the label, or control variable if
there is no label, of a currently active loop (Which may be the innermost), and this
is the loop that is iterated. Any active do, loop, Or select constructs inside the loop
selected for iteration are terminated (as though by a leave instruction).

Example:

loop i=1 to 4
if 1=2 then iterate 1
say i
end
/* Would display the numbers: 1, 3, 4 x/

Notes:

1. Aloopis active ifitis currently being executed. If a method (even in the same
class) is called during execution of a loop, then the loop becomes inactive

97

4.10

Chapter 4. Keyword Instructions

until the method has returned. iterate cannot be used to step an inactive
loop.

2. The name symbol, if specified, must exactly match the label (or the name of
the control variable, if there is nolabel) in the 1oop clause in all respects except
case.

Leave instruction

leave [name];

where name is a non-numeric symbol.

leave causes immediate exit from one or more do, loop, OT select constructs. It may
only be used in the body (the first instructionlist) of the construct.

Execution of the instruction list is terminated, and control is passed to the end
clause of the construct, just as though the last clause in the body of the construct
had just been executed or (if a loop) the termination condition had been met
normally, except that on exit the control variable (if any) will contain the value it
had when the leave instruction was executed.

If no name is specified, then leave must be within an active loop and will terminate
the innermost active loop.

If a name is specified, then it must be the name of the label (or control variable
for a loop with no label), of a currently active do, loop, Or select construct (which
may be the innermost). That construct (and any active constructs inside it) is
then terminated. Control then passes to the clause following the end clause that
matches the do, 1oop, or select clause identified by the name.

Example:

loop i=1 to 5
say i
if 1=3 then leave
end i
/* Would display the numbers: 1, 2, 3 %/

Notes:

1. Ifany construct beingleftincludes a finally clause, the instructionlist following
the finally will be executed before the construct is left.

98

4.11. Loop instruction

2. A do, loop, or select construct is active if it is currently being executed. If
a method (even in the same class) is called during execution of an active
construct, then the construct becomes inactive until the method has returned.
leave cannot be used to leave an inactive construct.

3. The name symbol, if specified, must exactly match the label (or the name of
the control variable, for a loop with no label) in the do, 1oop, or select clause
in all respects except case.

4.11 Loop instruction

loop [label name] [protect termp] [repetitor] [conditionall];
instructionlist
[catch [vare =] exception;
instructionlist]...
[finally[;]
instructionlist]

end [name];
where repetitor is one of:
varc = expri [to exprt] [by exprb] [for exprf]
varo over termo
for exprr
forever

and conditional is either of:

while exprw

until expru
and name is a non-numeric symbol
and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

99

Chapter 4. Keyword Instructions

The loop instruction is used to group instructions together and execute them
repetitively. The loop may optionally be given a label, and may protect an object
while the instructions in the loop are executed; exceptional conditions can be
handled with catch and finally. loop is the most complicated of the NetRexx
keyword instructions. It can be used as a simple indefinite loop, a predetermined
repetitive loop, as a loop with a bounding condition that is recalculated on each
iteration, or as a loop that steps over the contents of a collection of values.

4.11.1 Syntax notes:

« The label and protect phrases may be in any order. They must precede any
repetitor or conditional.

 The first instructionlist is known as the bhody of the loop.

« The to, by, and for phrases in the first form of repetitor may be in any order, if
used, and will be evaluated in the order they are written.

« Any instruction allowed in a method is allowed in an instructionlist, including
assignments, method call instructions, and keyword instructions (including
any of the more complex constructions such as if, do, select, or the loop in-
struction itself).

o If for or forever start the repetitor and are followed by an ”=" character, they
are taken as control variable names, not keywords (as for assignment instruc-
tions).

« The expressions expri, exprt, exprb, or exprf will be ended by any of the keywords
to, by, for, while, or until (unless the word is the name of a variable).

« The expressions exprw or expru will be ended by either of the keywords while
or until (unless the word is the name of a variable).

4.11.2 Indefinite loops

If neither repetitor nor conditional are present, or the repetitor is the keyword
forever, then the loop is an indefinite loop. It will be ended only when some in-
struction in the first instructionlist causes control to leave the loop.

Example:

/* This displays "Go caving!" at least once */
loop forever

say 'Go caving!'

if ask="'"' then leave
end

100

4.11. Loop instruction

4.11.3 Bounded loops

If a repetitor (other than forever) or conditional is given, the first instructionlist forms
a bounded loop, and the instruction list is executed according to any repetitor phrase,
optionally modified by a conditional phrase.

Simple bounded loops When the repetitor starts with the keyword for, the expres-
sion exprr is evaluated immediately (with 0 added, to effect any rounding) to
give arepetition count, which must be a whole number that is zero or positive.
The loop is then executed that many times, unless it is terminated by some
other condition.

Example:

/* This displays "Hello" five times */
loop for 5

say 'Hello’
end

Controlled bounded loops A controlled loop begins with an assignment, which can
be identified by the ”=" that follows the name of a control variable, varc. The
control variable is assigned an initial value (the result of expri, formatted as
though 0 had been added) before the first execution of the instruction list.
The control variable is then stepped (by adding the result of exprb) before the
second and subsequent times that the instruction list is executed.

The name of the control variable, varc, must be a non-numeric symbol that
names an existing or new variable in the current method or a property in the
current class (that is, it cannot be element of an array, the property of a su-
perclass, or a more complex term). It is further restricted in that it must not
already be used as the name of a control variable or label in a loop (or do or
select construct) that encloses the new loop.

The instruction list in the body of the loop is executed repeatedly while the
end condition (determined by the result of exprt) is not met. If exprb is positive
or zero, then the loop will be terminated when varc is greater than the result
of exprt. If negative, then the loop will be terminated when varc is less than the
result of exprt. The expressions exprt and exprb must result in numbers. They
are evaluated once only (with 0 added, to effect any rounding), in the order
they appear in the instruction, and before the loop begins and before expri
(which must also result in a number) is evaluated and the control variable is
set to its initial value.

The default value for exprb is 1. If no exprt is given then the loop will execute
indefinitely unless it is terminated by some other condition. Example:

loop 1=3 to -2 by -1

101

Chapter 4. Keyword Instructions

say i
end
/* Would display: 3, 2, 1, 0, -1, -2 */
Note that the numbers do not have to be whole numbers: Example:

x=0.3
loop y=x to x+4 by 0.7

say y
end

/* Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 %/

The control variable may be altered within the loop, and this may affect the
iteration of the loop. Altering the value of the control variable in this way is
normally considered to be suspect programming practice, though it may be
appropriate in certain circumstances. Note that the end condition is tested
at the start of each iteration (and after the control variable is stepped, on
the second and subsequent iterations). It is therefore possible for the body
of the loop to be skipped entirely if the end condition is met immediately.
The execution of a controlled loop may further be bounded by a for phrase.
In this case, exprf must be given and must evaluate to a non-negative whole
number. This acts just like the repetition count in a simple bounded loop, and
sets a limit to the number of iterations around the loop if it is not terminated
by some other condition.

exprf is evaluated along with the expressions exprt and exprb. That is, it is
evaluated once only (with 0 added), when the 1oop instruction is first executed
and before the control variable is given its initial value; the three expressions
are evaluated in the order in which they appear. Like the to condition, the for
count is checked at the start of each iteration, as shown in the programmer’s
(see page @) model:ea.. Example:

loop y=0.3 to 4.3 by 0.7 for 3

say y
end

/* Would display: 0.3, 1.0, 1.7 %/

In a controlled loop, the symbol that describes the control variable may be
specified on the end clause (unless alabel is specified, see below). NetRexx will
then check that this symbol exactly matches the varc of the control variable
in the 1oop clause (in all respects except case). If the symbol does not match,
then the program is in error - this enables the nesting of loops to be checked
automatically. Example:

loop k=1 to 10

end k /x Checks this is the END for K loop */

102

4.11. Loop instruction

Note: The values taken by the control variable may be affected by the numeric
settings, since normal NetRexx arithmetic rules apply to the computation of
stepping the control variable.

Over When the second token of the repetitor is the keyword over, the control
variable, varo, is used to work through the sub-values in the collection of
indexed strings identified by termo. In this case, the loop instruction takes a
“snapshot” of the indexes that exist in the collection at the start of the loop,
and then for each iteration of the loop the control variable is set to the next
available index from the snapshot.

The number of iterations of the loop will be the number of indexes in the
collection, unless the loop is terminated by some other condition. Example:

mycoll=""
mycoll['Tom']=1
mycoll['Dick']=2
mycoll['Harry']=3
loop name over mycoll
say mycoll[name]
end
/* might display: 3, 1, 2 */

Notes:

1. The order in which the values are returned is undefined; all that is known
is that all indexes available when the loop started will be recorded and
assigned to varo in turn as the loop iterates.

2. The same restrictions apply to varo as apply to varc, the control variable
for controlled loops (see above).

3. Similarly, the symbol varo may be used as a name for the loop and be
specified on the end clause (unless a label is specified, see below).

In the reference implementation, the over form of repetitor may also be used to step
though the contents of any object that is of a type that is a subclass of java.util. Dictionary,
such as an object of typejava.util. Hashtable. In this case, termo specifies the dictionary,
and a snapshot (enumeration) of the keys to the Dictionary is taken at the start of the
loop. Each iteration of the loop then assigns a new key to the control variable varo
which must be (or will be given, if it is new) the type java.lang.Object.

Conditional phrases Any ofthe forms ofloop syntax can be followed by a conditional
phrase which may cause termination of the loop.
If while is specified, exprw is evaluated, using the latest values of all variables
in the expression, before the instruction list is executed on every iteration,
and after the control variable (if any) is stepped. The expression must evaluate
to either O or 1, and the instruction list will be repeatedly executed while the
result is 1 (that is, the loop ends if the expression evaluates to 0). Example:

103

Chapter 4. Keyword Instructions

loop 1=1 to 10 by 2 while i<6

say 1
end
/* Would display: 1, 3, 5 %/
If until is specified, expru is evaluated, using the latest values of all variables
in the expression, on the second and subsequent iterations, and before the
control variable (if any) is stepped. B4 The expression must evaluate to either
Oor 1, and the instruction list will be repeatedly executed until the resultis 1
(that is, the loop ends if the expression evaluates to 1). Example:

loop 1=1 to 10 by 2 until 1>6
say 1

end

/* Would display: 1, 3, 5, 7 %/

Note that the execution of loops may also be modified by using the iterate or leave
instructions.

4.11.4 Label phrase

The label phrase may used to specify a name for the loop. The name can then
optionally be used on

 a leave instruction, to specify the name of the loop to leave

e an iterate instruction, to specify the name of the loop to be iterated

« the end clause of the loop, to confirm the identity of the loop that is being
ended, for additional checking.

Example:

loop label pooks i=1 to 10
loop label hill while j<3

if a=b then leave pooks

end hill
end pooks

In this example, the leave instruction leaves both loops.

If a label is specified using the 1abel keyword, it overrides any name derived from
the control variable name (if any). That is, the variable name cannot be used to
refer to the loop if a label is specified.

54Thus, it appears that the until condition is tested after the instruction list is executed on each iteration. However, it is
the loop clause that carries out the evaluation.

104

4.11.5

4.11.6

4.11.7

4.11. Loop instruction

Protect phrase

The protect phrase may used to specify a term, termp, that evaluates to a value that
is not just a type and is not of a primitive type; while the loop construct is being
executed, the value (object) is protected - that is, all the instructions in the loop
construct have exclusive access to the object. Example:

loop protect myobject while a<b

end

Both 1abel and protect may be specified, in any order, if required.

Exceptions in loops

Exceptions that are raised by the instructions within a loop construct may be
caught using one or more catch clauses that name the exception that they will
catch. When an exception is caught, the exception object that holds the details of
the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always
be executed when the loop ends, even if an exception is raised (whether caught or
not).

The Exceptions section (see page has details and examples of catch and
finally.

Programmer’s model - how a typical loop is executed

This model forms part of the definition of the loop instruction. For the following
loop:

loop varc = expri to exprt by exprb while exprw
instruction list

end
NetRexx will execute the following:

$tempt=exprt+0 /*x ($variables are internal and */
$tempb=exprb+0 /* are not accessible.) */

varc=expri+0

105

Chapter 4. Keyword Instructions

Transfer control to the point identified as $start:

$loop:
/* An UNTIL expression would be tested here, with: x/
/* if expru then leave */

varc=varc + $tempb

$start:
if varc > $tempt then leave /% leave quits a loop =*/
/* A FOR count would be checked here */

if \ exprw then leave
instruction list

Transfer control to the point identified as $loop:
Notes:

1. This example is for exprb >= 0. For a negative exprb, the test at the start point
of the loop would use "<” rather than ”>”.

2. The upwards transfer of control takes place at the end of the body of the loop,
immediately before the end clause (or any catch or finally clause). The end
clause is only reached when the loop is finally completed.

4.12 Method instruction

method name[([arglist])]
[visibility] [modifier] [protect] [binary] [deprecated]
[returns termr]

[signals signallist];
where arglist is a list of one or more assignments, separated by commas
and visibility is one of:
inheritable

private

public

106

4.12.1

4.12. Method instruction

shared
and modifier is one of:

abstract
constant
final
native

static

and signallist is a list of one or more terms, separated by commas.

The method instruction is used to introduce a method within a class, as described
in Program structure (see page , and define its attributes. The method must be
given a name, which must be a non-numeric symbol. This is its short name.

If the short name of a method matches the short name of the class in which it
appears, it is a constructor method. Constructor methods are used for constructing
values (objects), and are described in detail in Methods and Constructors (see page

52).

The body of the method consists of all clauses following the method instruction (if
any) until the next method or class instruction, or the end of the program.

The visibility, modifier, and protect keywords, and the returns and signals phrases,
may appear in any order.

Arguments

The arglist on a method instruction, immediately following the method name, is
optional and defines a list of the arguments for the method. An argument is a value
that was provided by the caller when the method was invoked.

If there are no arguments, this may optionally be indicated by an "empty” pair of
parentheses.

In the arglist, each argument has the syntax of an assignment (see page [1]) , where
the ”=" and the following expression may be omitted. The name in the assignment
provides the name for the argument (which must not be the same as the name
of any property in the class). Each argument is also optionally assigned a type,
or type and default value, following the usual rules of assignment. If there is no

107

4.12.2

Chapter 4. Keyword Instructions

assignment, the argument is assigned the NetRexx string type, Rexx.

9 __9»

If there is no assignment (that is, there is no ”=") or the expression to the right
of the ”=" returns just a type, the argument is required (that is, it must always be
specified by the caller when the method is invoked).

If an explicit value is given by the expression then the argument is optional; when
the caller does not provide an argument in that position, then the expression is
evaluated when the method is invoked and the result is provided to the method as
the argument.

Optional arguments may be omitted "from the right” only. That is, arguments may
not be omitted to the left of arguments that are not omitted. Examples:

method fred

method fred()

method fred(width, height)

method fred(width=int, height=int 10)

In these examples, the first two method instructions are equivalent, and take no
arguments. The third example takes two arguments, which are both strings of
type Rexx. The final example takes two arguments, both of type int; the second
argument is optional, and if not supplied will default to the value 10 (note that any
valid expression could be used for the default value).

Visibility
Methods may be public, inheritable, private, OT shared:

A public method is visible to (that is, may be used by) all other classes to which
the current class is visible.

« An inheritable method is visible to (that is, may be used by) all classes in the
same package and also those classes that extend (that is, are subclasses of)
the current class.

« A private method is visible only within the current class.

A shared method is visible within the current package but is not visible outside
the package. Shared methods cannot be inherited by classes outside the
package.

By default (i.e., if no visibility keyword is specified), methods are public.

108

4.12. Method instruction

4.12.3 Modifier

Most methods consist of instructions that follow the method instruction and im-
plement the method; the method is associated with an object constructed by the
class. These are called standard methods. The modifier keywords define that the
method is not a standard method - it is special in some way. Only one of the
following modifier keywords is allowed:

abstract An abstract method has the name of the method and the types (but not
values) of its arguments defined, but no instructions to implement the method
are provided (or permitted).
If a class contains any abstract methods, an object cannot be constructed
from it, and so the class itself must be abstract; the abstract keyword must
be present on the class instruction (see page) X
Within an interface class, the abstract keyword is optional on the methods of
the class, as all methods must be abstract. No other modifier is allowed on the
methods of an interface class.

constant A constant method is a static method that cannot be overridden by a
method in a subclass of the current class. That is, it is both final and static
(see below).

final A final method is considered to be complete; it cannot be overridden by a
subclass of the current class. private methods are implicitly final. B3

native A native method is a method that is implemented by the environment, not
by instructions in the current class. Such methods have no NetRexx instruc-
tions to implement the method (and none are permitted), and they cannot be
overridden by a method in a subclass of the current class.
Native methods are used for accessing primitive operations provided by the
underlying operating system or by implementation-dependent packages.

static A static method is a method that is not a constructor and is associated with
the class, rather than with an object constructed by the class. It cannot use
properties directly, except those that are also static (or constant).
Static methods may be invoked in the following ways:

1. Within the initialization expression of a static or constant property (such
methods are invoked when the class is first loaded).

2. By qualifying the name of the method with the name of its class (qualified
by the package name if necessary), for example, using "Math.Sin(1.3)”
or “java.lang.Math.Sin(1.3)”. Methods called in this way are in effect
functions.

55This modifier may allow compilers to improve the performance of methods that are final, but may also reduce the
reusability of the class.

109

Chapter 4. Keyword Instructions

3. By implicitly qualifying the name by including the name of its class in the
uses phrase in the class instruction for the current class. Static methods
in classes listed in this way can be used directly, without qualification, for
example, as ”Sin(1.3)”. They may be still be qualified, if preferred.

In the reference implementation, stand-alone applications are started by the java
command invoking a static method called main which takes a single argument (of
type java.lang.String[]) and returns no result.

4.12.4 Protect

The keyword protect indicates that the method protects the current object (or
class, for a static method) while the instructions in the method are executed. That
is, the instructions in the method have exclusive access to the object; if some other
method (or construct) is executing in parallel with the invocation of the method
and is protecting the same object then the method will not start execution until
the object is no longer protected.

Note that if a method or construct protecting an object invokes a method (or starts
anew construct) that protects the same object then execution continues normally.
The inner method or construct is not prevented from executing, because it is not
executing in parallel.

4.12.5 Binary

The keyword binary indicates that the method is a binary method.

In binary methods, literal strings and numeric symbols are assigned native string
or binary (primitive) types, rather than NetRexx types, and native binary operations
are used to implement operators where possible. When binary is not in effect
(the default), terms in expressions are converted to NetRexx types before use
by operators. The section Binary values and operations (see page operations.
describes the implications of binary methods and classes in detail. Notes:

1. Only the instructions inside the body of the method are affected by the binary
keyword; any arguments and expressions on the method instruction itself
are not affected (this ensures that a single rule applies to all the method
signatures in a class).

2. All methods in a binary class are binary methods; the binary keyword on me-
thods is provided for classes in which only the occasional method needs to be

110

4.12.6

4.12.7

4.12.8

4.12. Method instruction

binary (perhaps for performance reasons). It is not an error to specify binary
on a method in a binary class.

Deprecated

The keyword deprecated indicates that the method is deprecated, which implies
that a better alternative is available and documented. A compiler can use this
information to warn of out-of-date or other use that is not recommended.

Note that individual methods in interface classes cannot be deprecated; the whole
class should be deprecated in this case.

Returns

The returns keyword is followed by a term, termr, that must evaluate to a type. This
type is used to define the type of values returned by return instructions within the
method.

The returns phrase is only required if the method is to return values of a type that
is not NetRexx strings (class Rexx). If returns is specified, all return instructions
(see page) within the method must specify an expression. Example:

method filer(path, name) returns File
return File(path||name)

This method always returns a value which is a File object.

Signals

The signals keyword introduces a list of terms that evaluate to types that are
Exceptions (see page) . This list enumerates and documents the exceptions
that are signalled within the method (or by a method which is called from the
current method) but are not caught by a catch clause in a control construct.
Example:

method soup(cat) signals IOException, DivideByZero

Itis considered good programming practice to use this list to document "unusual”
exceptions signalled by a method. Implementations that support the concept of
checked exceptions(see page) must report as an error any checked exception
that is incorrectly included in the list (that is, if the exception is never signalled
or would always be caught). Such implementations may also offer an option that
enforces the listing of all or some checked exceptions.

111

4.12.9

4.13

Chapter 4. Keyword Instructions

Duplicate methods

Methods may not duplicate properties or other methods in the same class. Speci-
fically:

« Theshort name of a method must not be the same as the name of any property
in the same class.

« The number (zero or more) and types of the arguments of a method (or any
subset permitted by omitting optional arguments) must not be the same as
those of any other method of the same name in the class (also checking any
subset permitted by omitting optional arguments).

Note that the second rule does allow multiple methods with the same name in
a class, provided that the number of arguments differ or at least one argument
differs in type.

Nop instruction

nop;

nop is a dummy instruction that has no effect. It can be useful as an explicit "do
nothing” instruction following a then or else clause. Example:

select
when a=b then nop —— Do nothing
when a>b then say 'A > B'
otherwise say 'A < B'
end

Note: Putting an extra semicolon instead of the nop would merely insert a null
clause, which would just be ignored by NetRexx. The second when clause would
then immediately follow the then, and hence would be reported as an error. nop is
a true instruction, however, and is therefore a valid target for the then clause.

112

4.14

4.14. Numeric instruction

Numeric instruction

numeric digits [exprd];

form [scientific];

[engineering] ;

The numeric instruction is used to change the way in which arithmetic operations
are carried out by a program. The effects of this instruction are described in detail
in the section on Numbers and Arithmetic (see page [L60) .

numeric digits controls the precision under which arithmetic operations will be

evaluated (see page .

If no expression exprd is given then the default value of 9 is used. Otherwise
the result of the expression is rounded, if necessary, according to the current
setting of numeric digits before it is used. The value used must be a positive
whole number. There is normally no limit to the value for numeric digits
(except the constraints imposed by the amount of storage and other resources
available) but note that high precisions are likely to be expensive in processing
time. It is recommended that the default value be used wherever possible.
Note that small values of numeric digits (for example, values less than 6) are
generally only useful for very specialized applications. The setting of numeric
digits affects all computations, so even the operation of loops may be affected
by rounding if small values are used.

If an implementation does not support a requested value for numeric digits
then the instruction will fail with an exception (which may, as usual, be caught
with the catch clause of a control construct).

The current setting of numeric digits may be retrieved with the digits special

word (see page))

numeric form controls which form of exponential notation (see page @) istobe

used for the results of operations. This may be either scientific (in which case
only one, non-zero, digit will appear before the decimal point), or engineering
(in which case the power of ten will always be a multiple of three, and the
part before the decimal point will be in the range 1 through 999). The default
notation is scientific. The form is set directly by the sub-keywords scientific
or engineering; if neither sub-keyword is given, scientific is assumed. The
current setting of numeric form may be retrieved with the form special word

(see page :

113

4.15

Chapter 4. Keyword Instructions

If an implementation does not support a requested value for numeric form
then the instruction will fail with an exception (which may, as usual, be caught
with the catch clause of a control construct).

The numeric instruction may be used where needed as a dynamically executed
instruction in a method.

It may also appear, more than once if necessary, before the first method in a class,
in which case it forms the default setting for the initialization of subsequent pro-
perties in the class and for all methods in the class. In this case, any exception due
to the numeric instruction is raised when the class is first loaded.

Further, one or more numeric instructions may be placed before the first class in-
struction in a program; they do not imply the start of a class. The numeric settings
then apply to all classes in the program (except interface classes), as though the
numeric instructions were placed immediately following the class instruction in
each class (except that they will not be traced).

Options instruction

options wordlist;

where wordlist is one or more symbols separated by blanks.

The options instruction is used to pass special requests to the language processor
(for example, an interpreter or compiler).

Individual words, known as option words, in the wordlist which are meaningful to
the language processor will be obeyed (these might control optimizations, enforce
standards, enable implementation-dependent features, etc.); those which are not
recognized will be ignored (they are assumed to be instructions to a different
language processor). Option words in the list that are known will be recognized
independently of case.

There may be zero or more options instructions in a program. They apply to the
whole program, and must come before the first class instruction (or any instruc-
tion that starts a class).

In the reference implementation, the known option words are:

114

4.15. Options instruction

address The address option allows programs to use the address statement, which enables
calling external programs. Noaddress disables the use of this statement. Address is the
default.

annotations All annotations are passed through to Java, this is the default. When option
-noannotations is in effect, no annotations will be passed through, although they
are in the program source. This implies that the @SuppressWarnings("unchecked”)
annotation, which is passed through every method, is also left out, which possibly
yields (harmless) javac warnings (on the subject of generics).

binary All classes in this program will be binary (see page @) classes. In binary classes,
literals are assigned binary (primitive) or native string types, rather than NetRexx
types, and native binary operations are used to implement operators where appropriate,
as described in “Binary values and operations” (see page . In classes that are
not binary, terms in expressions are converted to the NetRexx string type, RexXx,
before use by operators.

comments Comments from the NetRexx source program will be passed through to the the
Java output file (which may be saved with a .java.keep extension by using the -keep
command option).
Line comments become Java line comments (introduced by "//”). Block comments
become Java block comments (delimited by "/*” and "*/”), with nested block com-
ments having their delimiters changed to "(-” and ”-)”).

classpath The -classpath operand allows dynamic specification of the classpath used by
the NetRexxC compiler without having to depend on the CLASSPATH environment
variable. There is no -noclasspath counterpart.

compact Requests that warnings and error messages be displayed in compact form. This
format is more easily parsed than the default format, and is intended for use by editing
environments.
Each error message is presented as a single line, prefixed with the error token iden-
tification enclosed in square brackets. The error token identification comprises three
words, with one blank separating the words. The words are: the source file specifica-
tion, the line number of the error token, the column in which it starts, and its length.
For example (all on one line):
[D:
test
test.nrx 3 8 5] Error: The external name
"class’ is a Java reserved word, so would not be

usable from Java programs

Any blanks in the file specification are replaced by a null ('
0’) character. Additional words could be added to the error token identification later.

115

Chapter 4. Keyword Instructions

console Requests that compiler messages be written to console (the default). Use -noconsole
to prevent messages being written to the console.
This option only has an effect as a compiler option, and applies to all programs being
compiled.

crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the
language processor will report operations that use (or, like normal string comparison,
might use) decimal arithmetic as an error. This option is intended for performance-
critical programs where the overhead of inadvertent use of decimal arithmetic is
unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed. The
diag option word may also have side-effects.

ecj Indicates to the translator a preference for using the ecj compiler, if available

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. This option is intended to
permit the enforcement of "house styles” (but note that the NetRexx compiler always
checks for variables which are referenced before their first assignment, and warns of
variables which are set but not used).

format Requeststhat the translator output file (Java source code) be formatted for improved
readability. Note that if this option is in effect, line numbers from the input file will
not be preserved (so run-time errors and exception trace-backs may show incorrect
line numbers).

implicituses Controls whether RexxDate, RexxRexx and RexxStream are implicitly
used. By default every class ‘implicitly uses’ these classes. noimplicituses disables
this.

java Requests that Java source code be produced by the translator. If nojava is specified, no
Java source code will be produced, this can be used to save a little time when checking
of a program is required without any compilation or Java code resulting.

javac Indicates to the translator a preference for using the javac compiler, if available

keepasjava Requests that Java source code is kept as [programfile].java. Implies -replace.
This option only has an effect as a compiler option, and applies to all programs being
compiled.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

mod Requests that the language processor produces a formatted representation of the
source program - see Programming Guide.

replace Requests that replacement of the translator output (;java) file be allowed. The
default, noreplace, prevents an existing .java file being accidentally overwritten.

116

4.15. Options instruction

savelog Requests that compiler messages be written to the file NetRexxC.log in the current
directory. The messages are also displayed on the console, unless -noconsole is specified.
This option only has an effect as a compiler option, and applies to all programs being
compiled.

sourcedir Requests that all .class files be placed in the same directory as the source file
from which they are compiled. Other output files are already placed in that directory.
Note that using this option will prevent the - run command option from working unless
the source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when no ar-
guments are supplied. Also, if strictargs is in effect, method arguments are checked
for usage - a warning is given if no reference to the argument is made in the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of arguments in
method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical to
match).

strictimport Requires that allimported packages and classes be imported explicitly using
import instructions. That is, if in effect, there will be no automatic imports (see page
@) , except those related to the package instruction.
This option only has an effect as a compiler option, and applies to all programs being
compiled.

strictprops Requires that all properties, including those local to the current class, be
qualified in references. That is, if in effect, local properties cannot appear as simple
names but must be qualified by this. (or equivalent) or the class name (for static
properties).

strictsignal Requires that all checked exceptions (see page signalled within a method
but not caught by a catch clause be listed in the signals phrase of the method instruc-
tion.

symbols Symbol table information (names of local variables, etc.) will be included in any
Zgenerated .class file. This option is provided to aid the production of classes that are
easy to analyse with tools that can understand the symbol table information. The use
of this option increases the size of .class files.

trace, traceX If given as trace, tracel, or trace2, then trace instructions are accepted.
The trace output is directed according to the option word: tracel requests that trace
output is written to the standard output stream, trace or trace2 imply that the output
should be written to the standard error stream (the default).

117

Chapter 4. Keyword Instructions

If notrace is given, then trace instructions are ignored. The latter can be useful to
prevent tracing overheads while leaving trace instructions in a program.

utf8 If given, clauses following the options instruction are expected to be encoded using
UTF-8, so all Unicode characters may be used in the source of the program.
In UTF-8 encoding, Unicode characters less than ’\u0080’ are represented using
one byte (whose most-significant bit is 0), characters in the range ’\u0080’ through
"\uO7FF’ are encoded as two bytes, in the sequence of bits:

110XXXXX LOXXXXXX

where the eleven digits shown as x are the least significant eleven bits of the character,
and characters in the range ’\u0800’ through ’\uFFFF’ are encoded as three bytes, in
the sequence of bits:

1110XXXX 1OXXXXXX LOXXXXXX

where the sixteen digits shown as x are the sixteen bits of the character.

If nout£8 is given, following clauses are assumed to comprise only Unicode characters
in the range ’\x00’ through ’\xFF’, with the more significant byte of the encoding of
each character being 0.

Note: this option only has an effect as a compiler option, and applies to all
programs being compiled. If present on an options instruction, it is checked
and must match the compiler option (this allows processing with or without
utfs to be enforced).

verbose, verboseX Sets the "noisiness” of the language processor. The digit X may be any
of the digits 0 through 5; if omitted, a value of 3 is used. The options noverbose and
verbose0 both suppress all messages except errors and warnings.

warnexitO Exit the translator with returncode 0 even if warnings are issued. This option
only has an effect as a compiler option, and applies to all programs being compiled.

Prefixing any of the above with "no” turns the selected option off. Example:
options binary nocrossref nostrictassign strictargs
The default settings of the various options are:

address nobinary nocomments nocompact console crossref decimal nodiag noexplicit
noformat implicituses java logo noreplace nosavelog nosourcedir nostrictargs
nostrictassign nostrictcase nostrictimport nostrictprops nostrictsignal

nosymbols trace2 noutf8 verbose3

118

4.16

4.16. Package instruction

When an option word is repeated (in the same options instruction or not), or conflicting
option words are specified, then the last use determines the state of the option.

All option words may also be set as command line options when invoking the processor, by
prefixing them with ”-”: Example:

java COM.ibm.netrexx.process.NetRexxC -format foo.nrx

In this case, any options may come before, after, or between file specifications.

With the except of the utf8 option (see above), options set with the options instruction
override command-line settings, following the "last use” rule.

For more information, see the installation and user documentation for your implementa-
tion.

All options are listed in Appendix C on page .

Package instruction

package name;

where name is one or more non-numeric symbols separated by periods.

