
SG24-2216-00

Creating Java Applications Using NetRexx

September 1997

International Technical Support Organization

Creating Java Applications Using NetRexx

September 1997

SG24-2216-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 273.

First Edition (September 1997)

This edition applies to Version 1.0 and Version 1.1 of NetRexx with Java Development Kit 1.1.1 for use
with the OS/2 Warp, Windows 95, and Windows NT operating systems.

Because NetRexx runs on any platform where Java is implemented, it applies to other platforms and
operating systems as well.

SAMPLE CODE ON THE INTERNET

The sample code for this redbook is available as nrxredbk.zip on the ITSO home page on the Internet:

ftp://www.redbooks.ibm.com/redbooks/SG242216

Download the sample code and read “Installing the Sample Programs” on page 4.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents
Figures . xi

Tables . xv

Preface . xvii
How This Document is Organized . xviii
The Team That Wrote This Redbook . xix
Comments Welcome . xix

Chapter 1. Introduction . 1
What Is NetRexx? . 1

Design Objectives . 1
Why NetRexx? . 1

Installation . 2
Installation Verification . 3
Software Prerequisites . 4

Installing the Sample Programs . 4
Installing the Packages of this Redbook . 5
NetRexx Documentation . 5
NetRexx Home Page on the Internet . 6
Java Toolkit Documentation . 6

Chapter 2. Starting with NetRexx . 7
Our First NetRexx Program . 7
File Types Used by NetRexx . 9

Chapter 3. The NetRexx Compiler . 11
Command Files . 11
Arguments and Return Codes . 12
How Does the Compiler Work? . 13
Invoking the Compiler from NetRexx or Java . 14
Compile Options . 14

Compiler-Only Options . 14
Options Keyword . 15
More Details on Options . 16

Chapter 4. The NetRexx Language . 19
Case Sensitivity . 19
Comments . 19
Continuation Character . 20
Input and Output . 20
Data Types . 20
Operators and Expressions . 22

String Expressions . 22
Arithmetic Expressions . 22
Comparative Expressions . 23

Normal Comparative Operators . 23
Strict Comparative Operators . 23

Logical Expressions . 23

 Copyright IBM Corp. 1997 iii

Variables . 24
Class Definition . 25

Class Instruction . 25
Properties Instruction . 26
Method Instruction . 28
Special Keywords Used in Methods . 29

Exceptions . 30
The Rexx Class for Strings . 30

Parsing a String . 30
Built-In Methods . 31

Abbrev . 31
Abs . 32
B2x . 32
Center . 32
Changestr . 32
Compare . 32
Copies . 32
Countstr . 32
C2d . 32
C2x . 32
Datatype . 33
Delstr . 33
Delword . 33
D2c . 33
D2x . 33
Exists . 34
Format . 34
Insert . 34
Lastpos . 34
Left . 34
Length . 34
Lower . 35
Max . 35
Min . 35
Overlay . 35
Pos . 35
Reverse . 35
Right . 35
Sequence . 35
Sign . 36
Space . 36
Strip . 36
Substr . 36
Subword . 36
Translate . 36
Trunc . 36
Upper . 36
Verify . 37
Word . 37
Wordindex . 37
Wordlength . 37
Wordpos . 37
Words . 37
X2b . 37
X2c . 37
X2d . 38

Indexed Strings . 38
Arrays . 39
Control Statements . 39

Do Instruction . 40
Conditional Instructions . 41

If Instruction . 41
Select Instruction . 41

iv Creating Java Applications Using NetRexx

Repetitive Tasks . 43
Loop Instruction . 43
Indefinite Loops . 44
Bounded Loops . 44
Controlled Bounded Loops . 44
Over Loops . 45
Conditional Loops . 45
Iterate Instruction . 45

Exit a Control Structure . 46
Exit a Method . 46
Exit a Program . 47
Trace Instruction . 47
Numeric Instruction . 47

Options . 47
Binary Option . 48
Trace Option . 48

Chapter 5. Using NetRexx As a Scripting Language 49
Why Scripts? . 49
Straightforward Programs . 49
Subroutines and Functions . 50

External Methods . 51
External Methods in a Package . 52

Calling Non-Java Programs . 53
Behind the Scenes . 54
Handling Parameters in a NetRexx Script . 55

Chapter 6. Creating and Using NetRexx Classes . 57
Definition of Class . 57
Why Use Classes? . 57
Classes . 58
Properties . 58
Methods . 59

Signature of Methods . 60
Overloading Methods . 61
Constructor Methods . 61
Invoking Methods . 62

Inheritance . 63
Definition of Inheritance . 63
Why Use Inheritance? . 64
Overriding Methods . 64
Overriding and Usage of Property Variables . 65
Usage or Inheritance . 66

Abstract Classes . 66
Polymorphism . 68

Interfaces . 68
Class Libraries . 70

Packages . 70
Packages in Zip Files . 71
Globally Unique Package Names . 71
Using Java Classes . 72
Java Class Libraries . 72
Using NetRexx Classes from Java . 73

Chapter 7. Creating Graphical User Interfaces . 75
Applets and Applications . 75
Applets . 76

The Applet Tag . 76
Structure of an Applet . 77

Applications . 79
Running As an Applet or an Application . 81
User Interface Controls . 82

Label . 83

Contents v

TextField . 84
TextArea . 85
Button . 86
Checkbox . 86
List . 88
Choice . 89
Scrollbar . 90
Menus . 90

MenuBar . 92
Menu . 92
MenuItem . 93
Pop-Up Menus . 93

Layout Manager . 96
FlowLayout . 97
BorderLayout . 98
GridLayout . 100
GridBagLayout . 102

How to Use a GridBagLayout Manager . 104
CardLayout . 108

Frame and Dialog Windows . 110
Frame Windows . 110
Dialog Windows . 110
Tabbing Support . 111

Event Handling . 111
Events . 111

Low-Level Events . 112
Semantic Events . 112

Event Listener Interface . 112
Low-Level Listener Interfaces . 113
Semantic Listener Interfaces . 114

Adapters . 115
Event and Component Cross Reference . 116

Fonts . 116
Font Styles . 117
Font Attributes . 117

Images . 118
Loading an Image . 118
Loading an Image Locally or from the Web . 119
MediaTracker . 119
Drawing an Image . 120
Animated Images . 121

Lightweight Components . 123
Problem Solutions and Examples . 124

Closing Windows . 124
Action Events from Menus and Buttons . 126
Setting the Focus in Windows . 127
Automatic Selection in TextField Objects . 128
Adding Listeners Automatically . 129
Controlling Keyboard Input . 131
Limiting the Length of a TextField . 133
Using Buttons of the Same Size . 133
Extended Label Component . 134
Image Component . 139
Dialogs . 143

RedbookDialog Class . 143
Message Box . 145
Prompt Dialog . 147

Photograph Album Sample Application . 150

Chapter 8. Threads . 153
The Thread Class . 153
Creating and Starting Threads . 154
Controlling Threads . 155

vi Creating Java Applications Using NetRexx

Lifetime of a Thread . 156
Scheduling . 156

Synchronization . 157
Monitors and the Protect Keyword . 157
Wait and Notify . 157

Philosophers′ Forks . 159
Designing the Philosophers′ Forks . 160
Enhancing the Philosophers′ Forks with a GUI . 163

Chapter 9. Handling Files . 165
Streams . 165
File Class . 166
Line Mode I/O . 168

Line I/O Using BufferedReader and PrintWriter . 168
Line I/O Using BufferedReader and BufferedWriter . 169

Byte-Oriented I/O . 170
Data-Oriented I/O . 172

Data-Oriented I/O Using Data Streams . 172
Data-Oriented I/O Using Rexx Strings . 174

Object-Oriented I/O Using Serialization . 176
Handling an End-of-File Condition . 179

Check the Return Value . 179
Catch the I/O Exception . 179

Chapter 10. Database Connectivity with JDBC . 181
JDBC and ODBC . 181
JDBC Concepts . 181

Database URLs . 182
JDBC Drivers . 183

JDBC Daemon . 184
JDBC Driver Installation . 184

JDBC Compliance . 184
SQL Select in Practice . 184

DB2 Sample Database . 184
Select Query Example . 186

Query Sample Explanation . 188
Loading the DB2 Support . 189
Connecting to the DB2 Host . 189
Get the List of Departments . 189
Ending the Program . 191
NULL Values . 191
Meta Data . 191

SQL Update in Practice . 191
Prepared Statements . 192
Executing a Prepared SQL Statement . 192
SQL Update Example . 193

Update Sample Explanation . 194
Data Definition Language . 195
Stored Procedures . 195
Wrapping Up with a Complete JDBC GUI Program . 196
Client/Server Program . 203

Chapter 11. Network Programming . 205
Socket Interface . 205

Socket . 205
Sending a Request to an HTTP Server . 206
Testing the Simple HTTP Client . 207

ServerSocket . 207
Accepting an HTTP Client Request . 207
Testing the Simple HTTP Server . 209

More on Sockets . 209
Extended Server with Threads . 210

Testing the Extended HTTP Server . 212

Contents vii

Socket Conclusion . 212
URL Handling . 212

Getting the Content of an URL . 213
Design Pattern Background . 214
HTTP Client Using URLs . 214
Testing the URL Client Program . 215

Content Handlers . 216
Extended HTTP Client Using URLs . 216
Testing the Extended URL Client Program . 218

Typical Network Exception Types . 218
Remote Method Invocation . 220

Remote Procedure Call . 220
RMI . 221
RMI Registry and URLs . 221
RMI Listener Example . 222

RMI Client . 222
RMI Server Interface . 223
RMI Server Implementation . 224
RMI Compiler . 225
Testing the RMI Listener . 226
Running RMI on a Single Machine . 226

RMI Parameters and Return Values . 227
RMI Chat Application . 227
Wrapping Up with a Complete RMI Program . 227

Controller Interface . 228
RMI JDBC Controller Server . 228
RMI JDBC GUI Client . 231
Testing the RMI JDBC Applet . 235
Enhancements for the RMI Controller . 236

Chapter 12. Using NetRexx for CGI Programs . 237
CGI Concepts . 237

Passing Parameters to a CGI Program . 237
Get Method . 238
Post Method . 238

Returning a Web Page from a CGI Program . 238
Sample CGI Programs with DB2 Access . 239

HTML Form for Employee Search . 239
CGI Program for Employee Search . 240
HTML Table of Employees . 243
CGI Program for Employee Details . 243
CGI Program for Employee Details: Post Method . 246

Chapter 13. Creating JavaBeans With NetRexx . 249
JavaBeans Concepts . 249
Writing a Bean in NetRexx . 249

Bean Class . 250
Properties . 250
Property Get Methods . 250
PropertyChange Event . 250
Property Set Methods . 251
Public Methods . 251
Action Event . 251
Triggering the Action Event . 252

Bean Information Class . 252
Using the NetRexx Bean in VisualAge for Java . 253

Using the Bean in an Applet . 253
Creating an Animated JavaBean . 255
Sample NetRexx Beans . 257

Chapter 14. Why NetRexx? . 259

viii Creating Java Applications Using NetRexx

Appendix A. Redbook Package Reference . 261
CloseWindow Class . 261
EqualSizePanel Class . 262
ExtendedLabel . 262
FieldSelect Class . 263
ImagePanel Class . 263
KeyCheck Class . 265
LimitTextField Class . 266
MessageBox Class . 266
PromptDialog . 267
PromptDialogActionListener Class . 268
PromptDialogAction Interface . 268
RedbookUtil Class . 269
SimpleGridbagLayout Class . 269
WindowFocus Class . 270
WindowSupport Class . 270
Exceptions . 271

Appendix B. Special Notices . 273

Appendix C. Related Publications . 275
NetRexx and Java Documentation . 275
International Technical Support Organization Publications 275
Redbooks on CD-ROMs . 275
Other Publications . 276

How to Get ITSO Redbooks . 277
How IBM Employees Can Get ITSO Redbooks . 277
How Customers Can Get ITSO Redbooks . 279
IBM Redbook Order Form . 280

Index . 281

ITSO Redbook Evaluation . 283

Contents ix

x Creating Java Applications Using NetRexx

Figures
 1. Directories Added by Unpacking NETREXX.ZIP . 2
 2. Compilation and Run of hello.nrx . 3
 3. NetRexx Sample Programs on the Internet . 4
 4. Sample Programs . 4
 5. Our First NetRexx Program: Factor.nrx . 7
 6. Invoking the NetRexx Compiler from a NetRexx Program 14
 7. STRICTASSIGN Test Program: StrictassignTst.nrx . 17
 8. Say Instruction . 20
 9. Class Definition . 25
10. Class Instruction . 25
11. Properties Instruction . 26
12. Method Instruction . 28
13. Signal Instruction . 30
14. Parse Instruction . 30
15. Options of the Format Built-in Method . 34
16. Do Instruction . 40
17. If Instruction . 41
18. Select Instruction . 42
19. Loop Instruction . 43
20. Iterate Instruction . 45
21. Leave Instruction . 46
22. Return Instruction . 46
23. Exit Instruction . 47
24. Trace Instruction . 47
25. Numeric Instruction . 47
26. Options Instruction . 47
27. A Simple NetRexx Script: Game.nrx . 50
28. Methods for NetRexx as a Scripting Language . 50
29. Using Methods As Subroutines and Functions: Game2.nrx 51
30. Calling an External Method: Game3.nrx and Input.nrx 52
31. Calling Non-Java Programs from NetRexx: NonJava.nrx 53
32. NetRexx As a Scripting Language: Generated Class and Main Method 55
33. Search for Methods in the Class Chain . 64
34. Use of Abstract Classes . 67
35. Package Instruction . 70
36. Import Instruction . 70
37. Global Naming Scheme for Packages . 72
38. HTML Applet Tag . 76
39. Life Cycle of an Applet . 77
40. First Simple Applet: GuiFirst.nrx . 78
41. First Simple Applet HTML File: GuiFirst.htm . 78
42. First Simple Applet in the Applet Viewer . 79
43. First Simple GUI Application: GuiApp.nrx . 79
44. The First GUI Application . 81
45. GUI Application or Applet: GuiApplt.nrx . 81
46. Applet with Check Boxes . 87
47. Check Box Example: CheckTst.nrx . 87
48. Menu Bar Sample Application . 90
49. Menu Bar Sample Application: MenuBarX.nrx . 90
50. Pop-up Menu Sample Application . 95

 Copyright IBM Corp. 1997 xi

51. Pop-up Menu Sample Application: Popup.nrx . 95
52. FlowLayout Manager . 97
53. FlowLayout Manager Sample: FlowLay.nrx . 98
54. BorderLayout Manager . 98
55. BorderLayout Manager Sample: BordLay.nrx . 99
56. GridLayout Manager . 100
57. GridLayout Manager Sample: GridLay.nrx . 101
58. GridBagLayout Manager . 102
59. GridBagLayout: Anchor Constraint . 103
60. Sketch for GridBagLayout Manager Example . 104
61. GridBagLayout Manager Sample: GrBagLay.nrx . 105
62. SimpleGridBagLayout Manager Class: SimpleGridBagLayout.nrx 106
63. GridBagLayout Manager Sample—Simplified: GrBagLa2.nrx 107
64. CardLayout Manager . 108
65. CardLayout Manager Sample: CardLay.nrx . 109
66. Font Attributes . 117
67. An Animated Applet: Animator.nrx . 122
68. Simple Close Window Event Listener: CloseWindowA.nrx 125
69. Close Window Event Listener: CloseWindow.nrx . 126
70. WindowFocus Class: WindowFocus.nrx . 128
71. FieldSelect Class: FieldSelect.nrx . 129
72. WindowSupport Class: WindowSupport.nrx . 130
73. Check and Manipulate Key Events: KeyCheck.nrx 132
74. Limit the Length of a TextField: LimitTextField.nrx 133
75. Panel with Same-Sized Buttons: EqualSizePanel.nrx 134
76. Extended Label Class: ExtendedLabel.nrx . 135
77. Extended Label Test Application . 138
78. Extended Label Test Application: ExtTest.nrx . 138
79. Image Panel Class: ImagePanel.nrx . 140
80. Redbook Dialog Class: RedBookDialog.nrx . 144
81. Sample Message Box . 145
82. Message Box Class: MessageBox.nrx . 146
83. Sample Prompt Dialog . 147
84. Prompt Dialog Class: PromptDialog.nrx . 148
85. Sample Prompt Dialog Application: PromptTest.nrx 149
86. Prompt Dialog Action Listener: PromptDialogAction.nrx 150
87. Photograph Album Sample Application . 150
88. Photograph Album Sample Application: PhotoAlbum.nrx 151
89. Life Cycle of a Thread . 154
90. Simple Application with Multiple Threads: ThrdTst1.nrx 154
91. Simple Application with Multiple Threads: ThrdTst2.nrx 155
92. Threads with Wait and Notify: Consumer.nrx . 158
93. Philosophers′ Forks: Philosopher Class . 160
94. Philosophers′ Forks: Fork Class . 161
95. Philosophers′ Forks: Main Program: PFtext.nrx . 161
96. Philosophers′ Forks: Execution in a Text Window . 162
97. Philosophers′ Forks: Execution in a GUI . 163
98. Display File and Directory Information: FileInfo.nrx 166
99. Buffered Input and Print Output: LineIO.nrx . 168
100. Buffered Input and Buffered Output: LineIO2.NRX: 169
101. Byte-Oriented Input/Output: HexPrint.nrx . 170
102. Data-Oriented I/O Using Data Streams: DataIO.nrx 172
103. Data-Oriented I/O Using Rexx Strings: DataIO2.nrx 175
104. Object-Oriented I/O Using Serialization: SeriaIO.nrx 176
105. Source of Latest JDBC Drivers . 182
106. Employee Table Sample Data . 185
107. Department Table Layout and Sample Data . 186
108. JDBC NetRexx Query Program: JdbcQry.nrx . 186
109. JDBC NetRexx Query Results . 188
110. JDBC NetRexx Update Program: JdbcUpd.nrx . 193
111. JDBC NetRexx Query Results after Update . 195
112. JDBC GUI Application . 196
113. JDBC GUI Application: JdbcGui.nrx . 197

xii Creating Java Applications Using NetRexx

114. Simple HTTP Client Program: CnltSock.nrx . 206
115. Simple HTTP Server Program: SrvSock.nrx . 208
116. HTTP Server Program Using Threads: SrvSockT.nrx 210
117. URL Content Handling . 214
118. HTTP Client Using URLs: UrlTest.nrx . 215
119. Extended HTTP Client Using URLs: UrlXTest.nrx . 216
120. Exception Handling Code for Networking Programs 219
121. RMI Client Program: RmiClnt.nrx . 222
122. RMI Server Interface: RmiSrvrI.nrx . 224
123. RMI Server Implementation: RmiSrvr.nrx . 224
124. RMI Listener Sample Output . 226
125. RMI JDBC Application Controller Interface: RmiContI.nrx 228
126. RMI JDBC Controller Server: RmiCont.nrx . 229
127. RMI JDBC GUI Client: RmiGui.nrx . 232
128. RMI JDBC Applet HTML: RmiGui.htm . 235
129. Highly Distributed Client/Server Program Using RMI 236
130. HTML Form for Employee Search . 239
131. HTML Code for Employee Search: EmpName.html 240
132. CGI Program for Employee Search: EmpName.nrx 240
133. HTML Table of Matching Employees . 243
134. CGI Program for Employee Details: EmpNum.nrx 243
135. HTML Page with Employee Details . 246
136. CGI Program for Employee Details Using Post: EmpNum2.nrx 247
137. Visual Composition Editor with NetRexx Bean . 254
138. VisualAge for Java Applet with NetRexx Bean in Action 255
139. VisualAge for Java Applet with Animated Bean . 256
140. Animated Bean in Action . 256
141. CountDown Applet with NetRexx Beans . 257
142. StopWatch Applet with NetRexx Beans . 258
143. StopWatch Applet in VisualAge for Java . 258

Figures xiii

xiv Creating Java Applications Using NetRexx

Tables
 1. Files Added by Unpacking NRTOOLS.ZIP . 2
 2. Table of Compiler-Only Options for NetRexxC . 14
 3. Compiler Options of the Options Keyword . 15
 4. Primitive Java Data Types . 21
 5. Keywords for Behavior and Visibility of Properties . 59
 6. Keywords for Behavior and Visibility of Methods . 60
 7. Component Classes of the GUI . 83
 8. Event and Component Cross Reference . 116
 9. Font Styles . 117
10. Get Methods for Table Columns by SQL Data Type 190
11. Table of Exceptions Thrown in java.net . 220
12. Exception Classes of the Redbook Package . 271

 Copyright IBM Corp. 1997 xv

xvi Creating Java Applications Using NetRexx

Preface
NetRexx is a new human-oriented language that makes writing and using Java classes
quicker and easier than writing in Java. NetRexx combines the ease of use and flexibility of
Rexx with the robust structure and portability of Java.

This redbook covers all aspects of NetRexx, from simple scripting programs to applications
and applets using such advanced features as graphical user interfaces with animation,
access to relational databases, communication over TCP/IP sockets, client/server
programming using remote method invocation (RMI), Common Gateway Interface (CGI)
programming, and JavaBeans. The sample programs are freely available on the Internet.

This redbook applies to NetRexx Version 1.0 and 1.1, and the Java Development Kit (JDK)
Version 1.1.1. The sample programs were tested on Windows 95, Windows NT, and OS/2
Warp; they should also run on other platforms that support JDK 1.1.

 Copyright IBM Corp. 1997 xvii

How This Document is Organized
Chapter 1, “Introduction” explains the purpose of NetRexx, the installation of the product
and the sample programs, and the NetRexx documentation.

Chapter 2, “Starting with NetRexx” describes a simple NetRexx program and shows how to
compile and run it. It also covers the file types used by NetRexx.

Chapter 3, “The NetRexx Compiler” explains in detail how NetRexx programs are translated
into Java programs. It covers all compile options and explains how to invoke the compiler
from a NetRexx or Java program.

Chapter 4, “The NetRexx Language” contains a comprehensive introduction to the NetRexx
language.

Chapter 5, “Using NetRexx As a Scripting Language” explains how NetRexx is used to write
simple, straightforward programs without explicitly coding Java classes. Included are
subroutines and functions, handling of parameters, and invocation of non-Java programs.

Chapter 6, “Creating and Using NetRexx Classes” introduces object-oriented programming
with NetRexx. Classes, methods, inheritance, interfaces, class libraries, and packages are
explained in detail.

Chapter 7, “Creating Graphical User Interfaces” shows how NetRexx creates applications
and applets with elaborate GUIs. Many sample programs are provided to illustrate certain
aspects of GUI programming, such as layout managers, menus, dialogs, event handling,
images, and keyboard input. A package of useful classes is developed to simplify GUI
programming and solve common GUI problems.

Chapter 8, “Threads” introduces threads for parallel processing, including starting, stopping,
and synchronization.

Chapter 9, “Handling Files” explains the different ways NetRexx can handle flat files,
including line-mode, byte-oriented, and data-oriented input/output. It also covers
serialization, that is, the storage and retrieval of objects in files.

Chapter 10, “Database Connectivity with JDBC” shows how NetRexx programs access
relational databases by using the Java Database Connectivity API. Sample programs are
developed to access the DB2 sample database.

Chapter 11, “Network Programming” shows how to write network applications with sockets,
universal resource locators (URLs), and RMI. It concludes with a client/server
implementation of the JDBC application.

Chapter 12, “Using NetRexx for CGI Programs” discusses how NetRexx can be used to write
CGI programs for a Web server. The sample programs access DB2 to create HTML pages.

Chapter 13, “Creating JavaBeans With NetRexx” introduces JavaBeans and shows how to
create simple beans with NetRexx for use with VisualAge for Java.

Chapter 14, “Why NetRexx?” summarizes the advantages of using NetRexx over Java.

Appendix A, “Redbook Package Reference” describes the classes of the redbook package.
The redbook package simplifies GUI programming by providing solutions for many common
problems.

xviii Creating Java Applications Using NetRexx

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Peter Heuchert is a software developer in Germany. He has 10 years of experience in
software development. His areas of expertise include software design, Smalltalk, C, and
Rexx.

Frederik Haesbrouck is a systems engineer in Belgium. He has one year of experience in
the services field. He holds a degree in computer science from the University of Ghent. His
areas of expertise include C++, C, Smalltalk, object-oriented analysis and design, the
VisualAge product family, and Rexx. He is IBM Certified in OS/2.

Norio Furukawa is an IT specialist in Japan. He has 15 years of experience in software
development, education, and technical support. His areas of expertise include VM/CMS,
OS/2, and the Rexx product family.

Ueli Wahli is a Consultant Application Development Specialist at the International Technical
Support Organization, San Jose Center. He writes extensively and teaches IBM classes
worldwide on all areas of application development and object-oriented technology. Before
joining the ITSO 13 years ago, Ueli worked in technical support in Switzerland as a Systems
Engineer. He holds a degree in Mathematics from the Swiss Federal Institute of Technology.
His areas of expertise include many programming languages, visual development
environments, as well as data dictionaries, repositories, and library management. He has
written many redbooks on these topics.

Thanks to the following people for their invaluable contributions to this project:

Christian Michel , German Software Development Lab, Boeblingen, for his thorough review of
the book, additional ideas, and the porting of all examples to OS/2.

Mike Cowlishaw , IBM Fellow, UK Laboratories Hursley, for inventing NetRexx and supporting
our effort all the way.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your comments about
this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 283 to the fax
number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

Preface xix

xx Creating Java Applications Using NetRexx

Chapter 1. Introduction
In this chapter we introduce the NetRexx product and provide brief instructions for installing
NetRexx in a Java environment.

What Is NetRexx?
NetRexx is a new human-oriented programming language designed as an alternative to the
Java language. NetRexx compiles to the Java Virtual Machine and enables programmers to
create programs and applets easily and conveniently.

NetRexx combines the strengths of two very different languages: Rexx and Java. The result
is a language that is tuned for both scripting and application development. For example,
NetRexx has its own String class, like the classic Rexx strings, and uses classes and
exceptions like Java.

Because the NetRexx compiler is written in NetRexx, it runs on every platform that supports
Java.

Design Objectives

NetRexx is designed to make life easy for users, not for compiler developers.

NetRexx automates many tasks, such as variable declaration and selection, without the risk
of unstable programs, enabling programmers to concentrate on writing the applications.

NetRexx takes the object model from Java and the safe syntax from classic Rexx, making it
an object-oriented language with a readable, easy-to-understand syntax.

Why NetRexx?

We could tell you that right now, but we want you to read the book first!

If you cannot wait, see Chapter 14, “Why NetRexx?” on page 259.

 Copyright IBM Corp. 1997 1

Installation
The NetRexx package is shipped in two formats:

NETREXX.ZIP used for OS/2, Windows 95, and Windows NT

netrexx.tar.Z commonly used on AIX and other UNIX systems

To install NetRexx, download the zip file to a drive (or directory) of your choice and unpack it
(see Figure 1).

NETREXX - Documentation and Samples
│ NRTOOLS.ZIP
│
│
└───NETREXX - NetRexx Runtime Package

│
│
│
└───LANG - NetRexx Runtime Classes

Figure 1. Directories Added by Unpacking NETREXX.ZIP

Important notes for unpacking NetRexx:

• Ensure that you are unzipping to a disk that supports long file names (for example, a
high-performance file system (HPFS) disk on OS/2).

• Ensure that your UnZip program creates the subdirectories stored in the zip file.

• If you are using Info-ZIP, use Version 5.12 (August 1994) or later.

Copy the NRTOOLS.ZIP file from the NETREXX directory to your Java home directory, for
example, JAVAOS2 or JAVA11 for OS/2, and JDK1.1.1, for Windows.

With the Java home directory as your current directory, unpack NRTOOLS.ZIP to add the zip
files for the NetRexx runtime and compiler classes and the compiler error message file to
the LIB directory, and some command files and a test program to the BIN directory (see
Table 1).

Table 1. Files Added by Unpacking NRTOOLS.ZIP

Path File Description

BIN hello.nrx Sample “Hello World” program for installation
verification

BIN NetRexxC.cmd NetRexx compiler command in Rexx (OS/2)

BIN NetRexxC.bat NetRexx compiler command for Windows

BIN nrc.cmd Abbreviated command file, invokes
NetRexxC.cmd

BIN nrc.bat Abbreviated .bat file, invokes NetRexxC.bat

LIB NetRexxC.zip NetRexx Compiler and Runtime Classes

LIB NetRexxR.zip NetRexx Runtime Classes

LIB NetRexx.properties Java properties file used by NetRexx compiler
for error messages (NetRexx 1.0 only)

2 Creating Java Applications Using NetRexx

Check the names of all files in the LIB directory. Pay special attention to the case of the
files. If the name of the NetRexxC.properties file is truncated, the package has not been
unpacked correctly.

For Java to find the NetRexx classes, you must update the CLASSPATH environment
variable by adding the NetRexxC.zip file to the CLASSPATH setting, after the standard Java
classes.zip file. Add the full path (disk, directory, and file specification) of your NetRexxC.zip
file:

 SET CLASSPATH=........;d:\...javahome...\LIB\NetRexxC.zip
d:\JAVA11\LIB\NetRexxC.zip <=== OS/2
d:\JDK1.1.1\LIB\NetRexxC.zip <=== Windows

On a machine where you intend to install the runtime facility only, add NetRexxR.zip to the
CLASSPATH instead.

For OS/2 the CLASSPATH variable is set in the CONFIG.SYS file, for Windows 95 it is set in
AUTOEXEC.BAT.

Reboot the machine.

Alternative Installation

You can unpack NRTOOLS.ZIP in the NETREXX directory itself to create a BIN and a LIB
subdirectory. Add the NETREXX\BIN subdirectory to the system PATH so that the
NetRexx compiler can be found. Set the CLASSPATH environment variable to point to
the NetRexxC.zip file:

 SET PATH=........;d:\NetRexx\bin
 SET CLASSPATH=........;d:\NetRexx\lib\NetRexxC.zip
 SET NETREXX_HOME=d:\NetRexx

The NETREXX_HOME environment variable points to the lib\NetRexxC.properties file for
error messages during compilation; however, it only works on OS/2. For Windows
systems you must copy the NetRexxC.properties file to the LIB subdirectory of the Java
home directory to get proper error messages during compilation. (Note: This file does
not exist in NetRexx 1.1.)

Installation Verification

To verify the installation, change the directory to the Java BIN (or NetRexx BIN) directory
where the hello.nrx program resides and enter the nrc -run hello command. This command
runs the compiler and starts the program after successful compilation (see Figure 2).

[C:\javaos2\bin]nrc -run hello
NetRexx portable processor, version 1.00
Copyright (c) IBM Corporation, 1997. All rights reserved.
Compilation of ′hello.nrx′ successful
Running hello ...
Hello World!

[C:\javaos2\bin]

Figure 2. Compilation and Run of hello.nrx

Chapter 1. Introduction 3

Software Prerequisites

The NetRexx compiler (NetRexxC) is written in NetRexx and should run on any Java platform
that supports the JDK.

The examples in this book are based on and tested with NetRexx Version 1.0 and 1.1, using
JDK 1.1.1; most of them will not run on JDK 1.0.2 or earlier releases.

Installing the Sample Programs
All of the sample NetRexx programs discussed in this redbook are available on the Internet
(see Figure 3).

ftp://www.redbooks.ibm.com/redbooks/SG242216

or: ftp ftp.almaden.ibm.com
cd redbooks\SG242216
binary
get nrxredbk.zip

Figure 3. NetRexx Sample Programs on the Internet

Download the NRXREDBK.ZIP file from the Internet. Create a directory, for example,
NRXREDBK. Move the zip file into the new directory and unzip the code to create a
directory structure like that shown in Figure 4.

 Directory Sample Programs for Chapter
 -------------------------- -------------------------------------/o
 NRXREDBK

FIRST Starting with NetRexx
COMPILER The NetRexx Compiler
LANGUAGE The NetRexx Language
EXCEPTIONS - simple exception programs
SCRIPT Use NetRexx as Scripting Language
GUI Graphical User Interfaces

many subdirectories - individual GUI functions
THREAD Threads

CONSUMER - consumer example
SYNCH - synchronization example
PHILFORK - philosophers′ forks example

FILE File Handling
JDBC Java Database Connectivity (JDBC)
NETWORK Network Programming

NET - sockets
URL - URLs
RMI - remote method invocation (RMI)
RMICHAT - RMI chat sample
RMIJDBC - RMI sample with JDBC

CGI Using NetRexx for CGI Programs
NRXBEANS NetRexx Beans

LAB - Counter, Light, Timer, LED
SAMPLE - Sample bean, applets using beans

REDBOOK Redbook Package Classes
GUI - 15 gui classes (source)
EXCEPTION - RedBookException classes (source)
UTILITY - RedbookUtility class (source)

Figure 4. Sample Programs

4 Creating Java Applications Using NetRexx

Installing the Packages of this Redbook
The main directory, NRXREDBK, must be added to the CLASSPATH to make the packages
available when running some of the sample programs:

 SET CLASSPATH=............;d:\NRXREDBK

The source files for the REDBOOK package are contained in the REDBOOK subdirectories.
Other packages are stored in the NRXBEANS subdirectory and in the NETWORK\RMI*
subdirectories.

We provide a BUILD.BAT (Windows) or BUILD.CMD (OS/2) file in each directory for compiling
the source into the package subdirectory.

Note: You can also create an uncompressed ZIP file containing all the classes of the
REDBOOK, NRXBEANS, and NETWORK\RMI* subdirectories and point to it from the
CLASSPATH:

 SET CLASSPATH=............;d:\NRXREDBK\nrxclass.zip

NetRexx Documentation
NetRexx documentation comes in three flavors:

• The language specification, The NetRexx Language, by M. F. Cowlishaw, Prentice Hall,
1997, ISBN 0-13-806332-X, IBM number SR23-7771

• Online documentation in HTML format, in the NetRexx directory:

− NetRexx 1.xx, nrdocs.htm, the master HTML file containing pointers to the other
documents

− NetRexx User′s Guide, doc-nrinst.htm

− NetRexx Language Quick Start, doc-nrover.htm

− NetRexx Samples and Examples, nrsample.htm

− NetRexx 1.xx Links, nrlinks.htm, containing links to other sources on the Web

− JavaBeans Support in NetRexx - Draft, nrbean.htm, or NetRexx Language
Supplement, nrlsupp.htm

• NetRexxD.zip, which contains the license agreement and the language specification as a
postscript file (nrldef.ps)

Chapter 1. Introduction 5

NetRexx Home Page on the Internet
The NetRexx product and additional information are available on the NetRexx home page:

http://www2.hursley.ibm.com/netrexx/

Extract of the information on the home page:

• Latest product code
• News
• Reviews
• Tutorial
• Samples and freely available code (FAC)
• Frequently asked questions (FAQs)
• Packages (RxFile, RxDBase, MaxBase)

Java Toolkit Documentation
The documentation for the JDK is provided as HTML files with the code. The master file is
called index.html. The Java platform API with documentation for all the classes is called
api\packages.html.

6 Creating Java Applications Using NetRexx

Chapter 2. Starting with NetRexx
In this chapter we write a small NetRexx program and list the different file types that
NetRexx uses.

Our First NetRexx Program
We are sorry, but we do not present the 4232th copy of a “Hello World” program in this
book.

Our first NetRexx program is a mathematical program. It calculates the factorial of a given
number. Of course this is not a big deal, but try it with languages other than Rexx, and you
will see. Figure 5 shows the program, which consists of a few statements to print a prompt
for a number, get your input, calculate the factorial, display the result, and do basic error
handling.

/* first\Factor.nrx

This is our first NetRexx program. The program asks the user for a
number and calculates the factorial of the given number.
You should try big numbers. */

numeric digits 64 -- switch to exponential format when numbers become
-- larger as 64 digits

say ′ Factorial program′
say ′ ---′
say ′ Input a number: \-′
do

n = int ask -- Gets the number, must be an integer
if n < 0 then signal RuntimeException
fact = 1 -- Initial value
loop i=1 to n

fact = fact * i
end
say n′ ! = ′ fact

 catch RuntimeException
say ′ Sorry, but this was not a positive integer′

end

Figure 5. Our First NetRexx Program: Factor.nrx

Compile the program:

 d:\NrxRedBk\first>nrc Factor

Now run it:

 d:\NrxRedBk\first>java Factor

 Copyright IBM Corp. 1997 7

Here is some sample program output:

 Factorial program

 Input a number: 49
 49! = 608281864034267560872252163321295376887552831379210240000000000

 Factorial program

 Input a number: 5000
 5000! = 4.228577926605543522201064200233584405390786674626646748849782400E+16325

 Factorial program

 Input a number: Peter
 Sorry, but this was not a positive integer

Try the program on your own. Try to fool it.

Note for Java programmers

You can use NetRexx as a scripting language. There is no need to define a class and a
main method to run a few statements. For more information see Chapter 5, “Using
NetRexx As a Scripting Language” on page 49.

Now let′s describe the first program in detail:

• The first statements in the program are a comment and the basic print statements:

 /* first\Factor.nrx

This is our first NetRexx program. The program asks the user for a
number and calculates the factorial of the given number.
You should try big numbers. */

 numeric digits 64 -- switch to exponential format when numbers become
-- larger as 64 digits

 say ′ Factorial program′
 say ′ ---′
 say ′ Input a number: \-′

The numeric digits instruction tells NetRexx to use an exponential form when the
number becomes larger than 64 digits.

The \- in the last say statement suppresses the line termination so that the user input is
shown on the same line as the text of the say instruction.

• The do statement defines a code block and is used to catch errors:

do
...

catch RuntimeException
say ′ Sorry, but this was not a positive integer′

 end

• A line from the keyboard is read and converted to an integer number:

 n = int ask

• If the number is not positive, an error is signaled:

 if n < 0 then signal RuntimeException

• The factorial is calculated and printed:

8 Creating Java Applications Using NetRexx

 loop i=1 to n
fact = fact * i

 end
 say n′ ! = ′ fact

If you are interested in the exact number of the factorial of 1000, change the numeric digits
statement to 10000 and try the program again.

File Types Used by NetRexx
The NetRexx compiler translates the NetRexx programs to Java and then compiles the
generated Java programs. The NetRexx compiler uses or generates these file types:

*.nrx NetRexx program files

*.class Compiled NetRexx or Java program files

*.crossref Cross reference file—lists the variables, their types, and where they are
used

*.java.keep NetRexx program translated to Java (see option -keep in “Compile
Options” on page 14)

*.java Temporary generated Java program—renamed to *.java.keep or erased
after compilation (see option -nocompile in “Compile Options” on
page 14)

Chapter 2. Starting with NetRexx 9

10 Creating Java Applications Using NetRexx

Chapter 3. The NetRexx Compiler
In Chapter 2, “Starting with NetRexx” on page 7 we show how to compile and run a
NetRexx program with this simple syntax:

 nrc Factor
 java Factor

or, even simpler:

 nrc -run Factor

In this chapter we explain in detail how the NetRexx compiler works.

Command Files
The NetRexx package provides some convenient command files to compile and run your
NetRexx programs. These command files are available on only some platforms, so check
the documentation of the package or the NetRexx Internet home page for the availability of
versions of the command files for the platform you use.

NetRexxC.cmd OS/2 REXX script file that takes the file names and the options as
arguments. It also supports the -run option that runs the programs
after they have been compiled.

nrc.cmd OS/2 REXX script file, abbreviation of NetRexxC.cmd

NetRexxC.bat DOS batch file for the Windows platforms, a (simple) clone of
NetRexxC.cmd. Be careful with the -run option; it has to be the first
argument, and it is case sensitive.

nrc.bat DOS batch file, abbreviation of NetRexxC.bat

For more detailed information, look at the content of the command files.

The command files are provided to make your life (and that of your keyboard) easier. The
native method of compiling and running NetRexx programs looks like this:

 java COM.ibm.netrexx.process.NetRexxC Factor.nrx
 java Factor

which is the equivalent of:

 nrc -run Factor

What happens here?

The NetRexx compiler (NetRexxC) translates NetRexx code into Java byte code.

 Copyright IBM Corp. 1997 11

NetRexxC itself is a Java class from the COM.ibm.netrexx.process package. Because it has
a main method, the NetRexxC class is a real Java application (or Java program), and so it
can be run with the Java interpreter:

 java COM.ibm.netrexx.process.NetRexxC

The file to be compiled is supplied as an argument to this Java program, NetRexxC.

The generated Java byte code is stored in a file with the .class extension. In our case the
compiler creates the file:

Factor.class

This generated file also represents a real Java application that can be executed by entering:

 java Factor

The NetRexxC (or nrc) command file automatically executes java factor when the -run option
is used. When you supply more than one file name, the sources are compiled first and then
run—in the same order.

Note, however, that the -run option is provided by the command files and not by the
compiler.

Arguments and Return Codes
The compiler can take two kinds of arguments, file names and options. The file names
represent NetRexx source files to be compiled together. For example:

 java COM.ibm.netrexx.process.NetRexxC Pinger qtime

As you can see, there is no need to enter the file names with their default extension of .nrx.

You can also supply options as arguments. The options always begin with a hyphen (-), for
example:

 java COM.ibm.netrexx.process.NetRexxC Pinger -keep

This particular option tells the compiler to save the intermediate Java code that NetRexxC
generates and passes to the Java compiler. The intermediate Java code is stored in a file
with the extension of .java.keep. We discuss these options in more detail in “Compile
Options” on page 14.

The compiler always returns a return code, which can be 0, 1, or 2. A return code of 0
indicates that the compiler found no errors and no warnings. A return code of 1 indicates
that there were warnings, and a return code of 2 indicates that the compile was not
successful. In the latter case you will get some error messages, and the generated Java file
(with extension .java) is kept instead of the anticipated Java class.

12 Creating Java Applications Using NetRexx

How Does the Compiler Work?
In this section we discuss the implementation of the NetRexxC class in more detail to
explain what happens in case of an error.

The NetRexxC class runs in two phases:

1. Translate NetRexx code into Java source code
2. Let the Java compiler generate Java byte code from the Java source

The first phase transforms the NetRexx source into Java source. Errors encountered in this
phase are reported with the NetRexx error codes. The explanation that comes with the error
codes should help you on the way to correct the errors.

If a more detailed message is not available, as in this case:

 NetRexx portable processor, version 1.00
 Copyright (c) IBM Corporation, 1997. All rights reserved.

9 +++ elect
+++ ^^^^^
+++ Error: keyword.expected (sorry, full message unavailable)

the system gives the (cryptic) error and appends the message “Sorry, full message
unavailable.”

Similar to the Java compiler, NetRexxC uses a .properties file to store its warning and error
messages. Therefore, if you encounter a situation in which the compiler tells you:
“Sorry,...,” check that the NetRexxC.properties file is present in the LIB subdirectory of the
NetRexx home directory.

The NetRexx home directory (netrexx.home) is usually the same as the Java home directory.
To change the home directory in the OS/2 environment, use the environment variable called
NETREXX_HOME, or use the -D option of the Java interpreter when invoking the compiler:

 java -Dnetrexx.home=d:\NetRexx COM.ibm.netrexx.process.NetRexxC Factor

which sets the d:\NetRexx directory path as the NetRexx home directory. Under Windows 95
and Windows NT you must copy the NetRexxC.properties file to the LIB subdirectory of the
Java home directory.

In the second phase of the execution, NetRexxC compiles Java code into byte code, using
the default Java compiler, javac. Determining what went wrong when you get errors in this
phase is not intuitive.

In the occasional case when javac fails to compile the Java source, there will be a file with
the extension of .java (the input file for javac) in the current directory. The errors that the
Java compiler reports are mostly due to incorrect conversions from NetRexx constructs to
the corresponding Java constructs. NetRexx reports an error if the .java file already exists.
Delete the file before you restart the NetRexx compiler, or use the REPLACE compiler option.

Chapter 3. The NetRexx Compiler 13

Invoking the Compiler from NetRexx or Java
You can use NetRexxC as a normal Java class. For this purpose the compiler provides the
main method. This is its signature (see “Signature of Methods” on page 60):

 method main(arg=Rexx) constant returns int

To use NetRexxC from within NetRexx (or from plain Java), call the main method with the file
names and the options provided in a REXX string. Figure 6 shows an example of the use of
the NetRexxC class from within a NetRexx program.

 /* compiler\NrcAsClass.nrx

This NetRexx program shows the use of the NetRexxC compiler as a normal class */

 argument = ′ Factor -nocrossref′
 rc = COM.ibm.netrexx.process.NetRexxC.main(argument)
 select

when rc=0 then say ′ Compilation was OK.′
when rc=1 then say ′ Check the warnings!′
when rc=2 then say ′ Some errors occurred!′
otherwise say ′ NetRexxC returned an unexpected returncode:′ rc

 end

Figure 6. Invoking the NetRexx Compiler from a NetRexx Program

Compile Options
You can supply two kinds of options to the compiler: compiler-only options (see Table 2)
and the options you can write in the source program, using the OPTIONS keyword (see
Table 3 on page 15).

Compiler-Only Options

Table 2 lists the compiler-only options.

Table 2. Table of Compiler-Only Options for NetRexxC

Description

-keep When this option is specified, NetRexxC saves the intermediate
Java source file in a file with the .java.keep extension.

-nocompile This option instructs NetRexxC to stop after the first phase; the
generated Java source code is kept in a file with the (normal)
.java extension, so that you can easily compile it further using
another Java compiler.

-time This option displays processing times for all compiled files:

• Translation time
• Compile time
• Total time

14 Creating Java Applications Using NetRexx

Options Keyword

Table 3 lists all options that you can use on the command line or in the NetRexx source
code, using the OPTIONS keyword. For a more detailed explanation of the options marked
with an asterisk in the More column, see “More Details on Options” on page 16.

The options are identified by their name. To set an option to off, you add the no prefix to the
option name; for example, to suppress the creation of the cross reference file you code:

 nrc -run -nocrossref Factor

Note that the options are case insensitive.

Table 3 (Page 1 of 2). Compiler Options of the Options Keyword

Default
Value

Description More

BINARY nobinary This option lets the programmer specify that all
classes will be treated as binary classes.

*

CROSSREF crossref When this option is specified, NetRexxC generates
a file containing a cross-reference listing for the
variables, organized by class. This file name has
the extension of .crossref.

DIAG nodiag This option displays diagnostic information. (It
acts like the DEBUG option in traditional
programs, and it can also have side-effects!)

FORMAT noformat This option adds spaces and new line characters
to the generated Java source to make it more
readable. (Be careful, this option does not
preserve the line numbers of your original code,
and run-time errors show incorrect line numbers.)

LOGO logo This option controls the printing of the compiler
logo, for example:

 NetRexx portable processor, version 1.00
 Copyright (c) IBM Corporation, 1997.
 All rights reserved.

REPLACE noreplace If there is an existing result file with the extension
of .java, this option enables NetRexxC to
overwrite it.

*

STRICTARGS nostrictargs This option enforces the style rule that you always
have to use parentheses for method invocations.
The option is highly recommended for readability.

STRICTASSIGNnostrictassign This options checks that the type of assignments
(using the = operator) and the arguments passed
in method invocations match exactly. This
checking is stronger than the Java requirements.

*

STRICTCASE nostrictcase When this option is specified, the case of all
names used in the NetRexx code and in
references to Java classes have to match.
STRICTCASE enables the enforcement of Java-like
rules.

STRICTSIGNAL nostrictsignal This options lets the NetRexx compiler complain if
exceptions are omitted from the signal list.
STRICTSIGNAL is also recommended in pursuing
a good programming style.

*

Chapter 3. The NetRexx Compiler 15

Here are some general remarks about the OPTIONS keyword and the way in which you
specify options as arguments to the compiler:

• If you specify (accidentally or on purpose) some options twice, the last option is used.
For example, if you disable an option on the command line when calling the compiler
(-nologo), the option in your source code (OPTIONS LOGO) is used, because it is
encountered after the command line arguments (and the logo will be printed).

• Watch out for “typos.” A mistyped option in your NetRexx code is (silently) ignored
because it might be of use in subsequent releases of the compiler. However, a
mistyped option in the command line produces this error:

 nrc factor -nolgo
+++ Error: Unknown command option ′ -nolgo′

Table 3 (Page 2 of 2). Compiler Options of the Options Keyword

Default
Value

Description More

TRACE trace This option lets you disable all trace instructions
in a NetRexx program (by specifying NOTRACE).

UTF8 noutf8 If this option is used, the source code is
processed as being UTF-8 encoded. UTF-8 is an
encoding of unicode characters; consult the
specialized literature for more information.

VERBOSE[n] verbose3 This options specifies the number of messages
you see when NetRexxC is executing. The range
for n is from 0 to 5. VERBOSE equals
VERBOSE[3] and NOVERBOSE equals
VERBOSE[0]. In the latter case, you still receive
all error and warning messages, but the logo is
not shown.

More Details on Options

Some options require further clarification.

BINARY: The BINARY option changes all classes in the specified programs to binary
classes. This change has two consequences:

• All literals are of either a primitive type (Boolean, char, byte, short, int, long, float,
double) or the Java String type.

• Where appropriate, operations are implemented as binary, instead of their default REXX
variants.

Be aware of the possible computational errors you get when using these binary classes.
Overflows, underflows, truncation, and other traditional digital calculation “goodies” from
which the NetRexx user is usually relieved are the price to pay for the performance boost.
This is a trade-off you have to make.

REPLACE: The REPLACE option defaults to NOREPLACE to prevent you from accidentally
overwriting an existing (valuable) Java file with the same name. Therefore, use this option
with care!

STRICTASSIGN: The STRICTASSIGN option enables a very strict checking of your code for
all sorts of hidden conversions. For example, the source code in Figure 7 compiles fine
without the STRICTASSIGN option.

16 Creating Java Applications Using NetRexx

 /* compiler\StrictassignTst.nrx

This NetRexx program demonstrates the STRICTASSIGN option */

 OPTIONS strictassign

 testB = B()
 StrictassignTst.print(testB)
 exit 0

 method print(anA=A) static
say anA.getSomeProperty()

 class A
someProperty=′ This a dummy-property′

method getSomeProperty()
return someProperty

 class B extends A

Figure 7. STRICTASSIGN Test Program: Str ictassignTst.nrx

With the STRICTASSIGN option, the compiler produces two errors:

 NetRexx portable processor, version 1.00
 Copyright (c) IBM Corporation, 1997. All rights reserved.
10 +++ StrictassignTst.print(testB)

+++ ^^^^^
+++ Error: Cannot find method ′ strictassigntst.print(B)′

11 +++ exit 0
+++ ^
+++ Error: EXIT needs an integer result (expression result type is ′ byte′)
function print(A)

As you can see, the compiler is very strict. The idea of STRICTASSIGN is to guarantee that
no under the cover conversion costs are incurred. This might be of help when tuning some
time-critical code.

STRICTSIGNAL: The STRICTSIGNAL option endorses good programming style by forcing
you to have a signal list (a list of exception types that can be thrown) for every method.
(This is the default behavior for Java programs.) If this option is not used and you do not
code every possibly thrown exception in the signal list of all your methods, the NetRexx
compiler automatically adjust the lists, to be compliant with the Java language. It is,
however, good programming practice to let the users of your NetRexx classes know which
method can throw which exception!

Chapter 3. The NetRexx Compiler 17

18 Creating Java Applications Using NetRexx

Chapter 4. The NetRexx Language
In this chapter we present a comprehensive introduction to the NetRexx language. We cover
the most interesting aspects of the language. Please refer to the NetRexx documentation for
further details.

Case Sensitivity
NetRexx is a case insensitive language. There is no difference between a variable named
fred or Fred.

Even if NetRexx is case insensitive, it is case preserving. Thus any class, variable, or
method is used in the same way in which it was defined the first time. This is important
when using NetRexx classes from Java, because Java is very case sensitive.

When using Java classes and methods in NetRexx programs, you do not have to enter the
names in the exact Java spelling; NetRexx will attempt to find the class or method anyway.
However, we recommend using the exact Java spelling so that users can easily understand
your NetRexx programs.

Comments
NetRexx supports two types of comments:

• A standard Java or Rexx style comment that begins with /* and continues until its
matching */. Comments can be nested with matching pairs of /* and */.

• A full-line or partial-line comment begins with a double hyphen (--) and continues until
the end of the line. The double hyphen can appear anywhere within a NetRexx
statement.

Here are two examples of NetRexx comments:

 /* This is NetRexx comment 1
/* This is a nested NetRexx comment */
end of comment 1*/

 -- A single line comment
 say ′ Hi redbook reader′ -- a partial line comment

 Copyright IBM Corp. 1997 19

Continuation Character
Each NetRexx statement ends with the end of the line or at a semicolon (;).

If a statement is too long for a line, use a hyphen (-) at the end of the line for continuation:

 say ′ This is a long text to be′ -
′ displayed to the user′

Input and Output
Programs without a graphical user interface can use the NetRexx instructions for data input
and output. The say instruction (Figure 8) is used to write to the default character output
stream.

 say [expression]

Figure 8. Say Instruction

The result of the expression is expected to be a string, or it will be converted to a string. By
default, the result string is treated as a line, so line termination characters are appended. If
the string ends in a null character (“\-” or “\0”), line termination is skipped.

The ask keyword reads a line from the default input stream.

Examples of using say and ask are:

 say ′ Enter any string: \-′
 a = ask
 if a = ′ any string′ then say ′ Thank you!′

else say ′ Hey, I said ″any string″ ′

Data Types
Programs written in the NetRexx language manipulate values such as character strings and
numbers. All such values have an associated type.

NetRexx basically uses only one type for expressions, a NetRexx string (see “The Rexx
Class for Strings” on page 30). A NetRexx string is any group of characters inside single or
double quotation marks.

Examples of NetRexx strings are:

″This is a NetRexx string″
′ This is a ″NetRexx″ string too′

All primitive Java data types are available in NetRexx (see Table 4).

20 Creating Java Applications Using NetRexx

NetRexx automatically converts data types when possible.

For constants NetRexx uses the smallest type possible:

4 would be of type byte
 257 would be of type integer
′ a′ would be of type character

If the binary option is not specified (see “Options” on page 47), or the type of a variable is
not explicitly set, NetRexx converts every primitive data type to a NetRexx string before an
expression is evaluated.

If a NetRexx string is assigned to a variable of a different type, an automatic conversion
occurs. Automatic conversion is more reliable than dealing directly with the primitive types,
because NetRexx strings have their own numeric algorithm (see “The Rexx Class for
Strings” on page 30).

The following example shows how NetRexx behaves when an overflow occurs:

 /* Overflow */
 numeric digits 20 -- adjust the precision for rounding
 x = int 2147483647 -- maximum integer
 y = int

 say ″x =″ x -- show x
 say ″x+1=″ x+1 -- show x+1 (calculated using Rexx class)
 y=x+1 -- too big for an integer
 say ″y =″ y -- not possible ==> overflow

When you run this code, the program stops and reports an error:

x = 2147483647
 x+1= 2147483648
 java.lang.NumberFormatException: Conversion overflow

at netrexx.lang.Rexx.toint(Compiled Code)
at overflow.main(Compiled Code)

If you run a similar program as a native Java program, the program shows incorrect results,
and no error comes up:

Table 4. Primitive Java Data Types

Contains Size
(bits)

Mininum Value Maximum Value

boolean 1 or 0

char Unicode
character

16

byte Signed
integer

8 -128 127

short Signed
integer

16 -32768 32767

int Signed
integer

32 -2147483648 2147483647

long Signed
integer

64 -9223372036854775808 9223372036854775807

float Floating
point

32 ± 1.40239846E-45 ± 3.40282347E+38

double Floating
point

64 ± 4.94065645841246544E-324 ± 1.79769313486231570E+308

Chapter 4. The NetRexx Language 21

x = 2147483647
 x+1= -2147483648
 y = -2147483648

Operators and Expressions
NetRexx handles four different expressions: string, arithmetic, comparative, and logical.

Expressions are evaluated from the left to the right, modified by parentheses and operator
precedence.

String Expressions

The concatenation operators combine two strings, by appending the first string to the right
side of the second string. The concatenation can occur with or without an interleaving blank:

(blank) Concatenate with an interleaving blank:

″book″ ″store″ -> ″book store″

| | Concatenate without an interleaving blank:

″book″ | | ″ store″ -> ″bookstore″
″book″ | | ″store″ -> ″bookstore″

(abuttal) Concatenate a variable with a literal string without an interleaving blank:

 abc = ″book″
 abc″store″ -> ″bookstore″

Arithmetic Expressions

Character strings that are numbers and Java primitive type variables can be combined with
these arithmetic operators:

+ Add

− Subtract

* Multiply

/ Divide. If the remainder of the division is not 0, the result is a floating point
number.

% Divide and return the integer part of the result (integer division). The arguments
do not have to be integers.

/ / Divide and return the remainder of the division. This is not the same as modulo,
because the result can be negative. If one operand is a floating point number,
the remainder can be a floating point number too.

This operation is equivalent to: a − b * (a%b)

** Power. Raise a number to a whole number power.

Prefix − Is equivalent to: 0 − number

Prefix + Is equivalent to: 0 + number

22 Creating Java Applications Using NetRexx

Comparative Expressions

Comparative operators compare two terms and return 0 (false) or 1 (true). Two sets of
comparative operators are available.

Normal Comparative Operators

The rules for a normal comparison are:

• The comparison is not case sensitive.
• Leading and trailing blanks are removed before comparison.
• If one string is shorter than the other, it is padded with blanks on the right.

The operators for a normal comparison are:

= Equal (′FRED′ = ′ fred ′)

\ = o r < > o r > < Not equal

> Greater than

< Less than

> = o r \ < Greater or equal

< = o r \ > Less or equal

Strict Comparative Operators

The rules for a strict comparison are:

• The comparison is case sensitive.
• If two strings are equal, except that one string is shorter, the shorter string is less than

the longer string.

The operators for a strict comparison are:

= = Equal

\ = = Not equal

> > Greater than

< < Less than (′ fred′ < < ′ fred ′)

> > = o r \ < < Greater or equal

< < = o r \ > > Less or equal

Logical Expressions

Logical operators can be applied to character strings with value 0 (false) or 1 (true) or to
boolean variables:

& And, returns 1 if both terms are true

| Or, returns 1 if one or both terms are true

&& Exclusive or, returns true if only one term is true

Prefix \ Logical not

Chapter 4. The NetRexx Language 23

Variables
A variable is a named object whose value may change during the execution of a NetRexx
program.

A variable is defined by an assignment:

 fred = ′ Fred Firestone′ -- assigns the value ′ Fred Firestone′ to
-- the variable fred

A variable name is case insensitive, cannot begin with a digit, and does not contain a
period.

Each variable has an associated type, which cannot change during execution. The type of a
variable is determined by the type of the result value of the expression that is first assigned
to it:

 fred = ′ Fred Firestone′ -- fred has type Rexx
 count = 5 -- count has type Rexx
 max = 3.56 -- max has type Rexx
 obj = Cache() -- obj has type Cache

The last example invokes the constructor of the Java cache class to construct a new object
(see Chapter 6, “Creating and Using NetRexx Classes” on page 57).

A variable can be declared by simply assigning a type to it:

 fred = Rexx -- fred is a Rexx string
 count = int -- count is an int (32 bit integer)
 window = Frame -- window is a Frame

If a variable is declared with a type only, it will be initialized to a default value depending on
the type of the variable:

Type Default Value

boolean 0 (false)
char character with the decimal expression of 0
byte 0
short 0
int 0
long 0
float 0
double 0
String null
Rexx null

If the type of the variable is a Java class, the default value is null. The variable is a
reference to an object of the class. The null value is a special value which indicates that
there is no reference yet.

24 Creating Java Applications Using NetRexx

Class Definition
A class definition (Figure 9) consists of a class instruction and optional property and method
definitions (see also Chapter 6, “Creating and Using NetRexx Classes” on page 57).

 class instruction
property definition

.

.

method definition
.
.

Figure 9. Class Definition

A class definition does not need to have property or method definitions.

Class Instruction

The class instruction (Figure 10) is used to define a class as described in Chapter 6,
“Creating and Using NetRexx Classes” on page 57.

 class name [public | private]
[abstract | final | interface]
[binary]
[extends classname]
[uses classname [,classname]...]
[implements interfacename [,interfacename]...]

Figure 10. Class Instruction

The options can appear in any order.

If more than one class is defined in a file, only the first class in the file can be public.

The public class must have the same name as the file (without the file extension).

If none of the abstract, final, or interface keywords is used, objects can be created from the
class, and the class can be subclassed.

Options

public The class can be used by all other classes (default for the first class in a
file).

private The class can be used by the classes of the same file or by the classes of
the same package.

abstract The class is not completely implemented. No objects can be created from
this class (see “Abstract Classes” on page 66).

final The developer considered that the class is complete, and it cannot be
subclassed. This option may allow the compiler to improve the performance
of classes that refer to a final class. This option reduces the reusability of a
class and should be avoided.

interface The class is an interface class and cannot be used to construct an object.
See “Interfaces” on page 68 for a detailed description.

Chapter 4. The NetRexx Language 25

binary In a binary class, strings and numeric symbols are native Java strings or
primitive types and are not converted automatically to Rexx objects before
an expression is evaluated. The binary option can increase the speed of the
program; see “Options” on page 47.

extends The class inherits the properties and methods from the class specified. If
there is no extends clause, the class inherits from the Object class by default
(see “Inheritance” on page 63).

implements The class implements the interfaces defined by the listed interface classes.
All methods of the specified interfaces have to be implemented.

uses The uses keyword introduces a list of classes that will be used as a source of
constant or static properties and methods. Every class method, class
property, or constant of the classes specified can be used by their name
without the need to specify the class name:

 class ConstClass
properties constant

PI = Rexx 3.14159265358979323846

 class Example uses ConstClass
method Example()
say ′ Pi =′ PI -- equivalent to: ConstClass.PI

The uses keyword affects only the syntax of the current class. It is not
inherited by subclasses of the current class.

Properties Instruction

The properties instruction (Figure 11) is used to define the variables (properties) and their
attributes of the class (see also Chapter 6, “Creating and Using NetRexx Classes” on
page 57).

The following terms are used in the description of the properties instruction:

Class variable Variable (property) that belongs to the class and not to an individual
object

Instance variable Variable (property) that belongs to an individual object of the class

 properties [public | private | inheritable]
[constant | static | volatile]

Figure 11. Properties Instruction

The options can appear in any order.

The properties instruction must precede the first method instruction in a class.

If no properties instruction is used, but variables are defined before the first method
instruction, the inheritable default option applies to those variables.

A properties instruction replaces any previous properties instruction.

A properties instruction is followed by variable declarations (see “Variables” on page 24).

Options

public Public properties can be used by all other classes to which the current class
is visible.

26 Creating Java Applications Using NetRexx

inheritable Inheritable properties can be used by classes that are in the same package
or are subclasses of the current class. This is the default.

private Private properties can be used by the current class only.

constant Constant properties are constant class variables. They exist only once and
cannot be changed.

static Static properties are class variables. They belong to the class and not to an
individual object. Static properties can be accessed like normal variables.
Static properties are initialized when the class is loaded.

volatile Volatile properties can be changed asynchronously outside the control of the
interpreter.

A properties statement must be followed by a least one keyword.

Property Instruction Examples:

 class PropertiesExample
name
timer = Thread null
elements = Vector()

properties private
counter = int

properties static private
objects = Vector()

properties public constant
PI = Double 3.141592653589793

The example defines:

name Inheritable instance variable of type Rexx

timer Inheritable instance variable of type Thread. It is initialized to null at object
creation time.

elements Inheritable instance variable of type Vector. The default constructor is called
at object creation time.

counter Private instance variable of type int (primitive type). The counter variable is
not visible outside the class.

objects Private class variable of type Vector. The objects variable is not visible
outside the class. The constructor of Vector is called when the class is
loaded.

PI A public constant

Property Usage: Public and inheritable properties are used within the same class by their
name; in other classes they are usually qualified with the class name:

 area = PropertiesExample.PI * radius**2
 PropertiesExample.elements.add(newobject)

Chapter 4. The NetRexx Language 27

Method Instruction

The method instruction (Figure 12) is used to define the procedures and functions of a class
(see also Chapter 6, “Creating and Using NetRexx Classes” on page 57).

The following terms are used in the description of the method instruction:

Class method Method that belongs to the class and not to an individual object. It can only
access constants and static variables (class variables).

Instance method
Method that belongs to an object and has access to the instance variables of
the object, as well as to constants and static variables

Constructor method
Method that constructs a new object of the class. A constructor usually
initializes the instance variables.

Default constructor method
Constructor method without any parameters

Superclass The class that is extended by the current class

 method name [([argument [,argument]...])]
[public | private | inheritable]
[abstract | static | constant | final | native]
[protect]
[returns classname]
[signals exceptionclass [,exceptionclass]...]

Figure 12. Method Instruction

Except for the name and the argument list, the options can appear in any order.

The method name must be a nonnumeric symbol. If the method name matches the class
name, it is a constructor method.

Arguments are like variable definitions:

• If a type is not defined, the argument is of type Rexx.

• If the argument has an initializer, the argument is optional and defaults to the given
value if not specified in the call of the method. Such optional arguments must be at the
end of the list.

Any instruction after a method instruction is part of the method. A method ends with the
next method or class instruction.

Options

public A public method can be called by all other classes to which the current class
is visible. This is the default.

inheritable A inheritable method can be called by classes that are in the same package
or are subclasses of the current class.

private A private method can be used by the current class only.

abstract An abstract method defines only the interface of the method. Only the name
and the types of the arguments are defined. There are no instructions that
implement the method. The class instruction for the class containing this
method must also use the abstract keyword.

28 Creating Java Applications Using NetRexx

static Static methods are class methods. They belong to the class and not to an
individual object.

constant A constant method is a class method that cannot be redefined in a subclass.
Constant combines the static and final options.

final A final method cannot be redefined by any subclass. This option allows
some performance improvements but reduces the reusability of the class.
We recommend avoiding the final option.

native A native method is implemented by the environment, so instructions to
implement the method are not permitted. A native method cannot be
overwritten in a subclass.

protect Protected methods are automatically serialized when accessing the same
object from different threads. They do not prevent the invocation of
nonprotected methods of the same object in parallel. The protect option is
similar to a “do protect this” as the first instruction of the method.

returns The method returns an object of the class specified. This is similar to classic
Rexx functions.

Note: The returns option is not necessary if the method returns a Rexx
object. However, this is not a recommended programming style,
because the user of the method has to read the implementation to
figure out whether a value is returned.

signals The signals option lists all exceptions that can be thrown by the method.

Method Instruction Examples:

 class Example
properties inheritable -- default option, but good style
a
b = Vector()

method asString() -- method without any parameter
say a

method asString(prefix) -- overwrites above method
say prefix a -- different signature

method asString(prefix, postfix, size = int 40)
-- method overwrites the two methods above
-- size is an optional parameter

say (prefix a postfix).right(size)

method addNext() private -- the parenthesis are not necessary
b.addElement(Date())

Special Keywords Used in Methods

In the implementation of methods the this and super keywords refer to:

this the current object (instance methods)

super the class from which the current class inherits

Chapter 4. The NetRexx Language 29

Exceptions
For advanced error handling NetRexx uses the concept of exceptions. When an unexpected
condition occurs, such as the end of a file, an exception is signaled (thrown). A signaled
exception can be caught by a catch statement (see “Do Instruction” on page 40 or
“Repetitive Tasks” on page 43).

An exception breaks the flow of the program and jumps directly to a catch statement that
handles the exception.

The benefits of exceptions are that the main code can be written without any error handling,
and it is easy and understandable. The error handling is done by the catch statements.

If an exception is not handled in the current method, NetRexx looks for a catch statement in
the calling method. NetRexx follows the call path until it finds a catch statement that
handles the exception.

An exception is thrown explicitly by the signal statement (see Figure 13) or automatically by
external conditions.

 signal exceptionterm

Figure 13. Signal Instruction

The exceptionterm is an object of type Exception or any subclass of Exception, or just the
name of an exception type. If an exception type is specified, NetRexx constructs an
exception object with the default constructor of the class.

The Rexx Class for Strings
The Rexx class is one of the basics of NetRexx. The class provides extended string handling
compared with Java. The methods of the Rexx class are well known from the classic Rexx
language.

A Rexx string is changed only at its creation. Every method or action that would change the
string creates a new object. There is only one exception to this rule: Assigning subvalues
(see “Indexed Strings” on page 38) to a string does not create a new object.

Parsing a String

A Rexx string can be manipulated with the methods of the Rexx class or parsed with the
parse instruction (Figure 14). The parse instruction is one of the most powerful instructions
of NetRexx for string manipulation.

 parse stringExpression template

Figure 14. Parse Instruction

stringExpression is any expression with the value of type Rexx (string).

template is more complicated. Technically it consists of variable names, literal strings,
numbers, and symbols. In the next paragraphs we show you how to use templates. If you
are a experienced Rexx user, you will see that there is no big difference between NetRexx
and the classic Rexx equivalent. See the NetRexx Online Documentation for more detailed
information.

To split a string into words, the template consists of a list of variables. If there are more
words than variables, the last variable of the list contains the rest of the string:

30 Creating Java Applications Using NetRexx

 parse ′ NetRexx is an interesting language ′ v1 v2 v3

 -> Results: v1 : ′ NetRexx′
v2 : ′ is′
v3 : ′ an interesting language ′

The resulting variables do not contain leading or trailing blanks, except for the last variable
of the list.

If you are not interested in one of the words, use a period instead of a variable:

 parse ′ NetRexx is an interesting language ′ v1 . v2

 -> Results: v1 : ′ NetRexx′
v2 : ′ an interesting language ′

The second parsing mechanism uses literal strings as a pattern to split up the string:

 parse ′ NetRexx is an interesting language ′ v1 ′ an′ v2

 -> Results: v1 : ′ NetRexx is ′
v2 : ′ interesting language ′

As you can see, parse no longer separates words delimited by spaces, and v1 and v2
include trailing and leading blanks.

The pattern must not be a literal string; it can be a variable:

 pattern = ′ interesting′
 parse ′ NetRexx is an interesting language ′ v1 . v2 (pattern) v3 .

 -> Results: v1 : ′ NetRexx′
v2 : ′ an ′
v3 : ′ language′

Different methods for positional parsing are available. Please refer to the NetRexx Online
Documentation for more information.

Built-In Methods

This description of built-in methods is brief. Please refer to the NetRexx Online
Documentation for more details.

Some notes to built-in methods:

• All methods arguments are of type Rexx.
• All results returned are of type Rexx.
• The position of the first character in a string is 1.
• A pad argument, if specified, must be exactly one character long.
• The term string in the syntax examples stands for the current Rexx object.

Abbrev

Syntax: string.abbrev(info [,length])

Returns 1 if info is a leading substring of string. Length specifies the number of characters
that are compared. The comparison is case sensitive.

Chapter 4. The NetRexx Language 31

Abs

Syntax: string.abs()

Returns the absolute value of string, which must be a number.

B2x

Syntax: string.b2x()

Converts the binary string to hexadecimal; it must consist of digits 0 or 1.

Center

Syntax: string.center(length [,pad])

Returns a string of length length with string centered in it; the pad character is used to fill
the string and defaults to blank.

Changestr

Syntax: string.changestr(needle,new)

Returns a string where each occurrence of needle in string is replaced by new.

Compare

Syntax: string.compare(target [,pad])

Returns 0 if target and string are the same. If target is shorter than string it is filled with
pad, which defaults to blank. The comparison is case sensitive.

Copies

Syntax: string.copies(n)

Returns n directly concatenated copies of string.

Countstr

Syntax: string.countstr(needle)

Returns the count of nonoverlapping occurrences of needle in string.

C2d

Syntax: string.c2d()

Returns the decimal value of the character representation of string, which must be one
character long.

C2x

Syntax: string.c2x()

Returns the hexadecimal value of the character representation of string, which must be one
character long.

32 Creating Java Applications Using NetRexx

Datatype

Syntax: string.datatype(option)

Returns 1 if string matches the description requested by option, 0 otherwise. Only the first
character of option is used and may be specified in uppercase or lowercase.

Following option characters are recognized:

A (alphanumeric) The string contains characters only from the ranges a − z, A − Z,
and 0− 9 .

B (binary) The string contains only characters 0 and 1.

D (digits) The string contains characters only from the 0− 9 range.

L (lower case) The string contains characters only from the range a − z.

M (mixed case) The string contains characters only from ranges a − z and A − Z.

N (number) The string is a valid number.

S (symbol) The string contains characters only from ranges a − z, A − Z, and
0− 9 or an underscore (_) and does not begin with a digit.

U (upper case) The string contains characters only from the range A − Z.

W (whole number) The string is a whole number (integer).

X (hexadecimal) The string contains characters only from ranges a − f, A − F, and
0− 9 .

Delstr

Syntax: string.delstr(n [,length])

Returns a string with length characters of string deleted, starting at position n. Length
defaults to the rest of string.

Delword

Syntax: string.delword(n [,length])

Returns a string with length words of string deleted, starting at word n. Length defaults to
the remaining words of string.

D2c

Syntax: string.d2c()

Converts string to a single character. string must be a whole number and represent a valid
character.

D2x

Syntax: string.d2x([n])

Converts string to a hexadecimal representation. string must be a signed integer. The
resulting string is padded on the left with zeros to the length n (if specified).

Chapter 4. The NetRexx Language 33

Exists

Syntax: string.exists(index)

See “Indexed Strings” on page 38.

Format

Syntax: string.format([before [,after [,explaces [,exdigits [,exform]]]]])

Formats string, which must be a number. For the definition of before, after, and explaces,
see Figure 15. If a parameter is skipped (set to null), the default is used.

″ -1.2345E+004″
──┬── ──┬─ ─┬─
│ │ │
│ │ │

 before───┘ │ └───explaces (exponent places)
│

after

Figure 15. Options of the Format Built-in Method

exdigits sets the trigger point for the usage of the exponential form. exform defines the form
of exponential notation, either “Scientific” (S) or “Engineering” (E).

Insert

Syntax: string.insert(new [,n [,length [,pad]]])

Returns a string where new is inserted, padded or truncated to length length, at position n
into string.

Lastpos

Syntax: string.lastpos(needle [,start])

Returns the position of the last occurrence of the string needle in string starting from
position start. Returns 0 if needle was not found.

Left

Syntax: string.left(length [,pad])

Returns a string of length length that contains the left-most characters of string. If
necessary, the string is padded at the end with the optional character pad, which defaults to
blank.

Length

Syntax: string.length()

Returns the length of string.

34 Creating Java Applications Using NetRexx

Lower

Syntax: string.lower([n[,length]])

Returns a string where all characters of string, starting from position n for length characters,
are changed to lowercase.

Max

Syntax: string.max(number)

Returns the larger of string and number, both of which must be valid numbers.

Min

Syntax: string.min(number)

Returns the smaller of string and number, both of which must be valid numbers.

Overlay

Syntax: string.overlay(new [,n [,length [,pad]]])

Returns a string, where new, padded or truncated to length length, overlays any character of
string starting from position n. n defaults to the beginning of string, length to the length of
new, and pad to blank.

Pos

Syntax: string.pos(needle [,n])

Returns the position of the needle in string, starting at position n.

Reverse

Syntax: string.reverse()

Returns a string where string is swapped end for end.

Right

Syntax: right(length [,pad])

Returns a string of length length that contains the right-most characters of string. If
necessary, the string is padded at the beginning with the optional character pad, which
defaults to blank.

Sequence

Syntax: string.sequence(final)

Returns a string of all characters, in ascending order of encoding, between string and final,
including string and final, both of which are single characters.

Chapter 4. The NetRexx Language 35

Sign

Syntax: string.sign()

Returns a number that indicates the sign of string, which must be a valid number. The
result is −1 if string is negative, 0 if string is equal to 0, and 1 if string is positive.

Space

Syntax: string.space([n[,pad]])

Returns a string where the words in string are formatted with n pad characters between
each word. Leading and trailing blanks are removed. The default for n is one; the default
for pad is blank.

Strip

Syntax: string.strip([option [,char]])

Returns a string, where all leading, trailing, or leading and trailing characters char of string
are removed. The option specifies L for leading, T for trailing, or B for both (default), and
char defaults to blank.

Substr

Syntax: string.substr(n [,length [,pad]])

Returns a substring of string, starting at position n with the length length, padded with pad if
necessary.

Subword

Syntax: string.subword(n [,length])

Returns a substring of string starting with the nth word and up to length blank delimited
words long.

Translate

Syntax: string.translate(oTable,iTable [,pad])

Returns a copy of string, where every character in string that is found in input table iTable is
replaced by the matching character (at the same position) of output table oTable. The output
table is truncated or padded with pad to the length of the input table.

Trunc

Syntax: string.trunc([n])

Returns a truncated number with n decimals. string is not rounded and n defaults to 0,
which simply returns the integer part of string.

Upper

Syntax: string.upper([n[,length]])

Returns a string where all characters of string, starting from position n for length characters,
are changed to uppercase.

36 Creating Java Applications Using NetRexx

Verify

Syntax: string.verify(reference [,option [,start]])

Returns the position of the first character of string, starting at position start, which is not
listed in reference when option is set to Nomatch (default). If option is set to Match, the
position of the first character that is included in reference is returned. Returns 0 if no match
is found.

Word

Syntax: string.word(n)

Returns the nth word of string.

Wordindex

Syntax: string.wordindex(n)

Returns the character position of the nth word of string.

Wordlength

Syntax: string.wordlength(string,n)

Returns the length of the nth word in string.

Wordpos

Syntax: string.wordpos(phrase [,start])

Returns the word number of the first word of phrase in string starting at word number start.
Multiple blanks in phrase or string are treated as one blank. Returns 0 if no match is found.

Words

Syntax: string.words()

Returns the number of words in string.

X2b

Syntax: string.x2b()

Returns the binary equivalent of string, which must be hexadecimal, that is,
string.datatype(′H′) must be true.

X2c

Syntax: string.x2c()

Returns a single character, the hexadecimal encoding of the single character in string.

Chapter 4. The NetRexx Language 37

X2d

Syntax: string.x2d([n])

Returns the decimal equivalent of string, which must be hexadecimal, that is,
string.datatype(′H′) must be true.

Indexed Strings
A NetRexx string that has subvalues is called an indexed string. This function is similar to
stems in the Rexx language. A subvalue of a NetRexx string is a NetRexx string. Any other
type is not supported.

The subvalue of a string is accessed by using square brackets. The opening square bracket
must immediately follow the variable name without any interleaving blanks:

stringname[expressions]

The expressions, separated by commas, are called the indexes of the string. Any expression
must be a NetRexx string or can be converted to a NetRexx string.

The nonindexed value of the string must have been assigned before indexing is used on it.
The nonindexed value is used for a reference to a nonexisting subvalue.

Indexed String Example:

 phone = ′ Sorry, unknown name′ -- default value if name is unknown
 phone[′ Alex′] = ′234-4345′ -- set some initial indexed values
 phone[′ Fred′] = ′254-2345′ -- phone implements a phone book
 phone[′ Elsa′] = ′234-9578′

 search=′ Elsa′
 say phone[search] -- says 234-9578
 say phone[′ Alex′] -- says 234-4345
 say phone[′ Peter′] -- says Sorry, unknown name

When multiple indexes, separated by commas, are used, they indicate a hierarchy of strings.
A single NetRexx string has a set of indexes and subvalues. The subvalues are also
NetRexx strings that may have indexes and subvalues.

Multiple Index Example:

 x = ″?″
 x[′ foo′] = ′Yes′ -- sets the indexed value of x[′ foo′]
 x[′ foo′ , ′ bar′] = ′ Ok′ -- sets the multiple indexed value
 say x[′ foo′ , ′ bar′] -- Ok

 y = x[′ foo′] -- Returns a string set to ′ Yes′ with indexed
-- value [′ bar′]

 say y -- Yes
 say y[′ bar′] -- Ok
 say y[′ br′] -- Yes
 say x[′ br′] -- ?

Use the exists(subvalue) method to determine whether a subvalue exists. The method
returns 1 (true) if the subvalue exists, and 0 (false) if not.

Assign null to an indexed reference to drop a subvalue.

The indexes can be retrieved in turn using the over keyword of the loop instruction (see
“Repetitive Tasks” on page 43).

38 Creating Java Applications Using NetRexx

Note: The default value of an indexed string cannot be changed. If you assign a new string
to the variable, the reference of the variable points to the new string that has no subvalues!
This is true even for subvalues that are indexed strings.

Use a hash table (of the java.util package) if you need to store objects of a type different
from NetRexx strings.

Arrays
In addition to indexed strings, NetRexx also includes the concept of fixed-size arrays, which
may be used for indexing values of any type.

Arrays are used in a way similar to indexed strings, but with some important differences:

• An array changes the type of a value to dimensioned.

• The index of an array is of type int and starts at 0.

• An array is of fixed size. It must be constructed before use.

The following examples illustrate that an array of Rexx strings is not the same as an indexed
string.

Array Constructor:

 a = String[4] -- makes an array of 4 Java strings
 b = Rexx[7] -- makes an array of 7 Rexx strings
 c = int[10,10] -- makes an 10×10 array of integer

Array Length: An array has a length variable that reflects the size of the array:

a = String[4] -- makes an array of 4 Java strings
say ′ Size of a =′ a.length -- says ′ Size of a = 4′

Array Type Declaration: The type of a variable can be set with an array notation that
indicates the dimension of an array without any size:

 d = int[] -- one dimensional array of int with any size
 e = int[,] -- two dimensional array of int with any size

This notation is very useful when defining method parameters that deal with arrays of
unknown size.

Vector: Arrays have a fixed size. If your application has to use dynamically growing arrays,
you can use the Vector class (of the java.util package) instead.

Control Statements
NetRexx has a few very powerful instructions that enable you to control the program flow.

In a variation to the classic Rexx definition, NetRexx has one instruction for creating groups
of instructions, and another instruction for repetitive tasks. In contrast to Java, NetRexx
combines its control structures with the exception handling and locking mechanism. As a
result programs are well structured and have extended readability.

Chapter 4. The NetRexx Language 39

Do Instruction

The do instruction defines a code block. A code block is a group of instructions. It may
have a label, and it may protect an object while the instructions are executed. Exceptions
inside the block can be handled. Figure 16 shows the syntax of a code block.

 do [label labelname] [protect object]
instruction

.

.
[catch [varexp =] ExceptionClass

instruction
.
.

]...
[finally

instruction
.
.

]
 end [labelname]

Figure 16. Do Instruction

Options

label The label phrase is used to specify a name for the group. The name can be
used with the leave instruction (see “Exit a Control Structure” on page 46) or
for better readability of the code if many groups are nested. Extending the
readability requires the use of the label name in the end phrase, of course.

protect The protect phrase provides exclusive control over any object. The
instructions of the do statement cannot be interrupted by another thread that
uses the same object. object is any expression that results in an object and
not in a primitive type.

catch Exceptions thrown by any instruction in the do group may be caught by using
one or more catch clauses. Exceptions that are not caught cause the
immediate end of the current method (see “Exceptions” on page 30). If an
exception is caught, the execution continues with the next statement after the
do group (except the finally clause).

finally Instructions in the finally clause are always executed, even if the do block is
terminated by an exception, leave, or return instruction. If the exception is
caught by a catch clause of the do block, the instructions of the finally clause
are executed after the instructions in the catch clause.

Do Instruction Example:

 do label bigLoop
i = int
say ′ which number ?′
do label getInput
i=ask -- gets the input

catch RuntimeException
say ″This was not a number″
say ″0 is used as default″
i = 0

finally
say ″number =″ i -- executed, regardless what happens

end getInput
say ′ 5x′ i′= ′5*i

 end bigLoop

40 Creating Java Applications Using NetRexx

Conditional Instructions

NetRexx has two conditional instructions—if and select—that alter the program flow
according to boolean expressions.

If Instruction

The if instruction (Figure 17) is used to conditionally execute one instruction or to select
between two alternatives.

 if booleanExpression then instruction
[else instruction]

Figure 17. If Instruction

The then and the else keyword implicitly insert a semicolon. The implicit semicolon enables
you to write the instruction on a separate line or immediately after the then or else keyword.

A code block must be used if more than one instruction is executed after the then or else
keyword.

The else keyword binds to the previous then at the same level, when nested if instructions
are used.