The package instruction is used to define the package to which the class or classes
in the current program belong. Classes that belong to the same package have
privileged access to other classes in the same package, in that each class is visible
to all other classes in the same package, even if not declared public. Packages also
conveniently group classes for use by the import instruction (see page @) X

The name must specify a package name, which is one or more non-numeric symbols,
separated by periods, with no blanks.

There must be at most one package instruction in a program. It must precede any
class instruction (or any instruction that would start the default class).

If a program contains no package instruction then its package is implementation-
defined. Typically it is grouped with other programs in some implementation-
defined logical collection, such as a directory in a file system. Examples:

package testpackage
package com.ibm.venta

119

4.17

Chapter 4. Keyword Instructions

When a class is identified as belonging to a package, it has a qualified class name,
which is its short name, as given on the class instruction (see page) , prefixed
with the package name and a period. For example, if the short name of a class
is "RxLanguage” and the package name is "com.ibm.venta” then the qualified
name of the class would be "com.ibm.venta.RxLanguage”.

In the reference implementation, packages are kept in a hierarchy derived from the Java
classpath, where the segments of a package name correspond to a path in the hierarchy.
The hierarchy is typically the directories in a file system, or some equivalent (such as a "Zip”
archive file), and so package names should be considered case-sensitive (as some Java im-
plementations use case-sensitive file systems).

Parse instruction

paxrse term template;

where template is one or more non-numeric symbols

separated by blanks and/or patterns, and a pattern is one of:
lLiteralstring
[indicator] number

[indicator] (symbol)

and indicator is one of +, -, or

The parse instruction is used to assign characters (from a string) to one or more
variables according to the rules and templates described in the section Parsing

templates (see page).

The value of the term is expected to be a string; if it is not a string, it will be
converted to a string.

Anyvariables used in the template are named by non-numeric symbols (that is, they
cannot be an array reference or other term); they refer to a variable or property
in the current class. Any values that are used in patterns during the parse are
converted to strings before use.

Any variables set by the parse instruction must have a known string type, or are
given the NetRexx string type, Rexx, if they are new.

120

4.18. Properties instruction

The term itself is not changed unless it is a variable which also appears in the
template and whose value is changed by being in the template.

Example:

parse wordlist wordl wordlist

In this idiomatic example, the first word is removed from wordlist and is assigned
to the variable word1, and the remainder is assigned back to wordlist.

Notes:

1. The special words ask, source, and version, as described in the section Special
names and methods(see page , allow:

parse ask x —— parses a line from input stream

parse asknoecho x — parses a line from input stream without echo
parse source x —- parses 'Java method filename'

parse version x —— parses 'NetRexx version date'

These special words may also be used within expressions.

2. Similarly, it is reccommended that the initial (main) method in a stand-alone
application place the command string passed to it in a variable called arg. B4
If this is done, the instruction:

parse arg template

will work, in a stand-alone application, in the same way as in Rexx (even
though arg is not a keyword in this case). B2

4.18 Properties instruction

properties [visibility] [modifier] [deprecated] [unused];
where visibility is one of:

inheritable
private
public
shared
indirectEE

56 In the reference implementation, this is automatic if the main method is generated by the NetRexx language processor.
57Note, though, that the command string may have been edited by the environment; certain characters may not be
allowed, multiple blanks may have been reduced to single blanks, etc.

121

4.18.1

Chapter 4. Keyword Instructions

and modifier is one of:

constant
static
transient

volatile

and there must be at least one visibility or modifier keyword.

The properties instruction is used to define the attributes of following property
variables, and therefore must precede the first method instruction in a class. A
properties instruction replaces any previous properties instruction (that is, the
attributes specified on properties instructions are not cumulative).

The visibility, modifier, deprecated, and unused keywords may be in any order.

Note: An unqualified properties statement (one that has no visibility or modifier
keyword), is not in error, but generates a variable properties, which is most
probably not the intention of the programmer.The reference implementation issues
a warning but allows this practice.

An example of the use of properties instructions may be found in the Program
Structure section (see page) .

Visibility
Properties may be public, inheritable, private, OT shared:

A public property is visible to (that is, may be used by) all other classes to which
the current class is visible.

« An inheritable property is visible to (that is, may be used by) all classes in
the same package and also those classes that extend (that is, are subclasses
of) the current class, and which qualify the property using an object of the
subclass, or either this or super.

A private property is visible only within the current class.

« Asharedproperty isvisible within the current package butis not visible outside
the package. Shared properties cannot be inherited by classes outside the

122

4.18.2

4.18.3

4.18. Properties instruction

package.

By default, if no properties instruction is used, or visibility is not specified, proper-
ties are inheritable (but not public). Bd

Modifier

Properties may also be constant, static, transient, Or volatile:

A constant property is associated with the class, rather than with an instance
of the class (an object). It is initialized when the class is loaded and may not
be changed thereafter.

 Astaticproperty is associated with the class, rather than with an instance of the
class (an object). Itis initialized when the class is loaded, and may be changed
thereafter.

 Atransient property is a property which should not be saved when an instance
of the class is saved (made persistent).

A volatile property may change asynchronously, outside the control of the
class, even when no method in the class is being executed. If an implementa-
tion does not allow asynchronous modification of properties, it should ignore
this keyword.

Constant and static properties exist from when the class is first loaded (used),
even if no object is constructed by the class, and there will only be one copy of each
property. Other properties are constructed and initialized only when an object is
constructed by the class; each object then has its own copy of such properties.

By default, if no properties instruction is used, or modifier is not specified, proper-
ties are associated with an object constructed by the class.

Deprecated

The keyword deprecated indicates that any property introduced by this instruction
is deprecated, which implies that a better alternative is available and documented.
A compiler can use this information to warn of out-of-date or other use that is not
recommended.

59The default, here, was chosen to encourage the “encapsulation” of data within classes.

123

4.18.4

4.18.5

4.19

Chapter 4. Keyword Instructions

Unused

The keyword unused indicates that the private properties which follow are not
referenced explicitly in the code for the class, and so a language processor should
not warn that they exist but have not been used. If a visibility keyword is specified
it must be private.

For example:

properties private constant unused
—— Serialization version
serialVersionUID=1ong 8245355804974198832

Properties in interface classes

In interface classes (see page , properties must be both public and constant.
In such classes, these attributes for properties are the default and the properties
instruction must not be used.

Return instruction

return [expression];

returnis used to return control (and possibly a result) from a NetRexx program or
method to the point of its invocation.

The expression (if any) is evaluated, active control constructs are terminated (as
though by a leave instruction), and the value of the expression is passed back to
the caller.

The result passed back to the caller is a string of type Rexx, unless a different type
was specified using the returns keyword on the method instruction (see page @)
for the current method. In this case, the type of the value of the expression must
match (or be convertible to, as by the rules for assignment) the type specified by
the returns phrase.

Within a method, the use of expressions on return must be consistent. That is,
either all return instructions must specify a expression, or none may. If a returns
phrase is given on the method instruction for the current method then all return
instructions must specify an expression.

124

4.20

4.21

4.20. Say instruction

Say instruction

say [expression];

say writes a string to the default output character stream. This typically causes it
to be displayed (or spoken, or typed, etc.) to the user.

Example:

data=100
say data 'divided by 4 =>' data/4
/* would display: "100 divided by 4 => 25" x/

The result of evaluating the expression is expected to be a string; if it is not a string,
it will be converted to a string. This result string is written from the program via
an implementation-defined output stream.

By default, the result string is treated as a "line” (an implementation-dependent
mechanism for indicating line termination is effected after the string is written).
If, however, the string ends in the NUL character (’\-’ or ’\0’) then that character
is removed and line termination is not indicated.

The result string may be of any length. If no expression is specified, or the expres-
sion result is null, then an empty line is written (that is, as though the expression
resulted in a null string).

Select instruction

select [label name] [protect term] [case expression];
whenlist
[othexrwise[;] instructionlist]
[catch [vare =] exception;
instructionlist]...
[finally[;]

instructionlist]

125

Chapter 4. Keyword Instructions

end [name];
where name is a non-numeric symbol
and whenlist is one or more whenconstructs
and whenconstruct is:
when expression[, expression]... [;] then[;] instruction

and instructionlist is zero or more instructions.

select is used to conditionally execute one of several alternatives. The construct
may optionally be given a label, and may protect an object while the instructions
in the construct are executed; exceptional conditions can be handled with catch
and finally, which follow the body of the construct.

Starting with the first when clause, each expression in the clause is evaluated in
turn from left to right, and if the result of any evaluation is 1 (or equals the case
expression, see below) then the test has succeeded and the instruction following
the associated then (which may be a complex instruction such as if, do, loop, Or
select) is executed and control will then pass directly to the end.

If the result of all the expressions in a when clause is 0, control will pass to the next
when clause.

Note that once an expression evaluation in awhen clause has resulted in a successful
test, no further expressions in the clause are evaluated.

If none of the when expressions result in 1, then control will pass to the instruction
list (if any) following otherwise. In this situation, the absence of an otherwise is a
run-time error. B9 Notes:

1. An instruction may be any assignment, method call, or keyword instruction,
including any of the more complex constructions such as do, loop, if, and
the select instruction itself. A null clause is not an instruction, however, so
putting an extra semicolon after the then is not equivalent to putting a dummy
instruction (as it would be in C or PL/I). The nop instruction is provided for this
purpose.

2. The keyword then is treated specially, in that it need not start a clause. This

601 the reference implementation, a NoOtherwiseException is raised.

126

4.21.1

4.21.2

4.21.3

4.21. Select instruction

allows the expression on the when clause to be terminated by the then, without
a ”’;” being required - were this not so, people used to other computer lan-
guages would be inconvenienced. Hence the symbol then cannot be used as a
variable name within the expression. 3l

Label phrase

If 1abel is used to specify a name for the select group, then a leave instruction (see
page) which specifies that name may be used to leave the group, and the end
that ends the group may optionally specify the name of the group for additional
checking. Example:

select label roman
when a=b then say 'same'
when a<b then say 'lo'
otherwise
say 'hi’
if a=0 then leave roman
say 'a non-0'
end roman

In this example, if the variable a has the value 0 and b is negative then just "hi” is
displayed.

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is
not just a type and is not of a primitive type; while the select construct is being
executed, the value (object) is protected - that is, all the instructions in the select
construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Case phrase

If case is given it must follow any label or protect phrase, and must be followed by
an expression.

When case is used, the expression following it is evaluated at the start of the select
construct. The result of the expression is then compared, using the strict equality

61Strictly speaking, then should only be recognized if not the name of a variable. In this special case, however, NetRexx
language processors are permitted to treat then as reserved in the context of a when clause, to provide better performance
and more useful error reporting.

127

Chapter 4. Keyword Instructions

operator (==), to the result of evaluating the expression or expressions in each
of the when clauses in turn until a match is found. As usual, if no match is found
then control will pass to the instruction list (if any) following otherwise, and in this
situation the absence of an otherwise is a run-time error. For example, in:

select case i+l

when 1 then say 'one'

when 1+1 then say 'two'

when 3, 4, 5 then say 'many'’
end

then if i had the value 1 then the message displayed would be "two”.

The third when clause in the example demonstrates the use of the multiple expres-
sionsin awhen clause in this context. Similar to a select without case, each expres-
sion is evaluated in turn from left to right and is then compared to the result of the
case expression. As soon as one matches that result, execution of the when clause
stops (any further expressions are not evaluated) and the instruction following the
associated then clause is executed.

Notes:

1. When case is used, the result of evaluating the expression following each when
no longer has to be 0 or 1. Instead, it must be possible to compare each result
to the result of the case expression.

2. The case expression is evaluated only on entry to the select construct; it is
not re-evaluated for each when clause.

3. An exceptionraised during evaluation of the case expression will be caught by
a suitable catch clause in the construct, if one is present. Similarly, evaluation
of the case expression is protected by the protect phrase, if one is present.

4. In the reference implementation, a select case construct will be translated into a
Java switch construct provided that it meets the following criteria:

 The type of the case expression is byte, char, int, or short.
 The value of all the expressions on the when clauses are primitive constants (that
is, they consist of only constants of primitive types and operators valid for them
and so may be evaluated at compile time).
« No two expressions on the when clauses evaluate to the same value.
« It is not subject to tracing.
Under these conditions the semantics of the switch construct match those defined for
select. The example shown above would be translated to a switch construct if i had
type int and options binary were in effect.

128

4.22. Signal instruction

4.21.4 Exceptions in select constructs

4.22

Exceptions that are raised by the instructions within the body of the group, or
during evaluation of the case expression, may be caught using one or more catch
clauses that name the exception that they will catch. When an exception is caught,
the exception object that holds the details of the exception may optionally be
assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always
be executed at the end of the select group, even if an exception is raised (whether
caught or not).

The Exceptions section (see page [L74) has details and examples of catch and
finally.

Signal instruction

signal term;

The signal instruction causes an "abnormal” change in the flow of control, by
raising an exception.

The exception term may be a term that constructs or evaluates to an exception
object, or it may be expressed as the name of an exception type (in which case
the default constructor, with no arguments, for that type is used to construct
an exception object). The exception object then represents the exception and is
available, if required, when the exception is handled.

The handling of exceptions is detailed in the Exceptions section (see page). In
summary, when an exception is signalled, all active pending do groups, loop loops,
if constructs, and select constructs may be ended. For each one in turn, from the
innermost:

1. No further clauses within the body of the construct will be executed (in this
respect, signal acts like a leave for the construct).

2. The instructionlist following the first catch clause that matches the exception,
if any, is executed.

3. The instructionlist following the finally clause for the construct, if any, is
executed.

129

4.23

Chapter 4. Keyword Instructions

If a catch matched the exception the exception is deemed handled, and execution
resumes as though the construct ended normally (unless a new exception was
signalled in the catch or finally instruction lists, in which case it is processed).
Otherwise, any enclosing construct is ended in the same manner. If there is
no enclosing construct, then the current method is ended and the exception is
signalled in the caller.

Examples:
signal RxErrorTrace
signal DivideException('Divide by zero')

In the reference implementation, the term must either

« evaluate to an object that is assignable to the type Throwable (for example, a subclass
of Exception or RuntimeException).

« be a type that is a subclass of Throwable, in which case the default constructor (with
no arguments) for the given type is used to construct the exception object.

Trace instruction

trace traceoption;

where traceoption is one of:
tracesetting

var [varlist]
where tracesetting is one of:

all
methods
off
results

int

and varlist is one or more variable names

(optionally prefixed with a + or -)

130

4.23.1

4.23. Trace instruction

The trace instruction is used to control the tracing of the execution of NetRexx
methods, and is primarily used for debugging. It may change either the general
trace setting or may select or deselect the tracing of individual variables.

Within methods, the trace instruction changes the trace setting or variables
tracing when it is executed, and affects the tracing of all clauses in the method
which are then executed (until changed by a later trace instruction).

One or more trace instructions may appear before the first method in a class, one
of which may set the initial trace setting for all methods in the class (the default
is off) and others may set up variables tracing that applies to all the methods in
the class. These act as though the trace instructions were placed immediately
following the method instruction in each method (except that they will not be
traced).

Similarly, one or more trace instructions may be placed before the first class in-
struction in a program; they do not imply the start of a class. One of these may
set the initial trace setting and others may set up variables tracing for all classes
in the program (except interface classes) and act as though the trace instructions
were placed immediately following the class instruction in each class.

Tracing clauses

The trace setting controls the tracing of clauses in a program, and may be one of
the following:

all All clauses (except null clauses without commentary) which are in methods
and which are executed after the trace instruction will be traced. If trace all
is placed before the first method in the current class, the method instructions
in the class, together with the values of the arguments passed to each method,
will be traced when the method is invoked (that is, trace all implies trace
methods).

methods All method clauses in the class will be traced when the method they
introduce is invoked, together with the values of the arguments passed to
each method; no other clauses, or results, will be traced. The trace methods
instruction must be placed before the first method in the current class (as
otherwise it would have no effect).

off Turns tracing off; no following clauses, variables, or results will be traced.

results All clauses (except null clauses without commentary) which are in me-
thods and which are executed after the trace instruction will be traced, as
though trace all had been requested. In addition, the results of all expression

131

Chapter 4. Keyword Instructions

evaluations and any results assigned to a variable by an assignment, loop, or
parse instruction are also traced.
If trace results is placed before the first method in the current class, the
method instructions in the class will be traced when the method is invoked,
together with the values of the arguments passed to each method.

int With the trace int instruction, interpretation of the code is interrupted and
the trace prompt *-> is presented. Clauses are interpreted one by one by
pressing [Enter]. While single-stepping the code, access to variables, proper-
ties and methods is available interactively. Trace output is shown as if trace
results is active.

Notes:

1. Tracing of clauses shows the data from the source of the program, starting at
the first character of the first token of the clause and including any commentary
from that point until the end of the clause.

2. When a loop is being traced, the loop clause itself will be traced on every
iteration of the loop, as indicated by the programmer’s model (see page @)
; the end clause is only traced once, when the loop completes normally.

3. With trace results, an expression is not traced if it is immediately used for
an assignment (in an assignment instruction, or when the control variable is
initialized in a loop instruction). The assignment will trace the result of the
expression.

4. Interactive trace as with trace int is only available when interpreting code,
i.e. when using the -arg or -exec option. When compiling trace int a warning
"+++ Warning: TRACE INT ignored when compiling’ is shown.

4.23.2 Tracing variables

The var option adds names to a list of monitored variables; it can also remove
names from the list. If the name of a variable in the current class or method is in
the list, then trace results is turned on for any assignment, loop, Or parse clause
that assigns a new value to the named variable.

Variable names are specified by listing them after the var keyword. Each name
may be optionally prefixed by a + or a - sign. A + sign indicates that the variable is
to be added to the list of monitored variables (the default), and a - sign indicates
that the variable is to be removed from the list. Blanks may be added before and
after variable names and signs to separate the tokens and to improve readability.
For example:

132

4.23. Trace instruction

trace var a b ¢

—— now variables a, b, and ¢ will be traced
trace var -b -c d

—— now variables a and d will be traced

Notes:

1. Names in the list following the var keyword are simple symbols that name
variables in the current class or current method. The variables may be pro-
perties, method arguments, or local variables, and may be of any type, including
arrays. The names are not case-sensitive; any variables whose names match,
independent of case, will be monitored.

2. No variable name can appear more than once in the list on one trace varin-
struction. However, it is not an error to add the name of a variable which does
not exist or is not then assigned a value. Similarly, it is not an error to remove
a name which is not currently being monitored.

3. One or more trace var instructions (along with one other trace instruction)
are allowed before the first method in a class. They all modify an initial list of
monitored variables which is then used for all methods in the class. Similarly,
trace varinstructions are allowed before the first classin a program, in which
case they apply to all classes (except interface classes).

4. Other trace instructions do not affect the list of monitored variables. The
trace off instruction may be used to turn off tracing completely; in this case
trace var (with or without any variable names) will then turn the tracing of
variables back on, using the current (or modified) variable list.

5. For a parse instruction, only monitored variables have their assignments
traced (unless trace results is already in effect).

4.23.3 The format of trace output

Trace output is either clauses from the program being traced, or results (such as
the results from expressions).

The first clause or result traced on any line will be preceded by its line number
in the program; this is right-justified in a space which allows for the largest line
number in the program, plus one blank. Following clauses or results from the
same line are preceded by white space of the same width; however, any change
of line number causes the line number to be included.

Clauses that are traced will be displayed with the formatting (indention) and
layout used in the original source stream for the program, starting with the first
character of the first token of the clause.

133

Chapter 4. Keyword Instructions

TABLE 8: Trace identifier tags

*=%
Identifies the first line of the source of a single clause, i.e., the data actually in the program.

Identifies a continuation line from the source of a single clause. Continuations may be due
to the use of a continuation character (see page [11) or to the use of a block comment (see
page @) which spans more than one line.

>a>
Identifies a value assigned to a method argument of the current method. The name of the

argument is included in the trace.

>p>
Identifies a value assigned to a property. The name of the property is included in the trace

if the property is in the current class.

>v>
Identifies a value assigned to a local variable in the current method. The name of the

variable is included in the trace.

»>
Identifies the result of an expression evaluation that is not used for an assignment (for

example, an argument expression in a method call).

+++
Reserved for error messages that are not supplied by the environment underlying the im-

plementation.

The interactive trace prompt.

Results (if requested) are converted to a string for tracing if necessary, are not
indented, and have a double quote prefixed and suffixed so that leading and
trailing blanks are apparent; if, however, the result being traced is null (see
page) then the string ”"[null]” is shown (without quotes). For results with
an associated name (the values assigned to local variables, method arguments,
or properties in the current class), the name of the result precedes the data,
separated by a single blank.

For clarity, implementations may replace “control codes” in the encoding of
results (for example, EBCDIC values less than ’\x40’, or Unicode values less than
\x20’) by a question mark (”?”). All lines displayed during tracing have a three
character tag to identify the type of data being traced. This tag follows the line
number (or the space for a line number), and is separated from the line number
by a single blank. The traced clause or result follows the tag, after another blank.
The identifier tags are listed in table .

If a trace line is produced in a different context (program or thread) from the
preceding trace line (if any) then a trace context line is shown. This shows the name
of the program that produced the trace line, and also the name of the thread (and
thread group) of the context.

134

4.23. Trace instruction

The thread group name is not shown if it is main, and in this case the thread name
is then also suppressed if its name is main.

Examples: If the following instructions, starting on line 53 of a 120-line program,
were executed:

trace all
if 1=1 then say 'Hello'
else say 'i<>1'
say —
"A continued line'

the trace output (if i were 1) would be:

54 x=x if i=1

*=% then

*=x% say 'Hello'’
56 x=x say -
57 x*—x 'A continued line'

Similarly, for the 3-line program:

trace results
number=1/7
parse number before '.' after

the trace output would be:

2 x=x number=1/7
>v> number "0.142857143"

3 *=x parse number before '.' after
>v> before "0"
>v> after "142857143"

4.23.4 Interactive trace prompt

Typing ’?’ on the interactive trace prompt shows the interactive trace capabilities:

*=> 7
Experimental interactive trace :
press [Enter] to trace interactively

type '=' to reinterpret current clause
type '-[n]' to show previous n clause(s), shows current clause if n {is
absent

type '+[n]' to show next n clause(s), shows next clause if n is absent
type 'trace off' to stop tracing
any other clause entered must be either an assignment or a SAY
instruction
*—=>

Notes:

135

Chapter 4. Keyword Instructions

1. Traceoutputiswrittentoanimplementation-defined output stream (typically
the “standard error” output stream, which lets it be redirected to a destination
separate from the default destination for output which is used by the say in-
struction).

2. In some implementations, the use of trace instructions may substantially
increase the size of classes and the execution time of methods affected by
tracing.

3. With some implementations it may be possible to switch tracing on externally,
without requiring modification to the program.

625 the reference implementation, options notrace may be used to disable all trace instructions and hence ensure that tracing
overhead is not accidentally incurred.

136

Chapter 5

Program structure and concepts

A NetRexx program is a collection of clauses (see page @) derived from a single
implementation-defined source stream (such as a file). When a program is proces-
sed by a language processor Bd it defines one or more classes. Classes are usually
introduced by the class instruction (see page , butifthe firstis a standard class,
intended to be run as a stand-alone application, then the class instruction can be
omitted. In this case, NetRexx defines an implied class and initialization method
that will be used.

The implied class and method permits the writing of "low boilerplate” programs,
with a minimum of syntax. The simplest, documented, NetRexx program that has
an effect might therefore be:

Example:

/* This is a very simple NetRexx program x*/
say 'Hello World!'

This is equivalent to the "complete boilerplate” program:

Example:

class hello
method main(args=String[]) static
/* This i1s a very simple NetRexx program x/
say 'Hello world!'

The class name (hello) defining the initialisation method (main), needs to named
identical to the base filename declaring the class (hello.nrx). This is not a NetRexx
requirement but a Java requirement.

In more detail, a NetRexx program consists of:

1. Anoptional prolog (package, import, and options instructions). Only one package
instruction is permitted per program.

63Such as a compiler or interpreter.

137

Chapter 5. Program structure and concepts

2. One or more class definitions, each introduced by a class instruction.
A class definition comprises:

1. The class instruction which introduces the class (which may be inferred, see
below).

2. Zero or more property variable assignments, along with optional properties
instructions that can alter their attributes, and optional numeric and trace in-
structions. Property variable assignments take the form of an assignment (see
page @) , with an optional =" and expression, which may:

 justname a property (by omitting the ”=" and expression of the assignment),
in which case it refers to a string of type Rexx

« assignatypetothe property (when the expression evaluates to just a type)

- assign a type and initial value to the property (when the expression
returns a value).

3. Zero or more method definitions, each introduced by a method instruction
(which may be inferred if the class instruction is inferred, see below).

A method definition comprises:

« Any NetRexx instructions, except the class, method, and properties instruc-
tions and those allowed in the prolog (the package, import, and options instruc-
tions).

Example:
/* A program with two classes x/
import java.applet. —— for example

class testclass extends Applet
properties public

state —— property of type 'Rexx'

i=1int —— property of type 'int'
properties constant

j=int 3 —— property initialized to '3’

method start
say 'I started'
state='start'

method stop
say 'I stopped'
state='stop'

class anotherclass
method testing
loop i1=1 to 10
say 'l, 2, 3, 4...'

138

5.1

5.1. Program defaults

if 1=7 then return
end
return

method anothertest
say 'l, 2, 3, 4'

This example shows a prolog (with just an import instruction) followed by two
classes. The first class includes two public properties, one constant property, and
two methods. The second class includes no properties, but also has two methods.

Note that a return instruction implies no static scoping; the content of a method
is ended by a method (or class) instruction, or by the end of the source stream. The
return instruction at the end of the testing method is, therefore, unnecessary.

Program defaults

The following defaults are provided for NetRexx programs:

1. If, while parsing prolog instructions, some instruction that is not valid for
the prolog and is not a class instruction is encountered, then a default class
instruction (with an implementation-provided short name, typically derived
from the name of the source stream) is inserted. If the instruction was not
a method instruction, then a default method instruction (with a name and
attributes appropriate for the environment, such as main) is also inserted.
In this latter case, it is assumed that execution of the program will begin by
invocation of the default method. In other words, a “stand-alone” application
can be written without explicitly providing the class and method instructions
for the first method to be executed. An example of such a program is given in
Appendix A (see page .

In the reference implementation, the main method in a stand-alone application is
passed the words forming the command string as an array of strings of type java.lang.String
(one word to each element of the array). When the NetRexx reference implementation
provides the main method instruction by default, it also constructs a NetRexx string

of type Rexx from this array of words, with a blank added between words, and assigns

the string to the variable arg.

The command string may also have been edited by the underlying operating system
environment; certain characters may not be allowed, multiple blanks or whitespace

may have been reduced to single blanks, etc.

2. Ifamethod ends and the lastinstruction at the outerlevel of the method scope
is not return then a return instruction is added if it could be reached. In this

139

5.2

5.2.1

Chapter 5. Program structure and concepts

case, if a value is expected to be returned by the method (due to other return
instructions returning values, or there being a returns keyword on the method
instruction), an error is reported.

3. Each class has implicit uses for RexxDate (and RexxTime), RexxStream and
RexxRexx. This provides easy access to standard Rexx I/O, date and time me-
thods. It favours the NetRexx Date() over Java’s Date(). To access the latter,
fully qualify the class as java.util.Date, or use the -noimplicituses option.

Language processors may provide options to prevent, or warn of, these defaults
being applied, as desired.

Minor and Dependent classes

A minor class in NetRexx is a class whose name is qualified by the name of another
class, called its parent, and a dependent class is a minor class that has a link to its
parent class that allows a child object simplified access to its parent object and its
properties.

Minor classes

A minor class in NetRexx is a class whose name is qualified by the name of another
class, called its parent. This qualification is indicated by the form of the name of
the class: the short name of the minor class is prefixed by the name of its parent
class (separated by a period). For example, if the parent is called Foo then the full
name of a minor class Bar would be written Foo.Bar. The short name, Bar, is used
for the name of any constructor method for the class; outside the class it can only
be used to identify the class in the context of the parent class (or from children of
the minor class, see below).

The names of minor classes may be used in exactly the same way as other class
names (types) in programs. For example, a property might be declared and initi-
alized thus:

abar=Foo.Bar null —- this has type Foo.Bar

or, if the class has a constructor, perhaps:
abar=Foo.Bar() —— constructs a Foo.Bar object

Minor classes must be in the same program (and hence in the same package) as
their parent. They are introduced by a class instruction that specifies their full
name, for example:

140

5.2. Minor and Dependent classes

class Foo.Bar extends SomeClass

Minor classes must immediately follow their parent class. B4

Minor classes may have a parent which is itself a minor class, to any depth; the
name and the positioning rules are extended as necessary. For example, the
following classes might exist in a program:

class Foo
class Foo.Bar
class Foo.Bar.Nod
class Foo.Bar.Pod
class Foo.Car

As before, the children of Foo.Bar immediately follow their parent. The list of
children of Foo can be continued after the children of Foo.Bar have all been specified.

Note that the short name (last part of the name) of a minor class may not be
the same as the short name of any of its parents (a class Foo.Bar.Foo Or a class
Foo.Bar.Bar would be in error, for example). This allows minor classes to refer to
their parent classes by their short name without ambiguity.

Constructing objects in minor classes

A parent class can construct an object of a child class in the usual manner, by
simply specifying its constructor (identified by its short name, full name, or
qgualified name). For example, a method in the Foo.Bar class above could construct
an object of type Foo.Bar.Nod using:

anod=Nod()

(assuming the Foo.Bar.Nod class has a constructor that takes no arguments).

Similarly, minor classes can refer to the types and constructors of any of its
parents by simply using their short names. Hence, the Foo.Bar.Nod class could
construct objects of its parents’ types thus:

abar=Bar()
afoo=Foo()

(again assuming the parent classes have constructors that take no arguments).

Classes other than the parent or an immediate child must use the full name (if
necessary, qualified by the package name) to refer to a minor class or its construc-
tor.

64This allows compilers that generate Java source code to preserve line numbering.

141

5.2.2

Chapter 5. Program structure and concepts

Dependent classes

As described in the last section, minor classes provide an enhanced packaging
(naming) mechanism for classes, allowing classes to be structured within packages.
A stronger link between a child class and its parent is indicated by the modifier
keyword dependent on the child class, which indicates that the child is a dependent
class. For example:

class Foo.Dep dependent extends SomeClass
method Dep —— this 1s the constructor

An object constructed from a dependent class (a dependent object) is linked to the
context of an object of its parent type (its parent object). The linkage thus provided
allows the child object simplified access to the parent object and its properties.

In the example, an object of type Foo.Dep can only be constructed in the context of
a parent object, which must be of type Foo.

Constructing dependent objects

A parent class can construct a dependent object in the same way as when con-
structing objects of other child types; that is, by simply specifying its construc-
tor. In this case, however, the current object (this) becomes the parent object of
the newly constructed object. For example, a method in the Foo class above could
construct a dependent object of type Foo.Dep using:

adep=Dep()

(assuming the Dep class has a constructor that takes no arguments).

In general, for a class to construct an object from a dependent class, it must have
a reference to an object of the parent class (Which will become the parent of the
new object), and the constructor must be called (by its short name) in the context
of that parent object. For example:

parentObject=Foo()
adep=parentObject.Dep()

(In the same way, the first example could have been written:
adep=this.Dep()

within the parent class the this. is implied.)

In order to subclass a dependent class, the constructor of the dependent class
must be invoked by the subclass constructor in a similar manner. In this case,
a qualified call to the usual special constructor super is used, for example:

142

5.2. Minor and Dependent classes

class ASub extends Foo.Dep
method Asub(afoo=Fo0)
afoo.super()

The qualifier (afoo in the example) must be either the name of an argument to
the constructor, or the special word parent (if the classes share a common parent
class), or the short name of a parent class followed by .this (see below). The call to
super must be the first instruction in the method, as usual, and it must be present
(it will not be generated automatically by the compiler).

Access to parent objects and their properties

Dependent classes have simplified access to their parent objects and their pro-
perties. In particular:

« The special word parent may be used to refer to the parent object of the
current object. It may appear alone in a term, or at the start of a compound
term. It can only be used in non-static contexts in a dependent class.

« In general, any of the objects in the chain of parents of a dependent object
may be referred to by qualifying the special word this with the short name of
the parent class. For example, extending the previous example, if the class
Foo.Dep.Ent was a dependent class it could contain references to Foo.this
(the parent of its parent) or Dep.this (the latter being the same as specifying
parent). If preferred, the full name or the fully qualified name of the parent
class may be used instead of the short name.

Like parent, this construct can only be used at the start of a term in non-static
contexts in a dependent class.

« As usual, properties external to the current class must always be qualified
in some way (for example, the prefix parent. can be used in a term such as

parent.aprop).

5.2.3 Restrictions

Minor classes may have any of the attributes (public, interface, efc.) of other
classes, and behave in every way like other classes, with the following restrictions:

- Ifaclassis a static class (that is, it contains only static or constant properties
and methods) then any children cannot be dependent classes (because no
object of the parent class can be constructed). Similarly, interface classes and
abstract classes cannot have dependent classes.

143

5.3

5.3.1

Chapter 5. Program structure and concepts

« Dependent classes may not be interfaces.

« Dependent classes may not contain static or constant properties (or me-
thods). B3 These must be placed in a parent which is not a dependent class.

« Minor classes may be public only if their parent is also public. (Note that this
is the only case where more than one public class is permitted in a program.)
In general: a minor class cannot be more visible than its parent.

Special names and methods

For convenience, NetRexx provides some special names for naming commonly-
used concepts within terms. These are only recognized if there is no variable of
the same name previously seen in the current scope, as described in the section
on Terms (see page @) . This allows the set of special words to be expanded in
the future, if necessary, without invalidating existing variables. Therefore, these
names are not reserved; they may be used as variable names instead, if desired.

There are also two ”special methods” that are used when constructing objects.

Special names

The following special names are allowed in NetRexx programs, and are recogni-
zed independently of case. Bd with the exception of length and class, these may
only be used alone as a term or at the start of a compound term.

ask Returnsa string of type Rexx, read as aline from the implementation-defined
default input stream (often the user’s "console”).
Example:

if ask='yes' then say 'OK'

ask can only appear alone, or at the start of a compound term. 3

asknoecho Returns a string of type Rexx, read as a line from the implementation-
defined default input stream (often the user’s “console”), without an echo to
the screen of the typed character(s).
Example:

if asknoecho='yes' then say '0OK'

65This restriction allows compilation for the Java platform.
6 Unless options strictcase is in effect.
67 In the reference implementation, ask is simply a shorthand for RexxI0.Ask().

144

5.3. Special names and methods

asknoecho can only appear alone, or at the start of a compound term.
bd

class The object of type Class that describes a specific type. This word is only re-
cognized as the second part of a compound term, where the evaluation of the
first part of the term resulted in a type or qualified type.
Example:
obj=String.class
say obj.isInterface /* would say '0' x/

digits The current setting of numeric digits (see page ,returned as a string of
type Rexx. This will be one or more Arabic numerals, with no leading blanks,
zeros, or sign, and no trailing blanks or exponent. digits can only appear
alone, or at the start of a compound term.

form The current setting of numeric form (see page , returned as a string of
type Rexx. This will have either the value "scientific” or the value "engineering”.
form can only appear alone, or at the start of a compound term.

length The length of an array (see page E?I) , returned as an implementation-
dependent binary type or string. This word is only recognized as the last part
of a compound term, where the evaluation of the rest of the term resulted in
an array of dimension 1.
Example:
foo=char[7]
say foo.length /* would say '7' x/
Note that you can get the length of a NetRexx string with the same syntax. bd
In that case, however, a length() method is being invoked.

null The emptyreference. This is a special value that represents "no value” and may
be assigned to variables (or returned from methods) except those whose type
is both primitive and undimensioned. It may also be be used in a comparison
for equality (or inequality) with values of suitable type, and may be given a
type. Examples:

blob=int[3] —- 'blob' refers to array of 3 ints
blob=null — 'blob' is still of type int[],

—— but refers to no real object
mob=Mark null —-- 'mob' is type 'Mark'

The null value may be considered to represent the state of being uninitialized.
It can only appear as simple symbol, not as a part of a compound term.

RC The special variable named RC holds the returncode of the last executed
command sent to the address environment. When the environment was never
addressed, RC holds the value 'RC’.

68n the reference implementation, asknoecho is shorthand for System.console().ReadPassword().
69 Unless options strictargs is in effect.

145

Chapter 5. Program structure and concepts

source Returns a string of type Rexx identifying the source of the current class.
The string consists of the following words, with a single blank between the
words and no trailing or leading blanks:

1. the name of the underlying environment (e.g., Java)

2. either method (if the term is being used within a method) or class (if the
term is being used within a property assignment, before the first method
in a class)

3. an implementation-dependent representation of the name of the source
stream for the class (e.g., Fred.nrx).

source can only appear alone, or at the start of a compound term.

sourceline Theline number of the first token of the current clause in the NetRexx
program, returned as a string of type Rexx. This will be one or more Arabic
numerals, with no leading blanks, zeros, or sign, and no trailing blanks or
exponent. sourceline can only appear alone, or at the start of a compound
term.

super Returns a reference to the current object, with a type that is the type of
the class that the current object’s class extends. This means that a search
for methods or properties which super qualifies will start from the super-
class rather than in the current class. This is used for invoking a method or
property (in the superclass or one of its superclasses) that has been overridden
in the current class. Example:
method printit(x)

say 'it' — modification
super.printit(x) -- now the usual processing

If a property being referenced is in fact defined by a superclass of the current
class, then the prefix “super.” is perhaps the clearest way to indicate that
name refers to a property of a superclass rather than to a local variable. (You
could also qualify it by the name of the superclass.) super can only appear
alone, or at the start of a compound term.

this Returns a reference to the current object. When a method is invoked, for

example in:
word=Rexx "hello" —— 'word' refers to "hello"
say word.substr(3) —— 1invokes substr on "hello"

then the method substr in the class Rexx is invoked, with argument ’3’, and
with the properties of the value (object) ”hello” available to it. These proper-
ties may be accessed simply by name, or (more explicitly) by prefixing the
name with “this.”. Using "this.” can make a method more readable, especially
when several objects of the same type are being manipulated in the method.
this can only appear alone, or at the start of a compound term.

146

5.3. Special names and methods

trace The current trace (see page) setting, returned as a NetRexx string. This
will be one of the words:

off var methods all results

(var is returned when clause tracing is off but variable tracing has then been
turned on using a trace var instruction.) trace can only appear alone, or at
the start of a compound term.

version Returns a string of type Rexx identifying the version of the NetRexx
language in effect when the current class was processed. The string consists
of the following words, with a single blank between the words and no trailing
or leading blanks:

1. A word describing the language. The first seven letters will be the cha-
racters NetRexx, and the remainder may be used to identify a particular
implementation or language processor. This word may not include any
periods.

2. The language level description, which must be a number with no sign or
exponential part. For example, ” 5.01-GA” is the language level of this
definition.

3. Three words describing the language processor release date in the same
format as the default for the Rexx “date()” function. Fd For example, "22
May 2009”.

version can only appear alone, or at the start of a compound term.

5.3.2 Special methods

Constructors (methods used for constructing objects) in NetRexx must invoke a
constructor of their superclass before making any modifications to the current
object (or invoke another constructor in the current class).

This is simplified and made explicit by the provision of the special method names
super and this, which refer to constructors of the superclass and current class
respectively. These special methods are only recognized when used as the first,
method call, instruction in a constructor, as described in Methods and constructors
(see page [52]) . Their names will be recognized independently of case. il

In addition, NetRexx provides special constructor methods for the primitive types
that allow binary construction of primitives. These are described in Binary values
and arithmetic (see page).

70As defined in American National Standard for Information Technology - Programming Language REXX, X3.274-
1996:, American National Standards Institute, New York, 1996. See also Date () on page .
"1Unless options strictcase is in effect.

147

5.4

Chapter 5. Program structure and concepts

JavaBean Support

This chapter describes the indirect properties feature.

The intention of this feature is to make it easier to write a certain kind of class
known as a JavaBean. Almost all JavaBeans will have properties, which are data
items that a user of a JavaBean is expected to be able to customize (for example,
the text on a pushbutton). The names and types of the properties of a JavaBean are
inferred from "design patterns” (in this context, conventions for naming methods)
or from PropertyDescriptor objects associated with the JavaBean.

The JavaBean properties do not necessarily correspond to instance variables
in the class - although very often they do. The JavaBean specification does not
guarantee that JavaBean properties that can be set can also be inspected, nor
does it describe how ambiguities of naming and method signatures are to be
handled.

The NetRexxC compiler allows a more rigorous treatment of JavaBean proper-
ties, by allowing an optional attribute of properties in a class that declares them
to be indirect properties. Indirect properties are properties of a known type that are
private to the class, but which are expected to be publicly accessible indirectly,
though certain conventional method calls.

Declaring properties to be indirect offers the following advantages:

- For many simple cases, the access methods for the properties can be gene-
rated automatically; there is no need to explicitly code them in the source
file for the class. This is especially helpful for Indexed Properties (Where four
methods are needed, in general).

« Where access methods are explicitly provided in the class, they can be checked
for correct form, signature and accessibility. This detects errors at compile
time that otherwise would only be determined by testing.

« Similarly, attention can be drawn to the presence of methods that may be
intended to be an access method for an indirect property, but will not be re-
cognized as such by builders.

The next section describes the use of indirect properties in more detail.

148

5.4. JavaBean Support

5.4.1 Indirect properties

The propertiesinstruction (see page) isused to define the attributes of following
property variables. The visibility of properties may include a new alternative: indirect.
Properties with this form of visibility are known as indirect properties. These are
properties of a known type that are private to the class, but which are expected to
be publicly accessible indirectly, though certain conventional method calls.

For example, consider the simple program:

class Sandwich extends Canvas implements Serializable
properties indirect
slices=Color.gray
filling=Color.red

method Sandwich
resize(100,30)

method paint(g=Graphics)
g.setColor(slices)
g.fillRect(0, 0, size.width, size.height)
g.setColor(filling)
g.fillRect(12, 12, size.width-12, size.height-12)

This declares the Sandwich class as having two indirect properties, called slices
and filling, both being of type java.awt.Color.

In the example, no access methods are provided for the properties, so the compiler
will add them. By implementation-dependent convention, the names are prefixed
with verbs such as get and set, efc., and have the first character of their name
uppercased to form the method names. Hence, in this Java-based example, the
following four methods are added:

method getSlices returns java.awt.Color
return slices

method getFilling returns java.awt.Color
return filling

method setSlices($l=java.awt.Color)
slices=%$1

method setFilling($2=java.awt.Color)
filling=$2

(where $1 and $2 are "hidden” names used for accessing the method arguments).

Note that the indirect attribute for a property is an alternative to the public,
private, and inheritable, and shared attributes. Like private properties, indirect
properties can only be accessed directly by name from within the class in which
they occur; other classes can only access them using the access methods (or other
methods that may use, or have a side-effect on, the properties).

149

Chapter 5. Program structure and concepts

Indirect properties may be constant (implying that only a get method is generated
or allowed, though the private property may be changed by methods within the
class) or transient (see page . They may not be static or volatile.

In detail, the rules used for generating automatic methods for a property whose
name is xxxx are as follows:

1. A method called getXxxx which returns the value of the property is genera-
ted. The returned value will have the same type as xxxx.

2. Ifthe type of xxxx is boolean then the generated method will be called isXxxx
instead of getXxxx.

3. If the property is not constant then a method for setting the property will also
be generated. This will be called setXxxx, and take a single argument of the
same type as xxxx. This assigns the argument to the property and returns no
value.

If the property has an array type (for example, char[]), then it must only have a
single dimension. Two further methods may then be generated, according to the
rules:

1. A method called getXxxx which takes a single int as an argument and which
returns an item from the property array is generated. The returned value will
have the same type as xxxx, without the []. The integer argument is used to
index into the array.

2. As before, if the result type of the method would be boolean then the name of
the method will be isXxxx instead of getXxxx.

3. Ifthe property is not constant then a method for setting an item in the property
array will also be generated. This will be called setXxxx, and take two argu-
ments: the first is an int that is used to select the item to be changed, and the
second is an undimensioned argument of the same type as xxxx. It assigns
the second argument to the item in the property array indexed by the first
argument, and returns no value.

For example, for an indirect property declared thus:

properties indirect
fred=foo.Bar[]

the four methods generated would be:

method getFred returns foo.Bar[]; return fred

method getFred($l=int) returns foo.Bar; return fred[$1]
method setFred($2=foo.Bar[]); fred=$2

method setFred($3=int, $4=foo.Bar); fred[$3]=%$4

150

5.4.2

5.4. JavaBean Support

Note that in all cases a method will only be generated if it would not exactly match
a method explicitly coded in the current class.

Explicit provision of access methods

Often, for example when an indirect property has an on-screen representation,
it is desirable to redraw the property when the property is changed (and in more
complicated cases, there may be interactions between properties). These and
other actions will require extra processing which will not be carried out by au-
tomatically generated methods. To add this processing the access methods will
have to be coded explicitly. In the "Sandwich” example, we only need to supply
the set methods, perhaps by adding the following to the example class above:

method setSlices(col=Color)
slices=col —— update the property
this.repaint —— redraw the component

method setFilling(col=Color)
filling=col
this.repaint

If we add these two methods, they will no longer be added automatically (the two
get methods will continue to be provided automatically, however). Further, since
the names match possible access methods for properties that are declared to be
indirect, the compiler will check the method declaration: the method signatures
and return type (if any) must be correct, for example. Also, since the names of
access methods are case-sensitive (in a Java environment), you will be warned if
a method appears to be intended to be an access method but the case of one or
more letters is wrong.

Specifically, the checks carried out are as follows:

1. For methods whose names exactly match a potential access method for an
indirect property (that is, start with is, get, or set, which is then followed
by the name of an indirect property with the first character of the name
uppercased):

« The argument list for (signature of) the method must match one of those
that could possibly be automatically generated for the property.

« The returns type (if any) must match the expected returns type for that
method.

o If the returns type is simply boolean, then the method name must start
with is. Conversely, if the method name starts with is then the returns
type must be just boolean.

151

5.5

5.5.1

Chapter 5. Program structure and concepts

« If the property is constant then the name of the method cannot start with
set.
« Awarning is given if the method is not public (the default).
2. For methods whose names match a potential access method, as above, except
in case:
« Awarning is given that the method in question may be intended to be an
indirect property access method, but will not be recognized as such by
builders.

These checks detect a wide variety of errors at compile time, hence speeding the
development of classes that use indirect properties.

Parsing templates

The parse instruction allows a selected string to be parsed (split up) and assigned
to variables, under the control of a template.

The various mechanisms in the template allow a string to be split up by explicit
matching of strings (called patterns), or by specifying numeric positions (positional
patterns - for example, to extract data from particular columns of a line read from
a character stream). Once split into parts, each segment of the string can then be
assigned to variables as a whole or by words (delimited by blanks).

This section first gives some informal examples of how the parsing template can
be used, and then defines the algorithms in detail.

Introduction to parsing

The simplest form of parsing template consists of a list of variable names. The
string being parsed is split up into words (characters delimited by blanks), and
each word from the string is assigned to a variable in sequence from left to right.
The final variable is treated specially in that it will be assigned whatever is left of
the original string and may therefore contain several words. For example, in the
parse instruction:

parse 'This is a sentence.' vl v2 v3

the term (in this case a literal string) following the instruction keyword is parsed,
and then: the variable vl would be assigned the value "This”, v2 would be assigned
the value ”is”, and v3 would be assigned the value ”a sentence.”.

152

5.5. Parsing templates

Leading blanks are removed from each word in the string before it is assigned to
a variable, as is the blank that delimits the end of the word. Thus, variables set in
this manner (v and v2 in the example) will never have leading or trailing blanks,
though v3 could have both leading and trailing blanks. Note that the variables
assigned values in a template are always given a new value and so if there are
fewer words in the string than variables in the template then the unused variables
will be set to the null string. The second parsing mechanism uses a literal string
in a template as a pattern, to split up the string. For example:

parse 'To be, or not to be?' wl ',' w2

would cause the string to be scanned for the comma, and then split at that point;
the variable w1 would be set to "To be”, and w2 is set to ” or not to be?”. Note that
the pattern itself (and only the pattern) is removed from the string. Each section
of the string is treated in just the same way as the whole string was in the previous
example, and so either section could be split up into words. Thus, in:

parse 'To be, or not to be?" wl ',' w2 w3 w4

w2 and w3 would be assigned the values "or” and "not”, and w4 would be assigned
the remainder: "to be?”.

If the string in the last example did not contain a comma, then the pattern would
effectively "match” the end of the string, so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to
a null string. The pattern may be specified as a variable, by putting the variable
name in parentheses. The following instructions therefore have the same effect
as the last example:

C=I,I
parse 'To be, or not to be?"' wl (c) w2 w3 w4

The third parsing mechanism is the numeric positional pattern. This works in the
same way as the string pattern except that it specifies a column number. So:

parse 'Flying pigs have wings' x1 5 x2

would split the string at the fifth column, so x71 would be "Flyi” and x2 would start
at column 5 and so be "ng pigs have wings”. More than one pattern is allowed, so
for example:

parse 'Flying pigs have wings' x1 5 x2 10 x3

would split the string at columns 5 and 10, so 2 would be "ng pi” and &3 would
be ”gs have wings”. The numbers can be relative to the last number used, so:

parse 'Flying pigs have wings' x1 5 x2 +5 x3

153

5.5.2

Chapter 5. Program structure and concepts

would have exactly the same effect as the last example; here the +5 may be thought
of as specifying the length of the string to be assigned to #2. As with literal string
patterns, the positional patterns can be specified as a variable by putting the name
of a variable, in parentheses, in place of the number. An absolute column number
should then be indicated by using an equals sign ("=") instead of a plus or minus
sign. The last example could therefore be written:

start=>5

length=5

data='Flying pigs have wings'

parse data x1 =(start) x2 +(length) x3

String patterns and positional patterns can be mixed (in effect the beginning of a
string pattern just specifies a variable column number) and some very powerful
things can be done with templates. The next section describes in more detail how
the various mechanisms interact.

Parsing definition

This section describes the rules that govern parsing. In its most general form, a
template consists of alternating pattern specifications and variable names. Blanks
may be added between patterns and variable names to separate the tokens and
to improve readability. The patterns and variable names are used strictly in se-
qguence from left to right, and are used once only. In practice, various simpler
forms are used in which either variable names or patterns may be omitted; we
can therefore have variable names without patterns in between, and patterns
without intervening variable names. In general, the value assigned to a variable is
that sequence of characters in the input string between the point that is matched
by the pattern on its left and the point that is matched by the pattern on its right.
If the first item in a template is a variable, then there is an implicit pattern on
the left that matches the start of the string, and similarly if the last item in a
template is a variable then there is an implicit pattern on the right that matches
the end of the string. Hence the simplest template consists of a single variable
name which in this case is assigned the entire input string. Setting a variable
during parsing is identical in effect to setting a variable in an assignment. The
constructs that may appear as patterns fall into two categories; patterns that act
by searching for a matching string (literal patterns), and numeric patterns that
specify an absolute or relative position in the string (positional patterns). Either
of these can be specified explicitly in the template, or alternatively by a reference
to a variable whose value is to be used as the pattern. For the following examples,
assume that the following sample string is being parsed; note that all blanks are

154

5.5. Parsing templates

significant - there are two blanks after the first word ”is” and also after the second
comma:

'This 1s the text which, I think, 1s scanned.'

Parsing with literal patterns

Literal patterns cause scanning of the data string to find a sequence that matches
the value of the literal. Literals are expressed as a quoted string. The null string
matches the end of the data. The template:

wl ", w2 ', w3
when parsing the sample string, results in:

wl has the value "This is the text which”
w2 has the value " I think”

1

w3 has the value is scanned.”

Here the string is parsed using a template that asks that each of the variables
receive a value corresponding to a portion of the original string between commas;
the commas are given as quoted strings. Note that the patterns themselves are
removed from the data being parsed. A different parse would result with the
template:

wl "," w2 ', w3, wah
which would result in:

wl has the value "This is the text which”
w2 has the value " I think”

"

w3 has the value is scanned.”

w4 has the value "" (null string)

This illustrates an important rule. When a match for a pattern cannot be found
in the input string, it instead "matches” the end of the string. Thus, no match was
found for the third’, in the template, and so w3 was assigned the rest of the string.
w4 was assigned a null string because the pattern on its left had already reached
the end of the string. Note that all variables that appear in a template in this way
are assigned a new value.

155

Chapter 5. Program structure and concepts

Parsing strings into words

If a variable is directly followed by one or more other variables, then the string
selected by the patterns is assigned to the variables in the following manner. Each
blank-delimited word in the string is assigned to each variable in turn, except for
the last variable in the group (which is assigned the remainder of the string). The
values of the variables which are assigned words will have neither leading nor
trailing blanks. Thus the template:

wl w2 w3 w4 ',

would result in:

wl has the value "This’

"2

1s

n

w2 has the value
w3 has the value "the"”

w4 has the value "text which”

Note that the final variable (w4 in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word
is removed from the data. Also observe that this example is not the same as
specifying explicit blanks as patterns, as the template:

wl “ "w2 ' w3t wd

would in fact result in:

wl has the value "This'

"2

1s

"

w2 has the value
w3 has the value """ (null string)

w4 has the value "the text which”

since the third pattern would match the third blank in the data. In general, when
a variable is followed by another variable then parsing of the input into individual
words is implied. The parsing process may be thought of as first splitting the
original string up into other strings using the various kinds of patterns, and then
assigning each of these new strings to (zero or more) variables.

Use of the period as a placeholder

A period (separated from any symbols by at least one blank) acts as a placeholder
in a template. It has exactly the same effect as a variable name, except that no
variable is set. It is especially useful as a "dummy variable” in a list of variables, or
to collect (ignore) unwanted information at the end of a string. Thus the template:

156

5.5. Parsing templates

. word4 .

would extract the fourth word ("text”) from the sample string and place it in the
variable word4. Blanks between successive periods in templates may be omitted,
so the template:

. word4 .

would have the same result as the last template.

Parsing with positional patterns

Positional patterns may be used to cause the parsing to occur on the basis of
position within the string, rather than on its contents. They take the form of whole
numbers, optionally preceded by a plus, minus, or equals sign which indicate
relative or absolute positioning. These may cause the matching operation to "back
up” to an earlier position in the data string, which can only occur when positional
patterns are used. Absolute positional patterns: A number in a template that is
not preceded by a sign refers to a particular (absolute) character column in the
input, with 1 referring to the first column. For example, the template:

sl 10 s2 20 s3

results in:

n

sl has the value "This is
s2 has the value "the text w”

s3 has the value "hich, I think, is scanned.”

Here s1 is assigned characters from the first through the ninth character, and s2
receives input characters 10 through 19. As usual the final variable, s3, is assigned
the remainder of the input.

9 __ 99

An equals sign ("=") may be placed before the number to indicate explicitly that
it is to be used as an absolute column position; the last template could have been
written:

sl =10 s2 =20 s3

A positional pattern that has no sign or is preceded by the equals sign is known
as an absolute positional pattern. Relative positional patterns: A number in a
template that is preceded by a plus or minus sign indicates movement relative
to the character position at which the previous pattern match occurred. This is
a relative positional pattern. If a plus or minus is specified, then the position used
for the next match is calculated by adding (or subtracting) the number given to

157

Chapter 5. Program structure and concepts

the last matched position. The last matched position is the position of the first
character of the last match, whether specified numerically or by a string.

For example, the instructions:
parse '123456789' 3 wl +3 w2 3 w3

result in

wl has the value "345"
w2 has the value "6789"
w3 has the value "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same position,
and may also be considered to be specifying the length of the data string to be
assigned to the variable w1. This example also illustrates the effects of a positional
pattern that implies movement to a character position to the left of (or to) the point
at which the last match occurred. The variable on the left is assigned characters
through the end of the input, and the variable on the right is, as usual, assigned
characters starting at the position dictated by the pattern. A useful effect of this is
that multiple assignments can be made:

parse x 1 wl 1 w2 1 w3

This results in assigning the (entire) value of x to w1, w2, and w3. (The first ”1”
here could be omitted as it is effectively the same as the implicit starting pattern
described at the beginning of this section.) If a positional pattern specifies a
column that is greater than the length of the data, it is equivalent to specifying
the end of the data (i.e.,, no padding takes place). Similarly, if a pattern specifies a
column to the left of the first column of the data, this is not an error but instead
is taken to specify the first column of the data. Any pattern match sets the "last
position” in a string to which a relative positional pattern can refer. The "last
position” set by a literal pattern is the position at which the match occurred, that
is, the position in the data of the first character in the pattern. The literal pattern
in this case is not removed from the parsed data. Thus the template:

0 -1 x +1
will:

1. Find the first comma in the input (or the end of the string if there is no
comma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma or
end of string) to the variable x.

158

5.5. Parsing templates

One possible application of this is looking for abbreviations in a string. Thus the
instruction:

/* Ensure options have a leading blank and are
in uppercase before parsing. */
parse (' 'opts).upper ' PR' +1 prword '

will set the variable prword to the first word in opts that starts with "PR” (in any
case), or will set it to the null string if no such word exists. Notes:

1. The positional patterns +0 and -0 are valid, have the same effect, and may be
used to include the whole of a previous literal (or variable) pattern within the
data string to be parsed into any following variables.

2. As illustrated in the last example, patterns may follow each other in the
template without intervening variable names. In this case each pattern is
obeyed in turn from left to right, as usual.

3. There may be blanks between the sign in a positional pattern and the number,
because NetRexx defines that blanks adjacent to special characters are removed.

Parsing with variable patterns

It is sometimes desirable to be able to specify a pattern by using the value of a
variable instead of a fixed string or number. This may be achieved by placing
the name of the variable to be used as the pattern in parentheses (blanks are not
necessary either inside or outside the parentheses, but may be added if desired).
This is called a variable reference; the value of the variable is converted to string
before use, if necessary. If the parenthesis to the left of the variable name is not
preceded by an equals, plus, or minus sign ("=",”+”, or ”-”) the value of the variable
is then used as though it were a literal (string) pattern. The variable may be one
that has been set earlier in the parsing process, so for example:

input="L/look for/1 10"
parse input verb 2 delim +1 string (delim) rest

will set;

verb to 'L’

delim to '/’

string to 'look for’
rest to 'l 10’

If the left parenthesis is preceded by an equals, plus, or minus sign then the value
of the variable is used as an absolute or relative positional pattern (instead of as a

159

5.6

5.6.1

Chapter 5. Program structure and concepts

literal string pattern). In this case the value of the variable must be a non-negative
whole number, and (as before) it may have been set earlier in the parsing process.

Numbers and Arithmetic

NetRexx arithmetic attempts to carry out the usual operations (including addition,
subtraction, multiplication, and division) in as “natural” a way as possible. What
thisreally meansis that the rules followed are those that are conventionally taught
in schools and colleges. However, it was found that unfortunately the rules used
vary considerably (indeed much more than generally appreciated) from person
to person and from application to application and in ways that are not always
predictable. The NetRexx arithmetic described here is therefore a compromise
which (although not the simplest) should provide acceptable results in most
applications.

Introduction

Numbers can be expressed in NetRexx very flexibly (leading and trailing blanks
are permitted, exponential notation may be used) and follow conventional syntax.
Some valid numbers are:

12 /* A whole number */
'-76" /* A signed whole number */
12.76 /* Some decimal places */

"+ 0.003 ' /* Blanks around the sign, etc. */
17. /* Equal to 17 */
.5 /* Equal to 0.5 *x/

4E+9 /* Exponential notation */
0.73e-7 /* Exponential notation */

(Exponential notation means that the number includes a sign and a power of
ten following an "E” that indicates how the decimal point will be shifted. Thus
4E+9 above is just a short way of writing 4000000000, and 0.73e-7 is short for
0.000000073.) The arithmetic operators include addition (indicated by a ”+”),
subtraction (”-”), multiplication ("*”), power ("*%*”), and division (”/”). There are
also two further division operators: integer divide ("%”) which divides and returns
the integer part, and remainder (”//”) which divides and returns the remainder.

Prefix plus ("+”) and prefix minus (”-”) operators are also provided. When two
numbers are combined by an operation, NetRexx uses a set of rules to define

160

5.6. Numbers and Arithmetic

what the result will be (and how the result is to be represented as a character
string). These rules are defined in the next section, but in summary:

 Results will be calculated with up to some maximum number of significant
digits. That is, if a result required more than 9 digits it would normally be
rounded to 9 digits. Forinstance, the division of 2 by 3 would resultin 0.666666667
(it would require an infinite number of digits for perfect accuracy).
You can change the default of 9 significant digits by using the numeric digits
instruction. Thisletsyou calculate using as many digits as you need - thousands,
if necessary.

« Except for the division and power operators, trailing zeros are preserved (this
is in contrast to most electronic calculators, which remove all trailing zeros
in the decimal part of results). So, for example:

2.40 + 2 => 4.40

2.40 - 2 = 0.40

2.40 x 2 => 4.80

2.40 / 2 = 1.2

This preservation of trailing zeros is desirable for most calculations (and
especially financial calculations). If necessary, trailing zeros may be easily
removed with the strip method (see page @) , or by division by 1.

« A zero result is always expressed as the single digit ’0’.

« Exponential form is used for a result depending on its value and the setting of
numeric digits (the defaultis 9 digits). If the number of places needed before
the decimal point exceeds this setting, or the absolute value of the number
is less than 0.000001, then the number will be expressed in exponential
notation; thus

le+6 * le+6

results in "1E+12” instead of ”1000000000000”, and
1 / 3E+10

results in ”3.33333333E-11" instead of ”0.0000000000333333333".

« Any mixture of Arabic numerals (0-9) and Extra digits (see page @) can be
used for the digits in numbers used in calculations. The results are expressed
using Arabic numerals.

161

5.6.2

Chapter 5. Program structure and concepts

Definition

This definition describes arithmetic for NetRexx strings (type Rexx). The arith-
metic operations are identical to those defined in the ANSI standard for Rexx.

Numbers

A number in NetRexx is a character string that includes one or more decimal digits,
with an optional decimal point. The decimal point may be embedded in the digits,
or may be prefixed or suffixed to them. The group of digits (and optional point)
thus constructed may have leading or trailing blanks, and an optional sign ("+” or
”-”) which must come before any digits or decimal point. The sign may also have

leading or trailing blanks. Thus:

sign =+ | -
digit = 0|12 |314|5|16|718129
digits = digit [digit]...
numeric ::= digits . [digits]
| [.] digits
number = [blank]... [sign [blank]...]

numeric [blank]...

where if the implementation supports extra digits (see page @) these are also
accepted as digits, providing that they represent values in the range zero through
nine. In this case each extra digit is treated as though it were the corresponding
character in the range 0-9. Note that a single period alone is not a valid number.

Precision

The maximum number of significant digits that can result from an arithmetic
operation is controlled by the digits keyword on the numeric instruction (see page

113):
numeric digits [expression];

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) to which arithmetic calculations
will be carried out; results will be rounded to that precision, if necessary. If no ex-
pression is specified, then the default precision is used. The default precision is

72 American National Standard for Information Technology - Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

162

5.6.3

5.6. Numbers and Arithmetic

9, that is, all implementations must support at least nine digits of precision. An
implementation-dependent maximum (equal to or larger than 9) may apply: an
attempt to exceed this will cause execution of the instruction to terminate with
an exception. Thus if an algorithm is defined to use more than 9 digits then if
the numeric digits instruction succeeds then the computation will proceed and
produce identical results to any other implementation. Note that numeric digits
may set values below the default of nine. Small values, however, should be used
with care - the loss of precision and rounding thus requested will affect all NetRexx
computations, including (for example) the computation of new values for the
control variable in loops.