If Instruction Example:

 if answer=′ yes′ then say ′ fine′
else -- possible because of implicitly semicolon

say ′ Why not′

 if a > 4 then
if b < 2 then

say ′ a is greater 4 and b less 2′
else

say ′ a is greater 4 and b greater or equal 2′

 else do -- only one instruction allowed -> use do group
say ′ a is less or equal 4′
say ″Don′ t know anything about b″

 end

Select Instruction

The select instruction (Figure 18) is used to conditionally execute one or several
alternatives. The construct may optionally be given a label, protect an object while the
instruction is executed, or catch exceptions.

Chapter 4. The NetRexx Language 41

 select [label labelname] [protect object]
when booleanExpression then instruction

[when booleanExpression then instruction]...
[otherwise

instruction
.
.

]
[catch [varexp =] ExceptionClass

instruction
.
.

]...
[finally

instruction
.
.

]
 end [labelname]

Figure 18. Select Instruction

Each boolean expression following a when is evaluated from top to bottom. If the expression
evaluates to 1 (true), the instruction following the then is executed and control passes to the
finally clause. If the finally clause is absent, control passes directly to end.

If none of the when instructions results in 1, control passes to the otherwise instruction. If
the otherwise instruction is absent, a NoOtherwiseException is thrown.

Options

label The label phrase is used to specify a name for the select statement. The
name can be used with the leave instruction (see “Exit a Control Structure”
on page 46) or for better readability of the code. Extending the readability
requires the use of the label name in the end phrase, of course.

protect The protect phrase provides exclusive control over any object. The
instructions of the select statement cannot be interrupted by another thread
that uses the same object. object is any expression that results in an object
and not in a primitive type.

catch Exceptions thrown by any instruction in the select statement may be caught
using one or more catch clauses. Exceptions that are not caught cause the
immediate end of the current method (see “Exceptions” on page 30). If an
exception is caught, the execution continues with the next statement after the
select instruction (except the finally clause).

finally Instructions in the finally clause are always executed, even if the select
instruction is terminated by an exception, leave, or return instruction. If the
exception is caught by a catch clause of the select group, the instructions of
the finally clause are executed after the instructions in the catch clause.

Select Instruction Example:

select
when x * y < 2000 then say ′ You have a small house′
when x * y < 6000 then say ′ You have a large house′
otherwise say ′ You have a villa′

 end

42 Creating Java Applications Using NetRexx

Repetitive Tasks

NetRexx has only one instruction for all types of repetitive tasks, the loop instruction.

Loop Instruction

The loop instruction is the most complicated of the NetRexx instructions (Figure 19).

 loop [label labelname] [protect object] [repetitor] [conditional]
instruction

.

.
[catch [varexp =] ExceptionClass

instruction
.
.

]...
[finally

instruction
.
.

]
 end [labelname]

Figure 19. Loop Instruction

The repetitor is one of:

• controlvar = iexpression [to eexpression] [by bexpression] [for fexpression]

• overvar over oterm

• for fexpression

• forever

The conditional is either of:

• while booleanExpression

• until booleanExpression

The instructions after the loop statement are called the body of the loop.

Options

label The label phrase is used to specify a name for the loop. The name can be
used with the leave instruction (see “Exit a Control Structure” on page 46) or
for better readability of the code. Extending the readability requires the use
of the label name in the end phrase, of course.

protect The protect phrase provides exclusive control over any object. The
instructions of the loop cannot be interrupted by another thread that uses the
same object. object is any expression that results in an object and not in a
primitive type.

catch Exceptions thrown by any instruction in the loop may be caught using one or
more catch clauses. Exceptions that are not caught cause the immediate
end of the current method (see “Exceptions” on page 30). If an exception is
caught, the execution continues with the next statement after the loop
(except the finally clause).

Chapter 4. The NetRexx Language 43

finally Instructions in the finally clause are always executed, even if the loop is
terminated by an exception, leave, or return instruction. If the exception is
caught by a catch clause of the loop, the instructions of the finally clause are
executed after the instructions in the catch clause.

Indefinite Loops

A indefinite loop is constructed with the forever repetitor. The loop ends only when an
instruction in the body of the loop causes control to leave the loop.

Example of an indefinite loop:

 loop forever
sleep(1000) -- loop body begins here, wait 1 second
repaint() -- draw something

 catch InterruptedException -- one way to leave the loop
 end

Bounded Loops

A bounded loop is constructed with the for repetitor. The loop is repeated as many times as
the fexpression specifies. There is no variable that controls how often the loop is repeated.
fexpression must be a positive integer.

Example of a bounded loop:

 -- This example displays 7 times I′ m still alive
 loop for 7

say ″I′ m still alive″
 end

Controlled Bounded Loops

A controlled bounded loop starts with an assignment to a control variable, controlvar. The
control variable can be an existing numeric variable in the current method or class or a new
variable.

The by keyword specifies how the control variable is incremented or decremented after each
loop iteration; it defaults to +1.

If the to keyword is specified, the loop is terminated when the control variable becomes
greater than the texpression (or less than the expression if the by value is negative).

If the for keyword is used, the loop ends after fexpression repetitions.

Examples of controlled bounded loops:

 loop i=1 to 7
say i

 end
 -- displays 1 2 3 4 5 6 7

 loop i=1.0 to 4.2 by 0.9
say i

 end
 -- displays 1.0 1.9 2.8 3.7

 loop i=4 to 3
say i

 end
 -- displays nothing because the loop body is never executed

 loop i=4.0 by 0.8 for 3
say i

44 Creating Java Applications Using NetRexx

end
 -- displays 4.0 4.8 5.6

Over Loops

An over loop iterates over an indexed string or a hash table (java.util package). The loop
takes a snapshot of the indexes in the collection at the start of the loop. For each iteration
of the loop, the control variable is set to an index from the snapshot.

The order in which the values are returned is undefined.

Example of an over loop:

 phone = ′ Who ?′
 phone[′ Pete′]= ′2342′ ; phone[′ Mary′]= ′3943′ ; phone[′ Mike′] = 4643
 loop name over phone -- control variable is name, loops over phone

say name ′ has phone number′ phone[name]
 end
 /* shows

Pete has phone number 2342
Mary has phone number 3943
Mike has phone number 4643 */

Conditional Loops

Loops with the unti l or while keyword are conditional loops.

A while loop checks the expression before the body of the loop is executed. The loop is
executed while the expression is true.

An until loop checks the expression after the body loop has been executed. The loop is
repeated until the expression becomes true.

Examples of conditional loops:

-- the loop stops when a is greater equal 4
a = 0
loop label whileloop while a < 4
do
say ″enter any number″
a = a + ask
say ′ a=′ a

catch RuntimeException -- no number was typed
end

end whileloop

-- the loop stops when a is greater than 10
-- the loop executes at least once
a = 100
loop until a > 10
say ″enter any number″
a = ask * 2
say ′ a=′ a

end

Iterate Instruction

The iterate instruction (Figure 20) alters the flow of control within a loop construct. Iterate
acts like a jump to the end of the loop body.

 iterate [labelname]

Figure 20. Iterate Instruction

Chapter 4. The NetRexx Language 45

If labelname is not specified, iterate just steps to the innermost loop. If labelname is
specified, iterate steps to the end of the loop body specified. The loop must be an active
loop. If a loop does not have a label, the name of the control variable can be used instead.

Iterate Instruction Example:

 /* language\Prime.nrx */
 n = 2000
 say ′ Prime numbers from 2 to′ n′ : ′
 loop label outer i=2 to n

if i//100 = 0 then say
loop label inner j=2 by 1 while j**2 < n

if j<i & i//j = 0 then iterate outer
end
say i ′ \-′

 end

Exit a Control Structure

The leave instruction (Figure 21) is used to leave a control structure, that is, a do block,
select instruction, or loop.

 leave [labelname]

Figure 21. Leave Instruction

If labelname is not specified, leave just leaves the current control statement. If labelname is
specified, the leave instruction leaves the control statement with the specified label. The
control statement must be in the same method. If a loop does not have a label, the name of
the control variable can be used instead.

Leave Instruction Example:

 -- displays 1 2 3 4 5 6 7
 loop x=1

if x // 7 = 0 then leave
 end

If the control structure has a finally clause, the leave jumps into the finally clause.

Exit a Method

The return instruction (Figure 22) is used to leave the current method and return control,
and optionally a result, to the point of invocation.

 return [expression]

Figure 22. Return Instruction

The expression, if any, is evaluated, finally clauses are executed, and the value of the
expression is passed to the caller.

46 Creating Java Applications Using NetRexx

Exit a Program

The exit instruction (Figure 23) ends the program immediately. Finally clauses are not
executed.

 exit [numericExpression]

Figure 23. Exit Instruction

The optional numericExpression is returned to the program that started the current NetRexx
program.

Exit should be used very carefully in a method. The whole NetRexx program terminates, not
just the current method.

Trace Instruction

The trace instruction (Figure 24) lets you trace each statement during execution for
debugging purposes.

 trace [methods]
 trace [all]
 trace [results]
 trace [off]

Figure 24. Trace Instruction

You can trace the invocation of methods with their parameters, all clauses that are executed
(and the methods), or even each expression evaluation and results assigned to variables (in
addition to clauses and methods).

The trace option can, however, negate any trace instructions (see “Trace Option” on
page 48).

Numeric Instruction

The numeric instruction (Figure 25) enables you to specify both the number of significant
digits for calculations in the Rexx class, and the format of exponential notation.

 numeric digits [n]
 numeric form [scientific | engineering]

Figure 25. Numeric Instruction

See Figure 5 on page 7 for an example of specifying numeric digits.

Chapter 4. The NetRexx Language 47

Options
The options instruction (Figure 26) is used to pass special requests to the compiler. More
than 10 options are available, but only two are of common interest: binary and trace. The
complete list of options is discussed in “Options Keyword” on page 15.

 options optionList

Figure 26. Options Instruction

All options can be used as command line switches when the NetRexx compiler is invoked,
but any option set by the options instruction has precedence.

You use the options instruction at any place in the file, but we recommend using it in the
first lines of the file, before the first class and method instructions.

Binary Option

The binary option forces the compiler to compile all classes in the current file as binary
classes. This is the same as using the binary keyword when defining a class (see “Class
Instruction” on page 25).

In a binary class, literals are assigned to primitive data types (see “Data Types” on page 20)
or as Java strings. Native binary operators are used where appropriate (see NetRexx Online
Documentation - Binary values and operations).

In classes that are not binary, terms in expressions are converted to the Rexx string type
(see “The Rexx Class for Strings” on page 30).

The use of the binary option or binary keyword in class instructions can speed up the
program.

We recommend avoiding the use of the binary keyword as long a possible, because you lose
some of the automatic numeric conversions that improve the reliability of programs. If some
routines of your program, such as drawing routines, need a boost, you can use the binary
keyword for the class implementations. Only minor changes to the source code are
necessary when changing to binary classes.

Trace Option

With the trace and notrace option you can control the use of the trace instruction.

Notrace prevents tracing overhead while leaving trace instructions in the program. The
value of this function is that you can leave all trace instructions in your code and switch
them off at a central point. If the program does not work as you expect, you can switch back
the trace option and debug your program without having to recode the trace instructions.

48 Creating Java Applications Using NetRexx

Chapter 5. Using NetRexx As a Scripting Language
In this chapter we discuss NetRexx as a scripting language: that is, we use NetRexx for
simple, straightforward programs, without using object-oriented facilities.

We show you how to write subroutines and functions, how to use files, how to call external
programs, and we explain the Java code that is generated.

NetRexx programs that use NetRexx as a scripting language are called script programs, or
scripts, in this chapter.

Why Scripts?
You can use NetRexx as a simple scripting language without using any object-oriented
features. Scripts can be written very fast. There is no overhead, such as defining a class,
and the programs contain only the necessary instructions.

The scripting feature can be used for test purposes. It is an easy and convenient way of
entering some statements and testing them.

The scripting feature can also be used for the start sequence of a NetRexx application.
When an application is started, the main method of the first public class in a file is called, as
described in Chapter 6, “Creating and Using NetRexx Classes” on page 57. In many
programs this is inconvenient and not a good style, because the starting sequence is a
sequential procedure and not a function of an object or class. The sequence checks the
arguments, creates some objects, and starts the main object.

An easy solution is to create a separate program that performs the startup sequence. This
program will be short, easy to understand, and easy to maintain. You do not have to scroll
through dozens of lines of code to find the main method.

Small helpful command line programs can be written in NetRexx as well. The great
advantage of such programs is that they can be used with every operating system that
supports Java.

Translating existing Rexx programs to NetRexx is possible if they do not call functions of the
operating system.

Straightforward Programs
To use NetRexx as a scripting language, just type in your instructions. There are no
restrictions, except for the use of the class and properties instruction.

A good example of a script program is our first program (see “Our First NetRexx Program”
on page 7). It is pretty straightforward, takes advantage of special features (exception
handling), and does not define any class or other object-oriented facilities.

 Copyright IBM Corp. 1997 49

Use the say instruction to print a string and the ask keyword to get a response from the user
(see “Input and Output” on page 20). Figure 27 shows another example of NetRexx as a
scripting language.

/* script\Game.nrx

This is a small game. The program chooses a number between 0 and 1000
and you have to find out the number as fast as possible */

say ″I′ am choosing a number between 0 and 1000″
number = 1000*Math.random() % 1 -- %1 transform result to integer
say ′ Found a number′
guess = int -- declares guess as variable of type int
loop count = 1 until guess = number
say count ′ try: \-′
guess = ask
select
when guess > number then
say guess ′ is to big′

when guess < number then
say guess ′ is to small′

otherwise
say
say ′ Congratualations. You did it with′ count ′ tries.′

end
catch RunTimeException
say ′ Sorry, whole numbers only. You lost the game.′

end

Figure 27. A Simple NetRexx Script: Game.nrx

Subroutines and Functions
As your application becomes bigger, you will feel the need for subroutines or functions.

The difference between a subroutine and a function is that a subroutine does not return a
result. NetRexx does not provide keywords for subroutines or functions. Both are
implemented as methods in a scripting program. If a method returns a value, it is a
function, if not, it is a subroutine. Figure 28 shows you how to define a method.

 method name([parameterlist]) static

Figure 28. Methods for NetRexx as a Scripting Language

If you do not specify the static keyword, the method cannot be invoked from your program,
and the NetRexx compiler complains about the use of the method, not the declaration:

 24 +++ add()
+++ ^^^
+++ Error: Cannot refer to a non-static method directly from a static instruction

The parameterlist defines the parameters the method expects when it is called. See
“Method Instruction” on page 28 for more information.

The parentheses can be omitted, if the method does not use any parameters.

Use the return instruction (see “Exit a Method” on page 46) to return the result of your
method to the caller. If the method is a subroutine, use return without an expression:

50 Creating Java Applications Using NetRexx

 return 5*a -- returns the value of 5*a

 return -- no result value returned

Global variables are not available. A method cannot access any variable of the main part of
the program or of another method. Each variable must be passed to a method as a
parameter.

With this knowledge, we can now improve our game program to calculate the answer in a
subroutine (method) and read the input in a function (method), as shown in Figure 29.

/* script\Game2.nrx

This is a small game. The program chooses a number between 0 and 1000
and you have to find out the number as fast as possible */

say ″I′ am choosing a number between 0 and 1000″
number = 1000*Math.random() % 1 -- %1 transform result to integer
say ′ Found a number′
guess = int -- declares guess as variable of type int
loop count = 1 until guess = number
say count ′ try: \-′
guess = getNumber() -- invoke a FUNCTION

 showAnswer(guess,number,count) -- invoke a SUBROUTINE
end

-- method showAnswer is a subroutine
method showAnswer(guess,number,count) static
select
when guess > number then
say guess ′ is to big′

when guess < number then
say guess ′ is to small′

otherwise
say
say ′ Congratualations. You did it with′ count ′ tries.′

end

-- method getNumber is a function returning an integer
method getNumber static returns int
 loop forever

number = ask -- get the input and check the type
if number.datatype(′ W′) then return number -- Ok, return the number

say ′ Sorry, but′ number ′ is not an integer.′
say ′ Try it again : \-′

 end

Figure 29. Using Methods As Subroutines and Functions: Game2.nrx

External Methods

We call a subroutine an external method if it is stored in a separate file. External methods
are quite easy, if the files are stored in the same subdirectory.

A program calls an external method, using its file name qualified with the name of the
method. Figure 30 shows how our game program calls an external method to read an
integer from the user.

Chapter 5. Using NetRexx As a Scripting Language 51

/* script\Game3.nrx

This is a small game. The program chooses a number between 0 and 1000
and you have to find out the number as fast as possible */

say ″I′ am choosing a number between 0 and 1000″
number = 1000*Math.random() % 1 -- %1 transform result to integer
say ′ Found a number′
guess = int -- declares guess as variable of type int
loop count = 1 until guess = number
say count ′ try: \-′
guess = Input.getNumber() -- invoke EXTERNAL METHOD
showAnswer(guess,number,count)

end

-- method showAnswer is a subroutine
method showAnswer(guess,number,count) static
select
when guess > number then
say guess ′ is to big′

when guess < number then
say guess ′ is to small′

otherwise
say
say ′ Congratualations. You did it with′ count ′ tries.′

end

/* script\Input.nrx - separate file */

-- method getNumber is a function returning an integer
method getNumber static returns int
 loop forever

number = ask -- get the input and check the type
if number.datatype(′ W′) then return number -- Ok, return the number

say ′ Sorry, but′ number ′ is not an integer.′
say ′ Try it again : \-′

 end

Figure 30. Calling an External Method: Game3.nrx and Input.nrx

External Methods in a Package

If you want to store your external methods in a different subdirectory, you must build a
package:

1. Create a subdirectory in any directory that is listed in the CLASSPATH environment
variable.

2. Copy all source files with external methods into this subdirectory.

3. Edit these files and add a package instruction as the first instruction of each file:

package packagename

where packagename is the relative name of the directory (starting from the CLASSPATH
directory).

4. Edit the script files that use the external methods and add an import statement to the
beginning of the file:

import packagename

52 Creating Java Applications Using NetRexx

Calling Non-Java Programs
You can start external programs with the help of the JDK. The exec method of the Runtime
class starts a program in another process and returns a Process object containing
information about the process:

 Runtime.getRuntime().exec(program)

Before using the exec method, you must get the current Runtime object, using the
Runtime.getRuntime() call. If the specified program cannot be started, an IOException is
thrown.

The Process class enables you to communicate with the child process, the external program,
through its standard input, output, and error streams and to stop the process and retrieve its
exit status. These functions are implemented in methods of the Process class:

getErrorStream Returns an InputStream that is connected to the standard error
stream of the object

getInputStream Returns an InputStream that is connected to the standard output
stream of the object

getOutputStream Returns an OutputStream that is connected to the standard input
stream of the object

destroy Kills the process

exitValue Returns the exit value of the process. If exitValue is called before the
end of the process, an IllegalThreadStateException is thrown.

waitFor Waits for the process to terminate.

Please see the Java Toolkit Online Reference for more information.

Figure 31 illustrates the use of the process methods.

/* script\NonJava.nrx

This program starts an UNZIP program, redirect it′ s output,
parses the output and shows the files stored in the zipfile */

parse arg unzip zipfile .

-- check the arguments - show usage comments
if zipfile = ′ ′ then do

say ′ Usage: Process unzipcommand zipfile′
exit 2

end

do
say ″Files stored in″ zipfile
say ″-″ . left(39,″-″) ″-″ . left(39,″-″)
child = Runtime.getRuntime().exec(unzip ′ -v′ zipfile) -- program start

-- read input from child process
 in = BufferedReader(InputStreamReader(child.getInputStream()))

Figure 31 (Part 1 of 2). Calling Non-Java Programs from NetRexx: NonJava.nrx

Chapter 5. Using NetRexx As a Scripting Language 53

line = in.readline

start = 0 -- listing of files are not available yet
count = 0
loop while line \= null

parse line sep program
if sep = ′ ------′ then start = \start
else
if start then do

count = count + 1
if count // 2 > 0 then say program.word(program.words).left(39) ′ \-′

else say program.word(program.words)
end

line = in.readline()
end

-- wait for exit of child process and check return code
child.waitFor()
if child.exitValue() \= 0 then

say ′ UNZIP return code′ child.exitValue()

 catch IOException
say ′ Sorry cannot find′ unzip

 catch e2=InterruptedException
e2.printStackTrace()

end

Figure 31 (Part 2 of 2). Calling Non-Java Programs from NetRexx: NonJava.nrx

Behind the Scenes
NetRexx compiles to Java, which does not have the features of a scripting language.

When you start a Java program, the main method of the class that is started is called. The
main method must be static; it belongs to the class and not to an object.

NetRexx takes the file name of the program and creates a class for you. The program
statements you coded become the main method of the class (Figure 32).

54 Creating Java Applications Using NetRexx

NetRexx Source Code Implied NetRexx Source Code

/* GameX.NRX */ |
|-> class GameX

/* This is a small game */ |-> method main(argv=String[])
say ″I′ m choosing a number ...″ | say ″I′ m choosing a number ...″
number = 1000*Math.random()%1 | number = 1000*Math.random()%1
guess = int | guess = int
loop count=1 until guess=number | loop count=1 until guess=number
. | .
. | .

end | end
|

method showAnswer(...) static | method showAnswer(...) static
 select | select

when ... | when ...
. | .
. | .

 end | end
|
|-> -- end of class GameX

Figure 32. NetRexx As a Scripting Language: Generated Class and Main Method

Methods that you define in your script become additional class methods of the same class.
Be sure to specify the static keyword.

Class variables and constants cannot be used, because NetRexx does not accept a
properties statement as the first statement in a script file. The properties instruction must
be used before any method instruction.

Calling external methods is quite easy; the programs are in the same package as long as
they are in the same directory. Calling an external method is nothing other than calling a
class method of another class.

If the files are stored in another subdirectory, you have to define a package (see “External
Methods in a Package” on page 52 and “Packages” on page 70).

Handling Parameters in a NetRexx Script
If you want to pass one or multiple parameters to a NetRexx script program, you must
declare the main method, before using any other statements (except for the optional class
statement):

 method main(args=String[]) static
...

Java passes arguments as an array of strings (Java strings). You can test the number of
parameters, using the length property of the array, and access the parameters, using array
indexes starting at 0:

 method main(args=String[]) static
say ′ Number of arguments:′ args.length

loop i=0 to args.length-1
say ′ - Argument number′ i′ : ′ args[i]

end
...

The main method of the first public class must be declared with the array of strings
parameter. Java produces an error if the main method is declared differently.

Chapter 5. Using NetRexx As a Scripting Language 55

However, NetRexx produces a warning if you declare a variable and never use it. Therefore,
if you declare the main method but want to ignore the parameters, add a dummy line to
prevent the annoying warning message:

 method main(args=String[]) static
args = args
...

56 Creating Java Applications Using NetRexx

Chapter 6. Creating and Using NetRexx Classes
In this chapter we take a closer look at classes, methods, and inheritance and concentrate
on how NetRexx can create and use classes.

Definition of Class
A class is a collection of properties (variables) and methods (procedures) for carrying out
operations on the properties.

A class definition is like a building plan for objects, and an object is an instance of a class.
For example, Rexx is the String class of NetRexx. You cannot do anything with the class
itself. A character string is an object of type Rexx. It has properties, such as the length of
the string and its value, and methods, such as lower, associated with objects. You can work
with the properties of the object directly, if allowed, or through method calls.

A class can protect the properties of the instances or the class itself by making them private.
Every access must then be through methods.

Why Use Classes?
This example illustrates the need for classes:

• A group of three men open a private bank. The bank is a room with a book for each
account and a bowl for money.

• If one of the three men wants to add to his account, he puts the money into the bowl
and records the deposit in his book.

• If one of the men wants to withdraw money, he takes the money out of the bowl and
records the debit in his book.

This method works very well as long there are only three people, who know each other. It is
like a conventional programming language. Everybody has full access to the data, and
everybody promises to follow the rules for access.

As the bank grows, the old method becomes obsolete. To make it work:

• The bank hires a teller, who is the only one with access to the account books and to the
bowl with the money.

• When clients want to withdraw money from or deposit it to their account, they go to the
teller, who conducts the transactions for them.

Let us apply this to a program:

• The account books and the bowl are our properties. The account book is an instance
property, because every customer has his or her own account, and the bowl is a class
property because there is only one.

 Copyright IBM Corp. 1997 57

• The teller is the implementation of the methods. He is the one who has access to the
properties and is responsible for the transactions.

• Any discrepancy in an account is the result of the teller′s mistake. You do not have to
go to each customer (perhaps 10,000) and check what they were doing wrong.

Classes
A class is a construction plan for an object. It describes the data of an object and the
methods to access and change the data.

An object is an instance of a class. It encapsulates the object data. The data of an object
can be accessed through the methods of an object.

If a new object is constructed from a class, the instance variables (the data of the object) are
created and initialized for the object. Every object has its own set of variables. The number
of objects is limited only by the system resources.

The instance methods exist only once. They operate on the data of individual objects.

In addition there are class methods and class variables. These methods and variables
belong to the class. There is only one set of class variables. Class variables and methods
are used most commonly for defining constants or keeping track of all of the objects created
in the class.

Properties
The variable definitions of a class are called properties in NetRexx. The term property
includes instance and class variables.

Properties are distinguished by their behavior and visibility. A variable can behave as an
instance variable, class variable, constant, or volatile instance variable:

Instance variable The variable belongs to an instance of the class, and each
object has its own variable. The variable is initialized when
the object is constructed. It can only be accessed with a
reference to an object. This is the default behavior.

Class variable The variable belongs to the class and is initialized when the
class is loaded.

Constant A constant belongs to the class and cannot be changed.

Volatile instance variable An instance variable that can be changed asynchronously,
outside the control of the current process.

A variable ′s visibility, that is, how it can be accessed, can be public, inheritable, or private:

Public variable A public variable can be used by every other class. There is
no protection.

Inheritable variable An inheritable variable can be used by classes that are in the
same package (friends in C++) or subclasses of the current
class.

Private variable A private variable can be used only by methods of the same
class.

An inheritable visibility is the default, if a Properties statement is not used to change it.

We recommend not using public variables, unless they are constants. Even if the use of the
variable is not limited now, there is no guarantee that the visibility will not change in the

58 Creating Java Applications Using NetRexx

future. If visibility changes, all code that uses the class must be changed to use methods
instead of direct assignments.

Use private variables carefully. A private variable is a strong restriction for subclassing.
Use it if changes to the variable have restrictions and you cannot trust the programmers of
subclasses.

We do not recommend trusting a user of your classes, but we do recommend trusting the
programmers of subclasses, because they have to fix whatever goes wrong with their
classes.

Table 5 shows the keywords for behavior and visibility in the properties instruction (see
“Properties Instruction” on page 26).

Table 5. Keywords for Behavior and Visibility of Properties

Behavior

Visibility

Public Private Inheritable

Instance variable public pr ivate inheritable

Class variable public static private static static

Constant public constant private constant constant

Volatile instance variable public volatile private volati le volat i le

Methods
A method is a subroutine or function defined in a class.

Three different kinds of methods are defined in NetRexx:

Instance methods An instance method belongs to an object. You can call an
instance method only if you have a reference to an object.
Instance methods have unlimited access to the instance and
class variables of the object.

Class methods A class method belongs to the class. No reference to an
object of the class is necessary. Class methods have
unlimited access to the class variables but cannot access the
data of any object of the class.

Constructor methods A constructor method belongs to the class and constructs an
object of the class. Constructor methods do not need a
reference to an object, because they create an object. The
instance variables of the created object can be accessed
from the constructor method. Class variables are also
available. The name of a constructor method is the same as
the class name.

The methods are distinguished by their behavior and visibility.

Behavior defines whether a method is overridable, final, abstract, or native:

Overridable methods An overridable method can be overridden in a subclass. The
method of the subclass must use the same argument list
(signature) as the overridden method.

Final methods A final method cannot be overridden in any subclass. A final
method can be overridden if the signature is different.

Abstract methods Only the interface (parameter list) of an abstract method is
defined. An abstract method must be implemented in
subclasses of the class. A class with any abstract method

Chapter 6. Creating and Using NetRexx Classes 59

automatically becomes abstract itself. You cannot create an
object in an abstract class.

Native method A native method is implemented by the environment itself. A
native method cannot be overridden.

We recommend avoiding the definition of final methods. Although a final method can be
used more efficiently than an overridable method, it restricts the reuseability of the class.

Visibility defines how a method can be called:

Public methods A public method can be called by any other class. There is
no restriction. Public is the default.

Inheritable methods An inheritable method can be called from subclasses or from
classes that are in the same package.

Private methods A private method can be called only from methods of its own
class.

A public method is used as the interface for users of the class.

An inheritable method is used for internal functions of a class and cannot be called by users
of the class. Inheritable methods do not check the arguments of the method; they trust the
caller.

Table 6 shows the keywords for the behavior and visibility of methods.

Table 6. Keywords for Behavior and Visibility of Methods

Behavior

Visibility

Public Private Inheritable

Overridable instance method (default) pr ivate inheritable

Final instance method f inal final private final inheritable

Constructor method (default) pr ivate

Overridable class method static static private static inheritable

Abstract instance method abstract abstract private
abstract

inheritable

Native instance method native native private native inheritable

Signature of Methods

Methods have a list of arguments that are passed to them. If a method does not need any
argument, the list can be empty. Method arguments may be optional with a default value.
Optional arguments must be at the end of the argument list.

The signature is the name of a method and the types of the arguments in sequence. The
return type of a method is part of the method definition but not part of the signature.

Examples of method definitions to illustrate signatures:

 method a(a=int,b=String,c=int) -- has the signature a(int,String,int)

 method c() -- has the signature c()

 method a(a=int,b) -- has the signature a(int,Rexx)

If a method has optional arguments, a set of signatures is related to that method. The set is
built by creating a signature for the method and removing the last optional argument from
the argument list (from right to left). This step is repeated as long as the method has
optional arguments.

60 Creating Java Applications Using NetRexx

An example of a method with three optional arguments:

 method b(a=int, b=String, c=int, d=int 5, e=′ Yes′ , f=boolean 1)

This method has four signatures:

b(int,String,int,int,Rexx,boolean)
b(int,String,int,int,Rexx)
b(int,String,int,int)
b(int,String,int)

Note: You cannot define two methods with the same signature in the same class.

Overloading Methods

Methods with the same name but different signatures overload each other.

NetRexx builds the signature of the method invocation and invokes the method with the
matching signature.

Examples of overloading methods:

 method a(a=int,b,c=Rexx ′ default′) -- M1: signatures a(int,Rexx,Rexx)
say ′ a=′ a ′ b=′ b ′ c=′ c -- and a(int,Rexx)

 method a(b,c=Rexx ′ default′) -- M2: signatures a(Rexx,Rexx)
say ′ b=′ b ′ c=′ c -- and a(Rexx)

 method a(a=int) -- M3: signature a(int)
say ′ a=′ a

 a(5) -- matching signature M3: a=5
 a(5,′ Test′) -- matching signature M1: a=5 b=Test c=default

-- the Java string ″Test″ is converted to a Rexx string
 a(′ Test′ , ′ Test′) -- matching signature M2: b=Test c=Test
 a(′ Test′) -- matching signature M2: b=Test c=default

Constructor Methods

A constructor method constructs an object of the class. Constructor methods have the same
name as the class. A default constructor is a constructor without any arguments.

The first instruction in such a method must create a new object of the class. The object is
created by a call to the constructor of the superclass or to another constructor of the current
class. If the first statement of a constructor method is not a call to a constructor of the
superclass or the current class, a call to the default constructor of the superclass is added
automatically.

After the construction of the object, the this keyword refers to the created object. All
instance variables of the created object can be accessed.

A constructor method does not have to define the return type of the method. If the return
instruction is used, it can be used only without a value or with this (return this).

Examples of constructor methods:

 class Example -- extends Object per default

method Example(testobject) -- constructor with a parameter
this() -- call the default constructor
b.addElement(testobject)

Chapter 6. Creating and Using NetRexx Classes 61

method Example() -- default Constructor
-- super() is inserted automatically

a = Date()

The superclass constructor is invoked by a call to super([argument [,argument]...]).

Another constructor of the current class is invoked by a call to
this([argument [,argument]...]).

NetRexx automatically defines a default constructor without a parameter list if the user does
not define a constructor.

Invoking Methods

There are different ways of invoking methods:

• An instance method is invoked by specifying the object followed by a period and the
method ′s name. The method′s name must be followed immediately by a left
parenthesis with no blank in between:

 c = ′ abcd′
 a = c.right(6,″-″) -- would set a to ″--abcd″

• If the method has no arguments, the parentheses are not necessary but recommended:

 c = ′ AbCd′
 a = c.lower -- would set a to ″abcd″ , same as c.lower()

• If the method is invoked for the current object, the object and the period are not
necessary:

 s = toString() -- same as s = this.toString()

• If a method overrides an inherited method, the overridden method can be called with
the super keyword:

 class Abc extends Ab
method className() returns Rexx
return ″Class abc inherits from″ super.className()

• In a constructor method, the constructor of the superclass must be called in the first
instruction. If it is omitted, such a call is generated automatically:

 class Abc extends Ab
method abc(a) -- a is of type Rexx
super(a) -- invokes the constructor of class ab
...

method abc(a,b) -- a and b of type Rexx
super(b) -- invokes the constructor of class ab
...

method abc(a,b,c) -- a, b, and c of type Rexx
this(a,b) -- invokes the 2nd constructor of class abc
....

• To call a class method, the name of the class is used instead of an object:

 class Service
method test() static -- class method test
....

 class XYZ
Service.test() -- call the test method of the Service class

62 Creating Java Applications Using NetRexx

• If the class does not belong to the current package and there is no import statement for
the package, a class method is invoked by specifying the fully qualified class name:

 OtherPackage.Utilities.Service.test() -- fully qualified name of Service

• The constructor method of a class is invoked by using the name of the class followed by
parentheses:

 a = File(′ TEMP.TMP′)
 b = java.io.File(′ TEMP.TMP′) -- same as line above
 c = Example() -- parenthesis are mandatory for constructors

Inheritance
We want to use our first example (see “Why Use Classes?” on page 57) to explain the
inheritance of classes. The bank wants to open a new branch. The new branch will be the
same as the old branch, except the money will be stored in a safe instead of a bowl. The
men do not want to establish new procedures for using the bank, but two additional
procedures are needed to open and close the safe. The teller needs some new instructions
to put the money in the safe instead of the bowl.

If the old branch is a class, we would inherit from that class for the new branch. The safe is
a new instance variable that extends the old class. In real life it might be implemented by a
database. Two new methods have to be written to open and close the safe. Some of the
methods for the teller have to be overridden to use the safe. Overriding means that the
signature is still the same, but the implementation is changed.

Definition of Inheritance

In NetRexx a class can inherit all of the public or inheritable variables and methods from
another class. The new class is a subclass of the old class, and the old class is the
superclass for the new class.

The subclass extends the superclass. The subclass inherits the methods and variables of
the superclass. A user of the class does not have to distinguish between methods that are
implemented in the current class and methods that are inherited from the superclass. This
is also true for properties, but the user should never have direct access to an instance or
class variable in a well-designed class.

The subclass can override instance and class methods and instance and class variables
(properties).

In the example that follows, class C2 extends (inherits from) class C1 and implements a new
method. The use of methods defined in class C1 is transparent for users of class C2:

 ---------------------------------- Definition of class C1
 class C1

Properties
a = int
b = int

method C1(a_ = int, b_ = int)
a = a_
b = b_

method add() returns int
return a + b

 ---------------------------------- Definition of class C2
 class C2 extends C1

method C2(a_ = int, b_ = int) -- constructor method for C2

Chapter 6. Creating and Using NetRexx Classes 63

super(a_,b_) -- calls constructor of C1

method show -- new method
say add() -- use of the inherited method add

 ---------------------------------- Usage of class C2
 class XYZ ...

obj = C2(4,5) -- new object of type C2
say obj.add() -- uses method of C2, implemented in C1
obj.show() -- uses method of C2, implemented in C2

Why Use Inheritance?

Data encapsulation and inheritance are the elements of an object-oriented language. Data
encapsulation helps to ensure that the data can be changed only by methods that are part of
the object definition. If an error occurs, it has to be in the methods of the object and not in
thousands of lines of code that are using the object. The consistency and accuracy of the
data of the object are guaranteed by the class implementation.

Inheritance is code reuse. Reusing code is one of the main goals of fast program
development and reliable programs. The advantage of code reuse is that code is written
only once. If there is an error in the code, it has to be corrected only once. If the code is
copied instead of inherited, the error must be corrected in every copy. This may be a minor
problem in the development cycle of the software, but it is a major problem in the
maintenance cycle.

Overriding Methods

A subclass overrides a method of the superclass when it uses the same signature as the
superclass.

The old method of the superclass is no longer accessible from users of the class. It is
accessible only from method inside the class. Overridden methods of the superclass are
called by using the keyword super instead of this. When calling a method in the same class,
this is optional and most of the time omitted.

When a method is called on an object, the search for a matching method with the same
signature always starts from the class of the object (see Figure 33).

Object
│
│
class A method add()
│ . 	
│ . │
class B this.add() │
│ . │ │
│ . │ │
class C │ method add -> call super.add()
│ │ 	
│ │ │
class D └───────┘

Figure 33. Search for Methods in the Class Chain

64 Creating Java Applications Using NetRexx

Notes:

 1. In Figure 33 class A inherits from Object, class B from A, and so forth.

 2. The type of the current object is class D.

 3. A method in class B calls this.add(), which is the same as add(). NetRexx starts looking
for the add method from the bottom of the class chain, that is, from class D. In this
example add is implemented by class C.

 4. When C calls super.add(), NetRexx starts looking for the method starting with class B. In
this example Class A implements the add method, which is overridden by class C.

Overriding and Usage of Property Variables

Property variables can be overridden by a subclass. If a variable of a subclass has the
same name as a variable of the superclasses, it is overridden.

A overridden variable in the superclasses can be accessed by using the super keyword.

In contrast to the search for methods, NetRexx starts the search for a variable in the class of
the executing method.

Note: If the variable is not overridden but belongs to a superclass, we have to use this or
super to access the variable. If this or super is not used, NetRexx creates a local variable.

This example illustrates the usage and overriding of variables:

 class C1
Properties
a = int -- inherited by class C2
b = int -- overridden by class C2

method C1() -- default constructor, no statements
method C1(a_=int, b_=int) -- real constructor
a = a_
b = a + b_

method show
say ′ b=′ b -- accesses b of class C1

 class C2 extends C1
b = Rexx -- overrides b of class C1

method C2(a_=int, b_=int) -- constructor
this.a = a_ -- without this a local variable is used
b = a_ b_ -- concatenate a_ and b_

 ------------------------------------ Usage of the class C2
 class XYZ

obj = C2(3,4) -- construct a C2 object
obj.show() -- shows b = 0 !

In this example class C2 overrides the instance variable b of C1. The constructor method of
C2 assigns the value of a_ to the inherited instance variable a of class C1, and the
concatenated value of a_ and b_ (automatically converted to strings) to the instance variable
b of class C2.

The show method is defined in class C1. Every instruction in this method has access to the
instance variable defined in C1, or superclasses of C1. If a variable is overridden, it cannot
be accessed. The show method shows the value of variable b of class C1, which was
initialized to 0 when the object was constructed.

Chapter 6. Creating and Using NetRexx Classes 65

Usage or Inheritance

A main question of object-oriented design is whether to use inheritance or only a simple
instance of a class, which is known as usage.

The ability to answer this question is one of the goals of object-oriented design; a good
design tries to build a model of the real world. If we want to inherit from a class, we have to
ask ourselves if the new class is a kind of its superclass. If we can say that the subclass is
a kind of its superclass, inheritance is allowed.

Some examples will help you to understand the sentence above:

A Golden Retriever is a dog.

A sea lion is not a lion, even if the names are the same, and both animals share some
common behavior.

A sorted list is a list.

A music store is a store.

A train is not a car, but a car is a vehicle, and a train is a vehicle.

A dictionary is not a list.

The last example is difficult to understand. The main characteristic of a dictionary is the
relationship between the key and the value of a dictionary element. If we use a key, we can
retrieve the related element. The elements of a dictionary are (usually) stored in a list, and
some methods exists to browse this list. The direct access to an element through its key
remains, however, the primary access. The conclusion is that a dictionary uses a list for its
implementation, but it does not inherit from a list.

If the question, Is the new class a kind of its superclass? cannot be answered in the positive,
the new class can use the other class but cannot inherit from it.

Abstract Classes
An abstract class cannot construct objects. Abstract classes are used to define a common
behavior. A subclass of an abstract class can construct objects.

Abstract classes can optionally include abstract method definitions. If an abstract class
includes abstract method definitions, the methods must be implemented by the subclasses.

A class that defines the behavior of graphical elements is a common example of an abstract
class. The class defines the size of a rectangle, the origin, and common operations such as
translation or rotation.

An instance of the graphical element class would make no sense, because there is no
information about the kind of graphical element that should be drawn. The class is an
abstract class.

Subclasses of the graphical element class describe real graphical objects such as lines,
rectangles, or circles (see Figure 34). Instances of these subclasses can be constructed.

66 Creating Java Applications Using NetRexx

GraphicalElement
│ Properties
│ origin
│ Methods:
│ getOrigin()
│ draw() abstract
│

┌─────────────────┬───┴──────────┬───────────────┐
│ │ │ │
│ │ │ │

Line Rectangle Circle Group
Properties Properties Properties Properties

endpoint endpoint radius graphicalElements
Methods: Methods: Methods: Methods:

draw() draw() draw() draw()
addElement()

Figure 34. Use of Abstract Classes

Abstract class GraphicalElement implements the common behavior (getOrigin method) and
defines the abstract draw method. The subclasses must implement the draw method, as
well as the specialized methods that are not common.

The real power of abstract classes is used in the Group class. The graphicalElements
property is a Vector (dynamic array) that stores elements of the GraphicalElement class.
The implementation of the Group class is quite easy:

 class Group extends GraphicalElement

Properties
graphicalElements = Vector

method draw()
loop i=0 to graphicalElements.size()-1

obj = GraphicalElement graphicalElements.elementAt(i)
obj.draw()

catch ArrayIndexOutOfBoundsException
end

method addElement(obj = GraphicalElement)
graphicalElements.addElement(obj)

The Group class uses a Vector to store a list of graphical elements. A Vector is a class of
the JDK that implements dynamic arrays (see the Java Toolkit Online Reference).