In the remainder of this section, the notation digits refers to the current setting
of numeric digits. This setting may also be referred to in expressions in programs
by using the digits special word (see page) .

Arithmetic operators

NetRexx arithmetic is effected by the operators ”+”, 7=, 7%”, 7 [” "%”,” [[”, and "%*%*”
(add, subtract, multiply, divide, integer divide, remainder, and power) which all
actupon two terms, together with the prefix operators ”+” and ”-” (plus and minus)
which both act on a single term. The result of all these operations is a NetRexx
string, of type Rexx. This section describes the way in which these operations are
carried out. Before every arithmetic operation, the term or terms being operated
upon have any extra digits converted to the corresponding Arabic numeral (the
digits 0-9). They then have leading zeros removed (noting the position of any
decimal point, and leaving just one zero if all the digits in the number are zeros)
and are then truncated to digits+1 significant digits Fa (if necessary) before being
used in the computation. The operation is then carried out under up to double that
precision, as described under the individual operations below. When the opera-
tion is completed, the result is rounded if necessary to the precision specified by
the numeric digits instruction. Rounding is done in the "traditional” manner, in
that the extra (guard) digit is inspected and values of 5 through 9 are rounded up,
and values of 0 through 4 are rounded down. F4 A conventional zero is supplied
preceding a decimal point if otherwise there would be no digit before it. Trailing
zeros are retained for addition, subtraction, and multiplication, according to the
rules given below, except that a result of zero is always expressed as the single
character’0’. For division, insignificant trailing zeros are removed after rounding.

73 That is, to the precision set by numeric digits, plus one extra "guard” digit.
74 Even/odd rounding would require the ability to calculate to arbitrary precision (that is, to a precision not governed by
the setting of numeric digits) at any time and is therefore not the mechanism defined for NetRexx.

163

Chapter 5. Program structure and concepts

The format method (see page @) is defined to allow a number to be represented
in a particular format if the standard result provided by NetRexx does not meet
requirements.

Arithmetic operation rules - basic operators

The basic operators (addition, subtraction, multiplication, and division) operate
on numbers as follows:

Addition and subtraction Ifeithernumberis zerothen the other number, rounded
to digits digits if necessary, is used as the result (with sign adjustment as
appropriate). Otherwise, the two numbers are extended on the right and left
as necessary up to a total maximum of digits+1 digits.

The number with smaller absolute value may therefore lose some or all
of its digits on the right. 3 The numbers are then added or subtracted as
appropriate. For example:

XXXX . XXX + YY.YVYVYVYY
becomes:

XXXX . XXX00

+ 00yy.yyyyy

227272 .272227

.sumadd The result is then rounded to digits digits if necessary, taking into
account any extra (carry) digit on the left after an addition, but otherwise
counting from the position corresponding to the most significant digit of
the terms being added or subtracted. Finally, any insignificant leading zeros
are removed. The prefix operators are evaluated using the same rules; the
operations "+number” and “-number” are calculated as "0+number” and
"0-number”, respectively.

Multiplication The numbers are multiplied together ("long multiplication”) resul-
ting in a number which may be as long as the sum of the lengths of the two
operands. For example:

XXX. XXX * YY.yYyyyy
becomes:

222272 .22Z2Z7Z7Z7Z

751In the example, the number yy.yyyyy would have three digits truncated if digits were 5.

164

5.6. Numbers and Arithmetic

and the result is then rounded to digits digits if necessary, counting from the
first significant digit of the result.
Division For the division:

YYY / XXXXX

the following steps are taken: first, the number "yyy” is extended with zeros
on the right until it is larger than the number "xxxxx” (with note being taken
of the change in the power of ten that this implies). Thus in this example,
"yyy” might become “yyy00”. Traditional long division then takes place,
which can be written:

XXXXX | yyy00

The length of the result ("zzzz”) is such that the rightmost ”"z” will be at
least as far right as the rightmost digit of the (extended) "y” number in the

” ”

example. During the division, the ”y” number will be extended further as
necessary, and the "z” number (which will not include any leading zeros)
may increase up to digits+1 digits, at which point the division stops and
the result is rounded. Following completion of the division (and rounding if

necessary), insignificant trailing zeros are removed.
Examples:

/* With 'numeric digits 5' */

12+7.00 == 19.00
1.3-1.07 == 0.23
1.3-2.07 = -0.77
1.20%3 == 3.60
7%3 == 21
0.9%0.8 == 0.72
1/3 == 0.33333
2/3 == 0.66667
5/2 == 2.5
1/10 == 0.1
12/12 = 1

8.0/2 == 4

Note: With all the basic operators, the position of the decimal point in the terms
being operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterwards. Therefore

165

Chapter 5. Program structure and concepts

the significant digits of a result are not in any way dependent on the position of
the decimal point in either of the terms involved in the operation.

Arithmetic operation rules - additional operators

RS

The operation rules for the power ("*%*”), integer division ("%”), and remainder
(”//”) operators are as follows:

9 atanta??
“ww

Power The (power) operator raises a number (on the left of the operator) to a
power (on the right of the operator). The term on the right is rounded to digits
digits (if necessary), and must, after any rounding, be a whole number, which
may be positive, negative, or zero. If negative, the absolute value of the power
is used, and then the result is inverted (divided into 1).

For calculating the power, the number is effectively multiplied by itself for
the number of times expressed by the power, and finally trailing zeros are
removed (as though the result were divided by one). In practice (see note
below for the reasons), the power is calculated by the process of left-to-right
binary reduction. For "x**n”: "n” is converted to binary, and a temporary
accumulator is set to 1. If "n” has the value O then the initial calculation is
complete. Otherwise each bit (starting at the first non-zero bit) is inspected
from left to right. If the current bit is 1 then the accumulator is multiplied by
”x”. If all bits have now been inspected then the initial calculation is complete,
otherwise the accumulator is squared by multiplication and the next bit is
inspected. When the initial calculation is complete, the temporary result is
divided into 1 if the power was negative.

The multiplications and division are done under the normal arithmetic oper-
ationrules, detailed earlier in this section, using a precision of digits+elength+1
digits. Here, elength is the length in decimal digits of the integer part of the
whole number "n” (i.e.,, excluding any sign, decimal part, decimal point, or
insignificant leading zeros, as though the operation n%1 had been carried
out and any sign removed). Finally, the result is rounded to digits digits, if
necessary, and insignificant trailing zeros are removed.

Integer division The”%” (integer divide) operator divides two numbers and returns
the integer part of the result. The result returned is defined to be that which
would result from repeatedly subtracting the divisor from the dividend while
the dividend is larger than the divisor. During this subtraction, the absolute
values of both the dividend and the divisor are used: the sign of the final result
is the same as that which would result if normal division were used. The
result returned will have no fractional part (that is, no decimal point or zeros

166

5.6. Numbers and Arithmetic

following it). If the result cannot be expressed exactly within digits digits, the
operation is in error and will fail - that is, the result cannot have more digits
than the current setting of numeric digits. For example, 10000000000%3
requires ten digits to express the result exactly (3333333333) and would
therefore fail if digits were 9 or smaller.

Remainder The ”//” (remainder) operator will return the remainder from integer

division, and is defined as being the residue of the dividend after the opera-
tion of calculating integer division as just described. The sign of the remainder,
if non-zero, is the same as that of the original dividend. This operation will
fail under the same conditions as integer division (that is, if integer division
on the same two terms would fail, the remainder cannot be calculated).

Examples:
/* Again with 'numeric digits 5' */
2%%3 == §
2s%=3 = 0.125
1.7%%8 == 69.758
2\%3 = 0
2.1//3 = 2.1
10\%3 == 3
10//3 = 1
-10//3 = -1
10.2//1 == 0.2
10//0.3 = 0.1
3.6//1.3 = 1.0
Notes:
1. A particular algorithm for calculating powers is described, since it is efficient

(though not optimal) and considerably reduces the number of actual multi-
plications performed. It therefore gives better performance than the simpler
definition of repeated multiplication. Since results could possibly differ from
those of repeated multiplication, the algorithm must be defined here so that
different implementations will give identical results for the same operation
on the same values. Other algorithms for this (and other) operations may
always be used, so long as they give identical results to those described here.

. The integer divide and remainder operators are defined so that they may

be calculated as a by-product of the standard division operation (described
above). The division process is ended as soon as the integer result is available;
the residue of the dividend is the remainder.

167

5.6.4

Chapter 5. Program structure and concepts

Numeric comparisons

Any of the comparative operators (see page @) may be used for comparing numeric
strings. However, the strict comparisons (for example, "==" and ”>>") are not
numeric comparative operators and should not normally be used for comparing
numbers, since they compare from left to right and leading and trailing blanks
(and leading zeros) are significant for these operators. Numeric comparison,
using the normal comparative operators, is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with ’0’ - that is, the
operation:

A?B

where ”?” is any normal comparative operator, is identical to:
(A-B) ? '0'

Itis therefore the difference between two numbers, when subtracted under NetRexx
subtraction rules, that determines their equality.

Exponential notation

The definition of numbers above (see page @) describes "pure” numbers, in
the sense that the character strings that describe numbers can be very long.
Examples:

say 10000000000 * 10000000000
/* would display: 100000000000000000000 x*/

say 0.00000000001 * 0.00000000001
/* would display: 0.0000000000000000000001 =/

For both large and small numbers some form of exponential notation is useful,
both to make such long numbers more readable and to make evaluation possible
in extreme cases. In addition, exponential notation is used whenever the "pure”
form would give misleading information. For example:

numeric digits 5
say 54321x54321

would display "2950800000” if long form were to be used. This is misleading,
as it appears that the result is an exact multiple of 100000, and so NetRexx
would express the result in exponential notation, in this case "2.9508E+9”. The
definition of number (see above) is therefore extended by replacing the description
of numeric by the following:

168

5.6. Numbers and Arithmetic

mantissa ::= digits . [digits]
| [.] digits
numeric ::= mantissa [E sign digits]

In other words, the numeric part of a number may be followed by an ”E” (indicating
an exponential part), a sign, and an integer following the sign that represents a
power of ten that is to be applied. The "E” may be in uppercase or lowercase. Note
that no blanks are permitted within this part of a number, but the integer may
have leading zeros. Examples:

12E+11 = 1200000000000
12E-5 = 0.00012
12e+4 = 120000

All valid numbers may be used as data for arithmetic. The results of calculations
will be returned in exponential form depending on the setting of numeric digits.
If the number of places needed before the decimal point exceeds digits, or if the
absolute value of the result is less than 0.000001, then exponential form will be
used. The exponential form generated by NetRexx always has a sign following the
"E”. If the exponent is O then the exponential part is omitted - that is, an expo-
nential part of "E+0” will never be generated. If the default format for a number
is not satisfactory for a particular application, then the format method may be
used to control its format. Using this, numbers may be explicitly converted to ex-
ponential form or even forced to be returned in "pure” form. Different exponen-
tial notations may be selected with the numeric form instruction (see page) .
This instruction allows the selection of either scientific or engineering notation.
Scientific notation adjusts the power of ten so there is a single non-zero digit to the
left of the decimal point. Engineering notation causes powers of ten to be expressed
as a multiple of three - the integer part may therefore range from 1 through 999.
Examples:

numeric form scientific
say 123.45 x lell
/* would display: 1.2345E+13 */

numeric form engineering
say 123.45 x lell
/* would display: 12.345E+12 */

The default exponential notation is scientific.

169

Chapter 5. Program structure and concepts

5.6.5 Whole numbers

Within the set of numbers understood by NetRexx it is useful to distinguish the
subset defined as whole numbers.

A whole number in NetRexx is a number that has a decimal part which is all zeros
(or that has no decimal part).

5.6.6 Numbers used directly by NetRexx

Asdiscussed above, the result of any arithmetic operation is rounded (if necessary)
according to the setting of numeric digits. Similarly, when a number (which has
not necessarily been involved in an arithmetic operation) is used directly by
NetRexx then the same rounding is also applied, just as though the operation
of adding the number to 0 had been carried out. After this operation, the integer
part of the number must have no more digits than the current setting of numeric
digits.

In the following cases, the number used must be a whole number and an imple-
mentation restriction on the largest number that can be used may apply:

 positional patterns, including variable positional patterns, in parsing templates
(see page

« the power value (right hand operand) of the power operator (see page @).

« the values of exprr and exprf (following the for keyword) in the loop instruc-
tion (see page @)

« the value of exprd (following the digits keyword) in the numeric instruction

(see page .

Implementation minimum: A minimum length of 9 digits must be supported for
these uses of whole numbers by a NetRexx language processor.

5.6.7 Implementation independence

The NetRexx arithmetic rules are defined in detail, so that when a given program
isrun the results of all computations are sufficiently defined that the same answer
will result for all correct implementations. Differences due to the underlying
machine architecture will not affect computations. This contrasts with most other
programming languages, and with binary arithmetic (see page) in NetRexx,
where the result obtained may depend on the implementation because the precision

170

5.7. Binary values and operations

and algorithms used by the language processor are defined by the implementa-
tion rather than by the language.

5.6.8 Exceptions and errors

The following exceptions and errors may be signalled during arithmetic:

« Divide exception This exception will be signalled if division by zero was
attempted, or if the integer result of an integer divide or remainder oper-
ation had too many digits.

« Overflow/Underflow exception This exception will be signalled if the expo-
nential part of a result (from an operation that is not an attempt to divide by
zero) would exceed the range that can be handled by the language processor,
when the result is formatted according to the current settings of numeric
digits and numeric form. The language defines a minimum capability for the
exponential part, namely exponents whose absolute value is at least as large
as the largest number that can be expressed as an exact integer in default
precision. Thus, since the default precision is nine, implementations must
support exponents in the range 999999999 through 999999999.

« Insufficient storage Storage is needed for calculations and intermediate results,
and on occasion an arithmetic operation may fail due to lack of storage.
This is considered an operating environment error as usual, rather than an
arithmetical exception.

In the reference implementation, the exceptions and error types used for these three cases
are DivideException, ExponentOverflowException, and OutOfMemoryError, respec-
tively.

5.7 Binary values and operations

By default, arithmetic and string operations in NetRexx are carried out using the
NetRexx string class, Rexx, which offers the robust set of operators described in
Expressions and operators (see page @).

NetRexx implementations, however, may also provide primitive datatypes, as
described in Types and Classes (see page @). These primitive types are used for
compact storage of numbers and for fast binary arithmetic, features which are
built-in to the hardware of most computers.

171

5.7.1

Chapter 5. Program structure and concepts

To make use of binary arithmetic, a class is declared to be a binary class (see page
) by using the binary keyword on the class instruction. In such a class, literal
strings and numeric symbols are assigned native string or primitive types, rather
than NetRexx types, where appropriate, and native binary operations are used
to implement operators where possible, as detailed below. Implementations may
also provide a keyword on the options (see page) instruction that indicates
that all classes in a program are binary classes. i

Alternatively, individual methods within a class may be declared to be a binary
method (see page) by using the binary keyword on the method instruction.

Alternatively, individual do groups within a method may be declared to be a do
binary group (see page @) by using the binary keyword on the do instruction.

Binary classes and methods should be used with care. Although binary arithmetic
can have a considerable performance advantage over arithmetic that is not im-
plemented in hardware, it can give incorrect or unexpected results. In particular,
whole numbers (integers) are often held in fixed-sized data areas (of 8, 16, 32, or
64 bits), and overflowing the data area during a calculation can result in a positive
number becoming negative and vice versa. Similarly, binary numbers that are
not whole numbers (floating-point numbers) cannot exactly represent common
numbers in the decimal system (0.1, 0.2, etc.), and hence can give unexpected
results.

Operations in binary classes and methods

In a binary class or method, the following (and only the following) rules differ from
the usual rules:

Dyadic operations in expressions If the operands of a dyadic operator both have
primitive numeric types 7 then binary operations are carried out. The type
of the result is implementation defined, and is typically the type of the more
precise of the two operands, or of some minimum precision. F8 Arithme-
tic operations follow the usual rules of binary arithmetic, as defined for the
underlying environment of the implementation.

Note that NetRexx provides both divide and integer divide operators; in a
binary class or method, the divide operator (”/”) converts its operands to
floating-point types and returns a floating-point result, whereas the integer

76n the reference implementation, options binary is used.

77 In the reference implementation, hoolean is considered to be a numeric type (having the values 0 or 1) but char is not. Characters,
and strings or arrays of characters, always use the rules defined for NetRexx strings.

78 n the reference implementation, the minimum precision is 32 bits, so an int is returned for results that would otherwise be hyte or
short. If both operands are boolean, however, and the operation is a logical operation, then the type of the result is hoolean.

172

5.7. Binary values and operations

divide operator ("%”) converts its operands to integer types and returns an
integerresult. The remainder operator must accept both integer and floating-
point types.

Logical operations (and, or, and exclusive or) apply to all the bits of the operands,
and are not permitted on floating-point types.

Prefix operations in expressions Ifthe operand of a prefix operator has a primitive
numeric type, then the type of the result is the type of the operand, subject
to the same minimum as dyadic operations. Prefix plus and minus follow
the rules of dyadic operators (because they are defined as being zero plus or
minus the operand) with the additional rule that if acting on a literal number
(a constant in the program) then the result is also considered to be a literal
constant. Logical not (prefix ”\”) does not apply to all the bits of its operand;
instead, it changes a 0 to 1 and vice versa.

Assignments In assignments where the value being assigned is the result of an
expression which comprises a string or number literal constant, the type of
the result is defined as follows:

1. Strings are given the native string type, even for a single-character literal.

2. Numbers are given the smallest possible primitive numeric type that
will contain the literal without loss of information (or minimal loss of
information for numbers with decimal or exponential parts). If this is
smaller than the implementation-defined minimum precision used for
theresult ofadding the literal to 0, then the type of that minimum precision
is used.

If the constant is an integer, and no primitive integer binary type has
sufficient precision to hold the number without loss of information, then
the number is treated as a literal string (that is, as though it were enclosed
in quotes). NetRexx arithmetic would then be used if it were involved in
an arithmetic operation.
These rules can apply in assignment instructions, the initial assignment to
the control variable in the loop instruction, or the assignment of a default
value to the argument of a method; the result type may define the type of the
variable (if new, or a method argument).

Control variables in loops In the loop instruction, if the control variable has a
primitive integer type, and the increment (by value) has a primitive integer
type, then binary arithmetic will be used for stepping the control variable,
following the rules for binary arithmetic in expressions described above.

79 In the reference implementation, this type is java.lang.String.

173

5.7.2

5.8

Chapter 5. Program structure and concepts

Similarly, if the control variable has a primitive integer type, and the end (to)
value has a primitive integer type, then binary arithmetic will be used for the
comparison that tests for loop termination.

Numeric instruction The numeric instruction does not affect binary operations. It
has the usual effects on operations carried out using NetRexx arithmetic.

Note: At all times (Whether in binary classes, binary methods, or anywhere else)
implementations may use primitive types and operations, and techniques such
as late binding of types, as an optimization providing that the results obtained are
identical to those defined in this language definition.

Binary constructors

NetRexx provides special constructors for implementation-defined primitive
types that allow bit-wise construction of primitives. These binary constructors are
especially useful for manipulating the binary encodings of individual characters.

The binary constructors follow the same syntax as other constructors, with the
name being that of a primitive type. All binary constructors take one argument,
which must have a primitive type.

The bits of the value of the argument are extended or truncated on the left to the
same length as the bits required for the type of the constructor (following the usual
binary rules of sign extension if the argument type is a signed numeric type), and
a value with the type of the constructor is then constructed directly from those
bits and returned.

Example: This example illustrates types from the reference implementation, with
32-bit signed integers of type int and 16-bit Unicode characters of type char.

i=int 77 — 1 is now the integer 77
c=char(i) -- c is now the character 'M'
j=int(c) —-— J is now the integer 77

Note that the conversion
j=int c

would have failed, as "M” is not a number.

Exceptions

Exceptional conditions, including errors, in NetRexx are handled by a mechanism
called Exceptions. When an exceptional condition occurs, a signal takes place which

174

5.8. Exceptions

may optionally be caught by an enclosing control construct, as detailed below.

An exception can be signalled by:

1. the program’s environment, when some processing error occurs (such as
running out of memory, or a problem discovered when reading or writing a
file)

2. a method called by a NetRexx program (if, for example, it is passed incorrect
arguments)

3. the signal instruction (see page .

In all cases, the signal is handled in exactly the same way. First, execution of
the current clause ceases; no further operations within the clause will be carried
out.Bd Next, an object that represents the exception is constructed. The type of
the exception object is implementation-dependent, as described for the signal
instruction (see page , and defines the type of the exception. The object
constructed usually contains information about the Exception (such as a descriptive
string).

Once the object has been constructed, all active do groups, loop loops, if constructs,
and select constructs in the active method are "unwound”, starting with the
innermost, until the exception is caught by a control construct that specifies a
suitable catch clause (see below) for handling the exception.

This unwinding takes place as follows:

1. No further clauses within the body of the construct will be executed (in this
respect, the signal acts like a leave for the construct).

2. If a catch clause specifies a type to which the exception object can be assigned
(thatis, it matches or is a superclass of the type of exception object), then the
instructionlist following that clause is executed, and the exception is considered
to be handled (no further control constructs will be unwound). If more than
one catch clause specifies a suitable type, the first is used.

3. The instructionlist following the finally clause for the construct, if any, is
executed.

4. The end clauseis executed, hence completing execution of the construct. (The
only effect of this is that it is seen when tracing.)

5. Ifthe exception was handled, then execution resumes as though the construct
completed normally. If it was not handled, then the process is repeated for
any enclosing constructs.

80This is the only case in which an expression will not be wholly evaluated, for example.

175

5.8.1

Chapter 5. Program structure and concepts

If the exception is not caught by any of the control constructs enclosing the
original point of the exception signal, then the current active method is terminated,
without returning any data, and the exception is then signalled at the point where
the method was invoked (that is, in the caller).

The process of unwinding control constructs and terminating the method is then
repeated in each calling method until the exception is caught or the initial pro-
gram invocation method (the main method) is terminated, in which case the pro-
gram ends and the environment receives the signal (it would usually then display
diagnostic information).

Syntax and example

The constructs that may be used to handle (catch) an exception are do groups, loop
loops, and select constructs. Specifically, as shown in the syntax diagrams (g.v.),
where the end clause can appear in these constructs, zero or more catch clauses
can be used to define exception handlers, followed by zero or one finally clauses
that describe "clean-up” code for the construct. The whole construct continues to
be ended by an end clause.

The syntax of a catch clause is shown in the syntax diagrams. It always specifies
an exception type, which may be qualified. It may optionally specify a symbol, vare,
which is followed by an equals sign. This indicates that when the exception is
caught then the object representing the exception will be assigned to the variable
vare. If new, the type of the variable will be exception. Here is an example of a pro-
gram that handles some of the exceptions signalled by methods in the Rexx class;
the trace results instruction is included to show the flow of execution:

trace results
do —— could be LOOP i=1 to 10, etc.
say 1l/arg
catch DivideException
say 'Divide exception'
catch ex=NumberFormatException
/* 'ex' is assigned the exception object */
say 'Bad number for division:' ex.getMessage
finally
say 'Done!’
end

In this example, if the argument passed to the program (and hence placed in arg)
is a valid number, then its inverse is displayed. If the argument is O, then "Divide
exception” would be displayed. If the argument were an invalid number, the
message describing the bad number would be displayed. For any other exception

176

5.8.2

5.8.3

5.8. Exceptions

(such as an ExponentOverflowException), the program would end and the envi-
ronment would normally report the exception.

In all cases, the message "Done!” would be displayed; this would be true even
if the body of the do construct executed a return, leave, Or iterate instruction.
Only an exit instruction (see page @) would cause immediate termination of the
construct (and the program).

Note: The finally keyword, like otherwise in the select construct, implies a
semicolon after it, so the last say instruction in the example could have appeared
on the same line as the finally without an intervening semicolon.

Exceptions after catch and finally clauses

If an exception is signalled in the instructionlist following a catch or finally clause,
then the current exception is considered handled, the instructionlist is terminated,
and the new exception is signalled. It will not be caught by catch clauses in the
current construct. If it occurs in the instructionlist following a catch clause, then
any finally instructions will be executed, as usual.

Similarly, executing a return or exit instruction within either of the instructionlists
completes the handling of any pending signal.

Checked exceptions

NetRexx implementations may define certain exceptions as checked exceptions.
These are exceptions that the implementation considers it useful to check; the
checked exceptions that each method may signal are recorded. Within do groups,
loop loops, and select constructs, for example, it is then possible to report if a
catch clause tries to catch a checked exception that is not signalled within the
body of the construct.

Checked exceptions that are signalled within a method (by a signal instruction
or a method invocation) but not caught by a catch clause in the method are auto-
matically added to the signals list for a method. Implementations that support
checked exceptions are encouraged to provide options that list the uncaught
checked exceptions for methods or enforce the explicit inclusion of some or all
checked exceptions in the signals list on the method instruction.

177

Chapter 5. Program structure and concepts

Inthereference implementation, all exceptions are checked except those that are subclasses
of java.lang.RuntimeException or java.lang.Error. These latter are considered so ubi-
quitous that almost all methods would signal them.

Expressions assigned as the initial values of properties must not invoke methods that may
signal checked exceptions.

The strictsignal option on the options instruction may be used to enforce the inclusion of
all uncaught checked exceptions in methods’ signals lists; this may be used to assure that
any uncaught checked exceptions are intentional.

178

Chapter 6

Built-in methods for NetRexx strings

This section describes the set of methods defined for the NetRexx string class,
Rexx. These are called built-in methods, and include character manipulation, word
manipulation, conversion, and arithmetic methods.

Implementations will also provide other methods for the Rexx class (for example,
to implement the NetRexx operators or to provide constructors with primitive ar-
guments), but these are not part of the NetRexx language.

Methods of the RexxStream, RexxTime and RexxDate classes are, while not strictly part
of the Rexx string class, listed here, followed by a suitable referral to the proper
class documentation.

General notes on the built-in methods:

1. All methods work on a NetRexx string of type Rexx; this is referred to by the
name string in the descriptions of the methods. For example, if the word
method were invoked using the term:

"Three word phrase".word(2)

then in the description of word the name string refers to the string "Three
word phrase”, and the name n refers to the string ”2”.

2. All method arguments are of type Rexx and all methods return a string of type
Rexx; if a number is returned, it will be formatted as though O had been added
with no rounding.

3. The first parenthesis in a method call must immediately follow the name of
the method, with no space in between.

4. The parentheses in amethod call can be omitted if no arguments are required
and the method call is part of a compound term (see page IZI?I) B2

81 Details of the methods provided in the reference implementation are included in Appendix C (see page @) .
82Unless an implementation-provided option to disallow parenthesis omission is in force.

179

6.1

6.2

Chapter 6. Built-in methods for NetRexx strings

5. Apositionin a string is the number of a character in the string, where the first
character is at position 1, etc.

6. Where arguments are optional, commas may only be included between ar-
guments that are present (that is, trailing commas in argument lists are not
permitted).

7. A pad argument, if specified, must be exactly one character long.

8. If a method has a sub-option selected by the first character of a string, that
character may be in upper or lowercase.

9. Conversion between character encodings and decimal or hexadecimal is de-
pendent on the machine representation (encoding) of characters and hence
will return appropriately different results for Unicode, ASCII, EBCDIC, and
other implementations.

abbrev(info [,length])

returns 1 if info is equal to the leading characters of string and info is not less
than the minimum length, length; O is returned if either of these conditions is not
met. length must be a non-negative whole number; the default is the length of info.
Examples:

'"Print'.abbrev('Pri') ==
"PRINT'.abbrev('Pri') ==
'"PRINT'.abbrev('PRI',4) ==
'"PRINT'.abbrev('PRY') ==

"PRINT'.abbrev('") ==
"PRINT'.abbrev('',1) ==

SR ENCNONON U

Note: A null string will always match if a length of O (or the default) is used. This
allows a default keyword to be selected automatically if desired. Example:

say 'Enter option:'; option=ask

select /x keywordl is to be the default x/
when 'keywordl'.abbrev(option) then ...
when 'keyword2'.abbrev(option) then ...

otherwise ...
end

abs()

returns the absolute value of string, which must be a number. Any sign is removed
from the number, and it is then formatted by adding zero with a digits setting that

180

6.3

6.3. b2d([n])

is either nine or, if greater, the number of digits in the mantissa of the number
(excluding leading insignificant zeros). Scientific notation is used, if necessary.

Examples:

'12.3"'.abs == 12.3

' -0.307".abs == 0.307
'123.45E+16"' .abs == 1.2345E+18

'— 1234567.7654321"' .abs == 1234567.7654321

b2d([n])

Converts string, a string of at least one binary (0 and/or 1) digits, to an equivalent
string of decimal characters (a number), without rounding. The returned string
will use digits, and will not include any blanks. If the number of binary digits in
the string is not a multiple of four, then up to three ’0’ digits will be added on the
left before conversion to make a total that is a multiple of four. If string is the null
string, O is returned. If n is not specified, string is taken to be an unsigned number.

Examples:

'01110'.b2d == 14

'10000001" .b2d == 129
'111110000001" .b2d == 3969
'1111111110000001"' .b2d == 65409
'1100011011110000" .b2d == 50928

If n is specified, string is taken as a signed number expressed in n binary cha-
racters. If the most significant (left-most) bit is zero then the number is positive;
otherwise it is a negative number in twos-complement form. In both cases it is
converted to a NetRexx number which may, therefore, be negative. If n is O, O is
always returned.

If necessary, string is padded on the left with ’0’ characters (note, not “sign-
extended”), or truncated on the left, to length n characters; (that is, as though
string.right(n, ’0’) had been executed.)

Examples:

'10000001".b2d(8) == -127
'10000001"' .b2d(16) == 129
'1111000010000001" .b2d(16) == -3967

'1111000010000001" .b2d(12) == 129
'1111000010000001" .b2d(8) == -127
'1111000010000001" .b2d(4) == 1
'0000000000110001" .b2d(0) == 0

181

6.4

6.5

6.6

Chapter 6. Built-in methods for NetRexx strings

b2x()

Binary to hexadecimal. Converts string, a string of at least one binary (0 and/or 1)
digits, to an equivalent string of hexadecimal characters. The returned string will
use uppercase Roman letters for the values A-F, and will not include any blanks.
If the number of binary digits in the string is not a multiple of four, then up to
three ’0’ digits will be added on the left before conversion to make a total that is a
multiple of four.

Examples:

'11000011' .b2x == 'C3'
10111 .b2x == 17"
0101 .b2x == '5'
'101" . b2x == '5'
'111110000' .b2x == '1F0"
center(length [,pad])
or

centre(length [,pad])

returns a string of length length with string centered in it, with pad characters
added as necessary to make up the required length. length must be a non-negative
whole number. The default pad character is blank. If the string is longer than
length, it will be truncated at both ends to fit. If an odd number of characters are
truncated or added, the right hand end loses or gains one more character than
the left hand end.

Examples:

"ABC'.centre(7) == ' ABC '
"ABC'.center(8,'-") == '——ABC—-'
'The blue sky'.centre(8) == 'e blue s'
'The blue sky'.center(7) == 'e blue '

Note: This method may be called either centre or center, which avoids difficulties
due to the difference between the British and American spellings.

182

6.7

6.8

6.9

6.7. changestr(needle, new)

changestr(needle, new)

returns a copy of string in which each occurrence of the needle string is replaced by
the new string. Each unique (non-overlapping) occurrence of the needle string is
changed, searching from left to right and starting from the first (leftmost) position
in string. Only the original string is searched for the needle, and each character in
string can only be included in one match of the needle.

If the needle is the null string, the result is a copy of string, unchanged.

Examples:

‘elephant'.changestr('e', 'X") == 'X1Xphant'
‘elephant'.changestr('ph','X") == 'eleXant'
'elephant'.changestr('ph', 'hph') == 'elehphant'
'elephant'.changestr('e',"'") == 'lphant'
‘elephant'.changestr('',"'!!") == 'elephant'

The countstr method (see page can be used to count the number of changes
that could be made to a string in this fashion.

charin(name [,start [,length]])

returns a string of up to length characters from the character input stream name.
A start value may be given to specify an explicit read position. This read position
must be positive and within the bounds of the stream. A value of 1 for start refers
to the first character in the stream. If length is not specified, one character is read.

See page for more information on class RexxStreanm.

charout(name [,string [,start]])

returns the count of characters remaining after attempting to write string to the
character output stream name. A start value may be given to specify an explicit
write position. This write position must be positive and within the bounds of the
stream. A value of 1 for start refers to the first character in the stream. When string
is omitted, character output stream name is closed.

See page for more information on class RexxStreanm.

183

6.10

6.11

6.12

6.13

Chapter 6. Built-in methods for NetRexx strings

chars(name)

indicates whether there are characters remaining in the character input stream
name. It returns 1 if at least one character can be read from name, otherwise 0 is
returned.

See page for more information on class RexxStream.

compare(target [,pad])

returns O if string and target are the same. If they are not, the returned number
is positive and is the position of the first character that is not the same in both
strings. If one string is shorter than the other, one or more pad characters are
added on the right to make it the same length for the comparison. The default
pad character is a blank.

Examples:

"abc'.compare('abc') = 0
"abc'.compare('ak") == 2
'ab '.compare('ab") =0
'ab '.compare('ab',' ') = 0
‘ab '.compare('ab','x"') == 3
'ab—— '.compare('ab','-"'") == 5
copies(n)

returns n directly concatenated copies of string. n must be positive or O; if O, the
null string is returned.

Examples:

'abc'.copies(3) == 'abcabcabc'
'abc'.copies(0) == "'
"'.copiles(2) = "'
copyindexed(sub)

copies the collection of indexed sub-values (see page @) of sub into the collection
associated with string, and returns the modified string. The resulting collection is
the union of the two collections (that is, it contains the indexes and their values

184

6.14

6.15

6.14. countstr(needle)

from both collections). If a given index exists in both collections then the sub-
value of string for that index is replaced by the sub-value from sub.

The non-indexed value of string is not affected.

Example: Following the instructions:

foo="def"

foo['a']=1
foo['b']=2

bar="ghti'
bar['b']="'B"
bar['c']="C"
merged=foo.copyIndexed(bar)
then:

merged['a'] == '1'
merged['b'] == 'B'
merged['c'] == 'C'
merged['d'] == 'def'
countstr(needle)

returns the count of non-overlapping occurrences of the needle string in string,
searching from left to right and starting from the first (leftmost) position in string.

If the needle is the null string, 0 is returned.

Examples:

'elephant'.countstr('e') == '2'
‘elephant'.countstr('ph') == "1'
‘elephant'.countstr('") = '0'

The changestr method (see page) can be used to change occurrences of needle
to some other string.

c2d()

Coded character to decimal. Converts the encoding of the character in string
(which must be exactly one character) to its decimal representation. The returned
string will be anon-negative number that represents the encoding of the character
and will not include any sign, blanks, insignificant leading zeros, or decimal part.

Examples:

185

6.16

6.17

Chapter 6. Built-in methods for NetRexx strings

'M'.c2d == '77' — ASCII or Unicode
'7'.c2d == '247"' —— EBCDIC

‘\r'.c2d == '13' —— ASCII or Unicode
"\0'.c2d == '0'

The e2x method (see page can be used to convert the encoding of a character
to a hexadecimal representation.

See also page for compatibility with the Classic Rexx built-in function.

c2x()

Coded character to hexadecimal. Converts the encoding of the character in string
(which must be exactly one character) toits hexadecimal representation (unpacks).
The returned string will use uppercase Roman letters for the values A-F, and will
not include any blanks. Insignificant leading zeros are removed.

Examples:

'M'.c2x == '4D' —— ASCII or Unicode
'7'.c2x == 'F7' —— EBCDIC

'\r'.c2x == 'D' —— ASCII or Unicode
"\NO'.c2x == '0"'

The c2d method (see page [L85) can be used to convert the encoding of a character
to a decimal number.

See also page for compatibility with the Classic Rexx built-in function.

datatype(option)

returns 1 if string matches the description requested with the option, or O otherwise.
If string is the null string, O is always returned.

Only the first character of option is significant, and it may be in either uppercase
or lowercase. The following option characters are recognized:

A (Alphanumeric); returns 1 if string only contains characters from the ranges "a-
z”,”A-Z”, and ”0-9”.
B (Binary); returns 1 if string only contains the characters "0” and/or ”1”.
D (Digits); returns 1 if string only contains characters from the range ”0-9”.
L (Lowercase); returns 1 if string only contains characters from the range "a-z”.
M (Mixed case); returns 1 if string only contains characters from the ranges "a-z”
and "A-Z”.
186

6.18

6.19

6.18. date()

N (Number); returns 1 if string is a syntactically valid NetRexx number that could
be added to ’0’ without error,

S (Symbol); returns 1 if string only contains characters that are valid in non-
numeric symbols (the alphanumeric characters and underscore), and does
not start with a digit. Note that both uppercase and lowercase letters are
permitted.

U (Uppercase); returns 1 if string only contains characters from the range "A-Z".

W (Whole Number); returns 1 if string is a syntactically valid NetRexx number that
can be added to’0’ without error, and whose decimal part after that addition,
with no rounding, is zero.

X (heXadecimal); returns 1 if string only contains characters from the ranges "a-f”,
"A-F”, and "0-9”.

Examples:

'101"' .datatype('B") ==
'12.3"'.datatype('D") ==
'12.3"'.datatype('N")

'12.3"'.datatype('W") ==
'LaArca'.datatype('M') ==
"'.datatype('M") ==
"Llanes'.datatype('L') ==
'3 d'.datatype('s") ==
'BCd3'.datatype('X") ==
'BCgd3'.datatype('X') ==

SR NONONON SNON S ON

Note: The datatype method tests the meaning of the characters in a string, inde-
pendent of the encoding of those characters. Extra letters and Extra digits cause
datatype to return O except for the number tests (’"N” and "W”), which treat extra
digits whose value is in the range 0-9 as though they were the corresponding
Arabic numeral.

date()

see page 07

delstr(n [,length])

returns a copy of string with the sub-string of string that begins at the nth character,
and is of length length characters, deleted. If length is not specified, or is greater
than the number of characters from n to the end of the string, the rest of the

187

6.20

6.21

Chapter 6. Built-in methods for NetRexx strings

string is deleted (including the nth character). length must be a non-negative whole
number, and 7 must be a positive whole number. If n is greater than the length of
string, the string is returned unchanged.

Examples:

"abcd'.delstr(3) == 'ab'
'abcde'.delstr(3,2) == 'abe'
'abcde'.delstr(6) == 'abcde'
delword(n [,length])

returns a copy of string with the sub-string of string that starts at the nth word,
and is of length length blank-delimited words, deleted. If length is not specified,
or is greater than number of remaining words in the string, it defaults to be the
remaining words in the string (including the nth word). length must be a non-
negative whole number, and n must be a positive whole number. If n is greater
than the number of words in string, the string is returned unchanged. The string
deleted includes any blanks following the final word involved, but none of the
blanks preceding the first word involved.

Examples:

"Now is the time'.delword(2,2) == 'Now time'
"Now is the time '.delword(3) == 'Now i1s '
"Now time'.delword(5) == 'Now time'
d2b([n])

Returns a string of binary characters of length as needed or of length n, which is
the binary representation of the decimal number. The returned string will use 0
and 1 characters for binary values. string must be a whole number, and must be
non-negative unless n is specified, or an error will result. If n is not specified, the
length of the result returned is such that there are no leading O characters, unless
string was equal to O (in which case 0’ is returned).

If n is specified it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length (negative
numbers are converted assuming twos-complement form). If the number is too
big to fit into n characters, it will be truncated on the left. n must be a nonnegative
whole number.

188

6.22

6.23

6.22. d2c()

Examples:

‘0'.d2b == 0

'9'.d2b == 1001
'19'.d2b == 10011
'129'.d2b == 10000001

'129'.d2b(1) == 1

'129'.d2b(8) == 10000001
'127'.d2b(12) == 000001111111
'129'.d2b(16) == 0000000010000001
'257"'.d2b(8) == 00000001
'=127"'.d2b(8) == 10000001
'=127'.d2b(16) == 1111111110000001
'12'.d2b(0) ==

d2c()

Decimal to coded character. Converts the string (a NetRexx number) to a single
character, where the number is used as the encoding of the character.

string must be a non-negative whole number. An error results if the encoding
described does not produce a valid character for the implementation (for example,
if it has more significant bits than the implementation’s encoding for characters).

Examples:

'77'.d2c == 'M' —— ASCII or Unicode
'+77'.d2c == 'M' —— ASCII or Unicode
'247'.d2c == '7' — EBCDIC

'0'.d2c == "\0'

d2x([n])

Decimal to hexadecimal. Returns a string of hexadecimal characters of length as
needed or of length n, which is the hexadecimal (unpacked) representation of
the decimal number. The returned string will use uppercase Roman letters for
the values A-F, and will not include any blanks. string must be a whole number,
and must be non-negative unless 7 is specified, or an error will result. If z is not
specified, the length of the result returned is such that there are no leading O cha-
racters, unless string was equal to O (in which case ’0’ is returned).

If n is specified it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length (negative
numbers are converted assuming twos-complement form). If the number is too

189

6.24

6.25

Chapter 6. Built-in methods for NetRexx strings

big to fit into n characters, it will be truncated on the left. » must be a non-negative
whole number.

Examples:

'9'.d2x == '9Q'
'129'.d2x == '81'
'129'.d2x(1) == '1'
'129'.d2x(2) == '81'
'127"'.d2x(3) == '0O7F'
'129'.d2x(4) == '0081'
'257"'.d2x(2) == '01'
'=127".d2x(2) == '81'
'=127'.d2x(4) == 'FF81"
'12'.d2x(0) == "'
exists(index)

returns 1 if index names a sub-value (see page @) of string that has explicitly been
assigned a value, or O otherwise.

Example: Following the instructions:

vowel=0

vowel['a']l=1

vowel['b']=1

vowel['b']=null —— drops previous assignment
then:

vowel.exists('a') == '1'

vowel.exists('b') == '0'

vowel.exists('c') == '0'

format([before [,after]])

formats (lays out) string, which must be a number.

The number, string, is first formatted by adding zero with a digits setting that
is either nine or, if greater, the number of digits in the mantissa of the number
(excluding leading insignificant zeros). If no arguments are given, the result is
precisely that of this operation.

The arguments before and after may be specified to control the number of charac-
ters to be used for the integer part and decimal part of the result respectively. If

190

6.25. format([before [,after]])

either of these is omitted (with no arguments specified to its right), or is null, the
number of characters used will be as many as are needed for that part.

before must be a positive number;ifitislarger than is needed to contain the integer
part, that part is padded on the left with blanks to the requested length. If before
is not large enough to contain the integer part of the number (including the sign,
for negative numbers), an error results.

after must be a non-negative number; if it is not the same size as the decimal
part of the number, the number will be rounded (or extended with zeros) to fit.
Specifying O for after will cause the number to be rounded to an integer (that is, it
will have no decimal part or decimal point).

Examples:

' - 12.73"'.format = '-12.73"
'0.000"'.format = '0"'
'3'.format(4) = 3'
'1.73".format(4,0) == ' 2'
'1.73"'.format(4,3) == 1.730"
'—-.76"'.format(4,1) ="' -0.8'
'3.03'.format(4) = 3.03"
"= 12.73".format(null,4) == '-12.7300"

Further arguments may be passed to the format method to control the use of ex-
ponential notation. The full syntax of the method is then:

format([before[,after[,explaces[,exdigits[,exform]]1]11]) Thefirsttwoarguments
are as already described. The other three (explaces, exdigits, and exform) control the
exponent part of the result. The default for any of the arguments may be selected
by omitting them (if there are no arguments to be specified to their right) or by
using the value null.

explaces must be a positive number; it sets the number of places (digits after the
sign of the exponent) to be used for any exponent part, the default being to use as
many as are needed. If explaces is specified and is not large enough to contain the
exponent, an error results. If explaces is specified and the exponent will be O, then
explaces+2 blanks are supplied for the exponent part of the result.

exdigits sets the trigger point for use of exponential notation. If, after the first
formatting, the number of places needed before the decimal point exceeds exdigits,
or if the absolute value of the result is less than 0.000001, then exponential form
will be used, provided that exdigits was specified. When exdigits is not specified,
exponential notation will never be used. The current setting of numeric digits
may be used for exdigits by specifying the special word digits (see page) JIf0
is specified for exdigits, exponential notation is always used unless the exponent

191

6.26

Chapter 6. Built-in methods for NetRexx strings

would be O.

exform sets the form for exponential notation (if needed). exform may be either
’Scientific’ (the default) or ’Engineering’. Only the first character of exform is
significant and it may be in uppercase or in lowercase. The current setting of
numeric form may be used by specifying the special word form (see page JIf
engineering form is in effect, up to three digits (plus sign) may be needed for the
integer part of the result (before).

Examples:

'12345.73" . format(null,null,2,2) == '1.234573E+04"
'12345.73" .format(null,3,null,0) == '1.235E+4"'
'1.234573"' .format(null,3,null,0) == '1.235"'

'123.45"' . format(null,3,2,0) == '1.235E+02'
'1234.5"' . format(null,3,2,0,'e') == "1.235E+03"
'1.2345"' . format(null,3,2,0) == '1.235 '
'12345.73"' .format(null,null,3,6) == '12345.73 :
'12345e+5"' . format(null,3) == '1234500000.000"

Implementation minimum: If exponents are supported in an implementation,
then they must be supported for exponents whose absolute value is at least as
large as the largest number that can be expressed as an exact integer in default
precision, i.e., 999999999. Therefore, values for explaces of up to 9 should also be
supported.

insert(new [,n [,length [,pad]l])

inserts the string new, padded or truncated to length length, into a copy of the target
string after the nth character; the string with any inserts is returned. length and n
must be a non-negative whole numbers. If n is greater than the length of the target
string, padding is added before the new string also. The default value for n is 0,
which means insert before the beginning of the string. The default value for length
is the length of new. The default pad character is a blank.

Examples:

'abc'.insert('123") == '123abc'
'abcdef'.insert(' ',3) == 'abc def'
"abc'.insert('123',5,6) == 'abc 123 '
'abc'.insert('123',5,6,'+"') == 'abc++123+++'
‘abc'.insert('123',0,5,'-') == '123—-abc'

192

6.27

6.28

6.29

6.27. lastpos(needle [,start])

lastpos(needle [,start])

returns the position of the last occurrence of the string needle in string (the "hay-
stack”), searching from right to left. If the string needle is not found, or is the null
string, O is returned. By default the search starts at the last character of string and
scans backwards. This may be overridden by specifying start, the point at which to
start the backwards scan. start must be a positive whole number, and defaults to
the value string.length if larger than that value or if not specified (with a minimum
default value of one).

Examples:

‘abc def ghi'.lastpos(' ') ==
'abc def ghi'.lastpos(' ',7) ==
‘abcdefghi'.lastpos(' ') ==
‘abcdefghi'.lastpos('cd") ==
"'.lastpos('?") ==

S WwWe h~ oo

left(length [,pad])

returns a string of length length containing the left-most length characters of string.
The string is padded with pad characters (or truncated) on the right as needed. The
default pad character is a blank. length must be a non-negative whole number. This
method is exactly equivalent to string.substr(1, length [, pad]).

Examples:

"abc d'.left(8) == 'abc d '
'abc d'.left(8,'.') == 'abc d...'
'abc defg'.left(6) == 'abc de'
length()

returns the number of characters in string.

Examples:

'abcdefgh'.length ==
"'.length ==

> 00

193

6.30

6.31

6.32

6.33

Chapter 6. Built-in methods for NetRexx strings

linein(name [,line [,count]])

returns count (O or 1) lines read from the character input stream name. A line
number may be given to set the read position to the start of a specified line. This
line number must be positive and within the bounds of the stream. A value of 1
for line refers to the first line in the stream. A call to linein() will return a partial
line if part of the line has already been read with charin().

See page for more information on class RexxStream.

lineout(name [,string, [,line]])

returns the count of lines remaining after attempting to write string as a line to
the character output stream name. The count will be either 0 (meaning the line
was successfully written) or 1 (meaning that an error occurred while writing the
line). A linenumber may be given to set the write position to the start of a particular
line in stream name. This line number must be positive and within the bounds of
the stream. A value of 1 for line refers to the first line in the stream. When string is
omitted, character output stream name is closed.

See page for more information on class RexxStreanm.

lines(name)

returns 1 if any data remains between the current read position and the end of the
character input stream name. It returns O if no data remains.

See page for more information on class RexxStreanm.

lower([n [,length]])

returns a copy of string with any uppercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by their
lowercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in string).
If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is greater

194

6.34

6.35

6.34. max(number)

than the number of characters from n to the end of the string, the rest of the string
(including the nth character) is assumed.

Examples:

"SumA' . lower == 'suma’
"SumA' . lower(2) == 'Suma’
'SuMB' .lower(1,1) == 'suMB'
'SUMB' .lower(2,2) == 'SumB'
"' lower = "'
max(number)

returns the larger of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected
for the result.

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the mantissa
of the number (excluding leading insignificant zeros). Scientific notation is used,
if necessary.

Examples:

0.max(1) ==

'-1"'".max(1) ==

"+1'.max(-1) ==1

'1.0'.max(1.00) ='1.0"

'1.00".max(1.0) =='1.00"'

'123456700000"' .max(1234567E+5) == '123456700000'
'1234567E+5"' .max('123456700000') == '1.234567E+11"

min(number)

returns the smaller of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected for
the result.

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

195

6.36

6.37

Chapter 6. Built-in methods for NetRexx strings

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the mantissa
of the number (excluding leading insignificant zeros). Scientific notation is used,
if necessary.

Examples:

0.min(1) ==

"-1'.min(1) =='-1"

"+1".min(-1) ='-1"

'1.0".min(1.00) ='1.0"

'1.00".min(1.0) =='1.00"

'123456700000"' .min(1234567E+5) == '123456700000"
'1234567E+5"' .min('123456700000') == '1.234567E+11"

overlay(new [,n [,length [,pad]]])

overlays the string new, padded or truncated to length length, onto a copy of the
target string starting at the nth character; the string with any overlays is returned.
Overlays may extend beyond the end of the original string. If length is specified it
must be a non-negative whole number. If n is greater than the length of the target
string, padding is added before the new string also. The default pad character is a
blank, and the default value for n is 1. n must be greater than 0. The default value
for length is the length of new.

Examples:

‘abcdef'.overlay(' ',3) == 'ab def'
"abcdef'.overlay('."',3,2) == 'ab. ef'
'abcd'.overlay('qq') == 'qgqcd'
'abcd'.overlay('qq',4) == 'abcqq'
‘abc'.overlay('123',5,6,'+"') == 'abc+123+++'

pos(needle [,start])

returns the position of the string needle, in string (the "haystack”), searching from
left to right. If the string needle is not found, or is the null string, O is returned. By
default the search starts at the first character of string (that is, start has the value
1). This may be overridden by specifying start (which must be a positive whole
number), the point at which to start the search; if start is greater than the length
of string then O is returned. Examples:

'Saturday'.pos('day"') ==

196

6.38

6.39

6.40

6.38. reverse()

'abc def ghi'.pos('x") =0
‘abc def ghi'.pos(' ') == 4
‘abc def ghi'.pos(' ',5) == 8

reverse()

returns a copy of string, swapped end for end.

Examples:

"ABc.'.reverse == ' CBA'

'XYZ '.reverse == ' ZYX'
'Tranquility'.reverse == 'ytiliugnarT'
right(length [,pad])

returns a string of length length containing the right-most length characters of
string - that is, padded with pad characters (or truncated) on the left as needed.
The default pad character is a blank. length must be a non-negative whole number.

Examples:

‘abc d'.right(8) == ' abc d'
‘abc def'.right(5) == 'c def'
"12'.right(5,'0") == '00012'
sequence(final)

returns a string of all characters, in ascending order of encoding, between and
including the character in string and the character in final. string and final must be
single characters; if string is greater than final, an error is reported.

Examples:

‘a'.sequence('f") == 'abcdef"'

"\\0"'.sequence('\\x03") == "\\Xx00\\x01\\x02\\x03"
‘\\ufffe'.sequence('\\uffff"') == "\\ufffe\\uffff’

197

6.41

6.42

6.43

6.44

Chapter 6. Built-in methods for NetRexx strings

sign()

returns a number that indicates the sign of string, which must be a number. string
is first formatted, just as though the operation ”string+0” had been carried out
with sufficient digits to avoid rounding. If the number then starts with ’-’ then ’-1’
is returned; if it is 0’ then ’0’ is returned; and otherwise ’1’ is returned.

Examples:
'12.3"'.sign = 1
'0.0'.sign = 0
' -0.307"'.sign == -1
soundex()

returns the normalized soundex value of the string. This implementation is for
the English language.

Examples:
"EULER'.soundex() == 'E460'

space([n [,pad]])

returns a copy of string with the blank-delimited words in string formatted with n
(and only n) pad characters between each word. n must be a non-negative whole
number. If n is O, all blanks are removed. Leading and trailing blanks are always
removed. The default for n is 1, and the default pad character is a blank.

Examples:

‘abc def '.space == 'abc def’

' abc def '.space(3) == 'abc def'
'abc def '.space(l) == 'abc def'
'abc def '.space(0) == 'abcdef'
'abc def '.space(2,'+') == 'abc++def’

stream(name [,operation [,stream_command]])

returns a string describing the state of, or the result of an operation upon the
character stream name. Operation is one of the following:

198

6.45. strip(foption [,char]]])

S State
D Description
C Command

If operation is not specified, it defaults to State.

Requesting the state or description of a character stream returns one of the
following:

READY When a read or write operation is likely to succeed

NOTREADY When the stream is in a condition that a read or write is not possible,
for example when a seek operation is out of bounds

ERROR When a stream is in error

UNKNOWN When the state of the stream is unknown

Issuing operation C(ommand) must be followed by a stream_command which is one
of the following:

OPEN [READ|WRITE|BOTH|APPEND] Opens the stream in read, write mode or
both (which is default), or in write append mode.

CLOSE Closes the stream

SEEK <offset> [READ|WRITE] Setstheread, write (or both) position into the stream

QUERY EXISTS Returns the fully qualified filename of the stream if it exists, or the
empty string ”

QUERY SIZE Returns the size of the filename represented by the stream name

QUERY DATETIME Returns the date and time of last modification of the stream,
in format 'DD-MM-YY HH:MM:SS UTC’

QUERY TIMESTAMP Returns the date and time of last modification of the stream,
in format 'YYYY-MM-DD HH:MM:SS UTC’

See page for more information on class RexxStream.

6.45 strip([option [,char]l])

returns a copy of string with Leading, Trailing, or Both leading and trailing charac-
ters removed, when the first character of option is L, T, or B respectively (these may
be given in either uppercase or lowercase). The default is B. The second argument,
char, specifies the character to be removed, with the default being a blank. If given,
char must be exactly one character long.

Examples:
199

6.46

6.47

Chapter 6. Built-in methods for NetRexx strings

ab ¢ '.strip == 'ab c¢'
" ab c '.strip('L") == 'ab ¢
" ab c .strip('t') = ' ab c'
'12.70000"' .strip('t',0) == '12.7'
'0012.700" .strip('b',0) == '12.7"'

substr(n [,length [,pad]])

returns the sub-string of string that begins at the nth character, and is of length
length, padded with pad characters if necessary. n must be a positive whole number,
and length must be a non-negative whole number. If n is greater than string.length,
then only pad characters can be returned. If length is omitted it defaults to be the
rest of the string (or 0 if n is greater than the length of the string). The default pad
character is a blank.

Examples:

"abc'.substr(2) == 'bc'
"abc'.substr(2,4) == 'bc '
"abc'.substr(5,4) == ' :
'abc'.substr(2,6,'.') == 'bc....'
"abc'.substr(5,6,'.") = "'...... :

Note: In some situations the positional (numeric) patterns of parsing templates
are more convenient for selecting sub-strings, especially if more than one sub-
string is to be extracted from a string.

subword(n [,length])

returns the sub-string of string that starts at the nth word, and is up to length blank-
delimited words long. n must be a positive whole number; if greater than the
number of words in the string then the null string is returned. length must be a
non-negative whole number. If length is omitted it defaults to be the remaining
words in the string. The returned string will never have leading or trailing blanks,
but will include all blanks between the selected words.

Examples:
'Now is the time'.subword(2,2) == 'is the'

"Now is the time'.subword(3) == 'the time'
"Now is the time'.subword(5) == "'

200

6.48

6.49

6.48. time()

time()

see page 209

translate(tableo, tablei [,pad])

returns a copy of string with each character in string either unchanged or translated
to another character.

The translate method acts by searching the input translate table, tablei, for each
character in string. If the character is found in tablei (the first, leftmost, occurrence
being used if there are duplicates) then the corresponding character in the same
position in the output translate table, tableo, is used in the result string; otherwise
the original character found in string is used. The result string is always the same
length as string.

The translate tables may be of any length, including the null string. The output
table, tableo, is padded with pad or truncated on the right as necessary to be the
same length as tablei. The default pad is a blank.

Examples:

"abbc'.translate('&','b") == 'add&c'
'abcdef'.translate('12','ec') == 'ab2d1lf'
‘abcdef'.translate('12','abcd',"'.") == '12..ef"’
'4123"' .translate('abcd', '1234") == 'dabc'
'4123"' .translate('hods', '1234") == 'shod'

Note: The last two examples show how the translate method may be used to move
around the characters in a string. In these examples, any 4-character string could
be specified as the first argument and its last character would be moved to the
beginning of the string. Similarly, the term:
'gh.ef.abcd'.translate(19970827, 'abcdefgh')

(which returns ”27.08.1997”) shows how a string (in this case perhaps a date)
might be re-formatted and merged with other characters using the translate
method.

201

6.50

6.51

Chapter 6. Built-in methods for NetRexx strings

trunc([n])

returns the integer part of string, which must be a number, with n decimal places
(digits after the decimal point). n must be a non-negative whole number, and
defaults to zero.

The number string is formatted by adding zero with a digits setting that is either
nine or, if greater, the number of digits in the mantissa of the number (excluding
leading insignificant zeros). It is then truncated to n decimal places (or trailing
zeros are added if needed to make up the specified length). If n is O (the default)
then an integer with no decimal point is returned. The result will never be in ex-
ponential form.

Examples:

'12.3".trunc == 12
'127.09782"' .trunc(3) == 127.097
'127.1" .trunc(3) == 127.100
"127"' .trunc(2) == 127.00
'0O'.trunc(2) == 0.00
upper([n [,length]])

returns a copy of string with any lowercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by their
uppercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in string).
If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is greater
than the number of characters from n to the end of the string, the rest of the string
(including the nth character) is assumed.

Examples:

'Fou-Baa'.upper == 'FOU-BAA'
‘Mad Sheep'.upper == 'MAD SHEEP'

'Mad sheep'.upper(5) == 'Mad SHEEP'
'Mad sheep'.upper(5,1) == 'Mad Sheep'
‘Mad sheep'.upper(5,4) == 'Mad SHEEp'
"tinganon'.upper(l,1) == 'Tinganon'

"'.upper == '

202

6.52. verify(reference [,option [,start]])

6.52 verify(reference [,option [,start]])

6.53

6.54

verifies that string is composed only of characters from reference, by returning the
position of the first character in string that is not also in reference. If all the charac-
ters were found in reference, O is returned. The option may be either '’Nomatch’ (the
default) or 'Match’. Only the first character of option is significant and it may be in
uppercase orinlowercase. If 'Match’ is specified, the position of the first character
in string that is in reference is returned, or O is returned if none of the characters
were found. The default for start is 1 (that is, the search starts at the first character
of string). This can be overridden by giving a different start point, which must be
positive. If string is the null string, the method returns O, regardless of the value of
the option. Similarly if start is greater than string.length, O is returned. If reference
is the null string, then the returned value is the same as the value used for start,
unless 'Match’ is specified as the option, in which case 0 is returned.

Examples:

'123 "' .verify('1234567890") ==
'173" .verify('1234567890") ==
"ABAT' .verify('1234567890','M") ==
"1P3Q4"' .verify('1234567890','N',3) ==
"ABCDE"' .verify('','n',3) ==
"AB3CD5'.verify('1234567890','m',4) ==

OWbhWNS

word(n)

returns the nth blank-delimited word in string. n must be positive. If there are fewer
than nwords in string, the null string is returned. This method is exactly equivalent
to string.subword(n,1).

Examples:

"‘Now is the time'.word(3) == 'the'
‘Now is the time'.word(5) == "'

wordindex(n)

returns the character position of the nth blank-delimited word in string. n must be
positive. If there are fewer than n words in the string, O is returned.

Examples:

203

Chapter 6. Built-in methods for NetRexx strings

"Now is the time'.wordindex(3) == 8
"Now i1s the time'.wordindex(6) == 0

6.55 wordlength(n)

returns the length of the nth blank-delimited word in string. n must be positive. If
there are fewer than n words in the string, O is returned.

Examples:

'Now is the time'.wordlength(2) ==
"Now comes the time'.wordlength(2) ==
'"Now is the time'.wordlength(6) ==

e U N

6.56 wordpos(phrase [,start])

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words in either phrase or string are treated as a single blank for
the comparison, but otherwise the words must match exactly. Similarly, leading
or trailing blanks on either string are ignored. If phrase is not found, or contains
no words, 0 is returned. By default the search starts at the first word in string. This
may be overridden by specifying start (which must be positive), the word at which
to start the search.

Examples:

'now 1s the time'.wordpos('the') ==
‘now i1s the time'.wordpos('The") ==
‘now i1s the time'.wordpos('is the') ==
‘now i1s the time'.wordpos('is the') ==
‘now is the time'.wordpos('is time') ==
'To be or not to be'.wordpos('be') ==
'"To be or not to be'.wordpos('be',3) ==

ONSNNSW

6.57 words()

returns the number of blank-delimited words in string.

Examples:

204

6.58

6.59

6.58. x2b()

"Now i1s the time'.words ==
" '.words ==
''.words ==

[SES R

x2b()

Hexadecimal to binary. Converts string (a string of at least one hexadecimal cha-
racters) to an equivalent string of binary digits. Hexadecimal characters may be
any decimal digit character (0-9) or any of the first six alphabetic characters (a-f),
in either lowercase or uppercase. string may be of any length; each hexadecimal
character with be converted to a string of four binary digits. The returned string
will have a length that is a multiple of four, and will not include any blanks.

Examples:

'C3'.x2b == '11000011'
'7'.x2b == '0111"
'1C1'.x2b == '000111000001'
x2¢()

Hexadecimal to coded character. Converts the string (a string of hexadecimal cha-
racters) to a single character (packs). Hexadecimal characters may be any decimal
digit character (0-9) or any of the first six alphabetic characters (a-f), in either
lowercase or uppercase.

string must contain at least one hexadecimal character; insignificant leading zeros
areremoved, and the string is then padded with leading zeros if necessary to make
a sufficient number of hexadecimal digits to describe a character encoding for the
implementation.

An error results if the encoding described does not produce a valid character for
the implementation (for example, if it has more significant bits than the imple-
mentation’s encoding for characters). Examples:

'004D'.x2c == 'M' — ASCII or Unicode
"4d' .x2c == 'M' —— ASCII or Unicode
"A2'.x2C == 's' — EBCDIC

'0'.x2c == '\textbackslash 0'

The d2¢ method (see page) can be used to convert a NetRexx number to the
encoding of a character.