You cannot construct an object of an abstract class, but you can use the abstract class to
access objects of its subclasses. The real type of the objects are Line, Rectangle, Circle, or
Group. If a method is called, the search for the method starts at the bottom of the class
chain, for example, the class Line or any other of the subclasses of GraphicalElement.

All methods that are defined in the class of the variable, or its superclass, can be called.

If the method is not implemented in the class, only the interface of the method must be
defined, for example, draw(). The interface definition is an abstract method. The abstract
method can now be called, because the subclasses have to implement the method;
otherwise it is not possible to create an object of the subclass.

Chapter 6. Creating and Using NetRexx Classes 67

Polymorphism

Figure 34 on page 67 illustrates the concept of polymorphism. The same draw method,
defined as an abstract method in the superclass, must be implemented in each subclass.

When graphical objects of the subclasses are collected into a Vector of the Group class, the
draw method can be invoked on each element of the Vector, independent of the actual type
of the element.

The system is smart enough to invoke the correct draw method for each element of the
collection. Using the same method name in subclasses and letting the system handle the
invocation of the correct method is called polymorphism.

Interfaces
An interface class is a class that contains only abstract method definitions and constants.

A class can implement a single interface or multiple interfaces. The interface class acts in
this case as a superclass of the class that implements the interface. The relationship
between the class that implements interfaces and the interface classes is like multiple
inheritance, except for the code reuse aspect of real inheritance.

One difference between interfaces and abstract classes is that abstract classes can
implement some of the methods, whereas interfaces define abstract methods only. Another
difference is that interfaces give you the function to define methods that accept arguments
from classes of different class chains, without the loss of type safety.

This example illustrates the usage of interfaces. We want to implement a dynamic growing
array that sorts its elements. We name the class SortedVector.

The main problem for the implementation of a sorted Vector is that the elements that are to
be added must be compared for sorting.

The SortedVector class will have an addElement method that adds a new element to the
vector and a getElement method that returns the object at a specified position. The
addElement method does the sorting.

There are two possible ways of implementing this behavior:

• We define an abstract class, SortedVector, which implements all of the methods of the
class, except for the addElement method. For every class we want to use with the
sorted Vector, we define a new subclass that implements the addElement method. The
type and methods of the elements are well known, and the sorting can be done in the
addElement method. The getElement method returns an object of the generic Object
type or is overridden in the subclasses.

• We define an interface class, called Comparable, with a method to compare two objects
of the interface class. The SortedVector class accepts objects of type Comparable for
the addElement method. The getElement method returns objects of type Comparable.

Every class that will be used with the SortedVector class must implement the
Comparable interface:

 -- Interface Comparable which defines a method for comparing
 class Comparable interface

method greaterEqual(obj = Comparable) returns boolean abstract

 -- sorted vector class uses the Comparable interface
 class SortedVector

Properties
list = Vector() -- Java Toolkit class (java.util.Vector)

method addElement(obj = Comparable) returns int

68 Creating Java Applications Using NetRexx

size = list.size()
loop pos=0 to size-1

objinlist = list.elementAt(pos)
if objinlist.greaterEqual(obj) then do

list.insertElementAt(obj,pos) -- insert at current position
return pos -- and return position

end
catch ArrayIndexOutOfBoundsException -- not possible
end
list.addElement(obj) -- obj is greater as any object in list
return size -- return position (0 based)
.
.

 -- Book Class implements the Comparable interface
 class Book implement Comparable

Properties
author -- lets sort by author
...

method greaterEqual(obj = Comparable) returns boolean
return author >= (Book obj).author
.
.

The subclassing approach is type safe. The disadvantage of the approach is that the sorting
has to be implemented in every subclass. You can imagine that the sorting algorithm has a
good chance of making mistakes, unless the very slow approach in the example is used.
Every subclass must be tested very carefully.

The Comparable interface approach implements the sorting algorithm only once. It must be
tested only once. The disadvantage of this approach is that we have to use type casting
when comparing and retrieving objects. An instance of the sorted vector must contain
objects of one class only.

Classes can implement multiple Interfaces (see “Class Instruction” on page 25). If a class
does not implement all of the methods of all interfaces, the class must be an abstract class.

Interfaces can implement other interfaces. If an interface implements another interface, it is
real multiple inheritance, because an interface can inherit (implement) from multiple
interface classes:

 class Equality interface
method equality(obj=Equality) returns boolean abstract

 class Comparable interface
method greaterEqual(obj = Comparable) returns boolean abstract

 class Compare interface implements Comparable, Equality
method equality(obj=Equality) returns boolean
... -- must implement
method greaterEqual(obj = Comparable) returns boolean
... -- must implement

Hint for Java Programmers

In Java interfaces are extended (inheritance) and not implemented by other interfaces.

NetRexx syntax:

 class Compare interface implements Comparable, Equality

Java syntax:

 public interface Compare extends Comparable, Equality

Chapter 6. Creating and Using NetRexx Classes 69

Class Libraries
A class library is a collection of classes. The classes are written for reuse. A class library
is called a Package in NetRexx (and Java, of course).

One of biggest advantage of an object-oriented language is the reusability of the written
code. Every time you write a new class, you should ask yourself “Is this class of common
interest?” If the answer is yes, you should search the Internet for a class that has the same
or at least similar function. There is a good chance that the work has already been done for
you.

If you write the class on your own, you should make it possible to reuse the class. Spend a
little more work to make it reusable, and it will pay back very fast.

Packages

A package is a class library. A class that belongs to a package includes a package
instruction (Figure 35) before the first class definition.

 package packagename

Figure 35. Package Instruction

The packagename identifies the package to which the classes of the source file belong.

Every compiled class is stored in a separate file, a class file. The name of the class file is
the class name with the extension .class.

The packagename depends on the directory structure where the class files are stored. A
package must be stored in a subdirectory of a directory in the CLASSPATH (see
“Installation” on page 2). The package name is the path of the subdirectories. The
subdirectories are separated with a period. An example illustrates this:

 SET CLASSPATH=C:\JAVAOS2\lib\NetRexxC.zip;C:\MYCLASSES;...

 Package: util.container

 Classes: C:\MYCLASSES\util\container\SortedVector.class
C:\MYCLASSES\util\container\Comparable.class

Class names can be short class names or qualified class names. The short class name is
the name used in the class instruction. For your and our convenience, we call the short
class name only class name. The qualified class name is the package name combined with
the short class name:

util.container.SortedVector
util.container.Comparable

To use a class of a package in a different subdirectory, we have to use the qualified class
name:

 class Book implements util.container.Comparable

Because this is inconvenient, NetRexx provides the import instruction (Figure 36) to declare
the usage of packages.

 import importname

Figure 36. Import Instruction

70 Creating Java Applications Using NetRexx

The importname must be one of:

• A qualified class name

• A package name. To distinguish a package name from a class name, the package
name has a trailing period after the last letter of the name. All classes in the package
are imported.

An imported class can be referenced by the short name of the class:

 import util.container. -- all classes of package
 import util.container.Comparable -- single clas import

 class Book implements Comparable -- use short name after import

NetRexx automatically imports the NetRexx and JDK packages:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.

If two packages include a class with the same short name, the qualified name must be used
to access the desired class.

Packages in Zip Files

Zip files can be used to store packages. Zipped packages can be used on machines with
file systems that do not support long file names, or to limit the number of files required for
large class libraries.

Use the Info-Zip utility to compress the whole package path and include the zip file in the
CLASSPATH.

Note: You must run the zip utility without compression. NetRexx and Java do not support
compressed zip files.

The JDK packages and the NetRexx packages are distributed as zip files:

d:\...java_home...\lib\classes.zip
d:\...java_home...\lib\NetRexxC.zip
c:\MYCLASSES\itso.zip

Zip files must be referenced explicitly in the CLASSPATH environment variable:

 SET CLASSPATH=.;d:\...\lib\classes.zip;d:\...\lib\NetRexxC.zip;c:\MYCLASSES\itso.zip

Globally Unique Package Names

The designers of Java have proposed a naming scheme for packages to avoid name
conflicts. The package name should consists of three parts:

1. The first part is the organization to which the programmer belongs. This is the name of
the domain, starting from right to left.

2. The second part identifies the developer. You can use the Internet ID for this part.

3. The third part is an identifier for the package. The programmer specifies this part.

Figure 37 shows an example of the naming scheme.

Chapter 6. Creating and Using NetRexx Classes 71

┌─────────────────────┐
│ │

────┴──── │
 pheuchert@vnet.ibm.com │

─────┬────── │
│ │
│ │
� �

com.ibm.vnet.pheuchert.util.Container
─────┬────── ───┬───── ──────┬───────

│ │ │
│ │ │
part1 part2 part3

Figure 37. Global Naming Scheme for Packages

Using Java Classes

Every Java class can be used with NetRexx, because NetRexx compiles to Java classes.
There is no difference between compiled Java and NetRexx classes.

In our example in Figure 31 on page 53 Java classes are used intensively.

Most of the Java classes you will use are part of packages. You must import the classes or
packages, although NetRexx imports many basic packages by default.

When using Java classes and methods it is good practice to use the exact spelling of the
Java names. NetRexx attempts to find Java classes and methods even if the spelling differs
in case, but we recommend always using the Java mixed case spelling in your NetRexx
programs.

Java Class Libraries

The JDK provides a rich set of packages:

java.lang Includes the Java wrapper classes for primitive data types, the string
classes, the system-related classes (such as process and toolkit), and the
exception classes

java.util Includes utility classes like dynamic arrays (Vector) and dictionaries
(Hashtable) and string parsing functions

java.io Includes the classes for file and stream handling

java.net Includes the classes for TCP/IP connections

java.awt Includes the classes for the graphical user interface

java.awt.image Includes the classes to work with images

java.applet Extends the graphical user interface classes to support applets

This list is not complete but includes the most important packages.

72 Creating Java Applications Using NetRexx

Using NetRexx Classes from Java

Using a NetRexx class from Java is the same as using a Java class from NetRexx. NetRexx
compiles to Java classes that can be used by Java programs.

You should import the netrexx.lang package to use the short class name for the Rexx
(NetRexx string) class.

A NetRexx method without a returns keyword can return nothing, which is the void type in
Java, or a Rexx string. Examine your code carefully. A good programming practice is to
declare the return type for every method, except if you are not returning a result in all return
instructions.

NetRexx is case independent; Java is case dependent. NetRexx generates the Java code
with the case used in the class and method instructions. For example, if you named your
class Game in the NetRexx source file, the resulting Java class file is Game.class.

We recommend that the public class name in your source program match the NetRexx
source file name. For example, if your source file is FACTOR.NRX, and your class is Factor,
NetRexx generates a warning and changes the class name to FACTOR to match the file
name. A Java program using the class name Factor would not find the generated class,
because its name is FACTOR.class.

If you have problems, compile your NetRexx program with the options -keep -format (see
“Compile Options” on page 14). Look at the java.keep file for the correct spelling style and
method parameters.

Chapter 6. Creating and Using NetRexx Classes 73

74 Creating Java Applications Using NetRexx

Chapter 7. Creating Graphical User Interfaces
In this chapter we explore how NetRexx can be used to develop graphical user interfaces
(GUIs) for applications and applets.

The JDK includes many classes to create a GUI. The interface is platform independent and
can be used on every operating system that implements Java.

The GUI is currently not state of the art. It implements a basic set of controls and includes
some basic drawing capabilities. Most of the more advanced controls such as notebooks
and visual containers are missing. The problem is well known and there is a lot of work in
progress to extend the GUI in a future JDK. A state of the art GUI is expected by the end of
1997.

The GUI is not part of the NetRexx language. All classes that are used to define a GUI are
Java classes provided by the JDK.

The event handling changed completely between JDK 1.0.2 and 1.1.1. We used the JDK
1.1.1, which should be available for all platforms when this book is published.

Applets and Applications
Java GUI programs can be executed in two different environments: applets and
applications.

Applets are Java programs that are executed in a Java-enabled Web browser. Applets are
always part of an HTML page. Even the stand-alone applet viewer, which is part of the JDK,
needs an HTML file to load an applet.

Applications are stand-alone programs, started from the command line and executed by the
Java interpreter.

Because applets are provided by other programmers, they are untrusted code and restricted
in there functions. Java provides built-in security functions to control the actions of every
program executed by the Java interpreter.

Applications do not have any security restrictions. The restrictions that apply to applets
depend on the implementation of the Web browser or applet viewer. Local applets, stored
on your machine, should not have any restrictions. However, if you execute a local applet
with a Netscape browser, the same restrictions as for remote loaded applets apply.

The main restrictions are that remote loaded applets do not have access to file I/O and can
establish TCP/IP connections only to the Web server from which they are loaded.

The security restrictions are defined by a security manager, which is a Java class.

 Copyright IBM Corp. 1997 75

Applets
Applets are invoked by a Web browser when an HTML page includes an applet tag. When
such a page is formatted, the applet tag causes it to send a request to the server for the
applet code, which is the compiled class file, and starts running it. An applet viewer can be
used instead of a Web browser. In this case the contents of the HTML page is skipped and
only the applet is shown.

If a Web browser is used, the Java implementation of the Web browser runs the applet.
Netscape, for example, has its own Java implementation on Windows. If you install a newer
JDK, it has no effect on your applets running in the Netscape browser.

Note: When this book was written, only the Sun HotJava Web browser provided JDK 1.1.1
support. We believe that this will change in a few months. If you have the need to support
Web browsers with JDK 1.0.2, you should consult the Java JDK 1.0.2 documentation.

The Applet Tag

The applet tag (Figure 38) defines the class file used for the applet.

 <app le t code= ″appletClassFile″
[codebase=codebaseURL]
[o b j e c t = serializedApplet]
[a l t = alternateText]
[n a m e = appletInstanceName]
w i d t h = pixel he igh t=pixel
[a l i g n = alignment]
[v s p a c e = pixels] [h s p a c e = pixels]

>
[< p a r a m n a m e = parameterName va lue=value >] ...
[HTML text for browser without Java Support]

 < / a p p l e t >

Figure 38. HTML Applet Tag

The options can appear in any order:

code Defines the class file that contains the applet. The file name is applied
relative to the code base directory. Absolute path names are not allowed.

codebase Defines the base URL to the directory of the applet code and defaults to the
directory of the HTML file if omitted. The code base URL can point to a
server other than the Web server. An applet can communicate only with the
Web server sending the code (codebase). The codebase value can be
accessed by the applet with the getCodeBase method.

object Defines the file holding the applet in serialized format. A serialized applet is
stored with the values of all nontransient variables. This specification is
mutually exclusive with the code option.

alt If the Web browser understands the applet tag but does not support or allow
Java applets, the alternateText is shown.

name Defines a name for the loaded applet. A named applet can be found by other
applets, which is necessary for communication between applets.

width, height Defines the initial width and height of the applet display area. The values
can be redefined by the applet at run time.

align Defines the alignment of the applet. The possible values for this attribute are
left, right, top, texttop, middle, absmiddle, baseline, bottom, and absbottom.

76 Creating Java Applications Using NetRexx

vspace Defines the space above and below the applet.

hspace Defines the space left and right of the applet.

param Defines a parameter that can be accessed with the getParameter method in
the applet. A parameter is a keyword-value pair. You can define multiple
param tags for the applet.

You can access a parameter with the getParameter method:

 x = getParameter(′ COLOR′)

This would return the value of a parameter with the COLOR keyword.

If a parameter does not exist, a null value is returned. Do not assign the
return value of the getParameter method to a variable of type Rexx, because
the program would signal a NullPointerException if the parameter is not set.
(Note that this is fixed in NetRexx Version 1.1.)

Structure of an Applet

Any applet must be a subclass of the Applet class provided by the JDK. The Applet class
defines six methods that are invoked by the system:

init() Is invoked when a document containing the applet is opened. The method is
used to initialize the applet.

start() Is invoked when the document containing the applet is shown. The start
method is always invoked after the init method. The start is also invoked
when the applet has been stopped and the document is shown again.

stop() Is invoked when the document is no longer displayed. This method is always
invoked before the destroy method is invoked.

destroy() Is invoked when the applet is “unloaded” from the applet viewer or Web
browser. This method is used to clean up resources.

update(g=Graphics)
Is responsible for redrawing the applet. The default implementation redraws
the background and calls the paint method.

paint(g=Graphics)
The paint method draws the components.

The applet class provides default implementations of the methods.

The start and stop methods may be invoked by the system multiple times throughout the
applet′s life. When an applet is stopped and restarted depends on the applet viewer or Web
browser. Most of the currently available browsers stop the applet when another page is
loaded and the current page is still available through the back command of the browser.

The start and stop methods are useful for starting and stopping animations when the applet
becomes visible or invisible.

After the destroy method is invoked, the start method is never invoked again.

Figure 39 illustrates the life cycle of an applet through its methods.

┌─────────────┐
│ │
� │

init()──────�start()──────�stop()──────�destroy()

Figure 39. Life Cycle of an Applet

Chapter 7. Creating Graphical User Interfaces 77

Figure 40 shows a simple applet.

/* gui\guifirst\GuiFirst.nrx

First Simple NetRexx Applet */

import java.text. -- Needed for the SimpleDateFormat class

class GuiFirst extends Applet
Properties inheritable
initDate = Date
startDate = Date
stopDate = Date

method init()
initDate = Date()

method start()
startDate = Date()

method stop()
stopDate = Date()

method paint(g=Graphics)
-- Format the result String
f = SimpleDateFormat(″H:mm:ss″) -- Formats hours:minutes:seconds
result = ″Init:″ f.format(initDate) ″ Start:″ f.format(startDate)

if stopDate \= null then result = result ″ Stop:″ f.format(stopDate)

-- draw the string
g.drawString(result,25,25)

Figure 40. First Simple Applet: GuiFirst.nrx

The HTML file that loads the applet in Figure 40 is shown in Figure 41.

<HTML>
<HEAD>
<TITLE>First Simple Applet Program</TITLE>
</HEAD>
<BODY>
<H1>First Simple Applet Program</H1>
<applet code=GuiFirst.class width=300 height=40
 alt=′ Please enable Java to see the applet′>
Sorry but your browser does not support Java applets.
</applet>
</HTML>

Figure 41. First Simple Applet HTML File: GuiFirst.htm

Start the applet viewer in the same directory where the HTML and .class files are stored:

 appletviewer GuiFirst.htm <== Windows 95/NT

 applet GuiFirst.htm <== OS/2

If you start this small applet with the applet viewer, and stop and start the applet with the
viewer, you should see the window shown in Figure 42.

78 Creating Java Applications Using NetRexx

Figure 42. First Simple Applet in the Applet Viewer

The applet was initially started at the Init time. Start and Init time were the same. The
applet was then stopped and restarted using the stop and start functions of the applet
viewer.

Applications
An application is started with the Java interpreter from the command line. The environment
of the installed JDK is used for the application. This environment can be different from the
Java environment of your Web browser.

Only the main method is invoked automatically by the system. The main method is a public
class method:

 method main(ARGS = String[]) public static

The main method typically creates a frame window and makes this window visible.
Figure 43 shows a small application.

You do not have to define a main method. NetRexx can do this for you (see Chapter 5,
“Using NetRexx As a Scripting Language” on page 49 and “Behind the Scenes” on
page 54).

/* gui\guiapp\GuiApp.nrx

First Simple NetRexx Application */

import java.text. -- Needed for the SimpleDateFormat class

class GuiApp
Properties inheritable
window = Frame

method main(args=String[]) public static
GuiApp() -- Creates an object of the GuiApp class and shows the window

method GuiApp()
-- Create a frame window
window = Frame(′ First GUI Application′)

-- Set the size of the window
window.setSize(210,100)

Figure 43 (Part 1 of 2). First Simple GUI Application: GuiApp.nrx

Chapter 7. Creating Graphical User Interfaces 79

-- Set the window position to the middle of the screen
d = window.getToolkit().getScreenSize()
s = window.getSize()
window.setLocation((d.width - s.width) % 2,(d.height - s.height)%2)

-- Add a label to the window. The label text is centered
f = SimpleDateFormat(″H:mm:ss″) -- Formats hours:minutes:seconds
text = Label(″Started at:″ f.format(Date()),Label.CENTER)
window.add(″Center″ , text) -- Add the label to the window

-- add the window event listener to the window for close window events
window.addWindowListener(CloseWindowAdapter())

-- show the window
window.setVisible(1)

/*---
The CloseWindowAdapter exits the application when the window is closed.
WindowAdapter is an abstract class which implements a WindowListener interface.

The windowClosing() method is called when the window is closed.
---*/

class CloseWindowAdapter extends WindowAdapter
method windowClosing(e=WindowEvent)
exit 0

Figure 43 (Part 2 of 2). First Simple GUI Application: GuiApp.nrx

The code of the program requires some explanation:

• The main method creates an object of the GuiApp class, which is our application. The
constructor method of the class creates a Frame object (which is a frame window),
initializes the window, and shows it on the screen.

• The window would be visible in the upper left corner of your desktop. This is
inconvenient, so we ask the current Toolkit for the screen size and center the window in
the middle of the screen:

 -- Set the window position to the middle of the screen
 d = window.getToolkit().getScreenSize()
 s = window.getSize()
 window.setLocation((d.width - s.width) % 2,(d.height - s.height)%2)

• The absence of the paint method is the most visible difference between an application
and an applet. The application uses a component that does the drawing on its own.
Most of the currently available applets are drawing graphics and require a paint
method. Most applications are constructed using components (see “User Interface
Controls” on page 82) and do not need to draw the window.

• The Java frame windows enables programmers to control the close event, when the
window is closed by the frame controls. The default behavior is to ignore the event. We
add a WindowListener to the window, which listens to the close event and exits the
application:

 -- add the window event listener to the window for close window events
 window.addWindowListener(CloseWindowAdapter())

See “Event Handling” on page 111 for more details about event processing.

Figure 44 shows the result of the program.

80 Creating Java Applications Using NetRexx

Figure 44. The First GUI Application

Running As an Applet or an Application
A NetRexx GUI application can be coded so that it can run as either an applet or an
application.

The class is coded as a subclass of the Applet class, with a main method that is executed
when run as an application. The main method allocates the instance object (the applet),
creates the frame, adds the applet to the frame, and then calls the init method to lay out the
frame.

When run as an applet, the frame is allocated by the system, and the init method is called
automatically.

Figure 45 shows the NetRexx code that can run as an applet or an application.

/* gui\guiapp\GuiApplt.nrx

First Simple NetRexx Application or Applet using same code */

import java.text. -- Needed for the SimpleDateFormat class

class GuiApplt extends Applet

Properties inheritable static
guiobj = GuiApplt -- the instance
applic = byte 0 -- applet

Properties inheritable
text1 = Label -- label text init/stop
text2 = Label -- label text start

method GuiApplt() -- constructor
super()

method main(args=String[]) public static -- APPLICATION ONLY
applic = 1
guiobj = GuiApplt() -- creates the instance
window = Frame(′ Application or Applet′) -- create a Frame window
window.setSize(210,100) -- set the size of the window
d = window.getToolkit().getScreenSize() -- center the window
s = window.getSize()

Figure 45 (Part 1 of 2). GUI Application or Applet: GuiApplt.nrx

Chapter 7. Creating Graphical User Interfaces 81

window.setLocation((d.width - s.width) % 2,(d.height - s.height)%2)
window.add(″Center″ , guiobj) -- add Applet to Frame
guiobj.init() -- init Applet
window.addWindowListener(CloseWindowAdapter()) -- close event
window.setVisible(1) -- make window visible

method init() -- APPLET and APPLICATION
super.init()
this.setLayout(null)
f = SimpleDateFormat(″H:mm:ss″) -- formats hours:minutes:seconds
text1 = Label(″Init at:″ f.format(Date()))
text2 = Label(″ ″)
this.add(text1) -- add the labels to the window
this.add(text2)
text1.setBounds(40,30,120,15) -- and size them
text2.setBounds(40,50,120,15)

method start() -- APPLET ONLY
f = SimpleDateFormat(″H:mm:ss″) -- change label text
text2.setText(″Started at:″ f.format(Date()))
super.start()

method stop -- APPLET ONLY
f = SimpleDateFormat(″H:mm:ss″) -- change label text
text1.setText(″Stopped at:″ f.format(Date()))
super.stop()

method destroy -- APPLET and APPLICATION
super.destroy()
if applic = 1 then exit 0 -- end application

/*---
The CloseWindowAdapter exits the application when the window is closed.
WindowAdapter is an abstract class which implements a WindowListener interface.

The windowClosing() method is called when the window is closed.
---*/

class CloseWindowAdapter extends WindowAdapter
method windowClosing(e=WindowEvent)
GuiApplt.guiobj.destroy()

Figure 45 (Part 2 of 2). GUI Application or Applet: GuiApplt.nrx

User Interface Controls
In this section we describe the user interface controls, such as menus, buttons, and entry
fields, that are included in the JDK.

The user interface controls are derived from the Component class. Table 7 summarizes the
available component classes.

82 Creating Java Applications Using NetRexx

Each of these classes has a series of methods that manipulate the contents or appearance
of the objects. User actions on these objects resolve in low-level and semantic events that
have to be handled by event handling methods (see “Event Handling” on page 111).

Table 7. Component Classes of the GUI

Class Description

Label Component that shows static text

TextField Entry field for text

TextArea Multicolumn entry field for text

Button A textual button

Checkbox A check box is like a state button. It can be toggled between the on and
off state. Grouped check boxes can be used as radio buttons.

List List box that presents a list of selectable strings

Choice Drop-down list box

Scrollbar A scroll bar is used to specify an integer value in a range of values.

Menubar The menu bar that is attached to frame windows

Menu List of menu items shown from the menu bar

MenuItem Choice in a menu

CheckboxMenuItem A menu item that represents a choice in a menu

PopUpMenu Menu that is independent of a menu bar

Label

A label is a component that displays a single line of text. The text of the label can be
modified by the program, but not by the user.

Constants, constructor, and methods of interest:

Constants

CENTER Alignment: center the text in the label

LEFT Alignment: text is left justified

RIGHT Alignment: text is right justified

Constructor

Label(s=Str ing ′′,alignment=int LEFT)
Creates a Label object

Methods

getText() returns String
Retrieves the text of the label

setText(s=Str ing)
Sets the text of the label

setFont(f=Font)
Sets the font of the label

Chapter 7. Creating Graphical User Interfaces 83

TextField

The TextField component is an entry field used to edit a single line of text.

Constructors, methods, and events of interest:

Constructors

TextField()
Creates a TextField object

TextField(s=String)
Creates a TextField object and sets the text of the object

TextField(chars=int)
Creates a TextField object and sets the visible size of the object to the specified
value. The text of the object is not limited by the size parameter.

TextField(s=Str ing,chars=int)
Combination of the previous two constructors

Methods

getText() returns String
Retrieves the text of the entry field

setText(s=Str ing)
Sets the text of the entry field

setEchoChar(c=char)
Sets the echo character for the entry field. The entry field still maintains the
original characters but shows only the echo character. This method is useful for
a password entry field.

setFont(f=Font)
Sets the font of the label

Semantic Events

ActionEvent
Fired when the Return key is pressed

TextEvent Fired when the text in the entry field changes

Low-Level Events

KeyEvent To change the key entered, use the setKeyChar method of the event in the
keyTyped method of the listener. Use the consume method of the event to delete
the key stroke.

FocusEvent
Fired when the component gets or loses the focus

The following example shows an entry field that uses a key listener which allows alphabetic
characters only and changes the characters to uppercase:

...
 field = TextField()
 field.addKeyListener(KeyTester())
 ...

 class KeyTester implements KeyAdapter
method keyTyped(e=KeyEvent)
key = Rexx e.getKeyChar()
if key.datatype(′ M′) then e.setKeyChar(key.upper())

else e.consume()

84 Creating Java Applications Using NetRexx

Refer to “KeyCheck Class” on page 265 for a complete implementation of a key listener.

TextArea

The TextArea component is an entry field used to edit multiple lines of text.

Constants, constructors, methods, and events of interest:

Constants

SCROLLBARS_BOTH
Create and display both vertical and horizontal scroll bars

SCROLLBARS_HORIZONTAL_ONLY
Create and display horizontal scroll bar only

SCROLLBARS_VERTICAL_ONLY
Create and display vertical scroll bar only

SCROLLBARS_NONE
Do not create or display any scroll bars for the text area

Constructors

TextArea(rows=int ,columns=int)
Creates a TextArea object with the specified rows and columns visible

TextArea(s=Str ing, rows=int ,co lumns=int)
Creates a TextArea object like the constructor above and sets the text to the
string

TextArea(s=Str ing, rows=int ,co lumns=int ,scro l lbar= int)
Creates a TextArea object like the constructor above and shows only the
specified scroll bars

Methods

getText() returns String
Retrieves the text of the entry field

setText(s=Str ing)
Sets the text of the entry field

append(s=Str ing)
Adds a string to the end of the text in the entry field

inser t (s=Str ing,pos=int)
Inserts a string at a given position to the text in the entry field

replaceRange(s=Str ing,star t= int ,end=int)
Replaces the text of a given range with a new string. The character at the end
position is not included in the range.

setFont(f=Font)
Sets the font of the label

Semantic Events

TextEvent Fired when the text in the entry field changes

Chapter 7. Creating Graphical User Interfaces 85

Button

The Button component is a textual push button.

Constructor, methods, and events of interest:

Constructor

Button(label=Str ing)
Creates a Button object with the specified label

Methods

setEnabled(b=Boolean)
Enables (1) or disables (0) the button

getLabel() returns String
Retrieves the label of the button

setLabel(s=Str ing)
Sets the label of the button

setFont(f=Font)
Sets the font of the label

Semantic Events

ActionEvent
Fired when the push button is pressed

Low-Level Events

FocusEvent
Fired when the component gets or loses the focus

Checkbox

The Checkbox component maintains and visualizes a boolean variable. The variable can be
true (checked) or false (not checked).

The state of a check box has no influence on the state of other check boxes in the same
window, unless the check boxes are grouped by a CheckboxGroup.

A CheckboxGroup is not a visible class of the JDK. If check boxes are grouped with a
CheckboxGroup, they act like radio buttons. Only one check box of a group can be set. If
another check box is set, the first one is cleared.

Methods and events of interest:

Methods

getState() returns Boolean
Returns the state of the check box. The check box is set if the state is 1 (true).

setState(b=Boolean)
Sets the state of the check box

setEnabled(b=Boolean)
Enables (1) or disables (0) the check box

getLabel() returns String
Retrieves the label of the check box

86 Creating Java Applications Using NetRexx

setLabel(s=Str ing)
Sets the label of the check box

setCheckboxGroup(cb=CheckboxGroup)
Sets the CheckboxGroup to which the check box belongs. Typically the group is
set with the constructor of the check box.

setFont(f=Font)
Sets the font of the label

Semantic Events

ItemEvent Fired when the state of the check box is changed

Low-Level Events

FocusEvent
Fired when the component gets or loses the focus

Figure 46 shows an applet with four check boxes. The first two check boxes are members of
a CheckboxGroup; the last two check boxes are not members of a CheckboxGroup.

Figure 46. Applet with Check Boxes

Figure 47 shows the applet code.

/* gui\checkbox\CheckTst.nrx

Applet with check boxes and a CheckboxGroup*/

class CheckTst extends Applet

method init()
setLayout(GridLayout(0,1)) -- new layoutmanager with one column
cg = CheckboxGroup() -- CheckboxGroup for the first checkboxes
add(Checkbox(″Fax now″ , cg,0)) -- First checkbox member of cg
add(Checkbox(″Fax tonight″ , cg,1)) -- Second checkbox member of cg
add(Checkbox(″Print copy″ , 1)) -- Third checkbox
add(Checkbox(″Print Protocoll″ , 1))-- Fourth checkbox

Figure 47. Check Box Example: CheckTst.nrx

Chapter 7. Creating Graphical User Interfaces 87

List

The List class implements a list box. The list box presents a list of strings. Depending on
the state of the list box only, one or multiple strings can be selected.

The currently available List class does not support horizontal scroll bars or the use of
objects instead of strings.

Methods and events of interest:

Methods

add(s=Str ing,pos=int -1)
Adds a string to the list. If pos is omitted (or -1), the string is added to the end of
the list.

getItemCount() returns int
Returns the number of items in the list

remove(pos=int)
Removes a string at the specified position of the list

remove(s=Str ing)
Removes the specified string from the list

removeAll()
Empties the list

select(pos=int)
Select the item at the specified position

deselect(pos=int)
Deselects the item at the specified position

getSelectedIndex() returns int
Returns the index of the selected item. If no item is selected, -1 is returned.

getSelectedItem() returns String
Returns the selected item. If no item is selected, null is returned.

getSelectedIndexes() returns int[]
Returns an array with the indexes of the selected items

getSelectedItems() returns String[]
Returns an array of strings of the selected items

Semantic Events

ItemEvent Fired when an item is selected or deselected. The getItem method of the
ItemEvent class returns an Integer object for ItemEvents of List objects. Integer is
a Java wrapper class for integers.

ActionEvent
Fired when a double-click on an item occurs. The string returned from the
getActionCommand method of the ActionEvent class is the string of the item
where the double-click was performed.

Low-Level Events

FocusEvent
Fired when the component gets or loses the focus

The add and remove methods are also available as addItem and delItem. Currently the item
has to be a string, so there is no difference between these methods.

We suspect that these functions will accept objects in future releases, so we recommend
using add and remove only, for compatibility.

88 Creating Java Applications Using NetRexx

Note: The getSelectedItem function returns a null value if no item is selected. If you assign
the return value of the function to a variable of type Rexx (NetRexx string), and no item is
selected, a NullPointerException is signaled:

 s = Rexx
 s = listbox.getSelectedItem() -- unsafe because the method can return null

Make sure that an item is selected before invoking the getSelectedItem method, or use a
variable of the Java String class:

 s = String
 s = listbox.getSelectedItem() -- safe

This behavior has been fixed in NetRexx 1.1 and you can use a Rexx string as well.

Choice

The Choice class implements a drop-down list box. It is similar to a list, except that it does
not need as much space.

In its normal state, the Choice class displays the currently selected string and a small image
button. If the button is pressed, the entire list of choices is displayed. After the selection of
an item, the list shrinks back to a single line.

One item of a Choice class is always selected.

Methods and events of interest:

Methods

add(s=Str ing,pos=int -1)
Adds a string to the list. If pos is omitted (or -1), the string is added to the end of
the list.

getItemCount() returns int
Returns the number of items in the list

remove(pos=int)
Removes a string at the specified position of the list

remove(s=Str ing)
Removes the specified string from the list

removeAll()
Empties the list

select(pos=int)
Selects the item at the specified position

getSelectedIndex() returns int
Returns the index of the selected item

getSelectedItem() returns String
Returns the selected item (string)

Semantic Events

ItemEvent Fired when an item is selected. The getItem method of the ItemEvent class
returns the string of the selected item for ItemEvents of Choice objects. Integer is
a Java wrapper class for integers.

Low-Level Events

FocusEvent
Fired when the component gets or loses the focus

Chapter 7. Creating Graphical User Interfaces 89

Scrollbar

The Scrollbar class is not very useful. Use the ScrollPane class, which implements a
container with scroll bars, instead.

Menus

Two types of menus are available, pop-up menus and menu bars.

A pop-up menu usually is not visible to the user but pops up through an action of the user.
The action depends on the operating system; in many cases it is the right mouse button.
Java provides a platform-independent abstraction of the pop-up menu trigger event.

A menu bar is attached to a frame. The menu bar is located directly under the title bar of
the owning frame, except on some platforms where the menu bar appears at the top of the
screen. The menu bar contains menus. Usually only the labels of the menus are visible. If
the user clicks on a menu label in a menu bar, the menu associated with the label appears,
as shown in Figure 48.

Menu items can optionally own a shortcut key. The definition of a shortcut key is operating
system dependent and is handled by the JDK.

Figure 48. Menu Bar Sample Application

Figure 49 shows the source code for the menu bar sample application.

/* gui\menubar\MenuBarX.nrx

This program shows the usage of a menu bar */

-- MenuBarX class (implicit)
MenuBarTest()

-- MenuBarTest class

Figure 49 (Part 1 of 2). Menu Bar Sample Application: MenuBarX.nrx

90 Creating Java Applications Using NetRexx

class MenuBarTest
Properties inheritable
status = Label()

method MenuBarTest()
win = Frame(″Menu Bar Test″) -- creates the window

mb = MenuBar() -- creates the menubar (Java)

m = Menu(″File″) -- first menu in the menubar
mb.add(m) -- add menu to menubar

mi = MenuItem(″Open...″) -- menu item for menu File
m.add(mi) -- add menu item to menu File
mi.addActionListener(MenuAction(status,″Open″)) -- menu action

-- next menu item for menu File with a shortcut Ctrl-c
mi = MenuItem(″Close″ , MenuShortcut(KeyEvent.VK_C))
m.add(mi);
mi.addActionListener(MenuAction(status,″Close″)) -- menu action

m.addSeparator(); -- add a separator to the menu

mi = MenuItem(″Exit″) -- next menu item for menu File
m.add(mi);
mi.addActionListener(CloseMenu()) -- menu action

m = Menu(″Edit″) -- next menu in menubar
mb.add(m)

win.setMenuBar(mb) -- add the menubar to the frame window

win.add(″South″ , status) -- add the label to the window

-- set window position to the middle of the screen
win.setSize(200,130)
d = win.getToolkit().getScreenSize()
s = win.getSize()
win.setLocation((d.width - s.width) % 2,(d.height - s.height)%2)
win.setVisible(1)

-- MenuAction class
class MenuAction implements ActionListener
Properties inheritable
text = String
field = Label

method actionPerformed(e = ActionEvent)
field.setText(′ Menu′ text ′ selected′)

method MenuAction(aLabel = Label, aString = String)
field = aLabel
text = aString

-- CloseMenu class
class CloseMenu implements ActionListener
method actionPerformed(e = ActionEvent)
exit 0

Figure 49 (Part 2 of 2). Menu Bar Sample Application: MenuBarX.nrx

Chapter 7. Creating Graphical User Interfaces 91

MenuBar

A MenuBar object must be attached to a frame window:

framewindow.setMenuBar(mb)

An applet cannot contain a menu bar, because there is no frame window.

Methods of interest:

Methods

add(m=Menu)
Adds a menu to the menu bar

remove(m=MenuComponent)
Removes a menu from the menu bar

setHelpMenu(m=Menu)
Adds a menu as a help menu. On some systems help menus are on the right
side of the menu bar. Only one help menu can exist in a menu bar. If a second
help menu is added, the first one is removed.

Figure 49 on page 90 shows the usage of a menu bar.

Menu

A menu object contains menu items and has a label. A menu object is inserted into a menu
bar.

Menus can be created with a tear-off attribute. If a tear-off menu is supported by the
operating system, the menu can be cloned and used as a top-level window, when torn off.

Methods and events of interest:

Methods

add(m=MenuI tem)
Adds a menu item to the menu

addSeparator()
Creates a menu item as a separator and adds it to the menu

remove(m=MenuComponent)
Removes a menu item from the menu

Semantic Events

ActionEvent
Fired when any menu item of the menu is selected. The getCommand method of
the ActionEvent class returns the label of the selected menu item, unless a
shortcut key fired the event. If a shortcut key fired the event the getCommand
method returns a null string (see note in “List” on page 88).

We do not recommend attaching an action listener to a menu. Attach an action
listener to a menu item instead.

Figure 49 on page 90 shows the usage of menus.

92 Creating Java Applications Using NetRexx

MenuItem

A menu item is an entry in a menu or pop-up menu. A menu item has a label and optionally
a shortcut key.

A shortcut key is an object of the MenuShortcut class. The key is defined using the key
definitions of the KeyEvent Class:

 shortcut = MenuShortcut(KeyEvent.VK_C) -- Shortcut for c key.

For Windows 95, Windows NT, and OS/2 systems, shortcuts are invoked with the Ctrl key, for
example, Ctrl-c.

If a boolean variable with the value 1 is added as a parameter to the MenuShortcut
constructor, the short cut is set to Shift-key.

Only numbers and letters are allowed for MenuShortcuts; function keys cannot be used.

Methods and events of interest:

Methods

setEnabled(b=Boolean)
Enables (1) or disables (0) the menu item

setLabel(s=Str ing)
Changes the label of the menu item

Semantic Events

ActionEvent
Fired when any menu item of the menu is selected. The getCommand method of
the ActionEvent class returns the label of the selected menu item, unless a
shortcut key fired the event. If a shortcut key fired the event, the getCommand
method returns a null string (see note in “List” on page 88).

Figure 49 on page 90 shows the usage of a menu items.

Pop-Up M enus

Pop-up menus, which are also known as context menus, are shown when the user invokes
the pop-up menu with the mouse.

The pop-up menu must be owned by a parent component, which should be the applet or
frame window. Only one parent at one time is possible.

To show the pop-up menu you must catch the mouse event when the user requests the
pop-up menu.

The mouse action differs among operation systems:

• In Windows and OS/2 systems, a menu pops up when the right mouse button is
released.

• In Motif systems a menu pops up when the right mouse button is clicked.

The trigger definition is encapsulated by the JDK. The MouseEvent class provides the
isPopupTrigger method to detect a trigger event for a pop-up menu.

The pop-up menu is shown when the show method of the menu is invoked:

show(origin=Component, x=int, y=int)

The parameters for the show method are provided with the mouse event:

Chapter 7. Creating Graphical User Interfaces 93

-- e is an object of MouseEvent
-- popup is an object of PopupMenu
popup.show(e.getComponent(),e.getX(),e.getY()

Note: In JDK 1.1 - AWT Enhancements, the mouse events are captured by using the
enableEvents method of an applet. There are some problems if you catch mouse events in
this way:

• The enableEvents method is protected. You have to subclass the component to use the
method.

• If the applet or frame window owns some components, the mouse events are not
propagated to the frame or applet. You have to subclass each component again to get
the mouse events.

We used a mouse event listener (see Figure 51 on page 95), which can be attached easily to
any component. The drawback of this approach is that you must catch the mouse pressed
and mouse release event, because the isPopupTrigger method is operating system
dependent and can be true for the mouse pressed or mouse released event.