205

Chapter 6. Built-in methods for NetRexx strings

6.60 x2d([n])

Hexadecimal to decimal. Converts the string (a string of hexadecimal characters)
to a decimal number, without rounding. If string is the null string, O is returned.

If n is not specified, string is taken to be an unsigned number.

Examples:

'0E' . x2d == 14
'81'.x2d == 129
"F81"'.x2d == 3969
'"FF81'.x2d == 65409
'c6f0'.x2d == 50928

If n is specified, string is taken as a signed number expressed in n hexadecimal
characters. If the most significant (left-most) bit is zero then the number is positive;
otherwise it is a negative number in twos-complement form. In both cases it is
converted to a NetRexx number which may, therefore, be negative. If n is 0, O is
always returned.

If necessary, string is padded on the left with ’0’ characters (note, not "sign-
extended”), or truncated on the left, to length n characters; (that is, as though
string.right(n, ’0’) had been executed.)

Examples:

'81'.x2d(2) == -127
'81'.x2d(4) == 129
'"FO81'.x2d(4) == -3967
'"FO81'.x2d(3) == 129
"FO81'.x2d(2) == -127
'FO81'.x2d(1) == 1
'0031'.x2d(0) == 0

The c2d method (see page can be used to convert a character to a decimal
representation of its encoding.

206

Chapter 7

Classic Rexx compatible functions

7.1 date()

The RexxDate class inherits from RexxTime which implements the Classic Rexx
pate() and Time() functions.E3

The date() function can be called standalone because the default commandline
option -implicituses causes a uses RexxDate option on the class statement to be
included. You can use the following options to obtain specific date formats. (Only
the capitalized letter is needed; all characters following it are ignored.)

7.1.1 Options

Base the number of complete days (that is, not including the current day) since
and including the base date, 1 January 0001, in the format: dddddd (no
leading zeros or blanks). The expression DATE('B’)//7 returns a number in
the range 0—6 that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday. Thus, this function can be used to determine the day
of the week independent of the national language in which you are working.
Note: The base date of 1 January 0001 is determined by extending the current
Gregorian calendar backward (365 days each year, with an extra day every
year that is divisible by 4 except century years that are not divisible by 400).
It does not take into account any errors in the calendar system that created
the Gregorian calendar originally.

Century the number of days, including the current day, since and including
January 1 of the last year that is a multiple of 100 in the form: ddddd (no
leading zeros). Example: A call to DATE('C’) on March 13 1992 returns 33675,

83At the 4.02 level, including the input and conversion functions, including some of the options that were available in
Rexx/VM but left out of the Rexx ANSI/ISO/INCITS standard.

207

Chapter 7. Classic Rexx compatible functions

the number of days from 1 January 1900 to 13 March 1992. Similarly, a call
to DATE(C’) on 2 January 2000 returns 2, the number of days from 1 January
2000 to 2 January 2000. Note: When the Century option is used for input,
the output may change, depending on the current century. For example,
if DATE(S’,1’/C’) was entered on any day between 1 January 1900 and 31
December 1999, the result would be 19000101. However, if DATE('S’,;1’,C’)
was entered on any day between 1 January 2000 and 31 December 2099, the
result would be 20000101. It is important to understand the above, and code
accordingly.

Days the number of days, including the current day, so far in the current year in
the format: ddd (no leading zeros or blanks).

Julian date in the format: yyyyddd (yy and ddd must have leading zeros).

European date in the format: dd/mm/yy (dd, mm, and yy must have leading
Zeros).

Month full name of the current month. Only valid for OutputDateFormat.

Normal date in the format: dd mon yyyy. This is the default (dd cannot have any
leading zeros or blanks; yyyy must have leading zeros but cannot have any
leading blanks). If Normal is specified for input_date_format, the input_date
must have the month (mon) specified in English (for example, Jan, Feb, Mar,
and so on).

Ordered date in the format: yy/mm/dd (suitable for sorting, and so forth; yy, mm,
and dd must have leading zeros).

Standard date in the format: yyyymmadd (suitable for sorting, and so forth; yyyy,
mm, and dd must have leading zeros).

Usa date in the format: mm/dd/yy (mm, dd, and yy must have leading zeros).

Weekday the name for the day of the week.

7.1.2 Conversions and date calculations

Date() with more than two arguments converts the second argument (which has a
format given by the third argument) to the format specified by the first argument.

Calculations with dates can be done using the 'B(asedate)’ option.B4
7.1.3 Formatting the separator fields
The separators can be specified using the inputseparatorchar and outputseparatorchar

fields.

84Examples can be found in the NetRexx Programming Guide.

208

7.2. time()

7.1.4 Examples

say date('b','10 Mar 1962"') —— 716308

say date('w','10 Mar 1962','n') —— Saturday

say date('w','716308','b") —— Saturday

say date('s','716308','b") —— 19620310

say date('s','716308','b',"'/") —— 1962/03/10

say date('s','716308','b','-"') —— 1962-03-10

say date('w',7688,'c"') —— Sunday

say date('c','l Feb 2021") — 7703

say date('j',"'18 Jan 2021") —— 2021018

say date('j','10 Mar 1962'") —-— 1962069
7.2 time()

The RexxTime class implements the Classic Rexx Time () function.

The time () function can be called standalone because the default -implicituses
commandline option causes a uses RexxTime option on the class statement to be
included. You can use the following options to obtain specific time formats. (Only
the capitalized letter is needed; all characters following it are ignored.)

7.2.1 Options

Civil returns the time in Civil format: hh:mmxx. The hours may take the values
1 through 12, and the minutes the values 00 through 59. The minutes are
followed immediately by the letters am or pm. This distinguishes times in the
morning (12 midnight through 11:59 a.m.—appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m.—appearing
as 12:00pm through 11:59pm). The hour has no leading zero. The minute
field shows the current minute (rather than the nearest minute) for consistency
with other TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds since
the elapsed-time clock (described later) was started or reset. The number has
no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect
the number. The fractional part always has six digits.

Hours returns up to two characters giving the number of hours since midnight in
the format: hh (no leading zeros or blanks, except for a result of 0).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of
seconds, in microseconds). The first eight characters of the result follow the
same rules as for the Normal form, and the fractional part is always six digits.

209

7.2.2

7.3

Chapter 7. Classic Rexx compatible functions

Minutes returnsup to four characters giving the number of minutes since midnight
in the format: mmmm (no leading zeros or blanks, except for a result of 0).

Normal returns the time in the default format hh:mm:ss, as described previously.
The hours can have the values 00 through 23, and minutes and seconds,
00 through 59. All these are always two digits. Any fractions of seconds are
ignored (times are never rounded up). This is the default.

Reset returns sssssssss.uuuuuu, the number of seconds.microseconds since the
elapsed-time clock (described later) was started or reset and also resets the
elapsed-time clock to zero. The number has no leading zeros or blanks, and
the setting of NUMERIC DIGITS does not affect the number. The fractional
part always has six digits.

Seconds returns up to five characters giving the number of seconds since midnight
in the format: sssss (no leading zeros or blanks, except for a result of 0).

Examples
method main(args=String[]) static

say time() — 22:16:33
say time('C") —— 10:16pm
say time('E") — 0.000000
say time('R") — 0
say time('H") — 22
say time('L") —— 22:16:33.836725
say time('M") —— 1336
say time('N") —— 22:16:33
say time('0") —— 22:16:33
say time('R") — 0.001204
say time('E") — 0.000271
say time('S") —— 80193

charin(name [,start [,length]])

returns a string of up to length characters from the character input stream name.
A start value may be given to specify an explicit read position. This read position
must be positive and within the bounds of the stream. A value of 1 for start refers
to the first character in the stream. If length is not specified, one character is read.

A read position, based on UTF-8 characters, is kept independently of the write
position. Charin() and linein() start at the same read position.

A charin() operation returns the character(s) read, or ”. Stream state is 'READY’
when successful.

210

7.4

7.5

7.6

7.4. charout(name [,string [,start]])

charout(name [,string [,start]])

returns the count of characters remaining after attempting to write string to the
character output stream name. A start value may be given to specify an explicit
write position. This write position must be positive and within the bounds of the
stream. A value of 1 for start refers to the first character in the stream.

When string is omitted, character output stream name is closed.

A write position, based on UTF-8 characters, is kept independently of the read
position. Charout() and lineout() start at the same write position.

The charout() operation returns O for success, non-zero if unsuccessful. Stream
state is 'READY’ when successful.

chars(name)

indicates whether there are characters remaining in the character input stream
name.

Itreturns 1ifatleastone character can be read from name, otherwise O is returned.

linein(name [,line [,count]])

returns count (O or 1) lines read from the character input stream name. A line
number may be given to set the read position to the start of a specified line. This
line number must be positive and within the bounds of the stream. A value of 1
for line refers to the first line in the stream. A call to linein() will return a partial
line if part of the line has already been read with charin().

A read position, based on UTF-8 characters, is kept independently of the write
position. Charin() and linein() start at the same read position.

A linein() operation returns the line read, or ”. Stream state is '/READY’ when
successful.

211

7.7

7.8

7.9

Chapter 7. Classic Rexx compatible functions

lineout(name [,string, [,line]])

returns the count of lines remaining after attempting to write string as a line to the
character output stream name. The count will be either O (meaning the line was
successfully written) or 1 (meaning that an error occurred while writing the line).
A linenumber may be given to set the write position to the start of a particular line
in stream name. This line number must be positive and within the bounds of the
stream. A value of 1 for line refers to the first line in the stream.

When string is omitted, character output stream name is closed.

A write position, based on UTF-8 characters, is kept independently of the read
position. Charout() and lineout() start at the same write position.

The lineout() operation returns O for success, non-zero if unsuccessful. Stream
state is 'READY’ when successful.

lines(name)

returns 1 if any data remains between the current read position and the end of the
character input stream name. It returns O if no data remains.

stream(name [,operation [,stream_command]])

returns a string describing the state of, or the result of an operation upon the
character stream name. Operation is one of the following:

S State
D Description
C Command

If operation is not specified, it defaults to State.

Requesting the state or description of a character stream returns one of the
following:

READY When a read or write operation is likely to succeed

NOTREADY When the stream is in a condition that a read or write is not possible,
for example when a seek operation is out of bounds

ERROR When a stream is in error

UNKNOWN When the state of the stream is unknown

212

7.10. Stream operations

Issuing operation C(ommand) must be followed by a stream_command which is one
of the following:

OPEN [READ|WRITE|BOTH|APPEND] Opens the stream in read, write mode or
both (which is default), or in write append mode.

CLOSE Closes the stream

SEEK <offset> [READ|WRITE] Setstheread, write (or both) position into the stream

QUERY EXISTS Returns the fully qualified filename of the stream if it exists, or the
empty string ”

QUERY SIZE Returns the size of the filename represented by the stream name

QUERY DATETIME Returns the date and time of last modification of the stream,
in format 'DD-MM-YY HH:MM:SS UTC’

QUERY TIMESTAMP Returns the date and time of last modification of the stream,
in format 'YYYY-MM-DD HH:MM:SS UTC’

7.10 Stream operations

Streams (files) are implicitly opened, in read mode for charin/linein, in write
mode for charout/lineout, and always in UTF-8. UTF-8 is compatible with ASCII,
operating systems mostly default to UTF-8, and Java defaults to it since JDK18.

Reading starts at the beginning of the file, writing starts at the end of the file, unless
a start position is given.

Reading and writing positions are kept independently, and are based on UTF-8
characters.

Repositioning can be costly. Current line and current char positions are kept when
possible (when starting from begin of file for instance), but to position a read or
write file pointer to a specific line or character number, it might be necessary to
read a significant portion of the file.

When positioning write pointers, characters and lines can be re-writtenn, and
may overwrite following characters if the line(s) or character(s) are larger than
what was there before. Note, UTF-8 characters can be represented by 1 to 4 bytes.

Stream(name, 'C’, 'SEEK offset’) operations are byte based, not UTF-8 character
based, so it is possible with this operation to position the file pointer not at the
start of a multi-byte UTF-8 character.

7.10.1 Examples

213

Chapter 7. Classic Rexx compatible functions

rc = lineout('testdata.txt', 'This is line 1")

rc = lineout('testdata.txt', 'This is line 2')

rc = lineout('testdata.txt', 'This is line 3')

rc = stream('testdata.txt', 'C', 'CLOSE")

rc = lineout('testdata.txt', 'This is line 4")

say charin('testdata.txt', 1, 5) — > "This "

say linein('testdata.txt") -— > "is line 1"

say linein('testdata.txt', 4) — > "This is 1line 4"

rc = stream('testdata.txt', 'C', 'SEEK 0')

loop while lines('testdata.txt')

say linein('testdata.txt"') —— > shows lines 1 to 4
end
say stream('testdata.txt','c', 'QUERY EXISTS') —- > displays fully
qualified file name
say stream('testdata.txt','c', 'QUERY SIZE") —— > displays 60

rc = stream('testdata.txt', 'C', 'CLOSE")

rc = charout('testdata.txt', 'Overwrite 1line 1, join line 2', 1)
rc = stream('testdata.txt', 'C', 'CLOSE")

loop while chars('testdata.txt')
say charin('testdata.txt')'\0' — > shows lines 1 to 3
end

rc = stream('testdata.txt', 'C', 'SEEK 0')

loop for 20

rc = charout('testdata.txt','€")
end
rc
rc

charout('testdata.txt','\n")
stream('testdata.txt','c', 'CLOSE")

use the chars() function to loop until EOF
loop while chars('testdata.txt') > 0

say charin('testdata.txt')'\0' —-— > shows 20 euro signs
end
say stream('testdata.txt','c', 'QUERY SIZE") —— > displays 61

—— display the last modified date of the last file

say stream('testdata.dat','c', 'QUERY DATETIME') -- displays timestamp as
DD-MM-YY HH:MM:SS UTC

—— in the post-2000 era

say stream('testdata.dat','c', 'QUERY TIMESTAMP') —— displays timestamp as
YYYY-MM-DD HH:MM:SS UTC

214

Appendix A

Appendix A - A Sample NetRexx
Program

This appendix includes a short program, called qtime, which is an example of
a "real” NetRexx program. The programs included elsewhere in this book have
been contrived to illustrate specific points. By contrast, qtime is a simple but
useful tool that genuinely improves the human factors of computer systems.
People frequently wish to know the time of day, and this program presents this
information in a natural way.

The style used for this example is the same as that used throughout the book,
with all symbols except those describing classes being written in lower case. Other
NetRexx programming styles are possible, of course; NetRexx syntax is designed
to permit a wide variety of styles with a minimum of punctuation.

The qtime program is a modification of one of the first Rexx programs ever written
(much of the program is identical). The main change igBd:

« Indexed variables (brackets notation) are used instead of Rexx stems.

gtime.nrx - Query Time

[*——= ——x/
/* QTIME. This program displays the time in real English. x*/
/* If "?" is given as the first argument word then the */
/* program displays a description of 1itself. */
/*——= ——x/
[k———————— e First process any argument words ——————————————— */
parse arg parm . /* get the first argument word x/
select

when parm='?"' then tell /* say what we do */

when parm='"' then nop /* OK (no first argument) x*/

85Historically, the NetRexx version used the Java Date() class, where the Rexx version of the Time() built-in function was
not implemented yet, and the word method on a Rexx String was used.

215

Appendix A. Appendix A - A Sample NetRexx Program

otherwise
say 'The only valid argument to QTIME is "?". The word'
say 'that you supplied ("'parm'") has been ignored.'
tell /* usually helpful to describe the program x*/
end

[}————————— Now start processing in earnest */
/* Nearness phrases — using associative array lookup x/
near="" /* default */
near[0]="" /* exact =/
near[1l]=' just gone'; near[2]=' just after' /* after x/
near[3]=' nearly'; near[4]=' almost' /* before x/
/* Extract the hours, minutes, and seconds from the time. x/
parse Time() hour':'min':'sec

if sec>29 then min=min+l /* round up minutes x/
mod=min//5 /* where we are in 5 minute bracket */
out="It's"near[mod] /* start building the result x/
if min>32 then hour=hour+l /* we are TO the hour... x/
min=min+2 /* shift minutes to straddle a 5-minute point */

/* Now special-case the result for Noon and Midnight hours x/
if hour//12=0 & min//60<=4 then do
if hour=12 then say out 'Noon.'
else say out 'Midnight.’

return /* we are finished here x/
end
min=min-(min//5) /* find nearest 5 mins */
if hour>12
then hour=hour-12 /* get rid of 24-hour clock x/
else
if hour=0 then hour=12 /* .. and allow for midnight =/
/* Determine the phrase to use for each 5-minute segment x/
select
when min=0 then nop /* add "o'clock" later */
when min=60 then min=0 /* ditto =/

when min= 5 then out=out 'five past'

when min=10 then out=out 'ten past'’

when min=15 then out=out 'a quarter past'
when min=20 then out=out 'twenty past'
when min=25 then out=out 'twenty-five past'
when min=30 then out=out 'half past'

when min=35 then out=out 'twenty-five to'
when min=40 then out=out 'twenty to'

when min=45 then out=out 'a quarter to'
when min=50 then out=out 'ten to'

when min=55 then out=out 'five to'

end
numbers='one two three four five six'- /* (continuation) x/
‘seven eight nine ten eleven twelve '
out=out word(numbers,hour) /* add the hour number x/
if min=0 then out=out "o'clock" /x .. and o'clock if exact */

216

say out'.' /* display the final result %/

/* */
/* Subroutine that describes the purpose of the program */
/* x/

method tell static
say 'QTIME will display the current time in real English.'
say 'Call without any arguments to display the time, or with'
say '"?" to display this information.'
say 'British English idioms are used in this program.'
say /* blank line - we are about to continue and show time x/
return

/* Mike Cowlishaw, December 1979 - January 1985 x/
/* NetRexx version March 1996 */

217

Appendix B

Appendix B - The netrexx.lang
Package

This appendix documents the netrexx.lang package, which includes the classes
used for creating string objects of type Rexx along with several classes that are
often used while running NetRexx programs.

This appendix describes the public methods and properties of these classes, as
implemented by the reference implementation. It does not include those ”built-
in” Methods for NetRexx (see page @ strings in the Rexx class that form part
of the NetRexx language, or those classes and methods that are internal "helper”
components (which, for example, are used as repositories for rarely-executed
code).

The classes in the netrexx.lang package are:

« The Exception classes (see page)

« Rexx (see page

« RexxIO (helper class, see page)

« RexxNode (helper class, for indexed strings)

« RexxOperators interface (see page)

« RexxParse (helper class, for parse)

« RexxSet (see page)

« RexxTrace (helper class, for trace)

« RexxUtil (helper class, for the Rexx class)

« RexxWords (helper class, for the Rexx class)

« RexxDate (class that implements the Date BIF, see page @)

« RexxTime (class that implements the Time BIF, see page

« RexxRexx (class that implements the non-oo, Classic Rexx compatible way to
call Rexx Built-in-functions)

219

B.1

B.2

Appendix B. Appendix B - The netrexx.lang Package

Exception classes

The classes provided for exceptions in the netrexx.lang package are all subclasses
of java.lang.RuntimeException and all have the same content. Each has two con-

structors: one taking no argument and the other taking a string of type java.lang.String,

which is used for additional detail describing the exception.

The Exceptions are signalled as follows.

BadArgumentException signalled when an argument to a method is incorrect.

BadColumnException signalled when a column number in a parsing template is
not valid (for example, not a number).

BadNumericException signalled when a numeric digits instruction tries to set a
value that is not a whole number, or is not positive, or is more than nine digits.

DivideException signalled when an error occurs during a division. This may be
due to an attempt to divide by zero, or when the intermediate result of an
integer divide or remainder operation is not valid.

ExponentOverflowException signalled when the exponent resulting from an oper-
ation would require more than nine digits.

InterpretException signalled when an interpret expression cannot be parsed or
when it generates a runtime exception.

NoOtherwiseException signalled when a select construct does not supply an
otherwise clause and none of expressions on the when clauses resulted in ’1’.

NotCharacterException signalled when a conversion from a string to a single
character was attempted but the string was not exactly one character long.

NotLogicException signalled when a conversion from a string to a boolean was
attempted but the string was neither the string ’0’ nor the string ’1’.

Other exceptions, from the java.lang package, may also be signalled, for example
NumberFormatException or NullPointerException.

The Rexx class

The class netrexx.lang.Rexx implements the NetRexx string class, and includes
the "built-in” Methods for NetRexx strings (see page @).

Described here are the platform-dependent methods as provided in the reference
implementation: constructors (see page) for the class, the methods for arith-

220

B.3

B.3. Rexx constructors

metic operations (see page) , and miscellaneous methods (see page)
intended for general use.

The class netrexx.lang.Rexx is serializable.

Rexx constructors

These constructors all create a string of type netrexx.lang.Rexx.

Rexx(arg=boolean)
Constructs a string which will have the value ’1’ if arg is 1 (true) or the value
0’ if arg is O (false).

Rexx(arg=byte)
Constructs a string which is the decimal representation of the 8-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=char)
Constructs a string of length 1 whose first and only character is a copy of arg.

Rexx(arg=charf])
Constructs a string by copying the characters of the character array arg in
sequence. The length of the string is the number of elements in the character
array (that is, arg.length).

Rexx(arg=int)
Constructs a string which is the decimal representation of the 32-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=double)
Constructs a string which is the decimal representation of the 64-bit signed
binary floating point number arg. (The precise format of the result may change and
will be defined later.)

Rexx(arg=float)
Constructs a string which is the decimal representation of the 32-bit signed
binary floating point number arg. (The precise format of the result may change and
will be defined later.)

Rexx(arg=long)
Constructs a string which is the decimal representation of the 64-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a

221

Appendix B. Appendix B - The netrexx.lang Package

leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=Rexx)
Constructs a string which is copy of arg, which is of type netrexx.lang.Rexx.
arg must not be null. Any sub-values (see page ES]) are ignored (that is, they
are not present in the object returned by the constructor).

Rexx(arg=short)
Constructs a string which is the decimal representation of the 16-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=String)
Constructs a NetRexx string by copying the characters of arg, which is of type
java.lang.String, in sequence. The length of the string is same as the length
of arg (that is, arg.length()). arg must not be null.

Rexx(arg=String|[])
Constructs a NetRexx string by concatenating the elements of the java.lang.String
array arg together in sequence with a blank between each pair of elements.
This may be used for converting the argument word array passed to the main
method of a Java application into a single string.
If the number of elements of arg is zero then an empty string (of length 0) is
returned. Otherwise, the length of the string is the sum of the lengths of the
elements of arg, plus the number of elements of arg, less one.
arg must not be null.

B.4 Rexx arithmetic methods

These methods implement the NetRexx arithmetic operators, as described in
the section on Numbers and (see page @) arithmetic. Each corresponds to and
implements a method in the RexxOperators interface class (see page) .

Each of the methods here takes a RexxSet (see page) object as an argument.
This argument provides the numeric settings for the operation; if null is provided
for the argument then the default settings are used (digits=9, form=scientific).

For monadic operators, only the RexxSet argument is present; the operation
acts upon the current object. For dyadic operators, the RexxSet argument and
a Rexx argument are present; the operation acts with the current object being the

222

B.4. Rexx arithmetic methods

left-hand operand and the second argument being the right-hand operand. For
example, under default numeric settings, the expression:

award+extra
(where award and extra are references to objects of type Rexx) could be written as:
award.OpAdd(null, extra)

which would return the result of adding award and extra under the default numeric
settings.

OpAdd(set=RexxSet, rhs=Rexx)
Implements the NetRexx + (Add) operator, and returns the result as a string
of type Rexx.

OpAnd(set=RexxSet, rhs=Rexx)
Implements the NetRexx & (And) operator, and returns a result (O or 1) of type
boolean.

OpCc(set=RexxSet, rhs=Rexx)
Implements the NetRexx || or abuttal (Concatenate without blank) operator,
and returns the result as a string of type Rexx.

OpCcblank(set=RexxSet, rhs=Rexx)
Implements the NetRexx blank (Concatenate with blank) operator, and returns
the result as a string of type Rexx.

OpDiv(set=RexxSet, rhs=Rexx)
Implements the NetRexx / (Divide) operator, and returns the result as a string
of type Rexx.

OpDivi(set=RexxSet, rhs=Rexx)
Implements the NetRexx % (Integer divide) operator, and returns the result
as a string of type Rexx.

OpEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx = (Equal) operator, and returns a result (O or 1) of
type boolean.

OpEqgS(set=RexxSet, rhs=Rexx)
Implements the NetRexx == (Strictly equal) operator, and returns a result (0
or 1) of type boolean.

OpGt(set=RexxSet, rhs=Rexx)
Implements the NetRexx > (Greater than) operator, and returns a result (O or
1) of type boolean.

OpGtEq(set=RexxSet, rhs=Rexx)

223

Appendix B. Appendix B - The netrexx.lang Package

Implements the NetRexx >= (Greater than or equal) operator, and returns a
result (0 or 1) of type boolean.

OpGtEqgS(set=RexxSet, rhs=Rexx)
Implements the NetRexx »= (Strictly greater than or equal) operator, and
returns a result (0 or 1) of type boolean.

OpGtS(set=RexxSet, rhs=Rexx)
Implements the NetRexx » (Strictly greater than) operator, and returns a
result (0 or 1) of type boolean.

OpLt(set=RexxSet, rhs=Rexx)
Implements the NetRexx < (Less than) operator, and returns a result (O or 1)
of type boolean.

OpLtEqg(set=RexxSet, rhs=Rexx)
Implements the NetRexx <= (Less than or equal) operator, and returns a result
(0 or 1) of type boolean.

OpLtEqS(set=RexxSet, rhs=Rexx)
Implements the NetRexx «= (Strictly less than or equal) operator, and returns
aresult (0 or 1) of type boolean.

OpLtS(set=RexxSet, rhs=Rexx)
Implements the NetRexx « (Strictly less than) operator, and returns a result
(0 or 1) of type boolean.

OpMinus(set=RexxSet)
Implements the NetRexx Prefix - (Minus) operator, and returns the result as
a string of type Rexx.

OpMult(set=RexxSet, rhs=Rexx)
Implements the NetRexx * (Multiply) operator , and returns the result as a
string of type Rexx.

OpNot(set=RexxSet)
Implements the NetRexx Prefix \ (Not) operator, and returns a result (O or 1)
of type boolean.

OpNotEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx \= (Not equal) operator, and returns a result (O or 1)
of type boolean.

OpNotEqgS(set=RexxSet, rhs=Rexx)
Implements the NetRexx \== (Strictly not equal) operator, and returns a result
(0 or 1) of type boolean.

OpOr(set=RexxSet, rhs=Rexx)
Implements the NetRexx | (Inclusive or) operator, and returns a result (O or
1) of type boolean.

224

B.5. Rexx miscellaneous methods

OpPlus(set=RexxSet)
Implements the NetRexx Prefix + (Plus) operator, and returns the result as a
string of type Rexx.

OpPow(set=RexxSet, rhs=Rexx)
Implements the NetRexx ** (Power) operator , and returns the result as a
string of type Rexx.

OpRem(set=RexxSet, rhs=Rexx)
Implements the NetRexx // (Remainder) operator , and returns the result as
a string of type Rexx.

OpSub(set=RexxSet, rhs=Rexx)
Implements the NetRexx - (Subtract) operator, and returns the result as a
string of type Rexx.

OpXor(set=RexxSet, rhs=Rexx)
Implements the NetRexx && (Exclusive or) operator, and returns a result (0
or 1) of type boolean.

B.5 Rexx miscellaneous methods

These methods provide standard Java methods for the class, together with various
conversions.

charAt(offset=int)
Returns the character from the string at offset (that is, if offset is O then the first
character is returned, etc.). The character is returned as type char.
If offset is negative, or is greater than or equal to the length of the string, an
exception is signalled.

equals(item=0bject)
Compares the string with the value of item, using a strict character-by-character
comparison, and returns a result of type boolean.
If item is null or is not an instance of one of the types Rexx, java.lang.String,
or char[], then Oisreturned. Otherwise, item is converted to type Rexx and the
OpEgS (see page method (or equivalent) is used to compare the current
string with the converted string, and its result is returned.

hashCode()
Returns a hashcode of type int for the string. This hashcode is suitable for use
by the java.util. Hashtable class.

toboolean()

225

Appendix B. Appendix B - The netrexx.lang Package

Converts the string to type boolean. If the string is neither ”0” nor ”1” then a
NotLogicException (see page is signalled.

tobyte()
Converts the string to type byte. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a byte (8-bit signed integer)
result then a NumberFormatException is signalled.

toByteArray()
byte[], observing the standard codepage for the platform.

tochar()
Converts the string to type char. If the string is not exactly one character in
length then a NotCharacterException (see page is signalled.

toCharArray()
Converts the string to type char[]. A character array object of the same length
as the string is created, and the characters of the string are copied to the array
in sequence. The character array is then returned.

todouble()
Converts the string to type double. If the string is not a number, or is out of
the possible range for a double (64-bit signed floating point) result then a
NumberFormatException is signalled.

tofloat()
Converts the string to type float. If the string is not a number, or is out of
the possible range for a float (32-bit signed floating point) result then a
NumberFormatException is signalled.

toint()
Converts the string to type int. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for an int (32-bit signed integer)
result then a NumberFormatException is signalled.

tolong()
Converts the string to type long. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a long (64-bit signed integer)
result then a NumberFormatException is signalled. [%hide

toRexx(arg=char(]) static
Takes arg, an array of characters, and returns a copy of it as a string of type
netrexx.lang.Rexx. If the argument is null, then null is returned (not a null
string). This is a static method (a function).

toRexx(arg=String) static
Takes arg, a java.lang.String, and returns a copy of it as a string of type net-
rexx.lang.Rexx. If the argument is null, then null is returned (not a null

226

B.6. The RexxIO class

string). This is a static method (a function).

toshort()
Converts the string to type short. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a short (16-bit signed) result
then a NumberFormatException is signalled.

toString()
Converts the string to type java.lang.String. A String object of the same
length as the string is created, and the characters of the string are copied
to the new string in sequence. The String is then returned.

B.6 The RexxIO class

The RexxI0 classimplements a number of helper methods, for example RexxI0. say,
a call to which is generated when a program contains a say statement.

Ask() static returns Rexx get a line of text from the console

AskOne() static returns Rexx get one character from the console (still requires a
return)

Say(obj=0Dbject) static returns boolean put a line out to the console
If the line ends in the NUL character (\-’ or ’\0’) then no line termination
is provided (and the NUL is deleted). If the write succeeds O is returned,
otherwise 1 is returned.

Say(str=String) static returns boolean put a line out to the console

Say(line=Rexx) static returns boolean put a line out to the console

Say(c=char) static returns boolean put a line out to the console

Say(n=long) static returns boolean put a line out to the console

Say(f=float) static returns boolean put a line out to the console

Say(d=double) static returns boolean put a line out to the console

Say(b=boolean) static returns boolean put a line out to the console

Say(aline=char[) static returns boolean]
put a line out to the console

setOutputStream(out=0OutputStream) static change the outputstream for say to
use

pushOutputStream(out=0OutputStream) static push an outputstream on the decque,
for say to use

popOutputStream() static remove an outputstream from the decque, will not be
used anymore

227

Appendix B. Appendix B - The netrexx.lang Package

File(nm) returns RexxIO define a file to the RexxXIO instance
forEachline(c=LineHandler) define a callback thatcallsaninstance ofthe LineHandler
interface
forEachline(c=LineHandler,numLines) define a callback that calls an instance of
the LineHandler interface that is only called a number of times as specified
in numLines

The LineHandler interface has just one method, handle(in=Rexx (Which takes a
parameter of type Rexx).

B.6.1 Example

class testLine implements LineHandler
method main(args=String[]) static

RexxIO().File("legenda.txt").forEachline(testLine())
RexxIO().File("legenda.txt").forEachline(testLine().testFile2())

method handle(in)
say in

class testLine.testFile2 dependent implements LineHandler
method handle(1in)
say in

B.7 The RexxRexx class

The RexxRexx class contains a copy of every method of the Rexx class, but callable
in a non-object-oriented manner, like is done in Classic Rexx. An automatic
uses RexxRexx is added to the generated Class due to the default implicituses
commandline option.

In the cases of c2d () and c2x (), where the NetRexx oo-notation only accepts a char
argument, these functions, when called in Classic notation, accept a Rexx string
argument, and will convert all characters in the string argument to decimal or
hexadecimal representations, respectively.

B.8 The RexxOperators interface class

The RexxOperators interface class defines the signatures of the methods that im-
plement the NetRexx (and Rexx) operators. These methods are described in the
section Rexx arithmetic methods (see page R22)

228

B.9. The RexxSet class

In the future this interface may be used to allow the overloading of operators for
objects of types other than Rexx. The current NetRexx language definition does
not permit operator overloading.

B.9 The RexxSet class

The RexxSet classis used to provide the numeric settings for the methods described
in the section Rexx (see page) arithmetic methods. When provided, a RexxSet
Object supplies the numeric settings for the operation; when null is provided then
the default settings are used (digits=9, form=SCIENTIFIC).

B.9.1 Public properties

These properties supply the numeric settings and certain values they may take.
After construction, the digits and form values should only be changed by using
the setDigits and setForm methods.

DEFAULT_DIGITS
A constant of type int that describes the default number of digits for a numeric
operation (9).

DEFAULT_FORM
A constant of type byte that describes the default exponential format for a
numeric operation (SCIENTIFIC).

digits
A value of type int that describes the numeric digits to be used for a numeric
operation. The Rexx arithmetic (see page methods use this value to
determine the significance of results. digits must always be greater than
Zero.

ENGINEERING
A constant of type byte that signifies that engineering exponential formatting
should be used for a numeric operation.

form
A value of type byte that describes the exponential format to be used for a
numeric operation. The Rexx arithmetic (see page) methods use this
value to determine the formatting of results that require an exponent. form
must be either ENGINEERING or SCIENTIFIC.

SCIENTIFIC

229

Appendix B. Appendix B - The netrexx.lang Package

A constant of type byte that signifies that scientific exponential formatting
should be used for a numeric operation.

B.9.2 Constructors

These constructors are used to set the initial values of a RexxSet object.

RexxSet()
Constructs a RexxSet object which has default digits and form properties.
RexxSet(newdigits=int)
Constructs a RexxSet object which has its digits property set to newdigits and
its form property set to DEFAULT_DIGITS.
RexxSet(newdigits=int, newform=byte)
Constructs a RexxSet object which has its digits property set to newdigits and
its form property set to newform.
RexxSet(arg=RexxSet)
Constructs a RexxSet object which is copy of arg, which is of type netrexx.lang.RexxSet.
arg must not be null.

B.9.3 Methods

The RexxSet class has the following additional methods:

formword()
Returns a string of type netrexx.lang.Rexx that describes the form property.
This will either be the string ’engineering’ or the string ’scientific’, corres-
ponding to the form value ENGINEERING Or SCIENTIFIC, respectively.
setDigits(newdigits=Rexx)
Sets the digits value for the RexxSet object, from newdigits, after rounding
and checking as defined for the numeric instruction; newdigits must be a
positive whole number with no more than nine digits. No value is returned.
setForm(newformword=Rexx)
Sets the formvalue for the RexxSet object, from newformword. This must equal
either the string ’engineering’ or the string ’scientific’, corresponding to the
form value ENGINEERING or SCIENTIFIC, respectively. No value is returned.

230

Appendix C

Appendix C - Translator Options

There are a number of options for the translator, some of which can be specified
on the translator command line, and others also in the program source on the
options statement. In the following table, ¢ stands for commandline only, and b
stands for both source and commandline. On the commandline, options are prefixed
with a dash (“-”), while in programsource they are not - there they are preceded by
the options statement.

TABLE 9: Options

Option Meaning Place
address address instruction is allowed (default) c
annotations annotations are allowed (default) c
arg words interpret; remaining words are arguments c
binary classes are hinary classes b
classpath specify a classpath c
compile compile (default; -nocompile implies -keep) c
comments copy comments across to generated .java b
compact display error messages in compact form b
console display messages on console (default) c
crossref generate cross-reference listing b
decimal allow implicit decimal arithmetic b
diag show diagnhostic messages b
ecj prefer the ecj compiler c
exec interpret with no argument words c
explicit local variables must be explicitly declared b
format format output file (pretty-print) b
implicituses use Classic Rexx compatibility option (default) b
java generate Java source code for this program b
javac prefer the javac compiler c
keep keep any completed .java file (as xxx.java.keep) c
keepasjava keep any completed .java file (as xxx.java) c
logo display logo (banner) after starting b

Continued on next page

231

Appendix C. Appendix C - Translator Options

Table 9 -- continued from previous page
prompt prompt for new request after processing c
savelog save messages in NetRexxC.log c
replace replace .java file even if it exists b
sourcedir force output files to source directory b
strictargs empty argument lists must be specified as () b
strictassign assignment must be cost-free b
strictcase names must match in case b
strictimport all imports must be explicit b
strictmethods | superclass methods are not compared to local methods | b
for best match
strictprops even local properties must be qualified b
strictsignal signals list must be explicit b
symbols include symbols table in generated .class files b
targetvm specify a target vm class version c
time display timings c
trace[n] trace stream [1 or 2], or © for NOTRACE b
utf8 source file is in UTF8 encoding b
verbose[n] verbosity of progress reports [0-5] b
warnexit0 exit with a zero returncode on warnings c

Options valid for the options statement and on the commandline

These are the options that can be used on the options statement:

address This option defaults to address. When noaddress is specified, the use of
the address instruction in a program will be flagged as an error.

binary All classes in this program will be binary classes. In binary classes, literals
are assigned binary (primitive) or native string types, rather than NetRexx
types, and native binary operations are used to implement operators where
appropriate, as described in “Binary values and operations”. In classes that
are not binary, terms in expressions are converted to the NetRexx string type,
Rexx, before use by operators.

comments Comments from the NetRexx source program will be passed through
to the Java output file (Which may be saved with a .java.keep or .java extension
by using the -keep and -keepasjava command options, respectively).

compact Requests that warnings and error messages be displayed in compact
form. This format is more easily parsed than the default format, and is intended
for use by editing environments. Each error message is presented as a single
line, prefixed with the error token identification enclosed in square brackets.
The error token identification comprises three words, with one blank separating
the words. The words are: the source file specification, the line number of the

232

error token, the column in which it starts, and its length. For example (all on
one line):

[D:\test\test.nrx 3 8 5] Exrror: The external name
"class’ is a Java reserved word, so would not be

usable from Java programs

Any blanks in the file specification are replaced by a null ('\O’) character.
Additional words could be added to the error token identification later.
crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is specified,
the language processor will report operations that use (or, like normal string
comparison, might use) decimal arithmetic as an error. This optionisintended
for performance-critical programs where the overhead of inadvertent use of
decimal arithmetic is unacceptable.

diag Requeststhat diagnosticinformation (for experimental use only) be displayed.
The diag option word may also have side-effects.

explicit Requires that all local variables must be explicitly declared (by assigning
them a type but no value) before assigning any value to them. This option
is intended to permit the enforcement of “house styles” (but note that the
NetRexx compiler always checks for variables which are referenced before
their first assignment, and warns of variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for
improved readability. Note that if this option is in effect, line numbers from
the input file will not be preserved (so run-time errors and exception trace-
backs may show incorrect line numbers).

implicituses Requests that the Classic Rexx compatibility option is in force. With
this, Rexx Date() and Time() static functions are available, as is the procedural
notation for built-in functions. When compatibility problems with older pro-
gram sources occur, these can be resolved with option -noimplicituses.

java Requests that Java source code be produced by the translator. If nojava is
specified, no Java source code will be produced; this can be used to save a
little time when checking of a program is required without any compilation
or Java code resulting.

logo Requests that the language processor display an introductory logotype se-
guence (name and version of the compiler or interpreter, etc.).

sourcedir Requests that all .class files be placed in the same directory as the
source file from which they are compiled. Other output files are already
placed in that directory. Note that using this option will prevent the -run

233

Appendix C. Appendix C - Translator Options

command option from working unless the source directory is the current
directory.

strictargs Requires that method invocations always specify parentheses, even
when no arguments are supplied. Also, if strictargs is in effect, method ar-
guments are checked for usage — a warning is given if no reference to the
argument is made in the method.

strictassign Requires that only exact type matches be allowed in assignments
(this is stronger than Java requirements). This also applies to the matching
of arguments in method calls.

strictcase Requires that local and external name comparisons for variables, pro-
perties, methods, classes, and special words match in case (that is, names
must be identical to match).

strictimport Requires thatallimported packages and classes beimported explicitly
using import instructions. That is, if in effect, there will be no automatic
imports, except those related to the package instruction.

strictmethods Superclass methods are not compared to local methods for best
match.

strictprops Requires that all properties, including those local to the current class,
be qualified in references. That is, if in effect, local properties cannot appear
as simple names but must be qualified by this. (or equivalent) or the class
name (for static properties).

strictsignal Requires that all checked exceptions signalled within a method but
not caught by a catch clause be listed in the signals phrase of the method
instruction.

symbols Symbol table information (names of local variables, etc.) will be included
in any generated .class file. This option is provided to aid the production of
classes that are easy to analyse with tools that can understand the symbol
table information. The use of this option increases the size of .class files.

trace, traceX If given as -trace, -tracel, or -trace2, then trace instructions are
accepted. The trace output is directed according to the option word: -tracel
requests that trace output is written to the standard output stream, -trace or
-trace2 imply that the output should be written to the standard error stream
(the default).

utf8 If given, clauses following the options instruction are expected to be encoded
using UTF-8, so all Unicode characters may be used in the source of the pro-
gram. In UTF-8 encoding, Unicode charactersless than \uO080’ are represented
using one byte (whose most-significant bit is 0), characters in the range
\u0080’ through "\uO7FF’ are encoded as two bytes, in the sequence of bits:

234

11OXXXXX 1OXXXXXX

where the eleven digits shown as x are the least significant eleven bits of the
character, and characters in the range '\u0800’ through "\uFFFF’ are encoded
as three bytes, in the sequence of bits:

1110xXXXX 1OXXXXXX LOXXXXXX

where the sixteen digits shown as x are the sixteen bits of the character. If
noutf8 is given, following clauses are assumed to comprise only Unicode cha-
racters in the range '\x00’ through "\xFF’, with the more significant byte of the
encoding of each character being 0. Note: this option only has an effect as a
compiler option, and applies to all programs being compiled. If present on an
options instruction, it is checked and must match the compiler option (this
allows processing with or without utf8 to be enforced).

verbose, verboseX Sets the “noisiness” of the language processor. The digit X
may be any of the digits O through 5; if omitted, a value of 3 is used. The
options -noverbose and verbose0 both suppress all messages except errors
and warnings

Options valid on the commandline

The translator also implements some additional option words, which control
compilation features. These cannot be used on the options instructionBd, and
are:

arg The -arg words option is used when interpreting programs, it indicates that
after the -arg statement, commandline arguments for ther interpreted pro-
gram follow

classpath The -classpath option allows dynamic specification of the classpath
used by the NetRexxC compiler without having to depend on the CLASSPATH
environment variable. (since: NetRexx 3.02) .

exec The -exec wordsoptionisused when interpreting programs. With this option,
no commandline arguments are possible.

ecj prefer the ecj compiler when available

keep keep the intermediate .java file for each program. It is kept in the same
directory as the NetRexx source file as xxx.java.keep, where xxx is the source
file name. The file will also be kept automatically if the javac compilation fails
for any reason.

javac prefer the javac compiler when available

86 Although at the moment, there will be no indication of this

235

Appendix C. Appendix C - Translator Options

keepasjava keep the intermediate .java file for each program. It is kept in the
same directory as the NetRexx source file as xxx.java, where xxx is the source
file name. Implies -replace. Note: use this option carefully in mixed-source
projects where you might have .java source files around.

nocompile do not compile (just translate). Use this option when you want to use
a different Java compiler. The .java file for each program is kept in the same
directory as the NetRexx source file, as the file xxux.java.keep (Where xxx is the
source file name).

noconsole do not display compiler messages on the console (command display
screen). This is usually used with the savelog option.

savelog write compiler messages to the file NetRexxC.log, in the current directory.
This is often used with the noconsole option.

targetvm generate class files versioned for the specified targetvm. Useful to compile
programs that can run on older JDKs, default version is the compiling JDK.

time display translation, javac or ecj compile, and total times (for the sum of all
programs processed).

run run the resulting Java class as a stand-alone application, provided that the
compilation had no errors.

warnexitO Exit the translator with returncode O even if warnings are issued.
Useful with build tools that would otherwise exit a build.

236

Appendix D

Appendix D - Installation

This NetRexx implementation provides a translator, compiler and interpreter,
instantiated by the org.netrexx.process.NetRexxC Java class, and is delivered as a
Java jar-file. An installed Java version 8 or later is required.

To install NetRexx download the GA package from the NetRexx websitel7.

Unzip the package to a directory of choice. As an example, we’ll unzip to the 'nrx’
directory in the user’s home directory.

Add the bin/ directory of this 'nrx’ directory to the PATH environment variable.

If the installed Java version is a JDK - i.e. the javac command is available - add the
lib/NetRexxC.jar in this 'nrx’ directory to the CLASSPATH environment variable.

If the installed Java version is a JRE - i.e. run-time only - add the lib/NetRexxF.jar
in this 'nrx’ directory to the CLASSPATH environment variable. If you are unsure
which java you have installed, use this jar.

Also add current directory (.) to the classpath.

On Linux with a JDK, you could source following shell script setnrc:

export PATH=~/nrx/bin:$PATH
export CLASSPATH=~/nrx/1ib/NetRexxC.jar:.:$CLASSPATH

On Windows with a JRE, you could use following batch file setnrc.bat

SET PATH=%HOMEPATHSs\nrx\bin ;%PATHS
SET CLASSPATH=%HOMEPATH%\nrx\1ib\NetRexxF.jar;.;%CLASSPATH%

To save such setting system-wide, please consult the appropriate documentation
for your operating system.
For convenience, some shell scripts and batch files are provided in the bin/ directory.

After setting the environment, you can compile any NetRexx source file with nrc

87https://www.netrexx.org/downloads.nsp

237

Appendix D. Appendix D - Installation

sourcefile.nrx. This will create a sourcefile.class, which can be executed by java
sourcefile. Compilation and execution can be done in one go by nrc -run source-
file.

Interpretation can be started by nrc -exec sourcefile or nr sourcefile.

Under the covers, the translator translates NetRexx source code into Java source
code, in memory unless the -keepasjava option is given. The compiler then compiles
the generated Java source code either by using the javax.tools.JavaCompiler interface
when a JDK is available, or by using the Eclipse batch compiler® included in the
NetRexxF.jar.

When interpreting, the NetRexx translator produces and runs the required Java
bytecode and proxy classes without the need for a Java compiler.

88which is called org.eclipse.jdt.internal.compiler.tool. EclipseCompiler

238

List of tables

1 ESCAPE SEQUENCES . « « v v v e e e e e e e e e e 38
D Concatenation OPErators v v v oo v et e 64
B Arithmetic Operators. o v v v v e e e 64
4 Normal comparative Operatorso v v v v 65
5 Strict comparative Operators v oo vt 65
6 B00lean OPETators . . . « v v v v o e e 66
[7 Operator precedenced 69
B8 Traceidentifiertags o o 134
..................................... 231

List of figures

Listings

...................................... 13
D.2 ASSISNMENT . . . v v o e 15
...................................... 15
D.4 Continuation]. v v 15
D.5 Multiple INStTUCHONS . . . « . o v o o e 16
IFthenelSE.NTX « « . v v v e e e e e e e 16

....................................... 16

Listings

..................................... 16
....................................... 16
..................................... 16
....................................... 17
L100PENA.NTH .« « o v o e e e 17
....................................... 17
...................................... 18
..................................... 19
..................................... 19
..................................... 19
R.10 Parsing StriNgs v v v v e e e e e e 20
...................................... 20
.12 Parse with commal oo v 21
2.13 Positional Parsingo oot 21
...................................... 21
R.A5REtTIEVING . .« o o v o e e e e e 21
2.16 WoOol e e e e e 21
.17 Multiple DIMENSIONST . . .« v v v e e e e e e 22
D. 18 JUStONEIESE.IITR « « v o v v e e e e e e e 22
..................................... 22
2.20 Initializing elements o vt 23
2.21 Address Array Elementlot 23
..................................... 24
R.23TrY OBlONE . . o o v oo e e e e e e 24
R.24NEW TOASH . . v v v vt e e e e e 25
2.25 charOblong v vt 26
2.26 trycharOblong v v v e e e 26
R.27 Defaultvalue Xl o v 27
R.28Default value o v e e 27
..................................... 27
....................................... 27
LATYODIONG.NTH © o o v v o o e e e e e e e 28
....................................... 28
..................................... 28
....................................... 29
2.29 ASSINING TYDE - « « o v v oo e e e e e 30
R.30ASimple Appledo 31
R.31 EXCEPHON . .« v v v o o e e e e 31
B.1 MYChaTS.TX . « o v v oo o e e e e e e e e e 58

Listings

5.1 helloTH .« . o v o e e e 137
5.2 hellonTX . o o v o e e e e 137
5.3 teStCIASS.IITX « « v v v o e e e e e 138
5.4 Sandwich.nTX o v v 149
...................................... 149
5.6 getFred/setFred o 150
5.7 SEtSHCES . . v v v i i e 151
7.1 ExampleofusingDate() v v v v e 209
7.2 Exampleofusing Time() o v v v oo 210
7.3 Example of using Date() v v v v e 214
A1 QHMENTH . . o o o v e e e e 215
B.1 LineHandlerIO o\ 228

241

Index

*multiplication operator, @ @

*-*tracing flag,,

*-> tracing flag,,

*=*tracing flag,,

+ plus sign,addition operator, b4, 164

+ plus sign,in parsing template,

++ invalid sequence,, @

+++ tracing flag,, [L34

»B3-B7, B9, 4, 62, 67, 9 bb4, b6, 71, B3,
pd-pd fiod, frod, 28, fizd, 30, fid,
144,159, fLed, fL63, 171, o1l P15

- continuation character, @

- minus sign,in parsing template,

- minus sign,subtraction operator, @, @

. (period),as placeholder in parsing,

. (period),in numbers,

. (period),in terms, @

= equals sign,assignment indicator, @

= equals sign,equal operator, @

= equals sign,in LOOP instruction, @

= equals sign,in parsing template,

»> tracing flag,,

>a> tracing flag,,

>p> tracing flag,,

>v> tracing flag,,

$ dollar sign,in symbols, @

& and operator,, @

&& exclusive or operator, @

_underscore,in symbols, @

NetRexx,language definition, @

\backslash,escape character, B§

\backslash,not operator, @

\= not equal operator, @

\\invalid sequence,, @

&l

b2

&
&l

i

ABBREV method,,
Abbreviations,testing with ABBREV method,

243

ABS method,,

Absolute,column specification in parsing,

Absolute,positional pattern,

Absolute,value, finding using ABS method,

Abstract classes,, @

Abstract methods,, @ @

ABSTRACT,on CLASS instruction, @

ABSTRACT,on METHOD instruction, [L09

Abuttal concatenation operator, @, @

Active constructs,, @, @

Adapter classes,, @

ADAPTER,on CLASS instruction, @

Addition,definition, @

Addition;.pi ,Subtraction;.pi /Multiplication;.pi
/Division, @

address option,

ADDRESS, in OPTIONS instruction,

Address,instruction, @

Algebraic precedence,, @

ALL,TRACE setting,

Alphabetics,checking with DATATYPE,

Alphanumerics,checking with DATATYPE,

AND,logical operator, @

Annotate,instruction,

ANNOTATIONS, in OPTIONS instruction,

ANSI standard,arithmetic definition,

Arbitrary precision arithmetic,, @

arg words option,

Arguments,of methods, E

Arguments,on METHOD instruction, @

Arguments,optional,

Arguments,passing to methods, E

Arguments,provided by caller, @

Arguments,required,

Arithmetic,comparisons, [L68

Arithmetic,errors,

Arithmetic,exceptions,

NetRExx
Language Reference

Arithmetic,implementation independence, [L70 Binary operations,monadic,
Arithmetic, NUMERIC settings, Binary operations,prefix,
Arithmetic,operation rules, @I binary option,
Arithmetic,operators, @ @ @ Binary,arithmetic,
Arithmetic,overflow, Binary,checking with DATATYPE,
Arithmetic,precision, [L62) Binary,conversion to decimal,
Arithmetic,underflow, Binary,conversion to hexadecimal,
Array initializer,in terms, @ @ Binary,from decimal,

Arrays,, @ BINARY,in OPTIONS instruction,
Arrays,constructors, @ BINARY,on CLASS instruction,
Arrays,in terms, BINARY,on METHOD instruction,
Arrays,initializing, @ Binary,operations,
Arrays,references, Iﬂ Binary,values,

ASCII,coded character set, @ Bits,binary operators, @

Ask method,, Bits,checking with DATATYPE,
ASK special word,, Blank, B5

ASKNOECHO special word,, Blank,adjacent to operator character, @
AskOne method,, Blank,adjacent to special character, @
Assignment,, @ @ Blank,as concatenation operator, @
Assignment,binary, Blank,as type conversion operator, @
Assignment,instruction, E, @ Blank,operator, @, @

Assignment,of literals, Blank,removal with SPACE method,
Assignment,property initialization, Blank,removal with STRIP method, @

Block comments,, @
B2D method, Body,of a loop, fL0d

B2X method, Body,of classes, Bg
Backslash character,escape sequence, Body,of group @
Backslash character,in strings, Body’of methc;ds @

Backslash character,not operator, pg Body,of select
BadArgumentException,, ' '

BadColumnException,,
1 1) . . .

BédNumerlcExceptlon,, Bottom of program, reaching during execution,,

Binary blocks,, 53

Binary classes,, , Bounded loop @

Binary classes,assignment, Bounded loop,controlled @

Binary classes,binary methods, [L10 Bounded loop,over values, [[03

Binary classes,control variables, Bounded loop’simple @

Binary classes,LOOP instruction, Brackets,in array initializers, 47, 7§

Binary classes, NUMERIC instruction, Brackets,in array references @

B%nary fonstl1“ ucs,, Brackets,in indexed references, 47

B?nary iterals, 173 Brackets,in indexed strings, 75

Binary methods, [11, Brackets,in terms, 4g

Binary methods,assignment, BY phrase of LOOP instruction,, @
Binary methods,control variables,

Boolean operations,, @
boolean type, value of,, @

Binary methods,LOOP instruction, C2D method,,

Binary methods,NUMERIC instruction, C2X method,,

Binary numbers,, @ Carriage return character,escape sequence,
Binary numeric symbol,, @ @ Case,of names, @

Binary operations,dyadic, CASE,on SELECT instruction,

244

Index

Casting,to type, @

CATCH,on DO instruction, @
CATCH,on LOOP instruction, @
CATCH,on SELECT instruction,
CATCH,use of,

Caught exceptions,, [L74

CENTER method,,

CENTRE method,,

CHANGESTR method,,

Changing strings,using CHANGESTR,
Changing strings,using TRANSLATE, @
char,as a string, @ @

Character sets,, @

Character, @

Character,appearance, B4
Character,conversion to decimal,
Character,conversion to hexadecimal,
Character,converting to binary,
Character,encodings, B4,
Character,from a number, 189, 05
Character,from decimal,
Character,from hexadecimal, @
Character,glyphs, @
Character,removal with STRIP method, @
charAt method,,

CHARIN method,, L83,
CHAROUT method,, L83,

CHARS method,, ,

Checked exceptions,,

Class, @

Class,body of, Bg

Class,definition,

Class, filename of,
Class,instances of, @

Class,name of, @

Class,names, case of, 4]
Class,package of,

Class,qualified name of,
Class,short name of, @
CLASS,special word,
Class,starting, @

Classes,abstract, B7

Classes,adapter, @

Classes,and subclasses,
Classes,and superclasses,
Classes,binary,
Classes,dependent, @
Classes,final, @

Classes,interface,

245

Classes,minor, @,

Classes,parent, @

Classes,private, @

Classes,public, @

Classes,shared, @

Classes,standard, @

classpath option,

classpath option,,

Clauses,, @

Clauses,continuation of, @

Clauses,null, E

Coded character set,ASCII, B4

Coded character set,EBCDIC, @

Coded character set,Unicode, @

Coded character, @

Coded character,conversion to decimal,
Coded character,conversion to hexadecimal,
Coded character,from decimal,
Coded character,from hexadecimal, @
Collating sequence, using SEQUENCE,, @
Column specification in parsing,,
Comma,in array references, @
Comma,in indexed strings, @
Comma,in method calls,

Command line options,, [L19

comments option,

COMMENTS option,

Comments,,

Comments,block, @

Comments,line, @

Comments,nesting, @
Comments,starting a program with, @
compact option,

COMPACT option,,

Comparative operators,, @

COMPARE method,,

Comparison,of numbers, @
Comparison,of strings and numbers, @
Comparison,of strings/using COMPARE,
Compiler options,, [L14

Compound terms,, @

Concatenation,of strings, @
Concatenation,of types, @

Conditional loops,, @

Conditional phrase,, @, @

CONSOLE option,,

Console, writing to with SAY,,
Constant methods,, @

CONSTANT,on METHOD instruction, L0

NetRExx
Language Reference

CONSTANT,on PROPERTIES instruction,
Constants,,

Constants,used by classes, BY
Constants,using properties,
Constructor,Rexx(boolean),
Constructor,Rexx(byte),
Constructor,Rexx(char),
Constructor,Rexx(charf]),
Constructor,Rexx(double),
Constructor,Rexx(float),
Constructor,Rexx(int),
Constructor,Rexx(long),
Constructor,Rexx(Rexx),
Constructor,Rexx(short),
Constructor,Rexx(String),
Constructor,Rexx(String[]),
Constructor,RexxSet(),
Constructor,RexxSet(int),
Constructor,RexxSet(int,byte),
Constructor,RexxSet(RexxSet),
Constructors,, @, @
Constructors,array, @
Constructors,binary,
Constructors,default, E

Constructors,in minor classes, [L4Q
Constructors,method, @
Constructors,of dependent objects,
Constructors,of minor classes,
Constructors,qualified,
Constructors,special,
Constructs,active, pg
Continuation,character, @
Continuation,of clauses, @

Control variable,, @, @

Controlled loops,, [LO1]
Conversion,automatic, E @
Conversion,binary constructors,
Conversion,binary to decimal,
Conversion,binary to hexadecimal,
Conversion,character to decimal,
Conversion,character to hexadecimal,
Conversion,coded character to decimal,
Conversion,coded character to hexadecimal,
Conversion,cost of,
Conversion,decimal to binary,
Conversion,decimal to character,
Conversion,decimal to hexadecimal,
Conversion,explicit, @
Conversion,formatting numbers, @

Conversion,hexadecimal to binary, @
Conversion,hexadecimal to character, P05
Conversion,hexadecimal to decimal, @
Conversion,of characters,
Conversion,of types, @

Conversion,of well-known types, @
COPIES method,,

COPYINDEXED method,,

Copying a string using COPIES,,
Copying indexed variables,,
Counting,strings, using COUNTSTR,
Counting,words, using WORDS, @
COUNTSTR method,,

crossref option,

CROSSREF option,,

D2B method,,

D2C method,,

D2X method,

Data,conversions, @

Data,length of, @ @

Data,terms, @,

Data,type checking, @

Data,types, @

DATATYPE method,,

Datatypes,, @, @ @

decimal option,

DECIMAL option,,
Decimal,conversion to binary,
Decimal,conversion to character,
Decimal,conversion to hexadecimal,
Declarations,of variables,
DEFAULT_DIGITS property,,
DEFAULT_FORM property,
Deleting,part of a string,
Deleting,words from a string,
Delimiters,for comments, @
Delimiters,for strings, @

Delimiters,for text literal strings, @
DELSTR method,,

DELWORD method,,

Dependent classes,, @

Dependent classes,restrictions,
Dependent object,,

Dependent object,constructing,
DEPENDENT,0on CLASS instruction,
DEPRECATED,on CLASS instruction,
DEPRECATED,on METHOD instruction,
DEPRECATED,on PROPERTIES instruction,

Index

diag option,

DIAG option,,

Diagrams, of syntax,, @

digits property,,

Digits,checking with DATATYPE,
DIGITS,effect on whole numbers,
Digits,in numbers,

DIGITS,on NUMERIC instruction, f[13,
DIGITS,rounding when numbers used,
DIGITS,special word,
Dimension,of arrays, @
Dimension,of types, @

Dimensioned types,, @
DivideException,,
Division,definition, @
Division,integer, @

DO group,, P(

DO group,naming of, E

DO instruction,LABEL, @

Dollar sign,in symbols, @
Double-quote,escape sequence,
Double-quote,string delimiter, @
Dummy instruction, NOP,
Duplicate methods,,

Dyadic operators,,

E-notation,, @, @
E-notation,definition,
E-notation,in symbols, @
EBCDIC,coded character set, @
ECJ option,

Empty reference, null,,
Encodings, of characters,, @
Encodings,binary,
Encodings,of characters, @

END clause,specifying control variable,
End condition of a LOOP loop, @
End-of-file character, @
Engineering notation,, , @
ENGINEERING property,
ENGINEERING value for NUMERIC FORM,,
EOF character, @

Equality,of objects, @
Equality,testing of, @

equals method,,

Errors during arithmetic,,
Escape sequences in strings,,
Euro character, @

Euro character,in symbols, @

Evaluation,of expressions, @
Evaluation,of terms, @

Example,Hello World,
Example,main,

Example,of constructors, @
Example,of exception handling,
Example,of two classes, [L38
Example,program,
examples,Stream, P13
Exception,BadArgumentException,
Exception,BadColumnException,
Exception,BadNumericException,
Exception,DivideException,
Exception,ExponentOverflowException,
Exception,InterpretException,
Exception,NoOtherwiseException,
Exception,NotCharacterException,
Exception,NotLogicException,
Exception,NullPointerException,
Exception,NumberFormatException,
Exceptions,, [L74

Exceptions,after CATCH clause,
Exceptions,after FINALLY clause,
Exceptions,checked,
Exceptions,during arithmetic,
Exceptions,during conversions, @
Exceptions,listed on METHOD instruction,
Exceptions,raising,
Exceptions,signalling,
Exceptions,throwing,

Exclusive ORlogical operator, 6

exec option,

EXISTS method,, L9

EXIT instruction,,

explicit option,

EXPLICIT option,,

Exponential notation,, 7, 113, fL6d, fL6d
Exponential notation,definition,
Exponential notation,in symbols, @
Exponentiation,definition, @
ExponentOverflowException,,
Expressions,evaluation, @
Expressions,examples, @
Expressions,results of, @

EXTENDS,on CLASS instruction,
Extra digits,in numbers,

Extra digits,in numeric symbols, @ @
Extra digits,in symbols, @

Extra letters, in symbols,, @

NetRExx
Language Reference

Extracting,a sub-string, @
Extracting,words from a string, @

False value,, @

File method,,

Final classes,, @

Final methods, @

FINAL,on CLASS instruction, B7
FINAL,on METHOD instruction, L0
FINALLY,on DO instruction, @
FINALLY,on LOOP instruction, @
FINALLY,on SELECT instruction,
FINALLY,reached by LEAVE, pg
FINALLY,use of,