Methods and events of interest:

Methods

show() Pops up the menu

add(m=MenuI tem)
Adds a menu item to the menu

addSeparator()
Creates a menu item as a separator and adds it to the menu

remove(m=MenuComponent)
Removes a menu item from the menu

Semantic Events

ActionEvent
Fired when any menu item of the menu is selected. The getCommand method of
the ActionEvent class returns the label of the selected menu item, unless a
shortcut key fired the event. If a shortcut key fired the event, the getCommand
method returns a null string (see note in “List” on page 88).

We do not recommend attaching an action listener to a menu. Attach an action
listener to a menu item instead.

Figure 50 shows a pop-up menu and Figure 51 shows the matching source code.

94 Creating Java Applications Using NetRexx

Figure 50. Pop-up Menu Sample Application

/* gui\popupmenu\Popup.nrx

This program shows the usage of a popup menu */

-- Popup class (implicit)
MenuBarX()

-- MenuBarX class
class MenuBarX
Properties inheritable
status = Label(′ Press the right mouse button′)

method MenuBarX()
win = Frame(″Popup Menu Test″) -- creates the window

m = PopupMenu(″File″) -- first menu in the menubar

mi = MenuItem(″Open...″) -- menu item for menu File
m.add(mi) -- add menu item to menu File
mi.addActionListener(MenuAction(status,″Open″)) -- menu action

mi = MenuItem(″Close″) -- next menu item for menu File
m.add(mi);
mi.addActionListener(MenuAction(status,″Close″)) -- menu action

m.addSeparator(); -- add a separator to the menu

mi = MenuItem(″Exit″) -- next menu item for menu File
m.add(mi);
mi.addActionListener(CloseMenu()) -- menu action

win.add(m) -- add the popup menu to the window

-- add the mouse event listener
status.addMouseListener(PopUpMouseListener(m))
win.addMouseListener(PopUpMouseListener(m))

Figure 51 (Part 1 of 2). Pop-up Menu Sample Application: Popup.nrx

Chapter 7. Creating Graphical User Interfaces 95

win.add(″South″ , status) -- add the label to the window

-- set window position to the middle
win.setSize(200,130)
d = win.getToolkit().getScreenSize()
s = win.getSize()
win.setLocation((d.width - s.width) % 2,(d.height - s.height)%2)

win.setVisible(1) -- show the window

-- PopUpMouseListener class
class PopUpMouseListener extends MouseAdapter
Properties
mpopup = PopupMenu

method PopUpMouseListener(p=PopupMenu)
mpopup = p

-- look for popup trigger event when a mouse button is pressed
method mousePressed(e=MouseEvent)
if e.isPopupTrigger() then
mpopup.show(e.getComponent(),e.getX,e.getY)

-- look for popup trigger event when a mouse button is released
method mouseReleased(e=MouseEvent)
if e.isPopupTrigger() then
mpopup.show(e.getComponent(),e.getX,e.getY)

-- MenuAction class
class MenuAction implements ActionListener
Properties inheritable
text = String
field = Label

method actionPerformed(e = ActionEvent)
field.setText(′ Menu′ text ′ selected′)

method MenuAction(aLabel = Label, aString = String)
field = aLabel
text = aString

-- CloseMenu class
class CloseMenu implements ActionListener
method actionPerformed(e = ActionEvent)
exit 0

Figure 51 (Part 2 of 2). Pop-up Menu Sample Application: Popup.nrx

Layout Manager
A layout manager is a class that arranges the child components of a container. Containers
are components which hold and include other components. Frame windows, applets, and
dialog windows are containers.

The layout manager resizes or moves the components according to the layout rule of the
manager, to fit the components into the available space.

A layout manager resizes and rearranges your components when the window is resized by
the user, or when the pack method (of the Window class) is invoked. There is no longer a
need to create fixed-size windows when using a layout manager.

Using the setLayoutManager method, you can change the layout manager of a container:

96 Creating Java Applications Using NetRexx

window.setLayoutManager(BorderLayout())

Every container has a default layout manager, windows defaulting to the BorderLayout
manager, and panels to the FlowLayout manager. You can get the current layout manager
with the getLayout method.

Panels are components and containers, so you can add panels to panels to any depth.
Panels are very well suited if another layout manager is appropriate for a part of the window
frame.

A layout manager uses two properties of the components within a container to arrange its
layout: the minimum size and the preferred size. The minimum size of a component
specifies the minimum amount of space the component needs. The preferred size of a
component can reflect the size when a component looks good.

If one of your components changes its size on its own, or if you change the layout manager
at run time, you must invoke the invalidate method and then the validate method of the
container.

FlowLayout

The FlowLayout manager places its components from left to right and top to bottom. If there
is no space in the current row, the component is placed in the next row. The FlowLayout
manager uses the preferred size of the components to calculate the space needed.
Figure 52 shows an applet with a FlowLayout manager in two sizes.

Figure 52. FlowLayout Manager

The FlowLayout manager has an alignment property that specifies how the remaining space
of a row is used. If the alignment is set to LEFT or RIGHT, the remaining space is moved to
the right or left end of a row. If the alignment is set to CENTER the remaining space is
divided by 2 and distributed to the left and right end of the row.

The default alignment of a FlowLayout manager is CENTER.

The components are separated by a horizontal and a vertical gap. The gap is also added to
the borders of the container. The default for the gaps is 5 pixels.

Constants, constructors, and methods of interest:

Constants

LEFT Used for left alignment

RIGHT Used for right alignment

CENTER Used for center alignment

Constructors

Chapter 7. Creating Graphical User Interfaces 97

FlowLayout(al ign=int CENTER)
Creates a FlowLayout manager with horizontal and vertical gaps set to five pixels.

FlowLayout(al ign=int , hgap=int , vgap=int)
Creates a FlowLayout manager with the specified parameters

Methods

setAl ignment(al ign=int)
Sets the alignment of the FlowLayout manager

setHgap(hgap=int)
Sets the horizontal gap between the columns

setVgap(vgap=int)
Sets the vertical gap between the columns

Figure 53 shows the code for the applet shown in Figure 52 on page 97. The buttons are
added to the applet ′s default FlowLayout manager.

/* gui\flowlayout\FlowLay.nrx

Sample Applet to illustrate the FlowLayout manager */

class FlowLay extends Applet

method init()
 setLayout(FlowLayout(FlowLayout.CENTER)) -- not necessary (default for applets)
 add(Button(′ One′))
 add(Button(′ Two′))
 add(Button(′ Three′))
 add(Button(′ 4 ′))
 add(Button(′ 5 ′))

Figure 53. FlowLayout Manager Sample: FlowLay.nrx

BorderLayout

The BorderLayout manager places its components in five places. Figure 54 shows an applet
with a BorderLayout manager.

Figure 54. BorderLayout Manager

98 Creating Java Applications Using NetRexx

The places are named North, West, Center, East, and South. When a component is added to
the container, one of these five names must be used:

window.add(′ South′ , Button(′ button-text′))

The North and South components are stretched by the BorderLayout manager in a
horizontal direction. The vertical size of the components is not changed.

The West and East components are stretched in a vertical direction. The horizontal size of
the components is not changed.

The Center is stretched in both directions to fill the remaining space.

If a location is not filled by a component, or the component is invisible during the layout
calculation, the space is used by the other components.

The horizontal gap specifies the space between the West, East, and Center components.
The vertical gap specifies the space added to the bottom of the North and to the top of the
South component. The default value for the gap is 0.

Constructors and methods of interest:

Constructors

BorderLayout()
Creates a default BorderLayout manager with horizontal and vertical gaps set to
0 pixels

FlowLayout(hgap=int , vgap=int)
Creates a BorderLayout manager with gaps set to the specified parameters

Methods

setHgap(hgap=int)
Sets the horizontal gap between the components

setVgap(vgap=int)
Sets the vertical gap between the components

Figure 55 shows the code for the applet shown in Figure 54 on page 98.

/* gui\borderlaypout\BordLaynrx

Sample Applet to illustrate the BorderLayout manager */

class BordLay extends Applet

method init()
setLayout(BorderLayout(4,4))
add(′ North′ , Button(′ North′))
add(′ South′ , Button(′ South′))
add(′ West′ , Button(′ West′))
add(′ East′ , Button(′ East′))
add(′ Center′ , Button(′ Center′))

Figure 55. BorderLayout Manager Sample: BordLay.nrx

Note: The BorderLayout is very useful for the top panel of a frame with subpanels placed
into the available positions. The subpanels use their own layout manager to arrange
individual components.

Chapter 7. Creating Graphical User Interfaces 99

GridLayout

The GridLayout manager places its components into a number of fixed rows and columns.
The components are resized to fit in the resulting areas; their minimum and preferred sizes
are ignored. Figure 56 on page 100 shows an applet with two GridLayout managers.

Figure 56. GridLayout Manager

The applet is divided in two parts. The upper part consists of a GridLayout manager that
uses all of the available space. The lower part consists of a FlowLayout manager with a
panel with a GridLayout manager. This configuration forces a GridLayout manager to size to
its preferred size.

Note: If a GridLayout manager is set to its preferred size, all of its components are sized
equal to the largest component. This is very useful for creating buttons of equal size,
according to the button with the longest text.

Remember that a panel with a FlowLayout manager sets the components to their preferred
size.

The GridLayout manager works with rows and columns. The components are placed from
left to right and top to bottom.

If the number of rows is greater than zero, any column specification is ignored. The number
of components is divided by the rows and rounded to the next greater number. A
GridLayout manager with seven components set in three rows will have three columns, with
two empty places, of course.

If the number of rows is set to 0, the specified number of columns will be used. The number
of components is divided by the columns and rounded to the next greater number.

If the minimum count of elements is not available, the space remains free.

Horizontal and vertical gaps can be used to add additional space between the columns or
rows. The gap is set to 0 by default.

Constructors and methods of interest:

Constructors

GridLayout()
Creates a default GridLayout manager with one row. The horizontal and vertical
gaps are set to 0 pixels.

100 Creating Java Applications Using NetRexx

GridLayout(row=int , co lumn=in t)
Creates a GridLayout manager with the defined gaps

Gr idLayout (row=in t ,co lumn=in t ,hgap=in t ,vgap=in t)
Creates a GridLayout manager with the specified parameters

Methods

setHgap(hgap=int)
Sets the horizontal gap between the columns

setVgap(vgap=int)
Sets the vertical gap between the columns

Figure 57 shows the code for the applet shown in Figure 56 on page 100.

/* gui\gridlayout\GridLay.nrx

Sample Applet to illustrate the GridLayout manager */

class GridLay extends Applet

method init()
-- divide the space of the applet in two rows with 20 pixels space between
setLayout(GridLayout(2,0,0,20))

-- add a panel with a GridLayout manager to row 1
-- this layout manager resizes the components to use the available space
p=Panel() -- new panel
add(p) -- add panel
p.setLayout(GridLayout(3,0,3,6)) -- 3 rows hgap=3 vgap=6
p.add(Button(′ 1 ′))
p.add(Button(′ 2 ′))
p.add(Button(′ 3 ′)) -- next row
p.add(Button(′ 4 ′))
p.add(Button(′ 5 ′)) -- next row

-- Add a panel with a FlowLayout manger to row two to avoid resizing
pFlow=Panel()

 pFlow.setLayout(FlowLayout(FlowLayout.LEFT,0,0)) -- left alignment no gaps
 add(pFlow)

-- Add a panel with a GridLayout manager to the panel with the flowlayout
p=Panel() -- new Panel
pFlow.add(p) -- add Panel

p.setLayout(GridLayout(0,3,3,6)) -- 3 columns hgap=3 vgap=6
p.add(Button(′ 1 ′))
p.add(Button(′ 2 ′))
p.add(Button(′ -3-′)) -- this button it′ s the largest, sets the size for all
p.add(Button(′ 4 ′))
p.add(Button(′ 5 ′))

Figure 57. GridLayout Manager Sample: GridLay.nrx

Chapter 7. Creating Graphical User Interfaces 101

GridBagLayout

The GridBagLayout manager is the most complicated layout manager of the JDK. The
GridBagLayout manager arranges its components in a grid of cells. Each cell in a column
has the same width, and each cell in a row has the same height. Columns or rows do not
have to be equal in size, which is different from the GridLayout manager.

Figure 58 shows an example of an applet using a GridBagLayout manager.

Figure 58. GridBagLayout Manager

The cells in the grid are addressed by their x and y indexes. The origin of the grid is in the
upper-left corner of the container and starts with cell (0,0). The size of the grid is
automatically expanded. If you add a cell to (9,7), the grid size becomes 10 rows and 8
columns.

A component can be added to any cell of the grid and can span over multiple rows and
columns. The area a component occupies is called the component display area.

Not every cell must be occupied.

The component′s location and other information are defined by a GridBagConstraints object.
Every component in a GridBayLayout manager is associated with a GridBagConstraints
object.

The GridBagConstraints class defines seven constraints. The constraints are public instance
variables of a GridBagContraints object:

Position The gridx and gridy constraints define the cell that the component occupies. If a
component occupies more than one cell, gridx and gridy define the upper-left
corner in the grid. Remember that gridx and gridy are 0-based.

Size The gridwidth constraint defines the number of cells a component occupies in a
horizontal direction (from left to right).

The gridheight constraint defines the number of cells a component occupies in a
vertical direction (from top to bottom).

Fill The fill constraint defines if and in which direction a component is stretched to
the size of the component display area:

• NONE (default)
• BOTH
• VERTICAL

102 Creating Java Applications Using NetRexx

• HORIZONTAL

Anchor If a component is not stretched to the full size of the component display area, the
anchor defines the component′s position as shown in Figure 59.

┌────────────────────────────────────┐
│ │
│ NORTHWEST NORTH NORTHEAST │
│ │
│ │
│ │
│ WEST CENTER EAST │
│ │
│ │
│ │
│ SOUTHWEST SOUTH SOUTHEAST │
│ │
└────────────────────────────────────┘

Figure 59. GridBagLayout: Anchor Constraint

CENTER is the default.

Insets The insets constraint affects the size of the component′s display area. A positive
value reduces the size and a negative value increases the size of the component
display area.

The insets constraint is an object of type Insets. When a GridBagConstraints
object is constructed, an Insets object is created and assigned to the insets
constraint.

An Insets object has four public instance variables: top, left, bottom, and right.
All are set to 0 as the default. It is not necessary to create a new Insets object,
all values can be easily modified:

 -- gbc is a GridBagConstraints object
 gbc.insets.top = 5 -- reduces the component display area about 5 pixels
 gbc.insets.left = 2

Weights The weightx and weighty constraints control how additional space is distributed to
the cells.

When the container is larger than the preferred size of the GridBagLayout
manager, which is based on the preferred size of its components, the additional
space is distributed to the cells.

The GridBagLayout manager calculates the sum of all weights of a row. The
additional space is divided by the sum of the weights and then distributed to the
cells in proportion to the weights.

If a cell has a weight of 0, no additional space is added to the cell. The additional
space is added to the whole row or whole column. If cells in the same row have
different vertical weights, the largest weight is used for the whole row. The
default value of the weights is 0.

The grid is centered in the container, if the sum of the weights is 0.

Internal Padding
When the GridBagLayout manager calculates the minimum or preferred size of
the container, it invokes the getMinimumSize or getPreferredSize method of the
components. The internal Padding constraints, ipadx and ipady, are added to the
returned size of the component. Both can be positive or negative and default to 0
pixels.

Chapter 7. Creating Graphical User Interfaces 103

How to Use a GridBagLayout Manager

Follow these simple instructions to use the GridBagLayout manager:

1. Sketch the layout of your applet or frame on a piece of paper as in Figure 60.

Figure 60. Sketch for GridBagLayout Manager Example

2. Number the rows and columns and mark the rows and columns that should receive
additional space.

3. Give every row or column that should be expandable the weight of 1.

4. Use multiples of 1 for the weight to define the proportion of expansion of multiple
expandable rows or columns.

5. Decide whether a component should be expanded (fill constraint) and mark the anchor if
the fill constraint is not set to BOTH.

6. If you want some space between the components, define the insets for the rows and
columns. Be consistent with the insets. Write the insets on the lines of your grid.

7. Start coding; add a GridBagLayout manager to the container:

 -- window is a frame window and the container
 gbl = GridBagLayout()
 window.setLayout(gbl)

8. Create a GridBagConstraints object and preset it with your common constraints:

 tgbc = GridBagConstraints() -- template object for later use
 tgbc.anchor = GridBagConstraints.NORTHWEST
 tgbc.insets.top = 5
 tgbc.insets.left = 4
 ...

If you add a uses GridBagConstraints phrase to your class instruction (see “Class
Instruction” on page 25), you can use all of the constants without the class name:

 class MyGui uses GridBagConstraints
...
tgbc.anchor = NORTHWEST
...

104 Creating Java Applications Using NetRexx

9. Perform the following three steps for every component:

a. Clone the previously created GridBagConstraints object and change the constraints
that are different:

 -- tgbc is the template GridBagConstraints object
 gbc = GridBagConstraints tgbc.clone()
 gbc.gridx = 2; gbc.gridy = 0
 ...

The cast to type GridBagConstraints is necessary because the clone method
returns a type of void.

b. Add the component to the container.

 -- window is a frame window and the container
 -- comp is the component
 window.add(comp)

c. Set the GridBagConstraints in the GridBagLayout manager:

 -- gbl is a GridBagLayout manager object
 -- gbc is a GridBagConstraints object
 gbl.setConstraints(comp, gbc)

Figure 61 shows the code for the GridBayLayout applet shown in Figure 58 on page 102.

/* gui\gridbaglayout\GrBagLay.nrx

Sample Applet to illustrate the GridBagLayout manager */

class GrBagLay extends Applet uses GridBagConstraints

method init()
 gbl = GridBagLayout()
t1gbc = GridBagConstraints() -- for labels
t2gbc = GridBagConstraints() -- for the other components
setLayout(gbl)

-- Preset t1gbc used for the labels
t1gbc.anchor=NORTHWEST
t1gbc.insets.top=5; t1gbc.insets.left=10; t1gbc.insets.right=5
t1gbc.gridx = 0

-- Preset t2gbc used for the other components
t2gbc.fill = BOTH;
t2gbc.insets.top=5; t2gbc.insets.right=10
t2gbc.weightx = 1; t2gbc.gridx = 1

-- Add the labels
l = Label(′ Name′)
gbc=GridBagConstraints t1gbc.clone(); gbc.gridy=0; ; gbc.insets.top=10
add(l); gbl.setConstraints(l,gbc)

l = Label(′ Sex′)
gbc=GridBagConstraints t1gbc.clone(); gbc.gridy=1;
add(l); gbl.setConstraints(l,gbc)

Figure 61 (Part 1 of 2). GridBagLayout Manager Sample: GrBagLay.nrx

Chapter 7. Creating Graphical User Interfaces 105

l = Label(′ Notes′)
gbc=GridBagConstraints t1gbc.clone(); gbc.gridy=2; gbc.insets.bottom=10
add(l); gbl.setConstraints(l,gbc)

-- Add the other components
name = TextField()
gbc=GridBagConstraints t2gbc.clone(); gbc.gridy=0; gbc.gridwidth=REMAINDER
gbc.insets.top=10
add(name); gbl.setConstraints(name,gbc)

 cbg = CheckboxGroup() -- Checkbox group because exclusive choices
 cb = Checkbox(′ male′ , cbg,1)
gbc=GridBagConstraints t2gbc.clone(); gbc.gridy=1; gbc.insets.right=5
add(cb); gbl.setConstraints(cb,gbc)

cb = Checkbox(′ female′ , cbg,0)
gbc=GridBagConstraints t2gbc.clone(); gbc.gridy=1; gbc.gridx=2;
add(cb); gbl.setConstraints(cb,gbc)

area = TextArea(5,20) -- 5 rows and 20 columns visible
gbc=GridBagConstraints t2gbc.clone(); gbc.gridy=2; gbc.gridwidth=REMAINDER
gbc.weighty = 1
gbc.insets.bottom=10
add(area); gbl.setConstraints(area,gbc)

Figure 61 (Part 2 of 2). GridBagLayout Manager Sample: GrBagLay.nrx

The usage of the GridBagLayout manager requires a lot of coding. The subclass of the
GridBagLayout manager shown in Figure 62 reduces the coding by providing methods
designed for convenient usage.

/* redbook\gui\SimpleGridBagLayout.nrx

Simple GridBagLayout class for easy coding */

package Redbook

class SimpleGridBagLayout extends GridBagLayout uses GridBagConstraints
Properties inheritable
theContainer = Container -- Container used with this layout manager
dInsets = Insets(0,0,0,0) -- Template insets
dAnchor = int NORTHWEST

method SimpleGridBagLayout(aContainer = Container)
super()
theContainer = aContainer
aContainer.setLayout(this)

method setInsets(top=int,left=int,bottom=int,right=int)
 dInsets.top = top
 dInsets.left = left

dInsets.bottom = bottom
dInsets.right = right

method setAnchor(newAnchor=int)
dAnchor=newAnchor

Figure 62 (Part 1 of 2). SimpleGridBagLayout Manager Class: SimpleGridBagLayout.nrx

106 Creating Java Applications Using NetRexx

method newConstraints(x=int,y=int,sizex=int,sizey=int,fill=int,-
anchor=int,weightx=double,weighty=double)-

returns GridBagConstraints
gbc = GridBagConstraints()
gbc.gridx = x; gbc.gridy = y;
gbc.gridwidth = sizex; gbc.gridheight=sizey
gbc.fill = fill; gbc.anchor = anchor;
gbc.weightx = weightx; gbc.weighty = weighty
return gbc

method addFixSize(comp=Component,x=int,y=int) returns Component
addVarSize(comp,x,y,Insets dInsets.clone(),0.0,0.0,1,1,NONE,dAnchor)
return comp

method addFixSize(comp=Component,x=int,y=int,newInsets=Insets,-
sizex=int 1,sizey=int 1,-
fill=int NONE, anchor=int NORTHWEST) returns Component

addVarSize(comp,x,y,newInsets,0.0,0.0,sizex,sizey,fill,anchor)
return comp

method addVarSize(comp=Component,x=int,y=int,newInsets=Insets,weightx=double,-
weighty=double,sizex=int 1,sizey=int 1,-
fill=int BOTH, anchor=int NORTHWEST) returns Component

gbc = newConstraints(x,y,sizex,sizey,fill,anchor,weightx,weighty)
gbc.insets = Insets newInsets
theContainer.add(comp)
setConstraints(comp,gbc)
return comp

method addVarSize(comp=Component,x=int,y=int,weightx=double,weighty=double,-
sizex=int 1,sizey=int 1,-
fill=int BOTH, anchor=int NORTHWEST) returns Component

addVarSize(comp,x,y,Insets dInsets.clone(),weightx,weighty,-
sizex,sizey,fill,anchor)

return comp

Figure 62 (Part 2 of 2). SimpleGridBagLayout Manager Class: SimpleGridBagLayout.nrx

Note that the class is part of the Redbook package. It must be stored in a subdirectory
named “Redbook,” which is part of a subdirectory listed in the CLASSPATH.

With this class, the sample applet can be simplified quite a bit (see Figure 63).

/* gui\simplegridbaglayout\GrBagLa2.nrx

Sample Applet to illustrate the GridBagLayout manager */

import Redbook.

class GrBagLa2 extends Applet uses GridBagConstraints

method init()
 sgbl = SimpleGridBagLayout(this)

-- Add the labels
sgbl.addFixSize(Label(′ Name′) , 0 , 0 , Insets(10,10,5,5))
sgbl.addFixSize(Label(′ Sex′) , 0 , 1 , Insets(0,10,5,5))

Figure 63 (Part 1 of 2). GridBagLayout Manager Sample—Simplified: GrBagLa2.nrx

Chapter 7. Creating Graphical User Interfaces 107

sgbl.addFixSize(Label(′ Notes′) , 0 , 2 , Insets(0,10,10,5))

-- Add the other components
 cbg = CheckboxGroup() -- Checkbox group because exclusive choices
 sgbl.addVarSize(TextField(),1,0,Insets(10,0,5,10),1.0,0.0,REMAINDER)
 sgbl.addVarSize(Checkbox(′ male′ , cbg,1),1,1,Insets(0,0,5,5),1.0,0.0)
 sgbl.addVarSize(Checkbox(′ female′ , cbg,1),2,1,Insets(0,0,5,10),1.0,0.0)
 sgbl.addVarSize(TextArea(5,20),1,2,Insets(0,0,10,10),1.0,1.0,REMAINDER)

Figure 63 (Part 2 of 2). GridBagLayout Manager Sample—Simplified: GrBagLa2.nrx

CardLayout

The CardLayout manager shows only one component at a time. The visible component is
resized to the size of the container. The other components are hidden. The visible
components are usually panels that themselves contain more components.

The CardLayout manager can be used to implement user interfaces such as the notebook in
OS/2 or Windows.

Figure 64 shows an applet with a CardLayout manager.

Figure 64. CardLayout Manager

The CardLayout manager controls the visibility of the components added to it. Several
methods are available to change the current component, that is, the visible component.

When the components are added to the container, a label must be used to identify the
component. The label can be used with the CardLayout manager to make the component
current.

Use the following method to add the components to the container:

add(LABEL=String,COMP=Component)

The horizontal and vertical gaps reduce the size of the components managed by the
CardLayout manager.

Constructors and methods of interest:

Constructors

CardLayout()
Creates a CardLayout manager with the gaps set to 0

108 Creating Java Applications Using NetRexx

Methods

setHgap(hgap=int)
Sets the horizontal gap between the columns

setVgap(vgap=int)
Sets the vertical gap between the columns

Figure 65 shows the code for the CardLayout manager applet shown in Figure 64 on
page 108.

/* gui\cardlayout\CardLay.nrx

Sample Applet to illustrate the CardLayout manager */

class CardLay extends Applet

method init()
 setLayout(BorderLayout()) -- To show the buttons and the CardLayout manager

-- GridLayout to store the button list
pgrid = Panel(); grid = GridLayout(1,0,1,0)
pgrid.setLayout(grid)

-- This is the CardLayout manager
pcard = Panel();
pcard.setLayout(CardLayout())

-- create the buttons and add the action listener
b= Button(′ < ′) ; b.addActionListener(BList(′ prev′ , pcard)); pgrid.add(b)
b= Button(′ One′) ; b.addActionListener(BList(′ One′ , pcard)); pgrid.add(b)
b= Button(′ Two′) ; b.addActionListener(BList(′ Two′ , pcard)); pgrid.add(b)
b= Button(′ Three′) ; b.addActionListener(BList(′ Three′ , pcard));pgrid.add(b)
b= Button(′ > ′) ; b.addActionListener(BList(′ next′ , pcard)); pgrid.add(b)

-- add the panels to the applet
add(″North″ , pgrid)
add(″Center″ , pcard)

-- add the components to the CardLayout manager
pcard.add(′ One′ , Label(′ One′ , Label.CENTER))
pcard.add(′ Two′ , Label(′ Two′ , Label.CENTER))
pcard.add(′ Three′ , Label(′ Three′ , Label.CENTER))

-- The BList class is needed to switch the panels
class BList implements ActionListener
Properties inheritable
cont = Container
aLabel = String

method BList(theLabel=String,aContainer=Container)
cont = aContainer; aLabel = theLabel

method actionPerformed(e=ActionEvent)
select
when aLabel=′ next′ then
(CardLayout cont.getLayout()).next(cont)

when aLabel=′ prev′ then
(CardLayout cont.getLayout()).previous(cont)

Figure 65 (Part 1 of 2). CardLayout Manager Sample: CardLay.nrx

Chapter 7. Creating Graphical User Interfaces 109

otherwise
(CardLayout cont.getLayout()).show(cont,aLabel)

end

Figure 65 (Part 2 of 2). CardLayout Manager Sample: CardLay.nrx

A second version of the same program, CardLay2.nrx, disables the button that matches the
current page.

Frame and Dialog Windows
Frame and dialog windows do not only apply to Java applications. Any applet can also
create a frame or a dialog window. Frames and dialogs are subclasses of the Window class.
The only difference is that a warning string is added to any window an applet creates. The
reason for the warning string is that an applet could present you with a window like a login
window and ask you to enter a userid and password. With the warning string in the window,
anyone can see that the window shown is not a standard login window.

Every window, dialog or frame, is invisible when constructed. You must use the setVisible
method to make them visible. Before making a window visible, you have to set the size of
the window. There are two ways of setting the size:

• Set the size to a fixed value with the setSize method:

win.setSize(200,100)

The first parameter is the width, and the second is the height of the window in pixels.

• Calculate the preferred size with the pack method. The pack method cannot return
proper results if you did not set the visible columns for TextFields, or the number of
rows in lists, for example. The advantage of the pack method is that you are no longer
dependent on the fonts of different operating systems.

Frame Windows

A frame window has a title bar that includes the system menu, and it may have a menu bar.
The Frame class implements frame windows:

 Frame(title = String ′ ′)

The z-order of frame windows is not set, because no information about the parent window is
available.1 Every frame window can be set to the top, unless it has dialog windows.

Dialog Windows

A dialog window is used to get input from the user. Dialog windows have a title bar, but no
system menu, and they cannot include menu bars.

A dialog window needs a frame window as the parent for the constructor:

 Dialog(parent=Frame, modal=boolean)
 Dialog(parent=Frame, title = String ′ ′ , modal=boolean 0)

1 The z-order is the third dimension of your screen. The window with the highest z-order is on top of all the other
windows. The window with the lowest z-order is your desktop.

110 Creating Java Applications Using NetRexx

A dialog window always stays on top of its parent window.

If the dialog window is modal, the parent window cannot be accessed as long as the dialog
window exists. It is not possible to set the visibility of a dialog window to false; the dialog
window must be destroyed.

Tabbing Support

Frame and dialog windows support tabbing. The tabbing sequence is directly related to the
sequence in which components are added to the window. Tabbing works in every depth,
regardless of how many panels and layout managers are used.

Any component that returns 1 (true) when the isTabbable method is invoked can accept
keyboard focus.

Event Handling
Event handling changed dramatically with JDK 1.1. With the new event handling, delegation
event handling, subclassing of components is no longer necessary in most situations.

Delegation event handling has many advantages:

• Only the events you are really interested in must be handled by your code

• A clear separation between the GUI and controlling code is possible

• It prevents programming errors.

• It is easy to learn.

The old event handling of JDK 1.0 is still supported but must be separated from the new
event handling at the component level.

The delegation event handling model encapsulates all events in classes that are subclasses
of the EventObject class. The events are propagated from the components (event sources)
to event listeners. The event source fires events, and the listener receives events.

An event listener implements an interface specific for the event it will receive. The listener
interface defines one or more methods, which are invoked by the event sources.

The event source has a list of registered listeners for every event type. If an event occurs,
the registered event listeners are called. The listeners are called synchronously, so that the
next listener is called when the previous listener returns from the event handling method.
The sequence in which the event listeners are called is not specified.

The only exception to the rule above is that event listeners can consume events. If an event
is consumed by a listener, no further event handling occurs. An event is consumed by
calling the consume method, which is defined in the AWTEvent class. Consuming events is
useful when you are writing keyboard handlers or creating GUI builders.

Events

The events are represented by a hierarchy of event classes. Each class provides the data
related to the event.

The event classes do not define any public instance variable. The data of an event can be
accessed through getAttribute and possibly setAttribute methods.

You can expand the event hierarchy by defining your own event types.

The JDK distinguishes between two event types: low-level events and semantic events.

Chapter 7. Creating Graphical User Interfaces 111

Low-Level Events

Low-level events represent low-level input and actions on a visual component of the GUI.
The following low-level event classes are available:

ComponentEvent
Fired when a component is shown, hidden, moved, or resized

FocusEvent
Fired when a component gets or loses the focus

KeyEvent Fired from a component, which owns the keyboard focus, when a key is pressed,
released, or typed (combination of key pressed and released)

MouseEvent
Fired when the mouse is moved or dragged or the mouse buttons are pressed

ContainerEvent
Fired when a component is added or removed from a container

WindowEvent
Fired when a window is opened, closed, iconified, deiconified, activated, or
deactivated

Low-Level events have multiple event types per event class.

Semantic Events

Semantic events encapsulate the semantics of the GUI. Event sources of semantic events
do not have to be components. A nonvisual time class, for example, can also fire an
ActionEvent, as can buttons or list boxes.

The main difference between low-level events and semantic events is that a semantic event
describes a single action that is on a higher level than simple input events.

The following semantic event classes are available:

ActionEvent
Fired when a command is given in buttons, lists, choices, text fields, and text
areas

AdjustmentEvent
Fired when an adjustable value has changed, for example, in scroll bars

ItemEvent Fired when a selection of an item occurs in lists, choices, and check boxes

TextEvent Fired when a monitored text changes in text fields and text areas

Semantic events have only one event type per event class.

Event Listener Interface

An event listener interface is defined for every event class. The interface defines a separate
method for every distinct event type the event class represents.

The event listener interfaces define a balance between providing a separate method for any
single event and one method for all event types.

Use the following method to add an event listener to a component:

addEventListener(eventListenerObject)

EventListener is a place holder for the name of an event listener interface. For example, to
add a WindowListener object to a window use the following command:

112 Creating Java Applications Using NetRexx

 -- win is an object of class Frame
 -- winlist is an object of class WindowListener
 win.addWindowListener(winlist)

An object of class WindowListener indicates that the class of the object implements the
WindowListener interface.

Low-Level Listener Interfaces

The methods of the low-level event interfaces are:

ComponentListener

componentHidden(e=ComponentEvent)
Invoked when component has been hidden (with setVisibility(0), for example)

componentMoved(e=ComponentEvent)
Invoked when component has been moved

componentResized(e=ComponentEvent)
Invoked when component has been resized

componentShown(e=ComponentEvent)
Invoked when component has been shown (with setVisibility(1), for example)

ContainerListener

componentAdded(e=ContainerEvent)
Invoked when a component has been added to the container

componentRemoved(e=ContainerEvent)
Invoked when a component has been removed from the container

FocusListener

focusGained(e=FocusEvent)
Invoked when a component gains the keyboard focus

focusLost(e=FocusEvent)
Invoked when a component loses the keyboard focus

KeyListener

keyPressed(e=KeyEvent)
Invoked when a key has been pressed

keyReleased(e=KeyEvent)
Invoked when a key has been released

keyTyped(e=KeyEvent)
Invoked when a key has been typed. This event occurs when a key press is
followed by a key release.

MouseListener

The mouse events are split into two listeners. The splitting enables an application to react
to some mouse events, without the need to receive messages from mouse movement.

mouseClicked(e=MouseEvent)
Invoked when the mouse has been clicked on a component

mousePressed(e=MouseEvent)
Invoked when a mouse button has been pressed on a component

mouseReleased(e=MouseEvent)
Invoked when a mouse button has been released on a component

Chapter 7. Creating Graphical User Interfaces 113

mouseEntered(e=MouseEvent)
Invoked when the mouse enters a component

mouseExited(e=MouseEvent)
Invoked when the mouse exits a component

MouseMotionListener

mouseDragged(e=MouseEvent)
Invoked when a mouse button is pressed on a component and then dragged.
Mouse drag events continue to be delivered to the component where the drag
originated until the mouse button is released (regardless of whether the mouse
position is within the bounds of the component).

mouseMoved(e=MouseEvent)
Invoked when the mouse has been moved on a component (with no buttons
pressed)

WindowListener

windowActivated(e=WindowEvent)
Invoked when a window is activated, or the focus returned to the window or any
of its components

windowClosed(e=WindowEvent)
Invoked when a window has been closed. The event is delivered only when the
window was destroyed with the dispose method.

windowClosing(e=WindowEvent)
Invoked when a window is in the process of being closed. The event is delivered
when the user selects Close from the window′s system menu. If the program
does not explicitly hide or destroy the window as a result of this event, the
window close operation is canceled.

windowDeactivated(e=WindowEvent)
Invoked when a window is deactivated. A window is deactivated when the focus
goes to another window. This is like a focus lost event at the window level.

windowDeiconif ied(e=WindowEvent)
Invoked when a window is deiconified

windowIconif ied(e=WindowEvent)
Invoked when a window is iconified

windowOpened(e=WindowEvent)
Invoked when a window has been opened. The event is delivered when a
window is shown for the first time.

Semantic Listener Interfaces

The semantic listener interfaces are characterized by defining only one method per
interface:

ActionListener

actionPerformed(e=ActionEvent)
Invoked when an action occurs, that is, when a user clicks a button, double-clicks
on an item in a list box, or presses the Enter key in a text field.

AdjustmentListener

adjustmentValueChanged(e=AdjustmentEvent)
Invoked when the adjustable value has changed

ItemListener

114 Creating Java Applications Using NetRexx

i temStateChanged(e=ItemEvent)
Invoked when an item′s state has been changed. If a list box allows multiple
selection, the method is invoked for selection and deselection of an item.
Otherwise the method is invoked for selection of items only.

TextListener

textValueChanged(e=TextEvent)
Invoked when the text of a TextField or TextArea object has changed

Adapters

An adapter is an implementation of a low-level listener interface. All methods defined in the
interface are implemented. The default implementation in the adapter methods is to return
without an action.

Adapter classes are abstract classes.

Adapters are convenient programmer shortcuts. You can easily subclass an adapter class
and overwrite only the methods you are interested in, without having to implement all of the
methods defined by the interface.

The following adapters are available:

• ComponentAdapter
• FocusAdapter
• KeyAdapter
• MouseAdapter
• MouseMotionAdapter
• WindowAdapter

Chapter 7. Creating Graphical User Interfaces 115

Event and Component Cross Reference

Table 8 shows which events are fired from the GUI components.

Table 8. Event and Component Cross Reference

Class

Low-Level Events Semantic Events

C
o

m
p

o
n

e
n

tE
v

e
n

t

C
o

n
ta

in
e

rE
v

e
n

t

F
o

cu
sE

ve
n

t

K
e

y
E

v
e

n
t

M
o

u
s

e
E

v
e

n
t

M
o

u
s

e
M

o
ti

o
n

E
v

e
n

t

W
in

d
o

w
E

ve
n

t

A
c

ti
o

n
E

v
e

n
t

A
d

ju
s

tm
e

n
tE

v
e

n
t

It
e

m
E

v
e

n
t

T
e

xt
E

ve
n

t

Component X X X X X

Container X X X X X X

Dialog X X X X X X X

Frame X X X X X X X

Button X X X X X X

Choice X X X X X X

Checkbox X X X X X X

CheckboxMenuItem X X X X X X

List X X X X X X

MenuItem X X X X X X

Scrollbar X X X X X X

Textarea X X X X X X

Textfield X X X X X X X

Fonts
Java defines a platform-independent interface to work with fonts. Fonts are used when
painting text on a graphics context (see “Images” on page 118) or as a property for
components.

A font has three properties: font name, font style, and point size.

The font name must be chosen from (currently) six logical font names that are mapped to
the system fonts on each operating system:

• Helvetica
• TimesRoman
• Courier
• Dialog
• DialogInput
• Symbol

If you specify an invalid name, an operating-system-dependent default is used.

To create a font object, you must use the constructor of the Font class:

aFont = Font(fontname = Str ing, style = int , size = in t)

A font object cannot be changed after it has been created.

116 Creating Java Applications Using NetRexx

Font Styles

The font style defines the thickness and the slant of a font. Table 9 shows the available font
styles and the corresponding constant.

Table 9. Font Styles

Style Constant

Plain or roman Font.PLAIN

Italic Font.ITALIC

Bold Font.BOLD

Bolditalic Font.BOLD + FONT.ITALIC

Font Attributes

A font can be sized to every point size. One point is approximately 1/72 of an inch. There is
no guarantee that you get a font with exactly the size you requested. You should always use
the FontMetrics class to determine the exact size of the font that was created.

The FontMetrics class contains information about the visual attributes of a font (see
Figure 66).

Figure 66. Font Attributes

The FontMetrics class is an abstract class, so you cannot directly create an instance of it.
Use the getFontMetrics method, which is implemented for the Component, Graphics, and
Toolkit classes:

-- obj is an object of the component, graphics, or Toolkit class
-- aFont is an object of the class Font
fm = FontMetrics
fm = obj.getFontMetrics(aFont)

Methods of the FontMetrics class:

getAscent() returns int Returns the font′s ascent in pixels

getDescent() returns int Returns the font′s descent in pixels

getHeight() returns int Returns the font′s height in pixels

getLeading() returns int Returns the font′s leading in pixels

stringWidth(s = String) returns int Returns the width of the string in pixels.

For an example of how to use fonts, see “Extended Label Component” on page 134.

Chapter 7. Creating Graphical User Interfaces 117

Images
The classes available for working with images are spread across the java.applet, java.awt,
and java.awt.image packages.

An image is represented by an object of the java.awt.Image class. You can load and display
an image using the getImage method of the Applet or Toolkit class. Currently GIF and JPEG
images are supported.

The Image class is an abstract class. When an image is loaded, an object of a subclass of
Image is returned to the caller. The exact class type is not of importance to the
programmer.

See “Image Component” on page 139 for an example of working with images.

Loading an Image

If the image data is available as a GIF or JPEG file, the getImage method of the Applet or
Toolkit class can be used to load the image.

The getImage method returns immediately, without even checking whether the image exists,
and before the image is loaded. The image is actually loaded when the program draws the
image the first time.

Applet: For an applet, the getImage methods of the Applet class can be used:

getImage(anUrl = URL) returns Image
Returns an Image object that will load the image from the given URL

getImage(anUrl = URL, f i lename = String) returns Image
Returns an Image object that will load the image from an URL created by the
given URL and file name

These methods cannot be used in a constructor of an applet. However, they can be used in
the init method of an applet.

Note: URLs are discussed in more detail in “URL Handling” on page 212.

Example of using the getImage methods of Applet:

 class MyApplet extends Applet
method init()
img1 = getImage(imageURL) -- imageURL is an instance variable
img2 = this.getImage(getCodeBase(),″picture.gif″)

Application: For applications you must use the getImage methods of the Toolkit class. Use
Toolkit.getDefaultToolkit to retrieve a Toolkit object. The Toolkit class defines two getImage
methods:

getImage(anUrl = URL) returns Image
Returns an Image object that will load the image from the given URL

getImage(fi lename = String) returns Image
Returns an Image object that will load the image from the given file

Example of using the getImage methods of the Toolkit class:

 tk = Toolkit.getDefaultToolkit() -- gets the Toolkit

 -- create the first image object from an URL
 do

anUrl = URL(′ http://java.sun.com/graphics/people.gif′)
img1 = tk.getImage(anURL)

118 Creating Java Applications Using NetRexx

catch MalformedURLException -- Oops, wrong URL
 end

 -- create the second image object from a file
 img2 = tk.getImage(′ KIDS.GIF′)

You can also use the getImage method of Toolkit in an applet. This is useful when you write
a component that will be used by applications and applets (see “Image Component” on
page 139).