Finding a mismatch using COMPARE,,
Finding a string in another string,, , @
Fixed size, of arrays,, ﬁ

flag, address,

flag, binary,

flag, nocompile,

flag, noconsole,

flag, run, R36

flag, savelog,

flag, targetvm,

flag, time,

flag,arg words,

flag,classpath,

flag,comments,

flag,compact,

flag,crossref,

flag,decimal,

flag,diag,

flag,exec, R35

flag,explicit,

flag,format,

flag,implicituses, 33

flag,java,

flag,keep,

flag,keepasjava,

flag,logo,

flag,sourcedir,

flag,strictargs,
flag,strictassign,
flag,strictcase,
flag,strictimport,
flag,strictmethods,
flag,strictprops,
flag,strictsignal,

flag,symbols,

248

flag,trace, traceX,

flag,utfs,

flag,verbose, verboseX,
flag,warnexitO,

Floating-point numbers, binary,,
Flow control,abnormal, with SIGNAL,
Flow control,with DO construct, @

Flow control,with IF construct,

Flow control,with LOOP construct, @
Flow control,with SELECT construct,
FOR,phrase of LOOP instruction, @
FOR,repetitor on LOOP instruction, B9
forEachline method,,
FOREVER,loops, [L0d

FOREVER,repetitor on LOOP instruction, @
Form feed character, @

form property,

FORM,option of NUMERIC instruction, 113, [L69

FORM,special word,

format option,

FORMAT, method, 190
FORMAT,option,
Formatting,numbers for display, @
Formatting,numbers with TRUNC, @
Formatting,of output during tracing,
Formatting,text centering,
Formatting,text left justification, @
Formatting,text right justification, @
Formatting,text spacing,
formword() method,,

Full name,of classes, [L40
Fully-qualified name, of classes,, [L19
Functions,numeric arguments of,
Functions,return from,
Functions,used by classes, @

Glyphs, B4
Group, DO,,

Guard digit in arithmetic,, @

hashCode method,,

Hexadecimal numeric symbol,, @ @
Hexadecimal,checking with DATATYPE,
Hexadecimal,conversion to binary, @
Hexadecimal,conversion to character, 0§
Hexadecimal,conversion to decimal, 0§
Hexadecimal,digits in escapes, @
Hexadecimal,escape sequence,
Hyphen,as continuation character, @

Index

IF instruction,,

IMPLEMENTS,on CLASS instruction, @
implicituses option,
IMPLICITUSES option,

Implied semicolons,, @

IMPORT instruction,, @
Imports,automatic, @
Imports,explicit, @

Indefinite loops,, @ @

Indention during tracing,,

Index strings,for sub-values, @

Index strings,testing for, @

Indexed references,arrays, Iﬂ

Indexed references,in terms, @
Indexed references,indexed strings, @
Indexed strings,, @

Indexed strings,copying,

Indexed strings,merging,

Indexed strings,testing for, @
Indirect properties,,

INDIRECT,on PROPERTIES instruction,
Inequality, testing of,, @

Infinite loops,, @

INHERITABLE,on METHOD instruction,
INHERITABLE,on PROPERTIES instruction,
Initializing arrays,, @

INSERT method,, [L92]

Inserting a string into another,
Instance, of a class,, @

Instructions,,

Instructions,Address, @
Instructions,Annotate, @
Instructions,assignment, @ @
Instructions,CLASS, E
Instructions,DO, @

Instructions,EXIT,

Instructions,IF, @
Instructions,IMPORT, @
Instructions,INTERPRET, Pg
Instructions,ITERATE, @
Instructions,keyword, @ @
Instructions,LEAVE, @
Instructions,LOOP, @
Instructions,METHOD, @,
Instructions,method call, @
Instructions,NOP,
Instructions,NUMERIC,
Instructions,OPTIONS,
Instructions,PACKAGE,

249

Instructions,PARSE,
Instructions,PROPERTIES, [L21],
Instructions,RETURN,
Instructions,SAY,
Instructions,SELECT,
Instructions,SIGNAL,
Instructions,TRACE,

INT,TRACE setting,

Integer division,, @

Integer division,definition, @
Integers, binary,,
INTERACTIVE,TRACE setting,
Interface classes,,

Interface classes,properties in, [124
INTERFACE,on CLASS instruction, @
Interfaces,implemented by classes, @
Internal functions,return from,
INTERPRET, instruction, P¢
Interpreter options,, [L14
InterpretException,,

Interpreting code at run-time, @
ITERATE instruction,,

ITERATE instruction,use of variable on, @

java option,

JAVA option,,

Java,in reference implementation, @
JavaBean properties,,

JAVAC option,

javac option,

keep option,
KEEPASJAVA option,
keepasjava option,
Keyword instructions,, @ @
Keywords,, @
Keywords,mixed case, @

LABEL,on DO instruction, E

LABEL,on LOOP instruction, @

LABEL,on SELECT instruction,

Language processor options,, [L14

LASTPOS method,,

Leading blanks,removal with STRIP method, @

Leading zeros,adding with the RIGHT method,
o7

Leading zeros,removal with STRIP method, @

LEAVE instruction,,

LEAVE instruction,use of variable on, @

LEFT method, [L93

NetRExx
Language Reference

LENGTH,method, 193

Length,of arrays,

Length,of comments, @
LENGTH,special word, ,
Letters,checking with DATATYPE,
Line comments,, @

Line ends, effect of, @

Line feed character,escape sequence,
Line numbers, in tracing,,

Line, displaying,,

LINEIN method,, [L94,

LINEOUT method,, [L94,

LINES method,, 194,

Literal patterns,, [L55

Literal strings,, @

Literal strings,in terms, @

Literals, binary,,

Local variables,, @

Locating,a string in another string, 192, 196

Locating,a word or phrase in a string, @
Logical operations,, @

logo option,

LOGO option,,

Loops,active, @ @

Loops,execution model, @

Loops,in binary classes and methods,
Loops,label, @

Loops,modification of, @

Loops,naming of, @

Loops,repetitive, @, @
Loops,termination of,

LOWER method,, 194
Lowercase,checking with DATATYPE,
Lowercase,names,

Lowercasing strings,, @

Mantissa of exponential numbers,,
Matching methods,, 55
Mathematical method,ABS,

Mathematical method,DATATYPE options,

Mathematical method, FORMAT, @
Mathematical method,MAX, @
Mathematical method,MIN, [L95
Mathematical method,SIGN, @
MAX method,, @

Merging indexed variables,,
Method call instructions,, @, @
METHOD instruction,, 110

Method,, 44

Method, built-in , LINEIN, [L94,
Method, built-in , LINEOUT, [L94,
Method, built-in, LINES, [L94,
Method, built-in,ABBREV,
Method, built-in,ABS,

Method, built-in,B2D,

Method, built-in,B2X,

Method, built-in,C2D,

Method, built-in,C2X,

Method, built-in,CENTER,
Method, built-in,CENTRE,
Method, built-in, CHANGESTR,
Method, built-in,CHARIN, [L83,
Method, built-in,CHAROUT, L83,
Method, built-in,CHARS, L84,
Method, built-in, COMPARE,
Method, built-in,COPIES,
Method, built-in,COPYINDEXED,
Method, built-in,COUNTSTR,
Method, built-in,D2B,

Method, built-in,D2C,

Method, built-in,D2X,

Method, built-in,DATATYPE,
Method, built-in,DELSTR,
Method, built-in,DELWORD,
Method, built-in,EXISTS, fL9d
Method, built-in,FORMAT, .90
Method, built-in,INSERT,
Method, built-in,LASTPOS,
Method, built-in,LEFT, 193
Method, built-in,LENGTH, [193
Method, built-in, LOWER, 194
Method, built-in,MAX, [L95
Method, built-in,MIN, @

Method, built-in,0VERLAY, [L9¢
Method, built-in,POS, L9¢

Method, built-in,REVERSE, [197
Method, built-in,RIGHT, [L97
Method, built-in,SEQUENCE, 197
Method, built-in,SIGN, [L97
Method, built-in,SOUNDEX,
Method, built-in,SPACE,
Method, built-in,STREAM, 194,
Method, built-in,STRIP, 199
Method, built-in,SUBSTR, 200
Method, built-in,SUBWORD, R0d
Method, built-in,TRANSLATE, R01|
Method, built-in,TRUNC, 0]
Method, built-in,UPPER,

Index

Method, built-in,VERIFY, @ Method,popOutputStream,
Method, built-in,WORD, @ Method,pushOutputStream,
Method, built-in, WORDINDEX, P03 Method,Say,

Method, built-in, WORDLENGTH, R04 Method,setDigits(Rexx),
Method, built-in,WORDPOS, @ Method,setForm(Rexx),
Method, built-in,WORDS, @ Method,short name of, @
Method, built-in,X2B, @ Method,starting, @

Method, built-in,X2C, @ Method,toboolean,
Method, built-in,X2D, @ Method,tobyte,
Method,argument variables, @ Method,tobytearray,
Method,Ask, Method,tochar,
Method,AskOne, Method,todouble,
Method,body of, @ Method,tofloat,
Method,calls in terms, @ Method,toint,
Method,charAt, Method,tolong,
Method,definition, Method,toRexx,
Method,equals, Method,toshort,
Method,File, Method,toString,
Method,forEachline, Methods,,
Method,formword(), Methods,abstract, @, @
Method,hashCode, Methods,arguments of, @
Method,names, case of, Methods,binary,
Method,NotEqsS, Methods,constant, @
Method,OpAdd, Methods,constructor, @ @
Method,OpAnd, Methods,duplicate,
Method,OpCec, Methods,final, @
Method,OpCcblank, Methods,inheritable,
Method,OpDiv, Methods,invocation of,
Method,OpDivl, Methods,native, @
Method,OpEq, Methods,overloading, [L12
Method,OpEqgS, Methods,overriding, @
Method,OpGt, Methods,private,
Method,OpGtEq, Methods,protected,
Method,OpGtEqS, Methods,public,
Method,OpGtS, Methods,resolution of, @
Method,OpLt, Methods,return values,
Method,OpLtEq, Methods,searching for, @
Method,OpLtEqS, Methods,shared,
Method,OpLtS, Methods,special,
Method,OpMinus, Methods,standard, @
Method,OpMult, Methods,static, @
Method,OpNot, METHODS,TRACE setting,
Method,OpNotEq, MIN method,, @
Method,OpOr, Minor classes,, @
Method,OpPlus, Minor classes,constructing,
Method,OpPow, Minor classes,naming of,
Method,OpRem, Minor classes,nesting of,
Method,OpSub, Minor classes,restrictions,
Method,OpXor, Mixed case,checking with DATATYPE,

251

NetRExx
Language Reference

Mixed case,names, NOBINARY option,,
MOD option,, NOCOMMENTS option,, [L15
Model,of loop execution, @ NOCOMPACT option,,
Monadic (prefix) operators,, nocompile option,
Moving characters, with TRANSLATE method,, noconsole option,

Bol NOCONSOLE option, [L14
Multiplication,definition, [L64 NOCROSSREF option,, [L16

NODECIMAL option,,
NODIAG option,,
NOEXPLICIT option,,
NOFORMAT option,,
NOIMPLICITUSES option,,
NOJAVA option,,
NOLOGO option,,
NOMOD option,,
NoOtherwiseException,,
NOP instruction,,
NOREPLACE option,,

Names, special,class,

Names, special,sourceline,
Names,case of,

Names,of variables, @

Names,on ITERATE instructions, @
Names,on LEAVE instructions, @
Names,special/ask,
Names,special/asknoecho,
Names,special/digits,
Names,special/form,
Names,special/length, Normal comparative operators,, @

Names,spec%al/null, Normalizing a string by its sound,SOUNDEX,
Names,special/RC, NOSAVELOG option,

Names,special/source, [L46 NOSOURCEDIR option
Names,special/super, NOSTRICTARGS option,,

Names,special/this, NOSTRICTASSIGN option,
Names,special/trace, NOSTRICTCASE option,
Names,special/version, NOSTRICTIMPORT option,,

Native methods, @_ , NOSTRICTPROPS option,,

NATIVE,on METHOD instruction, fL09 NOSTRICTSIGNAL option

Negation,of logical values,@ NOSYMBOLS option
Negation,of numbers,@ NOT operatos @ »

Nesting of comments, @ Notation,engineering, [L13, fL69
netrexx.lang package, Notation,scientific, 113, 169

netrexx.lang,Exceptions,
netrexx.lang,Rexx arithmetic methods,
netrexx.lang,Rexx class,

netrexx.lang,Rexx constructors,
netrexx.lang,Rexx miscellaneous methods,
netrexx.lang,RexxDate class, @
netrexx.lang,RexxIO class,
netrexx.lang,RexxOperators class,
netrexx.lang,RexxSet class,
netrexx.lang,RexxSet constructors, p3(Q
netrexx.lang,RexxSet methods,
netrexx.lang,RexxSet properties,
netrexx.lang,RexxTime class, @
netrexx.lang,RexxStream class, NullPointerException,,
Newline charact(?r,escape sequence, NumberFormatException,, P20
NOADDRESS option,, Numbers, 57, (60

NOANNOTATIONS option, Numbers,arithmetic on, @, @, @

Notations,in text, @
Notations,syntax, @
NotCharacterException,, P20
NotEgS method,,
NotLogicException,,
NOTRACE option,
NOUTFS8 option,,
NOVERBOSE option,,
Null character,escape sequence,
Null clauses,, @

Null instruction, NOP,
NULL special word,,
Null strings,, B7

252

Index

Numbers,as symbols, @
Numbers,checking with DATATYPE,
Numbers,comparison of, EII
Numbers,conversion to character, , @
Numbers,conversion to hexadecimal,
Numbers,definition, ,
Numbers,examples of, @
Numbers,formatting for display, @
Numbers,in LOOP instruction, @
Numbers,rounding, @
Numbers,truncating, @

Numbers,use of by NetRexx,

Numeric symbols,, @ @

Numeric symbols,binary, @

Numeric symbols,hexadecimal, @
NUMERIC,DIGITS, @

NUMERIC,FORM, [L69

NUMERIC,in binary classes and methods,
NUMERIC,instruction,

Numeric,part of a number, [L62,

Objects,comparing, @
Objects,constructing, E
Objects,equality, @

OFF,TRACE setting,

OpAdd method,

OpAnd method,,

OpCc method,,

OpCcblank method,,

OpDiv method,,

OpDivl method,

OpEq method,,

OpEgS method,,

Operators,,
Operators,arithmetic, @ @ @
Operators,blank, @, @
Operators,characters used for, @
Operators,comparative, @
Operators,composition of, @
Operators,concatenation, @
Operators,logical, @
Operators,precedence (priorities) of, @
Operators,type, @

OpGt method,,

OpGtEq method,,

OpGtEqgS method,,

OpGtS method,,

OpLt method,

OpLtEq method,,

253

OpLtEgS method,,
OpLtS method,
OpMinus method,,
OpMult method,,
OpNot method,,
OpNotEq method,,
OpOr method,,
OpPlus method,
OpPow method,,
OpRem method,, P25
OpSub method,, P25
Option words,, [L14)
option, address,
option, binary,
option, nocompile,
option, noconsole,
option, run,

option, savelog,
option, targetvm,
option, time,
option,arg words,
option,classpath,
option,comments,
option,compact,
option,crossref,
option,decimal,
option,diag,
option,exec, P35
option,explicit,
option,format,
option,implicituses,
option,java,
option,keep,
option,keepasjava,
option,logo,
option,sourcedir,
option,strictargs,
option,strictassign,
option,strictcase,
option,strictimport,
option,strictmethods,
option,strictprops,
option,strictsignal,
option,symbols,
option,trace, traceX,
option,utfs,
option,verbose, verboseX,
option,warnexitO,
Optional arguments,,

NetRExx
Language Reference

OPTIONS,instruction,
Options,on command line,
OpXor method,,

OR,logical exclusive, @

OR,logical inclusive, @

Over loops,, @

OVER repetitor on LOOP instruction,, @
Overflow, arithmetic,,

OVERLAY method,, [L9¢

Overlaying a string onto another, @
Overloaded methods,,
Overriding methods,, @

PACKAGE instruction,
Package,, {4,

Package,name of, 94,
Package,netrexx.lang,

Packing a string,with B2D,
Packing a string,with B2X,
Packing a string,with X2C, @
Parent class,,

Parent object,,

Parent,of dependent object,
PARENT,special word,
Parentheses,adjacent to blanks, @
Parentheses,in expressions, @, @
Parentheses,in method calls, 47,
Parentheses,in parsing templates,
Parentheses,in terms, @

Parentheses,omitting from method calls, @ @

PARSE,instruction,
PARSE,parsing rules,

Parsing templates,in PARSE instruction,

Parsing,absolute columns,
Parsing,definition,
Parsing,general rules, 153,
Parsing,introduction,
Parsingliteral patterns,
Parsing,positional patterns,
Parsing,selecting words,
Parsing,variable patterns,
Period,as placeholder in parsing,
Period,in numbers, @
Period,in terms, @
popOutputStream method,,
POS position method,, @
Positional patterns,,

Power operator, @

Power operator,definition, @

254

Powers of ten in numbers,, @,
Precedence of operators,, @
Precision,arbitrary, @
Precision,of arithmetic,

Prefix operators,,

Prefix operators,+, @

Prefix operators,+/with types, @
Prefix operators,-, @

Prefix operators,-/with types, @
Prefix operators,), @

Prefix operators,\/with types, @
Prefix operators,arithmetic, @
Primitive types,, @

Primitive types,conversions, @
Priorities of operators,, @
PRIVATE,on CLASS instruction, Bg
PRIVATE,on METHOD instruction,
PRIVATE,on PROPERTIES instruction,
Program,filename of,
Program,prolog,
Program,structure,
Programmer’s model of LOOP, @
Programs,,
Programs,examples,
Programs,structure,

Prolog, of a program,,
PROPERTIES instruction,, 121,
Properties,, @ @
Properties,case of names,
Properties,constant,
Properties,deprecated,
Properties,for JavaBeans, [L48
Properties,in dependent classes, ,
Properties,in interface classes, [L24
Properties,in minor classes, [L43
Properties,indirect,
Properties,inheritable,
Properties,initialization,
Properties,modifiers,
Properties,naming,
Properties,private,
Properties,public,
Properties,shared,
Properties,static,
Properties,transient,
Properties,unused,
Properties,visibility,
Properties,volatile,
Property,DEFAULT _DIGITS,

Index

Property,DEFAULT_FORM,
Property,digits,

Property, ENGINEERING,
Property,form,
Property,SCIENTIFIC,
PROTECT,on DO instruction, @
PROTECT,on LOOP instruction, [L05
PROTECT,on METHOD instruction,
PROTECT,on SELECT instruction,
Protected methods,

PUBLIC,on CLASS instruction, B¢
PUBLIC,on METHOD instruction,
PUBLIC,on PROPERTIES instruction,
Pure numbers,,
pushOutputStream method,,

qtime example program,, R15
Qualified name, of classes,, [L19

Qualified types,, @
Quotes in strings,,

Rexx(boolean) constructor,,
Rexx(byte) constructor,
Rexx(char) constructor, P21
Rexx(char[]) constructor,,
Rexx(double) constructor,,
Rexx(float) constructor,,
Rexx(int) constructor,,
Rexx(long) constructor,,
Rexx(Rexx) constructor,
Rexx(short) constructor,
Rexx(String) constructor,
Rexx(String[]) constructor,
Rexx,arithmetic, @
Rexx,class/NetRexx strings, @
Rexx,class/conversions, @
Rexx,class/methods of,
Rexx,class/use by PARSE,
RexxSet() constructor,,
RexxSet(int) constructor,
RexxSet(int,byte) constructor,
RexxSet(RexxSet) constructor,,
Raising exceptions,, [L29
RC special word,,
Re-ordering characters,with TRANSLATE
method, @
Real numbers, binary,,
Reference implementation,, @
References,in terms, @

References,null,

255

References,to arrays, ﬁ

References,to current object,

References,to indexed strings, @

References,to methods,

Relative column specification in parsing,,

Relative positional pattern,,

Remainder operator, [L60

Remainder operator,definition, @

Remainder operator;.pi,Integer division;.pi
/Exponentiation, @

Repeating a string with COPIES,,

Repetitive loops,, @

Repetitor phrase,, @

REPLACE option,,

Replacing strings,using CHANGESTR,

Replacing strings,using TRANSLATE, R01]

Required arguments,,

Resolution of methods,, @

Results,of methods,

Results,returned by RETURN,

Results,size of, @

RESULTS,TRACE setting,

Return character,escape sequence,

Return code, setting on exit,

RETURN instruction,,

Return string, setting on exit,, @

Return Types, @

RETURNS,on METHOD instruction,

REVERSE method,, [L97

RIGHT method,, [L97

Rounding, @

Rounding,definition, @

Rounding,when numbers used,

run option,

Running off the end of a program,, @

savelog option,

SAVELOG option,,

Say method,,

SAY,instruction,

Scientific notation,, , @

SCIENTIFIC property,

SCIENTIFIC value for NUMERIC FORM,,
Search order,for methods, EII

Search order,for term evaluation, @
Searching a string for a word or phrase, @, @
Select,label,

Select,naming of,

Semicolons,, @

NetRExx
Language Reference

Semicolons,can be omitted, @
Semicolons,implied, @

SEQUENCE method,, [197
setDigits(Rexx) method,,
setForm(Rexx) method,,
setOutputStream method,,
SHARED,0n CLASS instruction, 8§
SHARED,on METHOD instruction,
SHARED,on PROPERTIES instruction,
Shebang, @

Short name,of classes, Bd,

Short name,of methods, @

SIGN method,, 197

SIGNAL instruction,,

Signals,,

SIGNALS,on METHOD instruction,
Significand of exponential numbers,,
Significant digits, in arithmetic,,
Signs in parsing templates,,
Simple DO group,, @

Simple number, @

Simple repetitor phrase,, @

Simple terms,, @
Single-quote,escape sequence,
Single-quote,string delimiter, @
SOUNDEX method,,

SOURCE special word,,

sourcedir option,

SOURCEDIR option,,
SOURCELINE, special word,
SPACE method,,

Special characters,, @

Special characters,used for operators, @
Special methods,

Special methods,super, ,
Special methods,this,

Special words,,

Special words,ask,

Special words,asknoecho,

Special words,class,

Special words,digits,

Special words,form,

Special words,length,

Special words,null,

Special words,parent,

Special words,RC,

Special words,source, [L46

Special words,sourceline,

Special words,super,

256

Special words,this, ,

Special words,trace,

Special words,version,

Square brackets,in array initializers, @ @
Square brackets,in indexed references, @
Standard classes,, @

Standard methods,, @

Static methods,, @

Static methods,used by classes, @
Static variable typing,, E

STATIC,on METHOD instruction, [L09
STATIC,on PROPERTIES instruction,
stderr, used by TRACE,,

stdin, reading with ASK,,

stdin, reading with ASKNOECHO,,
stdout, writing to with SAY,,
STREAM method,, 194,

Strict comparative operators,, @
strictargs option,

STRICTARGS option,,

strictassign option,
STRICTASSIGN option,,

strictcase option,

STRICTCASE option,,
strictimport option,
STRICTIMPORT option,,
strictmethods option,

strictprops option,

STRICTPROPS option,,
strictsignal option,
STRICTSIGNAL option,,

Strings,, @

Strings,as literal constants, @
Strings,comparison of, @
Strings,concatenation of, @
Strings,escapes in,

Strings,in terms, @

Strings,indexed, @

Strings,length of, @
Strings,lowercasing, @
Strings,moving with TRANSLATE method, @
Strings,null, @

Strings,quotes in, @
Strings,sub-values of, @
Strings,types of, @
Strings,uppercasing,
Strings,verifying contents of, @
STRIP method,, [L99

Stub, of term,, @

Index

Sub-expressions, in terms,, @
Sub-keywords,, @

Sub-string, extracting,, @
Sub-values, of strings,, @
Subclass of a class,,
Subroutines,calling, @
Subroutines,passing back values from,
Subroutines,return from,
Substitution,in expressions,
SUBSTR method,, 20d
Subtraction,definition, @
SUBWORD method,, 0(
SUPER,special method, fL42,
SUPER,special word,
Superclass of a class,,

Symbol characters,checking with DATATYPE,
symbols option,

SYMBOLS option,,

Symbols,, @

Symbols,assigning values to, @
Symbols,case of,

Symbols,in terms, 47
Symbols,numeric, @ @
Symbols,use of, @
Symbols,valid names, E

Syntax diagrams,notation for, @
Syntax notation,, @
System-dependent options,, 14

Tab character, @

Tab character,escape sequence,
Tabulation character, @

targetvm option,

Templates, parsing,general rules,
Templates, parsing,in PARSE instruction,
Ten, powers of,,

Terminal, writing to with SAY,,
Terms,, @

Terms,compound, @
Terms,evaluation of, @

Terms,in assignments, @

Terms,on left of =, @

Terms,parsing of,

Terms,simple, @

Terms,stub of, @

Testing for indexed variables,, @
Text literal strings,, @

Text strings,, @

THEN, following IF clause,

257

THEN,following WHEN clause,

THIS,special method,

THIS,special word, ,

Thread,tracing,

time option,

Time,Civil, @

Time,Elapsed, @

Time,Hours, @

Time,Long, @

Time,Minutes,

Time,Normal,

Time,Reset,

Time,Seconds,

TO phrase of LOOP instruction,, @

toboolean AskOne,,

toboolean method,,

tobyte method,,

tobytearray method,,

tochar method,,

todouble method,,

tofloat method,,

toint method,,

Tokens,, @

tolong method,,

toRexx method,,

toshort method,,

toString method,,

Trace setting,,

Trace setting,altering with TRACE instruction,
130

trace, traceX option,

Trace,context,

TRACE,instruction,

TRACE,option,

TRACE,special word,

Tracing,clauses,

Tracing,data identifiers,

Tracing,execution of programs, 130

Tracing,line numbers,

Tracing,variables,

Trailing blanks,removal with STRIP method, @

Trailing zeros,, @

TRANSIENT,on PROPERTIES instruction,

TRANSLATE method,, 01|

Translation,with TRANSLATE method, @

Trapping of exceptions,,

Triple double-quote,text string delimiter, @

True value,, @

TRUNC method,, 01|

NetRExx
Language Reference

Truncating numbers,, @
Types, 44

Types,checking instances of, @
Types,checking with DATATYPE,
Types,concatenation of, @
Types,conversions, E
Types,declaring,
Types,dimensioned, @
Types,of terms, @

Types,of values, @
Types,operations on, @
Types,primitive, @
Types,qualified, @
Types,simplification, @

Underflow, arithmetic,
Underscore,in symbols, @
Unicode,coded character set, @
Unicode,escape sequence,
Unicode,UTF-8 encoding,

Unpacking a string,with C2X,
Unpacking a string,with X2B, @

UNTIL phrase of LOOP instruction,, @
UNUSED,on PROPERTIES instruction,
UPPER method,,

Uppercase,checking with DATATYPE,
Uppercase,names, @

Uppercasing strings,, @

USES,on CLASS instruction, B9

UTF-8 encoding,,

utf8 option,

UTF8 option,,

Variable reference,in parsing template,
Variables,, @
Variables,controlling loops, @
Variables,in parsing patterns,
Variables,indexed, @
Variables,local, E
Variables,method arguments, E
Variables,names of, |7__1|
Variables,parsing of,
Variables,properties, @
Variables,scope of, E
Variables,setting new value, @
Variables,static typing of, @
Variables,subscripts, @
Variables,type of, @
Variables,valid names, @
Variables,visibility, 73

258

VERBOSE option,,
verbose, verboseX option,
VERBOSER option,,
VERIFY method,,
VERSION special word,,
Visibility,of classes, @
Visibility,of methods,
Visibility,of properties,

VOLATILE,on PROPERTIES instruction,

WARNEXITO option,

warnexitO option,

Well-known conversions,, @

WHILE phrase of LOOP instruction,, p9
White space,, @

Whole numbers,, g

Whole numbers,checking with DATATYPE,

Whole numbers,definition,
WORD method,, 03
WORDINDEX method,, 03
WORDLENGTH method,, 04
WORDPOS method,, 04

WORDS method,, 04

Words, special,class,

Words, special,sourceline,
Words,counting, using WORDS, @
Words,deleting from a string,
Words,extracting from a string, 20d, 203
Words,finding in a string, @
Words,finding length of, @
Words,in parsing,
Words,locating in a string, @
Words,special/ask,
Words,special/digits,
Words,special/form,
Words,special/length,
Words,special/null,
Words,special/RC,
Words,special/source, [L46
Words,special/super,
Words,special/this,
Words,special/trace,
Words,special/version,

X2B method, P05
X2C method,, 05
X2D method,, @
XOR, logical operator, @

Zero character,escape sequence,

Index

Zeros,adding on the left, @

Zeros,padding, @
Zeros,removal with STRIP method, @

259

NetRExx
Language Reference

| SBN 978-94-648-5133-5

9464"851335" >

260

	Introduction
	Language Objectives
	Language Concepts
	Acknowledgements
	Introduction to the current edition

	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	NetRexx Language Definition
	Notations
	Characters and Encodings
	Structure and General Syntax
	Types and Classes
	Terms
	Methods and Constructors
	Type conversions
	Expressions and Operators
	Clauses and Instructions
	Assignments and Variables
	Indexed strings and Arrays

	Keyword Instructions
	Annotation instruction
	Address instruction
	Class instruction
	Do instruction
	Exit instruction
	If instruction
	Import instruction
	Interpret instruction
	Iterate instruction
	Leave instruction
	Loop instruction
	Method instruction
	Nop instruction
	Numeric instruction
	Options instruction
	Package instruction
	Parse instruction
	Properties instruction
	Return instruction
	Say instruction
	Select instruction
	Signal instruction
	Trace instruction

	Program structure and concepts
	Program defaults
	Minor and Dependent classes
	Special names and methods
	JavaBean Support
	Parsing templates
	Numbers and Arithmetic
	Binary values and operations
	Exceptions

	Built-in methods for NetRexx strings
	abbrev(info [,length])
	abs()
	b2d([n])
	b2x()
	center(length [,pad])
	centre(length [,pad])
	changestr(needle, new)
	charin(name [,start [,length]])
	charout(name [,string [,start]])
	chars(name)
	compare(target [,pad])
	copies(n)
	copyindexed(sub)
	countstr(needle)
	c2d()
	c2x()
	datatype(option)
	date()
	delstr(n [,length])
	delword(n [,length])
	d2b([n])
	d2c()
	d2x([n])
	exists(index)
	format([before [,after]])
	insert(new [,n [,length [,pad]]])
	lastpos(needle [,start])
	left(length [,pad])
	length()
	linein(name [,line [,count]])
	lineout(name [,string, [,line]])
	lines(name)
	lower([n [,length]])
	max(number)
	min(number)
	overlay(new [,n [,length [,pad]]])
	pos(needle [,start])
	reverse()
	right(length [,pad])
	sequence(final)
	sign()
	soundex()
	space([n [,pad]])
	stream(name [,operation [,stream_command]])
	strip([option [,char]]])
	substr(n [,length [,pad]])
	subword(n [,length])
	time()
	translate(tableo, tablei [,pad])
	trunc([n])
	upper([n [,length]])
	verify(reference [,option [,start]])
	word(n)
	wordindex(n)
	wordlength(n)
	wordpos(phrase [,start])
	words()
	x2b()
	x2c()
	x2d([n])

	Classic Rexx compatible functions
	date()
	time()
	charin(name [,start [,length]])
	charout(name [,string [,start]])
	chars(name)
	linein(name [,line [,count]])
	lineout(name [,string, [,line]])
	lines(name)
	stream(name [,operation [,stream_command]])
	Stream operations

	Appendix A - A Sample NetRexx Program
	Appendix B - The netrexx.lang Package
	Exception classes
	The Rexx class
	Rexx constructors
	Rexx arithmetic methods
	Rexx miscellaneous methods
	The RexxIO class
	The RexxRexx class
	The RexxOperators interface class
	The RexxSet class

	Appendix C - Translator Options
	Appendix D - Installation
	Index