Loading an Image Locally or from the Web

The getResource method of the Java Class class enables you to load images locally or from
the Web with relative URLs. When you use this method, the image is loaded from a file in
the CLASSPATH when you run an applet locally, and from the Web server when you run the
applet in a Web browser.

Example of using the getResource method:

 tk = Toolkit.getDefaultToolkit() -- gets the Toolkit

 imgUrl = this.getClass().getResource(′ / redbook/KIDS.GIF′)
 img = tk.getImage(imgUrl)
 ...

If your class is in a package, you have to prefix the file name with the package name
directory:

 imgUrl = this.getClass().getResource(′ / nrxbeans/lab/LED1.GIF′)
 img = Toolkit.getDefaultToolkit().getImage(imgUrl)

MediaTracker

The image is loaded the first time the drawImage method is called. To load it in advance,
use the MediaTracker class, which loads an image or a group of images in a background
thread, gives you status information, and enables you to wait for an image or an image
group to be loaded.

When adding an image to a MediaTracker object, you must specify an ID. The ID reflects the
priority for loading images and can be used to get information about the load process. You
can group the images by using the same ID.

The constructor of the MediaTracker class requires a component as a parameter:

MediaTracker(aComponent=Component)

Useful methods of the MediaTracker class are:

addImage(anImage=Image, id=int)
Adds an image to the MediaTracker object with the given ID

checkAll(load=boolean 0) returns boolean
Checks whether all load processes are finished. If load is true, the loading
process is started.

checkID(id = int, load = boolean 0) returns boolean
Checks whether the image or the group of images with the given ID is loaded. If
load is true, the loading process is started.

isErrorAny() returns boolean
Returns true if any image had an error while loading

Chapter 7. Creating Graphical User Interfaces 119

waitForAll() throws InterruptedException
Starts loading for all images. Returns when all images are loaded. Use the
isErrorAny method to check for errors while loading.

waitForAll(timeout=long) returns boolean throws InterruptedException
Starts loading for all images. Returns when all images are loaded or the
specified timeout (in ms) occurs. Returns true if all images are successfully
loaded. Use the isErrorAny method to check for errors while loading. If t imeout
is 0, the waitForAll method waits forever.

waitForID(id=int) throws InterruptedException
Starts loading for all images. Returns when the image or the group of images
specified by the given ID is loaded. Use the isErrorAny method to check for
errors while loading.

waitForID(id=int,t imeout=long) returns boolean throws InterruptedException
Starts loading for all images. Returns when the image or the group of images
specified by the given ID is loaded or the specified timeout (in ms) occurs.
Returns true if all images are successfully loaded. Use the isErrorAny method to
check for errors while loading. If t imeout is 0, the waitForID method waits
forever.

The following example loads one background image and a group of images for animation:

 class Animator extends Applet implements Runnable
Properties constant
images = 4 -- 4 images for animation

Properties inheritable
background = Image
animator = Image[images] -- array for animation

method init() -- init the applet
tracker = MediaTracker(this) -- create the mediatracker
background = getImage(getCodeBase(),″bkg.gif″) -- background image
tracker.addImage(background,1) -- track background image id=1
loop i=0 for images -- load animator images

animator[i] = getImage(getCodeBase(),″anim″i″ . gif″) -- anim1.gif, etc
tracker.addImage(animator[i],2) -- track the image group id=2

end
do -- load and show images

tracker.waitForID(1) -- load background
repaint() -- show the background
tracker.waitForID(2) -- wait for the animations
start() -- start animation

catch InterruptedException
end

This example is not complete. There is no code for error handling, and the painting of the
images and the animation part are missing. See Figure 67 on page 122 for a complete
example.

Drawing an Image

To draw an image, use the drawImage method of an object of the Graphics class.

Typically the drawImage method is used in the paint or update method. You have to
subclass a window, applet, or component to get access to these methods.

Several overloaded versions of the drawImage method are defined by the Graphics class:

drawImage(img=Image, x=int , y=int , observer=ImageObserver)
Draws image img at point (x,y). Uses the image observer, observer, if the image
must be loaded.

120 Creating Java Applications Using NetRexx

drawImage(img=Image, x=int , y=int , width=int , height=int , observer=ImageObserver)
Same as above, except that the image is scaled to the given width and height.

drawImage(img=Image, x=int , y=int , bgcolor=Color ,observer=ImageObserver)
Draws image img at point (x,y). Uses the image observer, observer, if the image
must be loaded. Uses color bgcolor for transparent parts of the image.

drawImage(img=Image, x= int , y= int , width=int , he ight= int , bgcolor=Color ,
observer=ImageObserver)
Same as above, except that the image is scaled to the given width and height.

The image is loaded when it is drawn the first time, and if it was not loaded in advance by a
MediaTracker object. Loading an image, especially if it is loaded from the Internet, takes
some time. To avoid a blocked interface, the image loading is an asynchronous process
carried out in the background. The object that processes the background task is an
ImageProducer.

One parameter of the drawImage method is ImageObserver, which is an interface that
defines the imageUpdate method. The imageUpdate method is called from the
ImageProducer a few times while the image is loaded.

The ImageObserver interface is implemented by the Component class. The implementation
calls the repaint method every time the imageUpdate method is invoked, and repaint invokes
the paint method of the applet.

A typical paint method for an applet drawing an image is:

 method paint(g = Graphics)
-- img is an instance variable of type Image
d = getSize() -- gets the size of the component
g.drawImage(img,0,0,d.width,d.height,this) -- draw the image

This paint method scales the image to the size of the applet. The same method would work
for a component or a window.

Animated Images

Applets with animated images are currently the most fashionable Java programs. These
applets start a thread that continuously triggers the repaint method of the applet.

One problem with animation is flickering. Flickering occurs when the screen is refreshed by
the operating system during a paint action. Two points in the repainting process of an
applet are responsible for flickering:

• The update method erases the background and calls the paint method after that. You
must change this method to call the paint method without erasing the background:

 method update(g = Graphics)
paint(g)

• The paint method draws (as a default) to a graphics context object that is visible on the
screen. Use an offscreen graphics context instead, and copy the resulting image with
one call to the applet when the drawing is complete. The usage of offscreen images is
also known as double buffering.

A sample paint method that creates an offscreen image for painting is:

 method paint(g = Graphics)
offScreenImage = createImage(getSize().width, getSize().height)
gContext = offScreenImage.getGraphics()

-- do the drawing using the gContext object
gContext.drawString(....)
...

Chapter 7. Creating Graphical User Interfaces 121

-- draw the offScreenImage to the screen
g.drawImage(offScreenImage,0,0,this)
gContext.dispose() -- release the resources

Figure 67 shows the implementation of an animated applet. The applet creates an offscreen
image of a string (″NetRexx″) and moves this image from right to left. When the image
reaches the left border of the applet, the image is squeezed (compressed) and changes
color. The applet then unsqueezes the image and moves it right to the center with more
changes in color.

/* gui\animator\Animator.nrx

Animated applet. Creates an image from a string and moves the images over the screen */

class Animator extends Applet implements Runnable

Properties inheritable
netrexx = String ″NetRexx″ -- image string
stringImage = Image -- image of the drawn string
gi = Graphics -- graphics object of image

 imagepos = int -- where to draw image text (y)
x = int 200 -- current image position (x)
height = int -- height of the image

 imgwidth = int -- width of the image
width = int -- width of the image squeezing

--------------------------- applet INIT
method init()
x = 200; height = 0; width = 0 -- re-init
f = Font(′ Helvetica′ , Font.BOLD,30) -- choose the font
fm = getFontMetrics(f) -- get the metrics of the font
imagepos = fm.getAscent() -- where to draw text

-- create an image of the string NetRexx
stringImage = createImage(fm.stringWidth(netrexx)+20,fm.getHeight())
gi = stringImage.getGraphics() -- get graphics object
gi.setFont(f)
drawText(Color.black) -- start with black
imgwidth = stringImage.getWidth(this) -- image size
height = stringImage.getHeight(this)
Thread(this,′ Animator Thread′) . start() -- start animation

--------------------------- draw the ″NetRexx″ string into the image
method drawText(c=Color) private
gi.setColor(c) -- set the color
gi.drawString(netrexx,0,imagepos) -- draw the string

--------------------------- calculates the x Position of the image when moving
method calculatePosition(i=int) private
x = 200-i

--------------------------- calculates the width of the image when squeezing
method calculateSize(i=int) private
width = imgwidth-i

--------------------------- applet UPDATE (dont erase background to avoid flicker)
method update(g=Graphics)
paint(g)

Figure 67 (Part 1 of 2). An Animated Applet: Animator.nrx

122 Creating Java Applications Using NetRexx

--------------------------- applet PAINT (draw the image)
method paint(g=Graphics)
g.setClip(x,10,stringImage.getWidth(this)+5,stringImage.getHeight(this)+10)
g.drawImage(stringImage,x,10,width,height+10,this)

--------------------------- applet RUN: animation: move, squeeze, unsqueeze, move
method run()
width = imgwidth
ct = Thread.currentThread() -- get thread for sleep times
do
loop i=1 to 200 by 2 -- move the string to the left border

calculatePosition(i)
repaint()
ct.sleep(10)

end
drawText(Color.red) -- change color
loop w=1 to imgwidth-25 by 2 -- squeeze the string at the border

calculateSize(w)
repaint()
ct.sleep(10)

end
ct.sleep(150) -- wait a moment
drawText(Color.green) -- change color
loop while w > 0 -- unsqueeze the image

calculateSize(w)
repaint()
ct.sleep(10)
w = w - 1

end
drawText(Color.blue) -- change color
loop i=200 to 150 by -1 -- move the image back right

calculatePosition(i)
repaint()
ct.sleep(220 - i) -- slow down every move

end
ct.sleep(2000) -- let for 2 seconds
drawText(Color.white) -- change color
repaint()
catch InterruptedException
end

Figure 67 (Part 2 of 2). An Animated Applet: Animator.nrx

We use this animated applet to create a JavaBean for VisualAge for Java (“Creating an
Animated JavaBean” on page 255). Figure 140 on page 256 shows a snapshot of the
running applet.

Lightweight Components
In the beginning of 1997 Sun started the Swing project to implement a set of lightweight
components, and with the JDK 1.1 Sun introduced a set of lightweight components. See
http://java.sun.com/products/jdk/awt/swing for more details.

Lightweight components do not have a native peer.

Every other component consists of the class you specify and another class that is called the
peer. Peer components are native components if they use the control windows of the
operating system. Because every operating system has a different look and feel, Java and
NetRexx programs act a bit differently on different platforms.

Chapter 7. Creating Graphical User Interfaces 123

Because there is no native peer for the lightweight components, you have to draw the
components yourself. As a result, the components have the exact same look and feel on
every platform.

Another advantage of lightweight components is that you can change the look of the
component by writing subclasses. If the drawing is done by a native peer, such changes are
impossible.

To create a lightweight component, your new class must be a direct subclass of Component,
Container, or any existing lightweight component class. Override the following methods with
your new implementation:

paint(g=Graphics)
Draws the component

getMinimumSize() returns Dimension
Returns the minimum size of the component

getPreferredSize() returns Dimension
Returns the preferred size of the component. The preferred size can be different
from the minimum size. For example, if the component includes a margin, the
minimum size can return the size of the component without the margin. If you do
this, you must write code in the paint method to draw the component in a
different way when the size of the component is smaller than the preferred size.

The update method does not have to be implemented, because it is not called for lightweight
components when the components are repainted.

If your component needs to erase the background, you must implement this in the paint
method.

See “Extended Label Component” on page 134 and “Image Component” on page 139 for
examples of lightweight components.

Problem Solutions and Examples
In this section we describe solutions for some standard problems, such as the closing event
of windows and translating keystrokes. We also present examples of how to build reusable
classes, which are a big advantage of the event delegation model.

Closing Windows

When a frame or dialog window is closed by using the frame context menu or the Alt-F4
shortcut, a window event is fired, which corresponds to the closingWindow method of the
WindowListener interface.

If a listener has not been added to the window, the event is ignored. Therefore every
window has to add a WindowListener to catch this event.

The first simple WindowListener implementation just exits the whole application:

 CloseWindow extends WindowAdapter
method closingWindow(e=WindowEvent)

exit 0

The CloseWindow class inherits from WindowAdapter instead of implementing the complete
WindowListener interface, which defines seven different methods, of which we are interested
in only one.

If we want to destroy a window but not exit the whole application, we can easily write
another class with this behavior. A better idea, however, is to make the class configurable
as shown in Figure 68.

124 Creating Java Applications Using NetRexx

/* gui\closewindow\CloseWindowA.nrx

Implements a reusable WindowListener which closes Windows */

class CloseWindowA extends WindowAdapter
Properties public constant
HIDE = int 0 -- hide the window (setVisible(0))
DESTROY = int 1 -- destroy the window (dispose())
SHUTDOWN = int 2 -- shutdown the application (exit)

Properties inheritable
behaviour = int

 parent = Window
-- constructor: default destroy window

method CloseWindowA(cWindow = Window, theBehaviour=int DESTROY)
behaviour = theBehaviour

 parent = Window cWindow.getParent() -- save the parent (to bring in front)

method windowClosing(e=WindowEvent) -- called when window is closed
select
when behaviour = HIDE then -- hide the window

e.getWindow().setVisible(0)
when behaviour = DESTROY then -- destroy the window

e.getWindow().dispose()
otherwise exit 0 -- exit the application

end
if parent \= null then -- put the parent in front

parent.toFront() -- (it is not automatic)

Figure 68. Simple Close Window Event Listener: CloseWindowA.nrx

This version of our CloseWindowA class can be configured and fix the problem that the
parent window does not appear on top when the child window is destroyed.

Notes:

 1. When the parent is null, we assume that the main window of the application has been
closed. If the main window is closed, we exit the application.

 2. There are three different constructors: one that accepts a dialog window, one that
accepts a frame and parent window, and one that accepts a frame window only.

 3. You can get the information about the parent window from a dialog window, so it is not
necessary to set the parent window.

 4. A frame window always returns null for the getParent method. Therefore, the parent
window is retrieved in the constructor.

 5. If only a frame window is used in the constructor, the behavior is set to SHUTDOWN
because we assume that the frame window is the main window of the application and
the application exits when the frame window is closed.

 6. A modal dialog window cannot be hidden. The init method changes the behavior
parameter to DESTROY if the window is a modal dialog, and the behavior is requested
as HIDE.

The CloseWindowA class can be tested with a simple test program:

 /* gui\closewindow\CloseTst.nrx Test the CloseWindowA class */
 win = Frame(′ TestWindow′)
 win.addWindowListener(CloseWindowA(win,CloseWindowA.SHUTDOWN))
 win.setSize(100,100)
 win.setVisible(1)

Chapter 7. Creating Graphical User Interfaces 125

Action Events from Menus and Buttons

The previous example implemented a listener that closes a window when the user uses the
system menu. Now we want to extend the CloseWindow class to react to ActionEvents.
First, we have to change the class definition, because we implemented the ActionListener
interface:

 class CloseWindow extends WindowAdapter implements ActionListener

In addition, we have to implement the actionPerformed method that is defined by the
ActionListener interface:

 method actionPerformed(e = ActionEvent)
closeTheWindow()

We invoke the closeTheWindow method that closes the window. This method is also used
by the windowClosing method:

 method windowClosing(e=WindowEvent) -- called when window is closed
closeTheWindow()

The ActionEvent object does not have any reference to the window where the event
occurred. Therefore, we cannot use the getWindow method. We need a new instance
variable that stores the window reference. The reference can be used by the
closeTheWindow method. Figure 69 shows the complete class.

/* redbook\gui\CloseWindow.nrx

Implements a reusable WindowListener which closes Windows */

package Redbook

class CloseWindow extends WindowAdapter implements ActionListener
Properties public constant
HIDE = int 0 -- hide the window (setVisible(0))
DESTROY = int 1 -- destroy the window (dispose())
SHUTDOWN = int 2 -- shutdown the application (exit)

Properties inheritable
behaviour = int
theWindow = Window

 parent = Window

-- constructor for dialog windows
method CloseWindow(cWindow = Dialog, theBehaviour=int DESTROY)
init(Window cWindow.getParent(),cWindow,theBehaviour)

-- constructor for frame windows
method CloseWindow(parentWindow = Window, cWindow = Window,-

theBehaviour=int DESTROY)
init(parentWindow,cWindow,theBehaviour)

-- constructor for main application frame windows (set parent = null)
method CloseWindow(cWindow = Frame)

init(null,cWindow,SHUTDOWN)

Figure 69 (Part 1 of 2). Close Window Event Listener: CloseWindow.nrx

126 Creating Java Applications Using NetRexx

-- method to set a new behaviour
method setCloseBehaviour(newBehaviour = int)
behaviour = newBehaviour

-- method to init - private because not type safe
method init(parentWindow = Window, cWindow = Window, -

theBehaviour = int) private
 parent = parentWindow -- save the parent

theWindow = cWindow -- save the window reference
behaviour = theBehaviour -- save behaviour
if theWindow <= Dialog then -- is it a dialog?
if (Dialog theWindow).isModal() & -

behaviour == HIDE then -- modal dialogs cannot hide
behaviour = DESTROY -- they must be destroyed

method windowClosing(e=WindowEvent) -- called when window is closed
closeTheWindow()

method actionPerformed(e=ActionEvent) -- called from button or menus
closeTheWindow()

method closeTheWindow() inheritable
select
when behaviour = HIDE then -- hide the window

theWindow.setVisible(0)
when behaviour = DESTROY then -- destroy the window

theWindow.dispose()
otherwise exit 0 -- exit the application

end
if parent \= null then do -- parent in front

RedbookUtil.sleep(220)
parent.toFront()

end

Figure 69 (Part 2 of 2). Close Window Event Listener: CloseWindow.nrx

The CloseWindow class is a member of the Redbook package.

Setting the Focus in Windows

A window gives the focus to the first component that can receive the keyboard focus when
the window is opened for the first time. When the window is destroyed or hidden and shown
again, the focus remains on the window. If the window is deactivated (the window and all of
its components lost the focus) and activated by a click on the title bar of the window, the
focus is set to the window and not to any component of the window.

The expected behavior is that when a window is shown, the focus is set to a specified
component. If the window is deactivated and activated by a click on the window title bar, the
focus is set to the component that owned the focus at deactivation time. To implement the
desired behavior, we use a FocusListener that sets the focus to a component of the window,
whenever the window by itself receives the focus.

When the window is deactivated the component that owns the focus is stored. When the
window is activated again, the focus is set to the stored component. The corresponding
methods are windowDeactivated and windowActivated.

When the window is destroyed, the specified component is stored to receive the focus at the
next activation. This is implemented by receiving the windowClosed event.

Figure 70 shows the code that implements our first approach for a WindowFocus class.

Chapter 7. Creating Graphical User Interfaces 127

/* redbook\gui\WindowFocus.nrx

Sets the focus to a defined component when the window is shown,
saves focus component when deactivated, and resets the focus when reactivated */

package Redbook

class WindowFocus extends WindowAdapter
Properties
theWindow = Window
defaultrecipient = Component -- default when window was destroyed

recipient = Component -- the component used at activation time

-- constructor, sets default recipient
method WindowFocus(aWindow = Window, focusRecipient = component)
defaultrecipient = focusRecipient -- default
recipient = focusRecipient
theWindow = aWindow
aWindow.addWindowListener(this)

-- Window is activated: set the focus to the recipient
method windowActivated(e=WindowEvent)
recipient.requestFocus()

-- stores the focus when the window is deactivated
method windowDeactivated(e=WindowEvent)
recipient = theWindow.getFocusOwner()

-- window was destroyed, next time defaultrecipient
method windowClosed(e=WindowEvent)
recipient = defaultrecipient

Figure 70. WindowFocus Class: WindowFocus.nrx

Notice that the constructor adds the object itself to the window. This is done to prevent
errors, because most people do not expect that a focus handler is a window listener.

A small test program, FocusTst.nrx, is provided in the gui\windowfocus subdirectory.

The WindowFocus class is a member of the Redbook package.

Automatic Selection in TextField Objects

When the focus is set to a TextField object, the current contents should be selected, so that
a user can enter a new value that destroys the current text.

When text in a TextField object is selected and the focus leaves the object, any selection
should be reset.

A focus listener added to a TextField object is the solution for this problem. Figure 71
shows the code of the FieldSelect class.

128 Creating Java Applications Using NetRexx

/* redbook\gui\FieldSelect.nrx

Selects the contents of a TextField object when the object gets the focus.
Remove any selection when the object looses the focus */

package Redbook

class FieldSelect implements FocusListener

-- select the text in the TextField
method focusGained(e=FocusEvent)
if \e.isTemporary() then (TextField e.getComponent()).selectAll()

-- remove any selection
method focusLost(e=FocusEvent)
if \e.isTemporary() then (TextField e.getComponent()).select(0,0)

Figure 71. FieldSelect Class: FieldSelect.nrx

A small test program, FieldTst.nrx, is provided in the gui\fieldselect subdirectory.

The FieldSelect class is a member of the Redbook package.

Adding Listeners Automatically

In the previous example, an object of the FieldSelect class is added to every text field in the
window. This can be a lot of work, and we can expect that some programmers do not add
the necessary listener to some text fields.

An interesting approach is to write a class that inherits from the WindowsFocus class and
automatically adds an object of our FieldSelect class to every TextField object of the window.
If we combine this approach with the CloseWindow class, only one object is needed per
window, and that is easier to control.

To automatically add a FieldSelect object to text fields, we have to think about when to look
for text fields. If we look when the window is opened, we cannot be sure that fields will not
be added at run time. We have to scan all components and add a component listener to our
window, which informs us about all changes in the structure of the window. When new text
fields are added, we can attach our FieldSelect object and remove it when text fields are
removed from the window.

We implement the new class step by step:

1. Our new class has to implement the ContainerListener interface:

 class WindowSupport extends WindowFocus implements ContainerListener

2. We define a method that scans all components for text fields and adds a focus listener
to the fields:

 Properties inheritable
fieldSelectObj = FieldSelect() -- FocusListener used for TextFields

 method scanComponents()
components = this.theWindow.getComponents() -- returns an array of components
loop i=0 to components.length-1 -- 0 based arrays

if components[i] <= TextField then
components[i].addFocusListener(fieldSelectObj)

end

3. We have to support the events when components are added to the window:

Chapter 7. Creating Graphical User Interfaces 129

 method componentAdded(e=ContainerEvent)
comp = e.getChild() -- returns the added component
if comp <= TextField then
comp.addFocusListener(fieldSelectObj)

Figure 72 shows the code of the WindowSupport class.

/* redbook\gui\WindowSupport.nrx

Full support for a Window: closingWindow events are handled
focus switches are supported
text selection in text fields is supported
(null for a focus recipient is allowed) */

package Redbook

class WindowSupport extends WindowFocus implements ContainerListener
 Properties inheritable

fieldSelectObj = FieldSelect() -- FocusListener used for TextFields
closeListener = CloseWindow

 -- constructor when a parent window is given
 method WindowSupport(parentWindow = Window, currentWindow = Window,-

focusRecipient = Component null,-
closeBehaviour=int CloseWindow.DESTROY)

super(currentWindow,focusRecipient)
closeListener = CloseWindow(parentWindow,currentWindow,closeBehaviour)
init(currentWindow)

 -- constructor when the window is the main application frame window
 method WindowSupport(aFrameWindow = Frame, focusRecipient = Component null)

super(aFrameWindow,focusRecipient)
closeListener = CloseWindow(aFrameWindow)
init(aFrameWindow)

 -- constructor when the window is a dialog window
 method WindowSupport(aDialog = Dialog, focusRecipient = Component null,-

closeBehaviour=int CloseWindow.DESTROY)
super(aDialog,focusRecipient)
closeListener = CloseWindow(aDialog,closeBehaviour)
init(aDialog)

 -- return the closeWindow object
 -- used to add the closeWindow object to pushbuttons or menus
 method getCloseWindow() returns CloseWindow

return closeListener

 -- sets a new focus recipient
 -- change the current recipient if equal null
 method setFocusRecipient(aComponent = Component)

super.defaultrecipient = aComponent
if super.recipient == null then super.recipient = aComponent

 -- sets a new close behaviour for the closewindow Listener
 method setCloseBehaviour(newBehaviour=int)

closeListener.setCloseBehaviour(newBehaviour)

 -- overrides the windowActivated method from WindowFocus to handle null
 method windowActivated(e=WindowEvent)

Figure 72 (Part 1 of 2). WindowSupport Class: WindowSupport.nrx

130 Creating Java Applications Using NetRexx

if super.recipient \= null then super.windowActivated(e)

 -- scans all components of the window for TextField objects
 -- handles nested containers
 method scanComponents(components = Component[]) inheritable

loop i=0 to components.length-1 -- 0 based arrays
if components[i] <= TextField then

components[i].addFocusListener(fieldSelectObj)
if components[i] <= Container then do

(Container components[i]).addContainerListener(this)
scanComponents((Container components[i]).getComponents())

end
end

 -- called from the constructors do init the class
 method init(aWindow = Window) inheritable

aWindow.addWindowListener(closeListener)
aWindow.addContainerListener(this)
scanComponents(this.theWindow.getComponents())

 -- invoked when a new component is added to any container of the window
 method componentAdded(e=ContainerEvent)

comp = e.getChild() -- returns the added component
if comp <= TextField then

comp.addFocusListener(fieldSelectObj)
if comp <= Container then -- handles nested containers
(Container comp).addContainerListener(this)

 -- invoked when a component is removed from the window
 method componentRemoved(e=ContainerEvent)

comp = e.getChild() -- returns the added component
if comp <= TextField then

comp.removeFocusListener(fieldSelectObj)
if comp <= Container then -- handles nested containers

(Container comp).removeContainerListener(this)

Figure 72 (Part 2 of 2). WindowSupport Class: WindowSupport.nrx

A small test program, SuppTest.nrx, is provided in the gui\windowsupport subdirectory.

The WindowSupport class is a member of the Redbook package.

Controlling Keyboard Input

A typical problem for text fields is to translate keystrokes from lowercase to uppercase and
to allow only a limited character set, such as numbers.

You can add a KeyListener to a component to control the input. The keyTyped method is
invoked every time a new key is pressed.

If you want to change a typed key, you can use the getKeyChar and setKeyChar methods to
access and change the key of a key event.

If you do not want to allow a key type, you have to consume the event, using the consume
method, which is implemented in the AWTEvent class. The consume method stops further
processing of the event. The event is consumed by your event listener.

Here is a simple key listener that allows only hexadecimal input and translates lowercase
letters to uppercase:

Chapter 7. Creating Graphical User Interfaces 131

 class OnlyHexadecimal extends KeyAdapter
Properties constant
keySet = Rexx ′0123456789ABCDEF′

method keyTyped(e=Keyevent)
key = Rexx e.getKeyChar() - - make key of type Rexx for further use
if key.c2d() == KeyEvent.VK_BACK_SPACE then return
key = key.upper()
if keyset.pos(key) == 0 then
e.consume

else
e.setKeyChar(key)

Figure 73 shows a more complete class.

/* redbook\gui\KeyCheck.nrx

KeyListener implementation which compares the key with a
lookup string and translate the key to uppercase if necessary */

package Redbook

class KeyCheck extends KeyAdapter

Properties constant public
ALL = Rexx null
NUMERIC = Rexx ′0123456789′
ALPHA = Rexx ′ abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ′

 ALPHANUM = Rexx ALPHA||NUMERIC
HEXADECIMAL = Rexx ′0123456789ABCDEF′

Properties inheritable
mode = Rexx
translate = boolean 0

method KeyCheck(modeString=Rexx ALL, toUpperCase = boolean 1)
setMode(modeString,toUpperCase)

method keyTyped(e=KeyEvent)
key = Rexx e.getKeyChar()

if key.c2d() == KeyEvent.VK_BACK_SPACE then return

if translate then do
key = key.upper()
e.setKeyChar(key)

end

if mode \= null then
if mode.pos(key) == 0 then do

e.consume
Toolkit.getDefaultToolkit().beep()

end

-- methods to change the current mode

-- change the lookup string
method setMode(newMode = Rexx)
mode = newMode

Figure 73 (Part 1 of 2). Check and Manipulate Key Events: KeyCheck.nrx

132 Creating Java Applications Using NetRexx

-- change the translation
method setMode(toUpperCase = boolean)
translate = toUpperCase

-- change the lookup string and the translation
method setMode(newMode = Rexx, toUpperCase = boolean)
mode = newMode
translate = toUpperCase

Figure 73 (Part 2 of 2). Check and Manipulate Key Events: KeyCheck.nrx

The KeyCheck class is a member of the Redbook package.

Limiting the Length of a TextField

If you want to limit the length of a TextField to a given number of characters, you can use
the TextListener interface as shown in Figure 74.

/* redbook\gui\LimitTextField.nrx

Limits the length of a TextField to a number of characters */

package Redbook

class LimitTextField implements TextListener
Properties inheritable
maxlen = int
field = TextField

method LimitTextField(afield = TextField, limit = int)
field = afield
maxlen= limit

method textValueChanged(e=TextEvent)
s = Rexx field.getText() -- get the TextField contents
if s.length() > maxlen then do -- check if to long
pos = field.getCaretPosition() -- remember the cursor position
s = s.left(maxlen) -- truncate the string
field.setText(s) -- back to TextField
field.setCaretPosition(pos) -- reset the cursor position
field.getToolkit().beep() -- make noise

end

Figure 74. Limit the Length of a TextField: LimitTextField.nrx

The LimitTextField class is a member of the Redbook package.

Using Buttons of the Same Size

When you lay out a window, most of the time you have an area where push buttons are
used. If the buttons are in one row, they can have different sizes; if the buttons are in one
column, they should all have the same size.

To create buttons of the same size you can use a GridLayout manager. Everything in the
container is sized to the same size. The drawback of the GridLayout manager is that it
resizes all included components to the full size of the container.

Chapter 7. Creating Graphical User Interfaces 133

The solution to the problem is to create a panel, using the FlowLayout manager (default),
and add another panel, using a GridLayout manager. The FlowLayout manager forces the
GridLayout manager to resize to its preferred size. The preferred size is evaluated by
checking the components and using the largest component size for all.

Figure 75 shows a subclass of Panel that implements same-sized buttons by using two
layout managers.

/* redbook\gui\EqualSizePanel.nrx

Implements a panel that equalizes the size of its components */

package Redbook

class EqualSizePanel extends Panel
Properties constant public
HORIZONTAL = int 0
VERTICAL = int 1

Properties inheritable
fLayout = FlowLayout(FlowLayout.LEFT,0,0)
gPanel = Panel()

method EqualSizePanel(alignment = int HORIZONTAL,gap = int 5)
fLayout = FlowLayout(FlowLayout.LEFT,0,0)
setLayout(fLayout)
super.add(gPanel) -- add the other panel
if alignment = HORIZONTAL then -- create the GridLayout manager
gPanel.SetLayout(GridLayout(1,0,gap,0)) -- one row, hgap=gap

else
gPanel.SetLayout(GridLayout(0,1,0,gap)) -- one column, vgap=gap

method add(comp = Component) returns Component
gPanel.add(comp)
return comp

method getFlowLayout() returns FlowLayout
return fLayout

method setGaps(hgap = int, vgap = int)
fLayout.setHgap(hgap)
fLayout.setVgap(vgap)

Figure 75. Panel with Same-Sized Buttons: EqualSizePanel.nrx

A small test program, EqualTst.nrx, is provided in the gui\equalsizepanel subdirectory.

The EqualSizePanel class is a member of the Redbook package.

Extended Label Component

The extended label component is a lightweight component (see “Lightweight Components”
on page 123) that implements a label, similar to the Label class of the JDK. The extended
label formats the text in multiple lines and with vertical alignment.

The text given to an ExtendedLabel object is separated in lines by a separator character.
The default for the separator character is ′ \n ′.

Figure 76 shows the code for the ExtendedLabel class.

134 Creating Java Applications Using NetRexx

/* redbook\gui\ExtendedLabel.nrx

An extended Label has the ability for multiple lines with
vertical and horizontal alignment.
The text of the extended Label is separated into lines.
The default separator character is ′ \n′ .
The ExtendedLabel class is a ′ lightweight′ component */

package Redbook

class ExtendedLabel extends Component
Properties constant public
LEFT = 0 -- alignment constants
RIGHT = 1
CENTER = 2
TOP = 3
BOTTOM = 4

Properties inheritable
text = Rexx -- indexed Rexx string for the lines
lines = int 0 -- number of lines
halign = int -- horizontal alignment
valign = int -- vertical alignment
inset = Insets(0,0,0, 0) -- Insets for the component
separator = char ′ \n′ -- line separator
maxlength = int 0 -- max. length of the component in pixel
lineLength = Rexx ′ 0 ′ -- indexed Rexx string for length of the line
lineHeight = int -- height of one line
lineDescent= int
lineAscent = int -- ascent of the font
prefSize = Dimension -- preferred size of the label
doUpdate = boolean 1 -- controls repainting

-- constructs the component with given insets (margins)
-- The lines are separated by ′ \n′ characters in the string
method ExtendedLabel(ltext=Rexx,aInsets=Insets,-

hor_align=int LEFT, ver_align=int TOP)
this(ltext,hor_align,ver_align)
inset = Insets aInsets.clone()

-- constructs the component without any insets
method ExtendedLabel(ltext=Rexx,hor_align=int LEFT, ver_align=int TOP)
text = ltext

 halign = hor_align
 valign = ver_align
 parseText()

-- sets the text of the label
method setText(ltext = String)
text = ltext
parseText()
calculateMetrics()
repaint()

-- sets the separator and reruns the separation of the text
method setSeparator(sep = char)
separator = sep
setText(text) -- start the separation with the old string

Figure 76 (Part 1 of 4). Extended Label Class: ExtendedLabel.nrx

Chapter 7. Creating Graphical User Interfaces 135

-- sets the horizontal alignment method
method setHorizontalAlignment(align = int)
halign = align
repaint()

-- sets the vertical alignment method
method setVerticalAlignment(align = int)
valign = align
repaint()

-- returns the horizontal alignment method
method getHorizontalAlignment() returns int
return halign

-- returns the vertical alignment method
method getVerticalAlignment() returns int
return valign

-- sets the insets (margins) of the component
method setInsets(newInsets = Insets)
inset = Insets newInsets.clone()
repaint()

-- returns the insets (margins) of the component
method getInsets() returns Insets
return inset

-- invoked from layout managers to figure out the preferred size
method getPreferredSize() returns Dimension
return Dimension(maxlength + inset.left + inset.right,-

lines * lineHeight + inset.top + inset.bottom)

-- invoked from layout managers to figure out the minimum size
method getMinimumSize() returns Dimension
return Dimension(maxlength, lines * lineHeight)

-- invoked when the component is created
-- after calling the super method font metrics are available
method addNotify()
super.addNotify()
calculateMetrics()

-- Sets the font and calculates the new metrics
method setFont(f = Font)
super.setFont(f)
calculateMetrics()
repaint()

-- Sets the text color, background has to be set by parent
method setForeground(c = Color)
super.setForeground(c)
repaint()

-- Prevents repainting if set to false
method setUpdate(b = boolean)
doUpdate = b
repaint()

Figure 76 (Part 2 of 4). Extended Label Class: ExtendedLabel.nrx

136 Creating Java Applications Using NetRexx

-- internal method: extract the lines from the text string
method parseText() inheritable
ltext = text
loop line = 1 while ltext \= ′ ′

parse ltext temp (separator) ltext
text[line] = temp

end
lines = line-1

-- internal method: calculate the current metrics of the component
method calculateMetrics() inheritable
fm = this.getFontMetrics(this.getFont())
if fm == null then return -- no font metrics available
lineHeight = fm.getHeight()
lineDescent = fm.getDescent()
lineAscent = fm.getAscent()
maxLength = 0
loop line=1 for lines

lineLength[line] = fm.stringWidth(text[line])
if maxLength < lineLength[line] then maxLength = lineLength[line]

end
prefSize = getPreferredSize()

-- draw the entire extended label
method paint(g=Graphics)
if \doUpdate then return -- no painting when forbidden
off = Insets inset.clone() -- offset for margins
d = getSize() -- returns a Dimension

-- Check the size and remove the margins when necessary
if d.width < prefSize.width then do
off.left = 0; off.right = 0

end
if d.height < prefSize.height then do
off.top = 0; off.bottom=0

end
-- calculate the y coordinate for the starting point

d.height = d.height - off.top - off.bottom
select
when valign = TOP then ypos = lineAscent
when valign = BOTTOM then ypos = d.height - lineHeight * lines + lineAscent
otherwise
ypos = (d.height - lineHeight * lines) % 2 + lineAscent

end
ypos = ypos + off.top

-- set the font and the color
g.setColor(getForeground())
g.setFont(getFont())

-- draw the lines
loop i=1 for lines
select
when halign = LEFT then xpos = off.left
when halign = RIGHT then
xpos = d.width - off.right - lineLength[i]

otherwise -- CENTER
xpos = (d.width - off.left - off.right - lineLength[i])%2 + -

off.left
end
g.drawString(text[i],xpos,ypos)

Figure 76 (Part 3 of 4). Extended Label Class: ExtendedLabel.nrx

Chapter 7. Creating Graphical User Interfaces 137

ypos = ypos + lineHeight
end

Figure 76 (Part 4 of 4). Extended Label Class: ExtendedLabel.nrx

The ExtendedLabel class is a member of the Redbook package.

Repainting of the component can be suppressed with the setUpdate(allowRepaint) method.
If allowRepaint is false, the component does not repaint. This method is useful if multiple
changes, such as changing the alignment and the text, are made.

A sample application (Figure 77) illustrates the usage of the ExtendedLabel class. The
application changes the font, color, and horizontal alignment with every mouse click on the
label. The vertical alignment changes with every third mouse click.

Figure 77. Extended Label Test Application

Figure 78 shows the code of the extended label test application.

/* gui\extendedlabel\ExtTest.nrx

Test program for the ExtendedLabel class.
Click with the left mouse button on the label */

import Redbook. -- use the Redbook package

win = Frame(′ Test′) -- the main frame window

--inset = Insets(5,5,5,5) -- margin for the ExtendendLabel object
inset = Insets(0,0,0,0) -- margin for the ExtendendLabel object
ex = ExtendedLabel win.add(′ Center′ , -

ExtendedLabel(′ This is\na very special Test′ , inset,-
ExtendedLabel.CENTER,ExtendedLabel.CENTER))

ex.setFont(Font(″TimesRoman″ , Font.PLAIN,40)) -- change the font make it big

ex.addMouseListener(Mouse(ex)) -- used to get the mouse click on the label
win.pack -- set window client area to the preffered size of

-- the ExtendendLabel object

WindowSupport(win,null) -- needed for closeWindow Support
RedbookUtil.positionWindow(win) -- center the window on the screen
win.setVisible(1) -- show the window

Figure 78 (Part 1 of 2). Extended Label Test Application: ExtTest.nrx

138 Creating Java Applications Using NetRexx

-- class used to get the mouse events
class Mouse extends MouseAdapter uses ExtendedLabel
ex = ExtendedLabel
i = 0 -- internal counter

method Mouse(al = ExtendedLabel) -- constructor
ex = al

method MouseClicked(e = MouseEvent)
ex.setUpdate(0)
if i // 2 = 0 then do -- change the color and font every mouse click
ex.setForeground(Color.RED)
ex.setFont(Font(″Dialog″ , Font.BOLD,16))

end
else do
ex.setForeground(Color.BLACK)
ex.setFont(Font(″TimesRoman″ , Font.PLAIN,26))

end

select -- change the horizontal alignment every mouse click
when i // 3 = 0 then ex.setHorizontalAlignment(LEFT)
when i // 3 = 1 then ex.setHorizontalAlignment(CENTER)
otherwise ex.setHorizontalAlignment(RIGHT)

end

select -- change the vertical alignment every third mouse click
when (i%3) // 3 = 0 then ex.setVerticalAlignment(TOP)
when (i%3) // 3 = 1 then ex.setVerticalAlignment(CENTER)
otherwise ex.setVerticalAlignment(BOTTOM)

end

ex.setUpdate(1)
i = i + 1

Figure 78 (Part 2 of 2). Extended Label Test Application: ExtTest.nrx

Image Component

To draw an image in an application or an applet, you must subclass the paint method. This
is very uncomfortable and does not allow the usage of a layout manager.

The image component is a lightweight component (see “Lightweight Components” on
page 123) that loads and draws an image. This component can be used with a layout
manager.

The image component can scale the image to the size of the component. The aspect ratio of
the image is not changed when scaling occurs, so some empty space may remain in the
component. The component has alignment attributes that define the alignment of the image
within the component.

An Insets object can be used to define a margin for the component.

The getMinimumSize method returns the original size of the image, and the
getPreferredSize method returns the original size, with the margin added.

The loading of the image is done by a MediaTracker object (see “Loading an Image” on
page 118). The image is shown only when it is completely loaded.

The component accepts a file name, a URL, or an image as a parameter for the image. If an
error occurs while loading the image, an exception (LoadImageException see “Exceptions”
on page 271) is signaled.

Chapter 7. Creating Graphical User Interfaces 139

Figure 79 shows the code of the ImagePanel class.

See “Photograph Album Sample Application” on page 150 for a sample application using
the ImagePanel class.

/* redbook\gui\ImagePanel.nrx

Implements a LightWeight component which shows an image .
The component accepts an Insets object for a margin around the image.
When scaling is on, the image always keeps its aspect ratio.
Alignment can be specified; default is LEFT TOP */

package Redbook

class ImagePanel extends Component
Properties constant public
LEFT = 0 -- alignment constants
RIGHT = 1
CENTER = 2

 TOP = 4
BOTTOM = 5

Properties inheritable
im = Image -- image
in = Insets(0,0,0,0) -- margins
scale = boolean 1 -- when true the image is scaled to component size
halign = int LEFT -- horizontal alignment
valign = int TOP -- vertical alignment

-- default constructor no image loaded
method ImagePanel()
super()

-- construct with an image and optional margins
method ImagePanel(anImage = Image, newInsets = Insets null)
super()
setInsets(newInsets)
setImage(anImage)

-- construct with an image and optional margins
method ImagePanel(anImageUrl = Url, newInsets = Insets null)-

signals LoadImageException
super()
setInsets(newInsets)
setImage(anImageUrl)

-- construct with an image reading from given file
method ImagePanel(imageFile = String, newInsets = Insets null)-

signals LoadImageException
super()
setInsets(newInsets)
setImage(imageFile)

-- construct with an image and optional margins and optional alignments
method ImagePanel(anImage = Image, hor_align = int,-

ver_align = int, newInsets = Insets null)
this(anImage,newInsets)
halign = hor_align
valign = ver_align

Figure 79 (Part 1 of 4). Image Panel Class: ImagePanel.nrx

140 Creating Java Applications Using NetRexx

-- construct with an image reading from an URL and optinal alignments
method ImagePanel(anImageUrl = Url, hor_align = int,-

ver_align = int, newInsets = Insets null) -
signals LoadImageException

this(anImageUrl,newInsets)
halign = hor_align
valign = ver_align

-- construct with an image reading from given file and optinal alignments
method ImagePanel(imageFile = String, hor_align = int,-

ver_align = int, newInsets = Insets null) -
signals LoadImageException

this(imageFile,newInsets)
halign = hor_align
valign = ver_align

-- set the scaling of the image (true = scaling, false = noscaling)
method setScaling(b = boolean)
scale = b

-- load a image from the image file and repaint if component is visible
method setImage(fileName = String) signals LoadImageException
do

imgUrl = this.getClass().getResource(fileName)
im = Toolkit.getDefaultToolkit().getImage(imgUrl)

catch NullPointerException -- image file not found
signal LoadImageException()

end
loadTheImage()

-- load a image from a given Url and repaint if component is visible
method setImage(anUrl = Url) signals LoadImageException
im = Toolkit.getDefaultToolkit().getImage(anUrl)
loadTheImage()

-- set the image to aImage and repaint if visible
method setImage(anImage = Image)
im = anImage
if isVisible() then repaint()

-- load the image and repaint if component is visible
method loadTheImage() signals LoadImageException inheritable
tracker = MediaTracker(this)
tracker.addImage(im,0) -- load the image synchronous
do
tracker.waitForID(0)

catch InterruptedException -- dont handle the exception
end
if tracker.isErrorAny() then do

im=null
repaint() -- paint an empty panel
signal LoadImageException()

end
if isVisible() then repaint() -- repaint if visible

-- returns the current image
method getImage() returns Image
return im

Figure 79 (Part 2 of 4). Image Panel Class: ImagePanel.nrx

Chapter 7. Creating Graphical User Interfaces 141

-- sets the horizontal alignment method
method setHorizontalAlignment(align = int)
halign = align
repaint()

-- sets the vertical alignment method
method setVerticalAlignment(align = int)
valign = align
repaint()

-- returns the horizontal alignment method
method getHorizontalAlignment() returns int
return halign

-- returns the vertical alignment method
method getVerticalAlignment() returns int
return valign

-- sets the insets (margins) of the component
method setInsets(newInsets = Insets)
if newInsets \= null then do
in = Insets newInsets.clone()
repaint()

end

-- sets the insets (margins) of the component
method setInsets(itop=int,ileft=int,ibottom=int,iright=int)
in.top = itop; in.left = ileft; in.right = iright; in.bottom = ibottom

-- returns the insets (margins) of the component
method getInsets() returns Insets
return in

-- returns the size of the image with or without scaling
method getImageSize() returns Dimension
if im \= null then
if scale then do
d = getSize()
-- preserving the aspect ration of the image
lx = (d.width - in.left - in.right) / im.getWidth(this)
ly = (d.height - in.top - in.bottom) / im.getHeight(this)
if lx < ly then ratio = lx

else ratio = ly
return Dimension(ratio*im.getWidth(this)%1,ratio*im.getHeight(this)%1)

end
else return Dimension(im.getWidth(this),im.getHeight(this))

else return Dimension(0,0)

-- returns the unscaled image size
method getOriginalImageSize() returns Dimension
if im \= null then return Dimension(im.getWidth(this),im.getHeight(this))

else return Dimension(0,0)

-- preferred size is unscaled image size plus insets
method getPreferredSize() returns Dimension
d = getOriginalImageSize()
d.width = d.width + in.left + in.right

Figure 79 (Part 3 of 4). Image Panel Class: ImagePanel.nrx

142 Creating Java Applications Using NetRexx

d.height = d.height+ in.top + in.bottom
return d

-- minimum size is unscaled image size
method getMinimumSize() returns Dimension
return getOriginalImageSize()

-- paint the image
method paint(g=Graphics)
w = getSize()
if im \= null then do
d = getImageSize()
select
when valign = TOP then y = in.top
when valign = BOTTOM then y = w.height - d.height - in.bottom
otherwise y = (w.height - in.top - in.bottom - d.height) % 2 + in.top

end
select
when halign = LEFT then x = in.left
when halign = RIGHT then x = w.width - d.width - in.right
otherwise x = (w.width - in.left - in.right - d.width) % 2 + in.left

end
g.drawImage(im,x,y,d.width,d.height,this)

end
else g.clearRect(0,0,w.width,w.height)

Figure 79 (Part 4 of 4). Image Panel Class: ImagePanel.nrx

A small test program, TestImage.nrx, is provided in the gui\imagepanel subdirectory.

The ImagePanel class is a member of the Redbook package.

Dialogs

All dialog windows have some common behavior. They are subclasses of the Dialog class,
they have a set of buttons, and they should become visible at a position relative to the
parent position on the screen.

This common behavior can be implemented by an abstract class that will be subclassed by
the real implementations of dialog windows.

In this section we introduce the RedbookDialog class that implements the common behavior,
a message box that shows a multiline text and an optional image, and a prompt dialog that
is useful for asking for input from the user.

RedbookDialog Class

The RedbookDialog class inherits from Dialog.

A Dialog object needs a frame window as the parent in the constructor. If the parent is not a
frame window, the class searches in the parent chain for a frame window. To enable
message boxes for error messages of owner-written components, it is necessary to allow a
component as the parent of the dialog. The RedbookDialog has two constructors; one
constructor accepts only frame windows as a parameter, and one constructor accepts any
component as a parameter but signals a NoFrameWindow exception if a frame window
cannot be found in the parent chain.

Most dialogs have a set of buttons, which should have the same size. RedbookDialog
creates an instance of an EqualSizePanel (see “Using Buttons of the Same Size” on
page 133) and defines two methods to add buttons to the panel:

Chapter 7. Creating Graphical User Interfaces 143

addButton(text=String) returns Button
Creates a button with the specified text and adds an action listener to the button
to close the dialog when the button is pressed

addButton(text=String,l istener=ActionListener,closeTheDialog=boolean 1) returns Button
Creates a button with the specified text, adds the given action listener to the
button, and adds—if closeTheDialog is true—another action listener to the button
to close the dialog when the button is pressed

The panel with the buttons is not yet added to the dialog box, because the final layout of the
window is unknown.

The RedbookDialog class overrides the setVisible method (defined in Component) to pack
the dialog to its preferred size and position it near the parent window.

Figure 80 shows the code for the Redbook Dialog.

/* redbook\gui\RedbookDialog.nrx

The RedbookDialog class is an abstract class which provides basic services */

package Redbook

class RedbookDialog extends Dialog abstract
Properties inheritable
buttons = EqualSizePanel() -- panel for the buttons
parent = Component -- parent of the dialog
ws = WindowSupport -- window support object attached to dialog

-- constructor which searches for a frame window in the parent window chain
method RedbookDialog(parentWindow = Component, modal = boolean, -

title = Rexx ′ ′) signals NoFrameWindow
super(RedbookUtil.findParentFrame(parentWindow),title,modal)
init(parentWindow)

-- constructor which gets a frame window as parent
method RedbookDialog(parentFrame = Frame, modal = boolean,title = Rexx ′ ′)
super(parentFrame,title,modal) -- create the dialog
init(parentFrame)

-- initialize the basic dialog window
method init(theParent = Component) inheritable
do
parent = theParent -- store the parent
ws = WindowSupport(RedbookUtil.findParentWindow(parent),this,null)
buttons.setGaps(10,10) -- horizontal and vertical gaps

catch NoWindow -- impossible
end

-- add a button to the button panel and attach a window closer to it
method addButton(text=String) returns Button
newButton = Button(text) -- create new button
newButton.addActionListener(ws.getCloseWindow()) -- use window support
buttons.add(newButton) -- add the button to the panel
return newButton

-- add a button to the panel, attach the given action listener to it
method addButton(text = String, listener = ActionListener, -

closeTheDialog = boolean 1) returns Button

Figure 80 (Part 1 of 2). Redbook Dialog Class: RedBookDialog.nrx

144 Creating Java Applications Using NetRexx

newButton = Button(text) -- create new button
newButton.addActionListener(listener) -- add the action listener
-- add a CloseWindow object from WindowSupport if closeTheDialog is true
if closeTheDialog then newButton.addActionListener(ws.getCloseWindow())
buttons.add(newButton) -- add the button to the panel
return newButton

-- make the dialog visible or hide it calculate the preferred size
method setVisible(b=boolean)
if b then do -- make dialog visible
pack() -- use preferred size
RedbookUtil.positionWindow(parent,this) -- position relativ to parent
super.setVisible(1)

end
else super.setVisible(0) -- hide dialog

-- changes the closeWindow behaviour
method setCloseBehaviour(newBehaviour = int)
ws.setCloseBehaviour(newBehaviour) -- set close behaviour in

-- WindowSupport

Figure 80 (Part 2 of 2). Redbook Dialog Class: RedBookDialog.nrx

The RedbookDialog class is a member of the Redbook package.

Message Box

The MessageBox class implements a dialog window that shows text using an ExtendedLabel
object, with an optional image and with one or more buttons. Figure 81 shows a message
box created with the MessageBox class.

Figure 81. Sample M essage Box

The MessageBox class inherits from the RedbookDialog class, and most of the methods
defined in the class are constructors. The are two sets of constructors; one set accepts a
frame window as a parent, and one set accepts any subclass of Component.

All constructors accept a button as the last parameter. An action listener that closes the
window when the button is pressed is added to the button by default. If a button is not
specified, a default OK button is used.

If the button parameter is null, a button is not added to the message box. Use the addButton
methods of the RedbookDialog class if you need more than one button, or if you do not like
the default.

The code to display the sample message box shown in Figure 81 is very simple:

Chapter 7. Creating Graphical User Interfaces 145

/* gui\messagebox\TestBox.nrx */

import Redbook.
win = Frame(″Test window″)
Messagebox(win, ″Sorry″ , ″Cannot find the file\n\nRedbook.gif″ , ″ex.gif″) . setVisible(1)

Figure 82 shows the code of the MessageBox class.

/* redbook\gui\MessageBox.nrx

Creates a nonresizable Messagebox.

If an image or image file is given the image is added on the left of the message.
The message is a multi-line message.
If a button text is specified, a button which closes the window is created.
The messagebox is per default modal. */

package Redbook

class MessageBox extends RedbookDialog uses ExtendedLabel
 Properties inheritable

img = ImagePanel
extlabel = ExtendedLabel

 -- creates a message box with an image loaded from a file
 -- the parent of the box is a frame window
 method MessageBox(theParent = Frame,title = String, message = String,-

imageFile = String, aButton = Button Button(′ Ok′))
super(theParent,1,title)
do
img = ImagePanel add(′ West′ , ImagePanel(imageFile,Insets(10,10,0,0)))

catch LoadImageException
end
initBox(message,aButton)

 -- creates a message box with a given image
 -- the parent of the box is a frame window
 method MessageBox(theParent = Frame,title = String, message = String,-

anImage = Image, aButton = Button Button(′ Ok′))
super(theParent,1,title)
img = ImagePanel add(′ West′ , ImagePanel(anImage,Insets(10,10,0,0)))
initBox(message,aButton)

 -- creates a message box without any image
 -- the parent of the box is a frame window
 method MessageBox(theParent = Frame,title = String, message = String,-

aButton = Button Button(′ Ok′))
super(theParent,1,title)
initBox(message,aButton)

 -- creates a message box with an image loaded from a file
 -- the box looks for a parent frame window by it′ s own
 method MessageBox(theParent = Component,title = String, message = String,-

imageFile = String, aButton = Button Button(′ Ok′)) -
signals NoFrameWindow

super(theParent,1,title)
do
img = ImagePanel add(′ West′ , ImagePanel(imageFile,Insets(10,10,0,0)))

Figure 82 (Part 1 of 2). Message Box Class: MessageBox.nrx

146 Creating Java Applications Using NetRexx

catch LoadImageException
end
initBox(message,aButton)

 -- creates a message box with a given image
 -- the box looks for a parent frame window on its own
 method MessageBox(theParent = Component,title = String, message = String,-

anImage = Image, aButton = Button Button(′ Ok′)) -
signals NoFrameWindow

super(theParent,1,title)
img = ImagePanel add(′ West′ , ImagePanel(anImage,Insets(10,10,0,0)))
initBox(message,aButton)

 -- creates a message box without any image
 -- the box looks for a parent frame window on its own
 method MessageBox(theParent = Component,title = String, message = String,-

aButton = Button Button(′ Ok′)) signals NoFrameWindow
super(theParent,1,title)
initBox(message,aButton)

 -- intitialize the message box
 method initBox(message = Rexx,aButton = Button) inheritable

if img \= null then in = Insets(10,5,0,10)
else in = Insets(10,10,0,10)

extLabel = ExtendedLabel add(′ Center′ , ExtendedLabel(message,in,LEFT,CENTER))

if aButton \= null then do
aButton.addActionListener(super.ws.getCloseWindow())
super.buttons.add(aButton)

end

add(′ South′ , super.buttons)
setResizable(0)

Figure 82 (Part 2 of 2). Message Box Class: MessageBox.nrx

The MessageBox class is a member of the Redbook package.

Prompt Dialog

The PromptDialog class implements a dialog window that is used to prompt the user for
input in a text field (see Figure 83).

Figure 83. Sample Prompt Dialog

The PromptDialog class inherits from RedbookDialog and only a few methods are defined for
the class. There are some methods to control, get, and set the text in the entry field. The
init method uses the SimpleGridLayout manager (see Figure 62 on page 106).

Figure 84 shows the code of the PromptDialog class.

Chapter 7. Creating Graphical User Interfaces 147

/* redbook\gui\PromptDialog.nrx

Creates a prompt dialog box */

package Redbook

class PromptDialog extends RedbookDialog
Properties inheritable
entryField = TextField -- prompt entry field
keytester = KeyCheck -- key tester for the entry field
keyLimit = LimitTextField -- maximum length of the entry field

-- create the PromptDialog with any component as parent
method PromptDialog(parentWindow = Component, modal = boolean, -

title = Rexx ′ ′ , labeltext = Rexx ′ ′ , -
fieldText = Rexx ′ ′ , fieldsize = int 20) signals NoFrameWindow

super(parentWindow,modal,title)
init(labeltext,fieldText,fieldsize)

-- create the PromptDialog with a frame window as parent
method PromptDialog(parentFrame = Frame, modal = boolean, -

title = Rexx ′ ′ , labeltext = Rexx ′ ′ , -
fieldText = Rexx ′ ′ , fieldsize = int 20)

super(parentFrame,modal,title) -- create the dialog
init(labeltext,fieldText,fieldsize)

-- init the PromptDialog
method init(labeltext = Rexx, fieldText = Rexx, fieldsize = int) private
entryField = TextField(fieldText,fieldsize)
keytester= KeyCheck(KeyCheck.ALL,0) -- all keys no translation
entryField.addKeyListener(keytester) -- Add key tester to field
super.ws.setFocusRecipient(entryField) -- entryField gets the focus

gridBag = SimpleGridBagLayout(this) -- now the layout
this.setLayout(gridBag)
gridBag.addFixSize(Label(labeltext),0,0,Insets(10,10,5,5))
gridBag.addVarSize(entryField,1,0,Insets(10,0,5,10),1,0)
gridBag.addVarSize(super.buttons,0,1,1.0,1.0,GridBagConstraints.REMAINDER)

-- Returns the value of the entry field
method getText() returns Rexx
return entryField.getText()

-- set the focus to the entry field when visible
method setVisible(show=boolean)
super.setVisible(show)
if show then
entryField.requestFocus()

-- set the comparison string for the key tester
method setKeyMode(newMode = Rexx)
keytester.setMode(newMode)

-- if upperCase is true, lowercase letters are translated to uppercase
method setUpperCase(upperCase = boolean)
keytester.setMode(upperCase)

-- set a limit for the length of the test in the entry field

Figure 84 (Part 1 of 2). Prompt Dialog Class: PromptDialog.nrx

148 Creating Java Applications Using NetRexx

method setTextLimit(chars = int)
if keyLimit \= null then entryField.removeTextListener(keyLimit)
entryField.addTextListener(LimitTextField(entryField,chars))

Figure 84 (Part 2 of 2). Prompt Dialog Class: PromptDialog.nrx

The PromptDialog class is a member of the Redbook package.

A sample application that creates the prompt dialog box in Figure 83 on page 147 is shown
in Figure 85.

/* gui\promptdialog\PromptTest.nrx

Sample application to illustrate the use of the PromptDialog
and the PromptDialogActionListener class.

Shows a window with a push button and an label.
The push button creates a prompt dialog, the label shows
the value of the dialog when ready. */

import Redbook.

Gui(′ Prompt Dialog Test′) -- start the User Interface

-- The Gui class implements the interface
class Gui implements PromptDialogAction
Properties inheritable
main = Frame -- main window
buttn = Button(′ Show Dialog′) -- push button
answer= Label(′ Press the push button′) -- label for the results

method Gui(title = String) -- create the interface
main = Frame(title)

-- construct the window
main.add(′ North′ , answer)
main.add(′ South′ , buttn)

-- add ActionListener to the push button
buttn.addActionListener(PromptDialogActionListener(this))

-- show the window
WindowSupport(main,buttn)
main.setSize(200,150)
RedbookUtil.positionWindow(main)
main.setVisible(1)

-- Invoked for the action listener when Prompt Dialog ready
method promptReady(text = String,action = ActionListener)
answer.setText(′ You entered:′ text)

-- invoked from the Actionlistener, build the Prompt Dialog Box
method getPromptDialog(action = ActionListener)-

returns PromptDialog
dialogw = PromptDialog(main,0,′ Please Type a String′ , ′ String:′)
dialogw.addButton(′ Ok′ , action)
dialogw.addButton(′ Cancel′)
return dialogw

Figure 85. Sample Prompt Dialog Application: PromptTest.nrx

The application defines a GUI class that implements a PromptDialogAction interface. The
interface defines two methods:

Chapter 7. Creating Graphical User Interfaces 149

 /* gui\promptdialog\PromptDialogAction.nrx */
 Package Redbook
 class PromptDialogAction interface

method promptReady(text = String, source = ActionListener)
method getPromptDialog(source=ActionListener) returns PromptDialog

The promptReady method is called when the OK button is clicked. The parameters are the
text and the action listener itself. The action listener is part of the parameter list to
distinguish between two or more action listeners in the same method.

Figure 86 shows the action listener used by the interface.

/* redbook\gui\PromptDialogAction.nrx

Interface to work with the PromptDialogActionListener.
The method promptReady it invoked when the prompt dialog returns a value.
The method getPromptDialog is invoked when the PromptDialog is constructed. */

Package Redbook

class PromptDialogAction interface
 method promptReady(text = String, source = ActionListener)
 method getPromptDialog(source=ActionListener) returns PromptDialog

Figure 86. Prompt Dialog Action Listener: PromptDialogAction.nrx

The PromptDialogAction class is a member of the Redbook package.

Photograph Album Sample Application

The photograph album application illustrates the use of ImagePanels, EqualSizePanels, and
buttons.

The application shows a window with two sets of buttons and an ImagePanel (see
Figure 87).

Figure 87. Photograph Album Sample Application

When a button is pressed the corresponding image is loaded. If an image file is not found, a
message box is displayed to inform the user.

150 Creating Java Applications Using NetRexx

The application consists of a script part (see Chapter 5, “Using NetRexx As a Scripting
Language” on page 49), and an action listener that stores a reference to the image panel
and the name of the image.

You can use such a design as long as methods are not called from the user interface. This
is true for many small applications. If the application becomes more complex, you should
use a design as shown in the PromptDialog sample application (“Prompt Dialog” on
page 147).

Figure 88 shows the code for the application.

/* gui\photoalbum\PhotoAlbum.nrx

Sample application to illustrate the use of the EqualSizePanel and ImagePanel class.
This application is a little photograph album.
It has a row and a column of buttons to show the pictures. */

 import Redbook.

 win = Frame(′ My Personal Photograph Album′)

 p1 = EqualSizePanel(EqualSizePanel.VERTICAL) -- two panels for the buttons
 p2 = EqualSizePanel(EqualSizePanel.HORIZONTAL)
 pict = ImagePanel() -- ImagePanel for the pictures

 win.add(′ East′ , p1) -- add the panels to the window
 win.add(′ South′ , p2)
 win.add(′ Center′ , pict)

 -- add the buttons to the panel and add an ActionListener to every button
 (Button p1.add(Button(′ Kids′))) . addActionListener(ShowPicture(pict,′ Redbook/kids.jpg′))
 (Button p1.add(Button(′ Golden Gate′))) . addActionListener(ShowPicture(pict,′ Redbook/gate1.jpg′))
 (Button p1.add(Button(′ Temple of the Arts′))) . addActionListener(-

ShowPicture(pict,′ Redbook/temple.jpg′))
 (Button p1.add(Button(′ Chinatown′))) . addActionListener(ShowPicture(pict,′ Redbook/chinat.jpg′))
 (Button p2.add(Button(′ Dragon′))) . addActionListener(ShowPicture(pict,′ Redbook/dragon.jpg′))
 p1.setGaps(5,5)

 (Button p2.add(Button(′ Dog′))) . addActionListener(ShowPicture(pict,′ Redbook/dog.jpg′))
 (Button p2.add(Button(′ Coast Line′))) . addActionListener(ShowPicture(pict,′ Redbook/lighthou.jpg′))
 (Button p2.add(Button(′ Pinacles′))) . addActionListener(ShowPicture(pict,′ Redbook/pinac.jpg′))
 (Button p2.add(Button(′ NotExist′))) . addActionListener(ShowPicture(pict,′ Redbook/NotExist.jpg′))
 p2.setGaps(5,5)

 pict.setInsets(5,5,0,0) -- margin for the ImageLabel panel

 WindowSupport(win,null) -- CloseWindow Support

 win.setSize(400,250) -- set the size and show the window
 RedbookUtil.positionWindow(win)
 win.setVisible(1)

-- ShowPicture stores the name of the image and shows it when an
-- ActionEvent is received
class ShowPicture implements ActionListener

Properties inheritable
fname = String -- name of the picture file
pict = ImagePanel -- reference to the ImagePanel

method ShowPicture(aPict = ImagePanel, aname = String)
fname = ″ / ″aname
pict = aPict

method actionPerformed(e=ActionEvent)
do

pict.setImage(fname) -- set the image in the image panel
catch ex = LoadImageException -- caught if file not found

say ′ Exception...′ ex
pframe = Frame pict.getParent() -- get the frame window
mb=MessageBox(pframe,′ Sorry′ , ′ Cannot find the file\n\n′ fname,-

′ / EX.gif′)
mb.setVisible(1)

end

Figure 88. Photograph Album Sample Application: PhotoAlbum.nrx

Chapter 7. Creating Graphical User Interfaces 151

152 Creating Java Applications Using NetRexx

Chapter 8. Threads
One of the strongest advantages of Java is its built-in thread support. Most programming
languages allow the use of threads, but the threads are part of the operating system and not
part of the language.

A thread is a single sequential flow of control within a process. Threads run parallel to each
other. A program is a collection of threads. Threads share the same address space of the
program.

Only a few basic classes and constructs are specially designed to support threads:

• The Thread class, along with some related utility classes, used to initiate and control
new threads

• The wait, notify, and notifyAll methods, defined in the Object class

• The protect and volatile keywords, used to control execution of code in objects that are
used by threads

The Thread Class
A new thread is created when we create an instance of the Thread class. We cannot tell a
thread which method to run, because threads are not references to methods. Instead we
use the Runnable interface to create an object that contains the run method:

 class Runnable interface public
method run()

Every thread begins its concurrent life by executing the run method. The run method does
not have any parameters, does not return a value, and is not allowed to signal any
exceptions.

Any class that implements the Runnable interface can serve as a target of a new thread. An
object of a class that implements the Runnable interface is used as a parameter for the
thread constructor:

 class Background implements Runnable
...

 bkg = Background()
 aThread = Thread(bkg)

You can give a thread an optional name that is visible when listing the threads in your
system. It is good practice to name every thread, because if something goes wrong you can
get an idea which threads are still running.

Additionally, threads are grouped by thread groups. If you do not supply a thread group, the
new thread is added to the thread group of the currently executing thread. The threads of a
group and their subgroups can be destroyed, stopped, resumed, or suspended by using the
ThreadGroup object.

 Copyright IBM Corp. 1997 153

The thread name and group are specified at construction time of the thread. The
constructors of the Thread class are:

Thread(target=Runnable,threadName=Str ing ′′)
Creates a thread with the given name that is a member of the current thread
group

Thread(group=ThreadGroup,target=Runnable,threadName=Str ing ′′)
Creates a thread with the given name that is a member of the given thread group

More constructors without the Runnable object are available. We do not list them here
because we do not subclass the Thread class to create a new thread.

Creating and Starting Threads
A newly created thread remains idle until the start method is invoked. The thread then
wakes up and executes the run method of its target object. The start method can be called
only once. The thread continues running until the run method completes or the stop method
of the thread is called. Figure 89 shows the life cycle of a thread.

┌──────────┐ start ┌────────┐ ┌────────────┐
│New Thread├───────�│runnable│�──────�│not runnable│
└────┬─────┘ └───┬────┘ └─────┬──────┘

 │ │ run │
 │stop │ (exit, │ stop
 │ │ or stop) │
 │ � │
 │ ┌───────┐ │
 └─────────────�│ dead │�──────────────┘

└───────┘

Figure 89. Life Cycle of a Thread

Figure 90 shows a simple example of the use of threads.

/* thread\ThrdTst1.nrx */

h1 = Hello1(′ This is thread 1′)
h2 = Hello1(′ This is thread 2′)

Thread(h1,′ Thread Test Thread 1′) . start()
Thread(h2,′ Thread Test Thread 2′) . start()

--------------------------------- Hello1 class implements RUNNABLE
class Hello1 implements Runnable
Properties inheritable
message = String

method Hello1(s = String)
message = s

method run()
loop for 50

Figure 90 (Part 1 of 2). Simple Application with Multiple Threads: ThrdTst1.nrx

154 Creating Java Applications Using NetRexx

say message
Thread.currentThread().yield() -- for OS/2 or Window 95/NT not necessary

end

Figure 90 (Part 2 of 2). Simple Application with Multiple Threads: ThrdTst1.nrx

The Thread class itself implements the Runnable interface. Therefore it is possible to inherit
from Thread instead of implementing the Runnable interface (see Figure 91).

/* thread\ThrdTst2.nrx */

h1 = Hello2(′ This is thread 1′)
h2 = Hello2(′ This is thread 2′)

h1.start()
h2.start()

--------------------------------- Hello2 class extends THREAD
class Hello2 extends Thread
Properties inheritable
message = String

method Hello2(s = String)
super(′ Thread Test - Message′ s)
message = s

method run()
loop for 50
say message
do
sleep(10)
catch InterruptedException

end
end

Figure 91. Simple Application with Multiple Threads: ThrdTst2.nrx

Subclassing the Thread class may be convenient, but most of the time it is not correct
because the Hello class is a class that prints a string and can run as a thread, but it is not a
thread (see “Usage or Inheritance” on page 66).

Controlling Threads
The start method is used to start a newly created thread. Three other methods give us
control over a thread:

• The stop method destroys the thread. The stop method can be called only once during
the life of a thread.

• The suspend method pauses the thread. The thread is suspended until the resume
method or the stop method is called.

• The resume method resumes a suspended thread.

• The sleep method suspends the thread for a number of milliseconds.

Each of these methods works on the current thread object. If the current thread object is
unknown, it can be received by using a class method of the Thread class:

Thread.currentThread()

Chapter 8. Threads 155

This method returns the current thread object.

Lifetime of a Thread

A thread continues to execute until:

• It returns from the run method.

• The stop method is called.

• An exception occurs and is not caught.

If a thread does not terminate, and the application that started the thread does not call the
stop method, the thread lives on, even if the application has finished. The exit statement
ends all threads of an application.

Use the setDaemon method to mark a thread as a daemon thread that should be killed and
discarded when no other application thread remains.

Scheduling

Java makes some guarantees about how a thread is scheduled. The Java interpreter
dispatches threads, using an algorithm that schedules threads on the basis of their priority
relative to other runnable threads. The setPriority method is used to change the priority of a
thread at run time. The priority must be in the range of Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY. When multiple threads are ready to be executed, the run-time
system chooses the thread with the highest priority. If two threads have the same priority,
the scheduler chooses one of them in a round-robin fashion.

The scheduling is also preemptive. If at any time a thread with a higher priority than any
other runnable thread becomes runnable, the scheduler chooses that thread for execution.

A thread continues running until it gives up control through one of the following actions:

• Calls the wait or sleep methods
• Calls the suspend method
• Calls the yield method
• Is blocked by I/O
• Terminates

The Java specification for scheduling is not fully defined. Some details can be done
differently from implementation to implementation. The main difference is that some Java
implementations use time slicing on threads with the same priority. In a time-slicing system,
each thread runs for a short period of time before Java switches to the next thread. Higher
priority threads still preempt lower priority threads.

Time slicing is implemented in the OS/2, Windows 95, and Window NT Java interpreter.
Round-robin scheduling is implemented for Sun ′s port of the Solaris Java interpreter.

Because time slicing is not implemented in all interpreters, your code should not rely on
such scheduling. For example, if you delete the call to the yield method in the run method in
Figure 90 on page 154, the result would show only the “This is thread 1” message with a
scheduler using the round-robin scheme.

156 Creating Java Applications Using NetRexx

Synchronization
When two or more threads access the same object, they must be synchronized. Java
provides synchronization based on the concept of monitors, a widely used synchronization
scheme developed by C.A.R Hoare (“Communicating Sequential Processes,”
Communications of the ACM, Vol. 21, No. 8, August 1978).

Monitors and the Protect Keyword

A monitor is essentially a lock. If the resource is not used, the thread can acquire the lock
and access the resource. When the work is done, the thread relinquishes the lock. When
threads try to access a resource that is locked, they have to wait until the resource is
unlocked.

A lock is set by the protect keyword, which can be used to protect a method of an object or
access to an object.

A method is protected when the protect keyword in the method declaration is used (see
“Method Instruction” on page 28):

 method lockedMethod() protect
 ...

When the protect keyword is used in the do, select, or loop instruction, an object that is
locked is used as a parameter (see “Control Statements” on page 39):

 -- test is an object of any type
 do protect test

...
 end

Any access to the test object is locked as long the do block is executed.

The protect keyword in the method statement can be simulated by using a lock for the
object:

 method lockedMethod()
do protected this -- same as method lockedMethod() protect

...
end

Threads that do not apply a lock have full access to any object, even if another thread
locked the object.

Locks are reentrant. If a thread holds a lock on a resource, it can reenter the code section
that acquired a lock to the same resource.

Wait and Notify

When the wait method in a protected block is used, a thread goes to sleep. To wake up the
thread, use the notify method from a protected block protecting the same object:

 class NotifyExample
method myWait() protect
... -- do something
do

wait()
catch InterruptedException
end
say ′ released′

Chapter 8. Threads 157

method myNotify() protect
... -- do something
notify()
...

The myWait method is suspended when the wait method is executed. It is resumed when
another thread uses the myNotify method.

When more than one thread is waiting for the same object, notify awakes only one thread.
The run-time system chooses this thread in a nonguaranteed fashion.

With the notifyAll method, all waiting threads are notified.

Additionally, there is a wait method with a timeout:

wait(ms=int)

The wait and notify methods are used by threads that are dependent on each other. They
offer a way of signaling that an object for which another thread is waiting has changed.

The example in Figure 92 illustrates the use of the wait and notify methods. The producer
thread reads messages from the console input. The messages are stored in an array that is
limited to holding four messages.

The consumer thread gets the messages from the array and prints them on the screen. To
make the scenario more realistic, the consumer thread waits for a few seconds after each
message.

/* thread\consumer\Consumer.nrx

Consumer - Producer sample application with wait and notify to synchronize */

-------------------------------------- Consumer class

-- name the current thread
Thread.currentThread().setName(′ Thread Example: Consumer Thread′)

p = Producer() -- creates a producer
t = Thread(p,′ Thread Example: Producer Thread′) -- creates the thread
t.start() -- runs the producer

s = Rexx ′ ′

loop until s = ′ exit′
Thread.currentThread().sleep(5000) -- wait 5 seconds
s = p.readMessage()
say ′ Message received′ s

end

say ′ Program stopped′
exit 0

-------------------------------------- Producer class
class Producer implements Runnable
Properties constant
MaxEntries = int 4

Properties inheritable
queue = Vector() -- dynamic growing Array

Figure 92 (Part 1 of 2). Threads with Wait and No tify: Consumer.nrx

158 Creating Java Applications Using NetRexx

method run()
getMessages()

-- producer method
method getMessages()
loop forever
say ′ Type new message (′ queue.size() ′ messages in queue)′
newMessage = ask
do protect this -- protected against readMessages
-- check if the loop is full
loop while queue.size() == MaxEntries

say ′ Queue is full′
wait()

catch InterruptedException
end
queue.addElement(newMessage) -- add the message
notify() -- notify readMessage: new message

end
end

-- called from consumer
method readMessage() protect returns Rexx
loop while queue.size() == 0

wait()
catch InterruptedException
end
s = Rexx queue.firstElement() -- read the first element
queue.removeElement(s) -- remove the element from queue
notify() -- notify getMessages: message removed
return s

Figure 92 (Part 2 of 2). Threads with Wait and No tify: Consumer.nrx

Note: Enter exit to stop the threads.

Philosophers ′ Forks
To complete the chapter on threads, we look at an ancient and famous example, the
philosophers′ forks problem.

Philosophers ′ forks

• Five philosophers sit around a table. Each one goes through a cycle of sleeping and
eating.

• There is a fork between each two philosophers, so there are five forks on the table
as well.

• To eat, a philosopher has to grab the forks on both sides. If a fork has already been
taken by the philosopher on the other side of the fork, the philosopher must wait
until that fork is available.

• The philosophers reach for forks in no particular order, but once they reach out for a
fork and have to wait, they do not change their minds, even if the other fork is
available.

• When they have finished eating, the philosophers put down both forks and go back to
sleep.

• The times that they sleep and eat vary randomly around given values.

Chapter 8. Threads 159

Designing the Philosophers ′ Forks

We approach this problem with two classes, one for the philosophers and one for the forks:

• The philosophers are the independent threads, each running through the cycle of
sleeping and eating.

• The forks are the accessories, and access to each fork must be synchronized so that
only one philosopher can pick up the fork.

• We use the forks as monitor objects and design pickup and laydown methods with the
protect keyword.

• We invoke wait and notify to control access to the forks.

Figure 93 shows the implementation of the class for the philosophers.

 class PhilText extends Thread

properties private
num = int -- number
lfork = ForkText -- left fork
rfork = ForkText -- right fork
out = Rexx -- prefix

method PhilText(nump=int, lforkp=ForkText, rforkp=ForkText)
num = nump
lfork = lforkp
rfork = rforkp
out = ′ ′ . copies(15*num-14)

method run() public -- run the philosop.
say out ′ Philosopher-′ num
loop for PFtext.cycles -- run the loop

stime = PFtext.sleep % 2 + PFtext.sleep * Math.random() % 1
say out ′ Sleep-′ (Rexx stime/1000).format(2,1)
sleep(stime) -- sleep
say out ′ Wait′
if Math.random() <= PFtext.side then do -- pick up forks

lfork.pickup()
rfork.pickup()
end

else do -- same, right
rfork.pickup()
lfork.pickup()

end
etime = PFtext.eat % 2 + PFtext.eat * Math.random() % 1
say out ′ Eat-′ (Rexx etime/1000).format(2,1)
sleep(etime) -- eat
lfork.laydown() -- lay down forks
rfork.laydown()

catch InterruptedException
end
say out ′ Done′ -- loop finished

Figure 93. Philosophers ′ Forks: Philosopher Class

The philosophers are subclasses of Thread; therefore they implement the run method that is
invoked when the thread is started. They go through the cycle of sleeping and eating. To
eat they pick up the two assigned forks.

Figure 94 shows the implementation of the class for the forks.

160 Creating Java Applications Using NetRexx

 class ForkText

properties private
used = boolean 0 -- flag is fork in use

method ForkText() -- constructor

method pickup protect -- pickup the fork
if used then wait() -- wait for fork
used = boolean 1 -- take it

method laydown protect -- laydown the fork
used = boolean 0 -- set to free
notify() -- let others run

Figure 94. Philosophers ′ Forks: Fork Class

The fork class provides the synchronization using a boolean variable that indicates whether
the fork is in use. The pickup method waits if the fork is occupied, and the laydown method
notifies another thread that is waiting.

Both methods use the protect keyword to lock the current object, that is, the fork itself.

To complete the example we need the main program that prepares the parameters,
allocates the philosophers and the forks, and starts the five threads (see Figure 95).

 /* thread\philfork\PFtext.nrx

Philosophers Forks in a text Window */

 class PFtext public

properties static public
 eat = int 6000 -- eat time (ms)

sleep = int 8000 -- sleep time (ms)
cycles = int 2 -- number of cycles
side = double 0.5 -- fork pickup (L,R,random)

method main(args=String[]) static
nuarg = args.length
if nuarg > 3 then side = Rexx args[3]
if nuarg > 2 then cycles = Rexx args[2]
if nuarg > 1 then eat = (Rexx args[1]) * 1000
if nuarg > 0 then sleep = (Rexx args[0]) * 1000
if side = ′ L′ then side = 1.0 -- left fork first
else if side = ′ R′ then side = 0 -- right

else side = 0.5 -- random
run() -----------> RUN IT

method run() static
f1 = ForkText() -- create 5 forks
f2 = ForkText()
f3 = ForkText()
f4 = ForkText()
f5 = ForkText()
p1 = PhilText(1,f5,f1) -- create 5 philos.
p2 = PhilText(2,f1,f2)
p3 = PhilText(3,f2,f3)
p4 = PhilText(4,f3,f4)
p5 = PhilText(5,f4,f5)

Figure 95 (Part 1 of 2). Philosophers ′ Forks: Main Program: PFtext.nrx

Chapter 8. Threads 161

p1.start() -- run 5 philsophers
p2.start()
p3.start()
p4.start()
p5.start()

Figure 95 (Part 2 of 2). Philosophers ′ Forks: Main Program: PFtext.nrx

When we run the program, we can see the threads executing in parallel (see Figure 96).

 d:\NrxRedBk\thread\philfork>jave PFtext

Philosopher-1
Philosopher-2

Philosopher-3
Philosopher-4

Philosopher-5
Sleep- 5.8

Sleep- 7.5
Sleep- 7.3

Sleep- 4.7
Sleep- 9.8

Wait
Eat- 6.4

Wait
Eat- 3.1

Wait
Wait

Sleep- 5.8
Eat- 7.3

Wait
Sleep- 7.7

Eat- 4.3
Wait

Sleep-11.6
Eat- 3.3

Sleep-11.3
Eat- 9.0

Wait
Sleep- 4.8

Eat- 4.6
Done

Wait
Eat- 5.6

Done
Wait
Eat- 4.5

Wait
Done

Eat- 4.3
Done

Done

Figure 96. Philosophers ′ Forks: Execution in a Text Window

162 Creating Java Applications Using NetRexx

Enhancing the Philosophers ′ Forks with a GUI

To better visualize the parallel threads, we can design a solution using a GUI.

We represent the philosophers and forks as push buttons that can be visible or hidden, and
colored according to the activity. We use red for eating, white for waiting, and gray for
sleeping. We use little push buttons to represent the hands that hold the forks, and we put
pieces of a central cake in front of the philosophers when they eat. We also add push
buttons to start and stop the animation.

The basic logic of the philosopher and fork classes does not change. We only introduce a
few methods to interact with the GUI object to change the visibility and color of all push
buttons that represent our model objects.

Most of the code is needed to define all of the GUI objects with position and size and place
them into the applet. The program is called PFgui.nrx, and it runs as an applet or an
application. The HTML file for the applet is called PFgui.htm. Both files are in the
thread\philfork subdirectory.

Figure 97 shows a snapshot of executing the GUI program.

Figure 97. Philosophers ′ Forks: Execution in a GUI

Chapter 8. Threads 163

164 Creating Java Applications Using NetRexx

Chapter 9. Handling Files
In this chapter we discuss how to read from and write to files using line-mode, byte-oriented,
data-oriented, and object-oriented streams.

There are no specifications for I/O in NetRexx Version 1.0. (This is similar to classic Rexx
Version 1.0; the I/O specification was added for Version 2.0.) Because NetRexx does not
define its own I/O statements, I/O-related functions have to be implemented using the Java
class library.

Note: NetRexx does provide the say instruction to write to standard output and the ask
function to get input from the user.

Streams
A stream is a flowing sequence of bytes. In Java, an object from which you can read a
sequence of bytes is called an input stream. An object to which you can write a sequence of
bytes is called an output stream. The Java I/O class library provides more than 20 types of
streams.

You can connect an input stream to many sources, for example, a file or a TCP/IP socket of
a network. You can connect an output stream to many destinations, for example, a file, a
printer, or a TCP/IP socket. Streams provide the generalized I/O mechanism that you can
use to handle both files and network connections.

JDK 1.1 introduces support for character streams to the java.io package. Character streams
are mainly for internationalization support. Before this release, JDK supported byte streams
only, through the InputStream and OutputStream classes and their subclasses.

Character streams are like byte streams, but they contain 16-bit Unicode characters rather
than 8-bit bytes. They are implemented by the Reader and Writer classes and their
subclasses. Reader and Writer classes are enhanced for performance. Our sample
programs use Reader and Writer classes where possible.

 Copyright IBM Corp. 1997 165

File Class
To handle a file or a directory, you create a file object. The File class provides many
methods for getting the file or directory information and manipulating files and directories.
The first sample program, FileInfo, shows how to use these methods (see Figure 98).

/* file\FileInfo.nrx

Display file/directory/path information */

parse arg fileName .
if fileName = ″″ then do

say ″Enter file or directory name to test ?″
filename = ask

end
f1 = File(fileName) -- create file object
if f1.exists() = 0 then do

say ′ File:′ filename ′ does not exist.′
exit 8

end

say ″System related information ----------------------″
say ″ pathSeparator :″ f1.pathSeparator -- these are not methods
say ″ pathSeparatorChar :″ f1.pathSeparatorChar -- they are public
say ″ separator :″ f1.separator -- static
say ″ separatorChar :″ f1.SeparatorChar -- class variables
say
say ″File/directory related information --------------″
say ″ canRead :″ f1.canRead()
say ″ canWrite :″ f1.canWrite()
say ″ isDirectory :″ f1.isDirectory()
say ″ isFile :″ f1.isFile()
say ″ length :″ f1.length()
say ″ lastModified :″ f1.lastModified() ″=″ Date(f1.lastModified())
say ″ isAbsolute :″ f1.isAbsolute()
say ″ getAbsolutePath :″ f1.getAbsolutePath()
say ″ getCanonicalPath :″ f1.getCanonicalPath()
say ″ getPath :″ f1.getPath()

parent1 = f1.getParent()
if parent1 = null then parent1 = ″null returned″
say ″ getParent :″ parent1
say ″ getName :″ f1.getName()
say ″ toString :″ f1.toString()
say ″ hashCode :″ f1.hashCode()

if f1.isDirectory() then do
say
say ″List of this directory ---------------------------\n″
list1 = f1.list()
if list1.length = 0

then say ″ directory is empty″
else
loop i = 0 to list1.length -1

f2 = File(f1.getAbsolutePath()′ ′ f1.separator′ ′ list1[i])
if f2.isDirectory() then say ″ Dir :″ list1[i]

Figure 98 (Part 1 of 2). Display File and Directory Information: FileInfo.nrx

166 Creating Java Applications Using NetRexx

else say ″ File:″ list1[i]
end

end
say ″\n---″
-- end fileinfo

Figure 98 (Part 2 of 2). Display File and Directory Information: FileInfo.nrx

Try the program for various cases and see the results; for example:

 java FileInfo test.dat ==> file
 java FileInfo testdir ==> directory
 java FileInfo d:\dir1\dir2\test.dat ==> file with absolute path
 java FileInfo d:\dir1\dir2\testdir ==> directory with absolute path

This is a sample output listing of the program:

 d:\NrxRedBk\file>java FileInfo d:\nrxredbk\Thread
 System related information ----------------------

pathSeparator : ;
pathSeparatorChar : ;
separator : \
separatorChar : \

 File/directory related information --------------
canRead : 1
canWrite : 1
isDirectory : 1
isFile : 0
length : 0
lastModified : 869011058000 = Tue Jul 15 16:57:38 PDT 1997
isAbsolute : 1

 getAbsolutePath : d:\nrxredbk\Thread
 getCanonicalPath : d:\NrxRedBk\thread
 getPath : d:\nrxredbk\Thread
 getParent : d:\nrxredbk
 getName : Thread
 toString : d:\nrxredbk\Thread
 hashCode : -1850736099

 List of this directory ---------------------------

Dir : consumer
File: ThrdTst2.nrx
File: ThrdTst1.nrx
File: Hello2.class
File: ThrdTst2.class
File: Hello1.class
File: ThrdTst1.class
Dir : philfork
Dir : synch

There are a few additional methods for manipulating or testing a file or directory:

delete() Deletes the file or directory specified by this object

equals(Object) Compares this object against the specified object

list(FilenameFilter) Returns a list of the files in the directory that satisfy the specified
filter

mkdir() Creates a directory whose path name is the file object

Chapter 9. Handling Files 167

mkdirs() Creates a directory whose path name is the file object, including any
necessary parent directories

renameTo(File) Renames the file or directory to have the path name given by the file
argument

Line Mode I/O
In most cases, we deal with a file line by line. Therefore, we discuss line mode I/O first.

Line I/O Using BufferedReader and PrintWriter

The BufferedReader class facilitates reading files, with good performance, using the
readLine method.

The PrintWriter class has an improved println method that adds the platform-dependent
line-end character to the end of the string. When you use this method under OS/2, Windows
95, or Windows NT, new line (\n) and carriage return (\r) characters are added. Under UNIX
systems, only a new line (\n) character is added.

Note: In JDK 1.0.2, the println method of the PrintStream class adds the new line (\n)
character only. Therefore, you may not get the exact same copy of a file, using readLine
and println.

Our first sample program uses a BufferedReader and a PrintWriter class to extract DEVICE
statements from a file (see Figure 99).

/* file\LineIO.nrx

Line-mode I/O using buffered reader and printer writer.
Extract ′ DEVICE′ statements from a file (default CONFIG.SYS). */

parse arg filename
if filename = ′ ′ then filename = ′ C:/CONFIG.SYS′
output = ′ CONFIG.DEV′
say ′ File:′ filename ′ ->′ output

inFile = FileReader(filename) -- input file
source = BufferedReader(inFile) -- buffered

outFile = FileWriter(output) -- output file
dest = PrintWriter(outFile) -- to printer

loop forever
textline = source.readLine() -- read the file
if textline = null then leave -- end-of-file ?
parse textline word1 ′ = ′ .
if word1 = ″device″ then do -- DEVICE statement ?

dest.println(textline) -- write output
end

end

source.close() -- close files

Figure 99 (Part 1 of 2). Buffered Input and Print Output: LineIO.nrx

168 Creating Java Applications Using NetRexx

dest.close()

say ′ Extracted DEVICE statements:′ -- display results
source = BufferedReader(FileReader(output)) -- read output file
loop until textline = null

textline = source.readLine()
if textline \= null then say ′ ′ textline -- standard output

end
-- end LineIO

Figure 99 (Part 2 of 2). Buffered Input and Print Output: LineIO.nrx

The string comparison operation with one equal sign is not case sensitive. This feature of
NetRexx, combined with the power of the parse instruction, allows easy extraction of DEVICE
statements of various coding, for example:

DEVICE=C:\driver1.sys
device=C:\driver2.sys
 DeViCe = C:\driver3.sys
 DEVICE = C:\driver4.sys

Line I/O Using BufferedReader and BufferedWriter

When using a BufferedWriter instead of the PrintWriter, you have to add the new line
characters, using the newline method. On OS/2 and Windows systems, this method adds the
(\n)(\r) characters.

Figure 100 shows the modified program.

/* file\LineIO2.nrx

Line-mode I/O using buffered reader and buffered writer.
Extract ′ DEVICE′ statements from a file (default CONFIG.SYS). */

parse arg filename
if filename = ′ ′ then filename = ′ C:/CONFIG.SYS′
output = ′ CONFIG.DEV′
say ′ File:′ filename ′ ->′ output

inFile = FileReader(filename) -- input file
source = BufferedReader(inFile) -- buffered

outFile = FileWriter(output) -- output file
dest = BufferedWriter(outFile) -- buffered <===

loop forever
textline = source.readLine() -- read the file
if textline = null then leave -- end-of-file ?
parse textline word1 ′ = ′ .
if word1 = ″device″ then do -- DEVICE statement ?

dest.write(textline,0,textline.length()) -- write output <===
dest.newline -- add new line char <===

end
end

Figure 100 (Part 1 of 2). Buffered Input and Buffered Output: LineIO2.NRX:

Chapter 9. Handling Files 169

source.close() -- close files
dest.close()

-- end LineIO2

Figure 100 (Part 2 of 2). Buffered Input and Buffered Output: LineIO2.NRX:

Byte-Oriented I/O
Byte-oriented output allows you to read (and write) one byte at a time. Although
byte-oriented I/O is used infrequently in real applications, it is important to understand a few
basic concepts.

We use the DataInputStream class to read single bytes, using the readUnsignedByte method.
A DataInputStream object is constructed from a FileInputStream object that in turn is
constructed from a file object.

Our sample program (see Figure 101) reads a file and dumps it in the “classic” IBM dump
format, 16 characters to a line, with printable characters shown to the right of the
hexadecimal dump. We use this program in “Data-Oriented I/O” on page 172 to check the
contents of a file with binary data.

/* file\HexPrint.nrx

Print file content in classic hexadecimal dump format.
Parameter: inputfile */

parse arg inFileName .
if inFileName = ′ ′ then do
say ″Usage: HexPrint fileName″
exit 8

end

infile = File(inFileName) -- input object
source = DataInputStream(FileInputStream(inFile))

say ″--″
say ″HexPrint Version 0.50″
say ″--″
say ″File name:″ inFilename
say ″File Date:″ Date(inFile.lastModified) -- yyyy/mm/dd hh:mm:ss
say ″File size:″ inFile.length ″bytes″
say ″--″
say ″ Offset″
say ″<Hex> <dec> +0 +4 +8 +C″
say ″--″

lineHex = ′ ′ -- 16 char line in hexadecimal
lineChr = ′ ′ -- 16 char line as character
colCount = 0 -- count columns to 16
byteCount = 0 -- count total bytes

loop forever
ch = Rexx source.readUnsignedByte() -- read one byte

Figure 101 (Part 1 of 2). Byte-Oriented Input/Output: HexPrint.nrx

170 Creating Java Applications Using NetRexx

if colCount = 16 then do
prtline(lineHex,lineChr,byteCount) -- print 1 line per 16 characters
lineHex = ′ ′
lineChr = ′ ′
colCount = 0

end

lineHex = lineHex || ch.d2x(2) -- append to hexadecimal format
lineChr = lineChr || ch.d2c() -- append to character format
colCount = colCount + 1 -- count columns to 16
byteCount = byteCount + 1 -- count total bytes

catch IOException -- end of file
if lineHex <> ′ ′ then do -- are there unprinted characters
prtline(lineHex,lineChr,byteCount)

end
end

source.close() -- close input
return

/* --- print one line -------------- */
method prtline(lineHex,lineChr,byteCount) static
bCount = (bytecount-1) % 16 * 16 -- calculate offset of 1st byte
hexCount = bcount.d2x.right(6,′ 0 ′) -- hexadecimal offset
decCount = bcount.right(8,′ 0 ′) -- decimal offset
hexL = lineHex.left(32,′ ′)
hStr = hexL.substr(1,8) hexL.substr(9,8)- -- build hex print

hexL.subStr(17,8) hexL.subStr(25,8)
cStr = lineChr.translate(′ ′ , - -- build character print

′ \0′ . sequence(′ \x1F′) , ′ . ′) -- code page dependent ??
say hexCount ′ (′ decCount′) ′ hStr.left(36) ′ [′ cStr′] ′
return

-- end HexPrint

Figure 101 (Part 2 of 2). Byte-Oriented Input/Output: HexPrint.nrx

Here is a sample output listing of this program.

 d:\NrxRedBk\file>java HexPrint test.dat
 --
 HexPrint Version 0.50
 --
 File name: test.dat
 File Date: Wed May 21 13:36:48 PDT 1997
 File size: 78 bytes
 --

Offset
<Hex> <dec> +0 +4 +8 +C
--
 000000 (00000000) 54686973 20697320 61206669 72737420 [This is a first]
 000010 (00000016) 6C696E65 206F6620 74657374 2E646174 [line of test.dat]
 000020 (00000032) 0D0A4865 72652073 6F6D6520 6865783A [..Here some hex:]
 000030 (00000048) 20010203 0D0A5468 69732069 73206120 [.....This is a]
 000040 (00000064) 7365636F 6E64206C 696E6521 0D0A [second line!..]

Chapter 9. Handling Files 171

Data-Oriented I/O
You often need to read and write variables of the basic types, such as integer and floating
point. Java provides data-oriented classes, DataInputStream and DataOutputStream for this
purpose. Typical methods for data-oriented input and output are:

writeInt Write an integer value

writeFloat Write a floating point value

writeUTF Write character data in Unicode

readInt Read an integer value

readFloat Read a floating point value

readUTF Read character data in Unicode

The data format is platform independent and compact. The disadvantage is that these files
are not readable by the human eye.

Our sample programs show how objects containing integer, floating point, string, and Rexx
data can be written and read using data-oriented classes and methods. The first example
handles basic types, using a data stream, the second example uses Rexx strings.

Data-Oriented I/O Using Data Streams

The data stream classes support the methods for reading and writing the basic types, for
example, a Boolean value, character, numbers of varying types, and string.

The methods for reading and writing the basic types are paired, for example, writeInt and
readInt, so that you can easily read back the values written previously.

Strings are usually of varying length, and you have to consider the use of delimiters. The
writeUTF method adds the length of the string before the data, and readUTF can read back
the string very easily. If you use the writeBytes method, you have to add a delimiter
character. One solution is to write a new line (\n) after each string, so you can read back
the string, using the readLine method. However, the readLine method of the
DataInputStream class is “deprecated” in JDK 1.1, that is, its use is no longer suggested.
Therefore, we recommend using the writeUTF/readUTF pair for strings.

One example of the platform-independent design of Java is that writeInt always uses the
big-endian format. In contrast, C and C++ use the little-endian format for Pentium
machines and the big-endian format for Sun Sparc.

Figure 102 shows the use of data-oriented streams to save and retrieve object attributes.

/* file\DataIO.nrx

Output of a Customer object with binary data using DataOutputStream */

class DataIO
Properties constant
yes = boolean 1
no = boolean 0

Figure 102 (Part 1 of 3). Data-Oriented I/O Using Data Streams: DataIO.nrx

172 Creating Java Applications Using NetRexx

method main(args=String[]) static
custDB = Customer[4] -- allocate 4 customers

-- instanciate objects
custDB[0] = Customer(101,″Ueli Wahli″ ,″U.S.A.″ ,500.5,25,yes)
custDB[1] = Customer(102,″Peter Heuchert″ ,″Germany″,400.4,30,yes)
custDB[2] = Customer(103,″Frederik Haesbrouck″ , ″Belgium″,350.9,24,no)
custDB[3] = Customer(104,″Norio Furukawa″ ,″Japan″ ,250.5,39,no)

-- writes the object variables to a file
os = DataOutputStream(FileOutputStream(″dataio.dat″))
os.writeInt(custDB.length) -- number of objects
loop i = 0 to custDB.length-1

os.writeUTF(custDB[i].getCustNo()) -- write object data
os.writeUTF(custDB[i].getName())
os.writeUTF(custDB[i].getAddress())
os.writeFloat(custDB[i].getHourly())
os.writeInt(custDB[i].getWork())
os.writeBoolean(custDB[i].getBool())

end
os.close()

-- reads the object variables from the file
is = DataInputStream(FileInputStream(″dataio.dat″))
loop i = 1 to is.readInt() -- read the objects
xcustno = Rexx is.readUTF()
xname = Rexx is.readUTF()
xaddress = Rexx is.readUTF()
xhourly = is.readFloat()
xwork = is.readInt()
xbool = is.readBoolean()
say xcustno.left(4) xname.left(20) xaddress.left(10) -

(xhourly*xwork).right(10) xbool
end
is.close()

/* -- */
/* Customer class */
/* -- */
class Customer

properties private -- various data types
custNo = String

 name = String
address = Rexx
hourly = float

 work = int
 bool = boolean

method Customer(aCustNo=String, aName=String, aAddress=rexx, -
aHourly=float, aWork=int, aBool=boolean)

custNo = aCustNo; name = aName; address = aAddress
hourly = aHourly; work = aWork; bool = aBool

method getCustNo() returns String
return custNo

method getName() returns String

Figure 102 (Part 2 of 3). Data-Oriented I/O Using Data Streams: DataIO.nrx

Chapter 9. Handling Files 173

return name
method getAddress() returns Rexx
return address

method getHourly() returns float
return hourly

method getWork() returns int
return work

method getBool() returns boolean
return bool

-- end

Figure 102 (Part 3 of 3). Data-Oriented I/O Using Data Streams: DataIO.nrx

To verify what was written in the output file, we print its contents with the HexPrint program:

 d:\NrxRedBk\file>java HexPrint DataIO.dat
 --
 HexPrint Version 0.50
 --
 File name: dataio.dat
 File Date: Wed May 21 12:04:38 PDT 1997
 File size: 158 bytes
 --

Offset
<Hex> <dec> +0 +4 +8 +C
--
 000000 (00000000) 00000004 00033130 31000A55 656C6920 [......101..Ueli]
 000010 (00000016) 5761686C 69000655 2E532E41 2E43FA40 [Wahli..U.S.A.Cfi@]
 000020 (00000032) 00000000 19010003 31303200 0E506574 [........102..Pet]
 000030 (00000048) 65722048 65756368 65727400 07476572 [er Heuchert..Ger]
 000040 (00000064) 6D616E79 43C83333 0000001E 01000331 [manyC+33.......1]
 000050 (00000080) 30330013 46726564 6572696B 20486165 [03..Frederik Hae]
 000060 (00000096) 7362726F 75636B00 0742656C 6769756D [sbrouck..Belgium]
 000070 (00000112) 43AF7333 00000018 00000331 3034000E [C¼s3.......104..]
 000080 (00000128) 4E6F7269 6F204675 72756B61 77610005 [Norio Furukawa..]
 000090 (00000144) 4A617061 6E437A80 00000000 2700 [JapanCz....′ .]

You can match the file contents easily with the data-oriented methods:

 offset length value method
 --
 000000 00000004 writeInt(custDB.length)
 000004 0003 313031 writeUTF(″101″)
 00000A 000A 55656C69 20576168 6C69 writeUTF(″Ueli Wahli″)
 000015 0006 552E532E 412E writeUTF(″U.S.A.)
 00001D 43FA4000 writeFloat(500.5)
 000021 00000019 writeInt(25)
 000025 01 writeBoolean(1)
 --

Data-Oriented I/O Using Rexx Strings

The Rexx class provided with NetRexx can handle many data types, including integer,
floating point, and strings.

Instead of the methods of the DataOutputStream, you can use the Rexx class to write the
object values to a file and retrieve them safely again. The sample program shown in
Figure 103 uses Rexx strings to save and retrieve object attributes. Using Rexx strings, you
can read and write very easily and do not have handle each data type separately. As a
delimiter between the fields, we use the tabulator (\t) character.

174 Creating Java Applications Using NetRexx

/* file\DataIO2.nrx

Output of a Customer object with numeric data using Rexx strings */

import Customer -- from ″DataIO.nrx″

class DataIO2
Properties constant
yes = boolean 1
no = boolean 0

method main(args=String[]) static
custDB = Customer[4] -- allocate 4 customers

-- Instanciate objects
custDB[0] = Customer(101,″Ueli Wahli″ ,″U.S.A.″ ,500.5,25,yes)
custDB[1] = Customer(102,″Peter Heuchert″ ,″Germany″,400.4,30,yes)
custDB[2] = Customer(103,″Frederik Haesbrouck″ , ″Belgium″,350.9,24,no)
custDB[3] = Customer(104,″Norio Furukawa″ ,″Japan″ ,250.5,39,no)

-- writes the object variables to a file
os = PrintWriter(FileWriter(″dataio2.dat″))
os.println(custDB.length) -- number of objects
loop i = 0 to custDB.length-1

custdata = custDB[i].getCustNo() || ′ \t′ | | custDB[i].getName() || ′ \t′ -
custDB[i].getAddress() || ′ \t′ | | custDB[i].getHourly() || ′ \t′ -
custDB[i].getWork() || ′ \t′ | | custDB[i].getBool()

os.println(custdata)
end
os.close()

-- reads the object variables from the file
is = BufferedReader(FileReader(″dataio2.dat″))
n=is.readLine() -- read the objects
loop i = 1 to n
parse is.readLine() xcustno ′ \t′ xname ′ \t′ xaddress ′ \t′ xhourly -

′ \t′ xwork ′ \t′ xbool
say xcustno.left(4) xname.left(20) xaddress.left(10) -

(xhourly*xwork).right(10) xbool
end
is.close()

-- end

Figure 103. Data-Oriented I/O Using Rexx Strings: DataIO2.nrx

Because we used Rexx strings to save the values, we can simply type the contents of the
output file:

 d:\NrxRedBk\file>type dataio2.dat
 4
 101 Ueli Wahli U.S.A. 500.5 25 1
102 Peter Heuchert Germany 400.4 30 1
103 Frederik Haesbrouck Belgium 350.9 24 0
104 Norio Furukawa Japan 250.5 39 0

Alternatively we can print the contents of the sequential file, using the HexPrint program:

--
HexPrint Version 0.50
--
 File name: dataio2.dat
 File Date: Wed May 21 12:33:58 PDT 1997
 File size: 165 bytes

Chapter 9. Handling Files 175

--
Offset

<Hex> <dec> +0 +4 +8 +C
--
 000000 (00000000) 340D0A31 30310955 656C6920 5761686C [4..101.Ueli Wahl]
 000010 (00000016) 69092055 2E532E41 2E093530 302E3509 [i. U.S.A..500.5.]
 000020 (00000032) 20323509 310D0A31 30320950 65746572 [25.1..102.Peter]
 000030 (00000048) 20486575 63686572 74092047 65726D61 [Heuchert. Germa]
 000040 (00000064) 6E790934 30302E34 09203330 09310D0A [ny.400.4. 30.1..]
 000050 (00000080) 31303309 46726564 6572696B 20486165 [103.Frederik Hae]
 000060 (00000096) 7362726F 75636B09 2042656C 6769756D [sbrouck. Belgium]
 000070 (00000112) 09333530 2E390920 32340930 0D0A3130 [.350.9. 24.0..10]
 000080 (00000128) 34094E6F 72696F20 46757275 6B617761 [4.Norio Furukawa]
 000090 (00000144) 09204A61 70616E09 3235302E 35092033 [. Japan.250.5. 3]
 0000A0 (00000160) 3909300D 0A [9.0..]

Object-Oriented I/O Using Serialization
Serialization, a new feature of JDK 1.1, enables you to write out an object with just one call
to the writeObject method and read it back in using the readObject method.

To serialize objects you write them to an ObjectOutputStream, and to read them back you
use an ObjectInputStream.

To add the support for serialization to a class, you have to implement the java.io.Serializable
interface. If you do not, the NotSerializableException will be signaled.

 class Customer2 implements Serializable

If you use only the supported basic data types, you do not have to add extra code to the
class. For classes with special data types, you must implement the writeObject and
readObject methods yourself.

In NetRexx 1.0, the Rexx string class is a nonserializable class. Therefore, you could not
use writeObject for the Customer class used in the previous examples. NetRexx 1.1 makes
the Rexx class serializable.

For our sample program (see Figure 104) we implemented a Customer2 class that uses only
basic data types.

/* file\SeriaIO.nrx

Output of a Customer object with binary data using Serialization */

class SeriaIO
Properties constant
yes = boolean 1
no = boolean 0

method main(args=String[]) static
custDB = Customer2[4] -- allocate 4 customers
custRD = Customer2[] -- read back ″x″ customers

-- instanciate objects
custDB[0] = Customer2(101,″Ueli Wahli″ ,″U.S.A.″ ,500.5,25,yes)
custDB[1] = Customer2(102,″Peter Heuchert″ ,″Germany″,400.4,30,yes)

Figure 104 (Part 1 of 3). Object-Oriented I/O Using Serialization: SeriaIO.nrx

176 Creating Java Applications Using NetRexx

custDB[2] = Customer2(103,″Frederik Haesbrouck″ , ″Belgium″,350.9,24,no)
custDB[3] = Customer2(104,″Norio Furukawa″ ,″Japan″ ,250.5,39,no)

-- writes the object variables to a file
say ′ Writing′ custDB.length ′ customers′
os = ObjectOutputStream(FileOutputStream(″seriaio.dat″))
os.writeInt(custDB.length) -- number of objects

os.writeObject(custDB) -- WRITE OBJECTS WITH ONE CALL

os.flush() -- force output
os.close()

-- reads the object variables from the file
say ′ Reading...′
is = ObjectInputStream(FileInputStream(″seriaio.dat″))
n = is.readInt() -- number of customers
say ′ Display of′ n ′ customers:′

custRD = Customer2[] is.readObject() -- READ OBJECTS WITH ONE CALL

loop i = 0 to custRD.length-1
say custRD[i].getCustNo() (Rexx custRD[i].getName()).left(20) -

(Rexx custRD[i].getAddress()).left(10) -
(Rexx custRD[i].getHourly() * custRD[i].getWork()).right(10) -
custRD[i].getBool()

end
is.close()

/* -- */
/* Customer class */
/* -- */
class Customer2 implements Serializable

properties private -- various data types
custNo = String

 name = String
address = String -- Rexx not allowed
hourly = float

 work = int
 bool = boolean

method Customer2(aCustNo=String, aName=String, aAddress=rexx, -
aHourly=float, aWork=int, aBool=boolean)

custNo = aCustNo; name = aName; address = aAddress
hourly = aHourly; work = aWork; bool = aBool

method getCustNo() returns String
return custNo

method getName() returns String
return name

method getAddress() returns Rexx
return address

method getHourly() returns float
return hourly

method getWork() returns int
return work

method getBool() returns boolean

Figure 104 (Part 2 of 3). Object-Oriented I/O Using Serialization: SeriaIO.nrx

Chapter 9. Handling Files 177

return bool
-- end

Figure 104 (Part 3 of 3). Object-Oriented I/O Using Serialization: SeriaIO.nrx

When we run the program, the entire array of four customers is written to the output file
using a single call of the writeObject method. Afterward, the array is read back using a
single call of the readObject method, and the customers are displayed:

 d:\NrxRedBk\file>java SeriaIO
 Writing 4 customers
 Reading...
 Display of 4 customers:
 101 Ueli Wahli U.S.A. 12512.5 1
 102 Peter Heuchert Germany 12012.0 1
 103 Frederik Haesbrouck Belgium 8421.6 0
 104 Norio Furukawa Japan 9769.5 0

We can print the content of the sequential file, using the HexPrint program. In the output you
can see the class-related information before the actual data:

--
HexPrint Version 0.50
--
 File name: seriaio.dat
 File Date: Wed May 21 13:33:46 PDT 1997
 File size: 365 bytes
 --

Offset
<Hex> <dec> +0 +4 +8 +C
--
 000000 (00000000) ACED0005 77040000 00047572 000C5B4C [Ñõ..w.....ur..•L]
 000010 (00000016) 43757374 6F6D6572 323BD58F B90559BB [Customer2;ÿ§.Y¼]
 000020 (00000032) 3DF00200 00787000 00000473 72000943 [=Ü...xp....sr..C]
 000030 (00000048) 7573746F 6D657232 B73FA0BA CC66DC79 [ustomer2fi?•]fÄy]
 000040 (00000064) 0200065A 0004626F 6F6C4600 06686F75 [...Z..boolF..hou]
 000050 (00000080) 726C7949 0004776F 726B4C00 07616464 [rlyI..workL..add]
 000060 (00000096) 72657373 7400124C 6A617661 2F6C616E [resst..Ljava/lan]
 000070 (00000112) 672F5374 72696E67 3B4C0006 63757374 [g/String;L..cust]
 000080 (00000128) 4E6F7400 124C6A61 76612F6C 616E672F [Not..Ljava/lang/]
 000090 (00000144) 53747269 6E673B4C 00046E61 6D657400 [String;L..namet.]
 0000A0 (00000160) 124C6A61 76612F6C 616E672F 53747269 [.Ljava/lang/Stri]
 0000B0 (00000176) 6E673B78 700143FA 40000000 00197400 [ng;xp.CÙ@.....t.]
 0000C0 (00000192) 06552E53 2E412E74 00033130 3174000A [.U.S.A.t..101t..]
 0000D0 (00000208) 55656C69 20576168 6C697371 007E0002 [Ueli Wahlisq...]
 0000E0 (00000224) 0143C833 33000000 1E740007 4765726D [.C•33....t..Germ]
 0000F0 (00000240) 616E7974 00033130 3274000E 50657465 [anyt..102t..Pete]
 000100 (00000256) 72204865 75636865 72747371 007E0002 [r Heuchertsq...]
 000110 (00000272) 0043AF73 33000000 18740007 42656C67 [.C−s3....t..Belg]
 000120 (00000288) 69756D74 00033130 33740013 46726564 [iumt..103t..Fred]
 000130 (00000304) 6572696B 20486165 7362726F 75636B73 [erik Haesbroucks]
 000040 (00000320) 71007E00 0200437A 80000000 00277400 [q....Czä....′ t.]
 000150 (00000336) 054A6170 616E7400 03313034 74000E4E [.Japant..104t..N]
 000160 (00000352) 6F72696F 20467572 756B6177 61 [orio Furukawa]

178 Creating Java Applications Using NetRexx

Handling an End-of-File Condition
There are two ways of handling the end-of-file (EOF) condition. You can check the return
value or catch the exception.

The method you choose for handling the EOF condition in a specific program depends
mainly on the stream class and method that is used to read the file.

Check the Return Value

Return value checking can be used in the following methods:

• readLine of the BufferedReader class, null is returned on EOF

• read of the BufferedReader class, -1 is returned on EOF

• readLine of the DataInputStream class, null is returned on EOF

Here is sample code to test the EOF condition:

 /* file\Eof1.nrx */
 source = BufferedReader(FileReader(″test.dat″))
 loop forever

textline = source.readLine()
if textline = null then leave -- <=== leave loop on EOF
say textline

 end

Catch the I/O Exception

You can intercept the EOF condition, using Java′s exception handling.

For example, almost all read methods of the DataInputStream class, including readLine,
throw an exception if the returning null pointer is assigned to a Rexx string:

 /* file\Eof2.nrx */
 source = DataInputStream(FileInputStream(″test.dat″))
 loop forever

textLine = Rexx source.readLine()
say textLine

catch NullPointerException -- <=== leave the loop on EOF
 end

The sample HexPrint program in Figure 101 on page 170 uses an I/O exception to catch the
EOF condition and write out the last line of data:

 /* file\Eof3.nrx */
 source = DataInputStream(...)
 loop forever

ch = Rexx source.readUnsignedByte()
...

catch IOException
... handle EOF

 end

Chapter 9. Handling Files 179

180 Creating Java Applications Using NetRexx

Chapter 10. Database Connectivity with JDBC
In this chapter we discuss the connectivity features of NetRexx with respect to relational
databases, using the Java Database Connectivity Application Programming Interface (JDBC
API).

We limit ourselves to a discussion focussed on the interaction of Java applications with IBM
Database 2 products.

Note: We used DB2 Universal Database (UDB) beta code for the tests. At the time of
writing this book, DB2 2.1.2 on OS/2 and Windows did not support JDK 1.1.

JDBC and ODBC
Rexx—the predecessor of NetRexx—is famous for its easy-to-use facilities for accessing DB2
from within scripts using a simple syntax. If we want NetRexx to be used as a decent
inheritant of Rexx, we should at least discuss what its possibilities and advantages (over
Rexx) are.

The Open DataBase Connectivity (ODBC) API is quite similar to the JDBC API.2 Users of
ODBC will find JDBC very easy to learn, and with the basic information presented here, they
can go ahead and write applications. More detailed information is available in the JDK
documentation.

Fortunately there is also a generic JDBC implementation that converts JDBC database
requests to ODBC—the so-called JDBC-ODBC Bridge—so that every database engine that
supports ODBC can be accessed.

Thus, instead of seeing this chapter as a complete reference on the JDBC API, look at it as a
short introduction for NetRexx and Rexx addicts.

JDBC Concepts
JDBC is an API set that specifies how you should interface with any (relational) database
from within your Java—and by consequence also from within your NetRexx—programs. As
mentioned before, the purpose is to have one common way of accessing data in different
types of database engines.

The various firms producing the database engines are then responsible for providing a way
of converting JDBC requests to queries in their own terminology and giving back the result
in conformance with the JDBC protocols. This database-specific conversion is accomplished
through a JDBC driver.

The current versions of JDBC drivers can obtained from the Web site shown in Figure 105.

2 ODBC is Microsoft′s attempt to put an end to the different proprietary APIs of the multiple companies selling
database access engines. Today ODBC is widely used on personal computer platforms.

 Copyright IBM Corp. 1997 181

http://www.javasoft.com/products/jdbc

Figure 105. Source of Latest JDBC Drivers

This Web site should also link you to the Web pages of the various database engine firms to
download the latest version of their JDBC drivers; guide you to discussion groups on this
subject; and—most important—provide you with the latest information on the rapidly evolving
subject of JDBC.

In practice, before you can connect to a relational database, you must:

1. Find the URL of the database

2. Ask the JDBC DriverManager, a Java class, to provide you with the appropriate JDBC
driver for the database described in the URL

If you succeed, you have an object that implements the Connection interface. You can
compare this instance (object) that implements the connection to the notion of a “session” in
a classic database context.

To execute a database query, you use an instance of an object that implements the
Statement interface, and you supply the SQL query as a string.

Executing a statement returns a ResultSet, or, more correctly, an object that implements the
ResultSet interface. You iterate through such a result set as with a normal database cursor.
Other statement objects provide the function of SQL update, delete, and insert.

This is basically the whole idea behind the use of JDBC to access your databases. Every
JDBC access matches these general rules; the different database engines can be
manipulated by using these simple implementations of Connection, Statement, and
ResultSet.

As you probably noticed, these basic concepts are defined as interfaces. In every step we
ask a concrete implementation of an interface to get an object that complies to another
interface:

• We ask the DriverManager to create a Connection to a certain URL

• We ask a Connection to create a Statement

• We ask a Statement to create a ResultSet (by executing the SQL query)

These interfaces, together with the methods that generate the real objects, make the JDBC
concepts applicable to various database implementations. This mode of operation is an
example of the Abstract Factory design pattern (see Design Patterns: Elements of Reusable
Object-Oriented Software). This pattern is also used in the java.net package and is
discussed in Chapter 11, “Network Programming” on page 205.

Now let′s go on to some of the details of the JDBC concepts.

Database URLs

URLs are extended—from their most known form to describe where to look for Web
pages—to be used for locating database resources on the Internet. The standard syntax for
JDBC is:

jdbc:<subprotocol>:<subname>

Subprotocol is usually the name of the database engine or a network alias, and subname
locates the data resource in more detail. The subname field can take the form of a normal
URL without the protocol part. Here is an example of a JDBC URL:

jdbc:db2:/chusa:8888/sample

182 Creating Java Applications Using NetRexx

A URL for accessing a database through JDBC can be far more complex but should be
recognizable by its protocol part (always jdbc) and its colons (:). The makers of the drivers
have in fact great flexibility in defining their own URL format to encapsulate some
parameters in the URL itself.

The good part of all of this is that database user (the programmers of the Java code that
accesses a certain database) only have to copy the URL they get from the database
administrator. The URLs offer flexibility by providing some way of indirection through
network name services, for example, dynamic name services (DNS).

In the case of DB2 database engines, the URL always starts with the jdbc:db2: sequence.
For local databases you append the database name to it:

jdbc:db2:sample

Remote DB2 databases are located by inserting the host name and port number of a JDBC
server daemon before the database name:

jdbc:db2://chusa:8888/sample

Note: This looks almost like a normal URL to locate a file.

JDBC Drivers

JDBC drivers are Java classes that are specific to a certain database engine. They all
enable you—in some way or another—to access your data, locally or remotely, using ODBC,
native, or generic implementations.

On the JDBC drivers Web page (Figure 105 on page 182) you will see different categories of
JDBC drivers. These categories are defined to distinguish four major concepts for creating a
JDBC driver.

In short we suggest that you look for a driver in one of the highest categories, say, category
3 or 4. These categories enable you to support any Java client without having to install
some software on the client platform, so JDBC drivers in these categories are closer to the
basic Java concept of portability.

Every database engine that supports an ODBC client is by definition JDBC category 1
compliant, because it can be used in combination with the JDBC-ODBC Bridge. Note,
however, that this solution is far from ideal with respect to performance and portability
because ODBC and client enabler software (platform dependent!) have to be installed on
every client.

JDBC-Net is a middleware protocol that is used in category 3 drivers. This database
management system (DBMS) independent protocol transfers queries from the client Java
application to a server daemon, which in turn translates the queries and executes them on
the database. This three-tier model only needs a light, generic driver on the client; all
database-dependent drivers are located on the platform running the server deamon.

DB2 products are now delivered with two drivers, category 2 and 3. For category 2 you have
to install the DB2 Client Application Enabler (CAE), a native DB2 driver for clients, and for
category 3 you run a server daemon that transforms the generic JDBC-Net protocol into
queries that are then dispatched to the appropriate DB2 server.

The DB2 JDBC drivers are denoted—in their full classname—by:

com.ibm.db2.jdbc.app.DB2Driver
com.ibm.db2.jdbc.net.DB2Driver

The second driver handles database URLs that reference a remote host.

Chapter 10. Database Connectivity with JDBC 183

JDBC Daemon

The daemon that enables you to connect to a database from a remote client is started by:

 db2jstrt <portnumber>

The server daemon has to run on a machine that either hosts the specific database or has
the software to connect to a DB2 server, such as CAE or Distributed Database Connectivity
Services (DDCS).

The portnumber is the number of the socket to which the server is listening. See
Chapter 11, “Network Programming” on page 205 for more information about sockets.

JDBC Driver Installation

DB2 provides a zip file of all DB2 JDBC classes and this zip file must be accessible in the
CLASSPATH environment variable:

 SET CLASSPATH=.....;d:\SQLLIB\JAVA\db2java.zip;.....

JDBC Compliance

JDBC-compliant drivers must support the SQL language up to the ANSI SQL-92 Entry Level
standard. This guarantees that you can write programs using JDBC that can run on every
Java platform, using a DBMS-provided JDBC driver. The fact that a driver is JDBC
compliant does not limit you in using database engines that have more capabilities.
Because the JDBC client code passes the SQL statement to the driver exactly as you wrote
it in your program, you can use every feature of the database server. When using such
advanced features, keep the following points in mind:

• Your code will not be as portable

• If the actual database engine does not like your SQL statement, you might have to catch
(probably strange) exceptions.

In addition to DBMS-specific features, the JDBC API contains some database interactions
that are beyond the ANSI standard. These are mostly accompanied by getter methods that
enable you to check within your code whether such features are available on the current
Connection.

Enough theory now; let′s start with some practical examples.

SQL Select in Practice
We base our example on the Sample database that is supplied with every DB2 product.

DB2 Sample Database

To create the sample database, execute:

db2sampl.exe

You can find this program in the following directory:

 \sqllib\bin : OS/2, Windows 95/NT
/sqllib/misc/ : Unix

184 Creating Java Applications Using NetRexx

This program creates a database with nine tables on the account of the current user. In the
interest of the examples that follow, we suggest that you log on as the default user, USERID.
If not, remember the user ID that you use to create the sample database, and supply it in
subsequent examples as the prefix parameter. (Note that the above procedure can be
slightly different on your platform; consult the DB2 documentation if in doubt.)

From the sample database we use the employee and department tables. Note that we only
access a subset of the columns to keep the examples easy to understand.

The employee table has following SQL definition:

 CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12),
LASTNAME VARCHAR(15),
WORKDEPT CHAR(3),
JOB CHAR(8),
...
SALARY DECIMAL(9,2),
PRIMARY KEY (EMPNO),
)

Figure 106 shows an extract of the data in the employee table.

+--....---------..+
| | | | WORK | | | | |
 | EMPNO | FIRSTNME | LASTNAME | DEPT | JOB | | SALARY | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000010 | CHRISTINE | HAAS | A00 | PRES | | 52750 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000020 | MICHAEL | THOMPSON | B01 | MANAGER | | 41250 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000030 | SALLY | KWAN | C01 | MANAGER | | 38250 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000050 | JOHN | GEYER | E01 | MANAGER | | 40175 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000060 | IRVING | STERN | D11 | MANAGER | | 32250 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000070 | EVA | PULASKI | D21 | MANAGER | | 36170 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000090 | EILEEN | HENDERSON | E11 | MANAGER | | 29750 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000100 | THEODORE | SPENSER | E21 | MANAGER | | 26150 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000110 | VINCENZO | LUCCHESSI | A00 | SALESREP| | 46500 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000120 | SEAN | O′ CONNELL | A00 | CLERK | | 29250 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000130 | DOLORES | QUINTANA | C01 | ANALYST | | 23800 | |
 |---------+--------------------+--------------------+---------+---------+-+---------+-|
 | 000140 | HEATHER | NICHOLLS | C01 | ANALYST | | 28420 | |
 :---------+--------------------+--------------------+---------+---------+-+---------+-:
 :---------+--------------------+--------------------+---------+---------+-+---------+-:
 | 000340 | JASON | GOUNOT | E21 | FIELDREP| | 23840 | |
 +--....---------..+

Figure 106. Employee Table Sample Data

The second table that we use is the department table. Figure 107 shows the definition of the
table and some sample data.

Chapter 10. Database Connectivity with JDBC 185

+---..+
Columns: | DEPTNO | DEPTNAME | MGRNO | |

|--------------+-----------------------------+--------------+-|
Type: | char(3) | varchar(29) | char(6) | |

| not null | not null | | |
|--------------+-----------------------------+--------------+-|

Description: | Department | Name describing general | Employee | |
number	activities of department	number	
		(EMPNO) of	
		department	
		manager	
+---..|

+---..|
Values: | A00 | SPIFFY COMPUTER SERVICE DIV.| 000010 | |

|--------------+-----------------------------+--------------+-|
| B01 | PLANNING | 000020 | |
|--------------+-----------------------------+--------------+-|
| C01 | INFORMATION CENTER | 000030 | |
|--------------+-----------------------------+--------------+-|
| D01 | DEVELOPMENT CENTER | null | |
|--------------+-----------------------------+--------------+-|
| D11 | MANUFACTURING SYSTEMS | 000060 | |
|--------------+-----------------------------+--------------+-|
| D21 | ADMINISTRATION SYSTEMS | 000070 | |
|--------------+-----------------------------+--------------+-|
| E01 | SUPPORT SERVICES | 000050 | |
|--------------+-----------------------------+--------------+-|
| E11 | OPERATIONS | 000090 | |
|--------------+-----------------------------+--------------+-|
| E21 | SOFTWARE SUPPORT | 000100 | |
+---..+

Figure 107. Department Table Layout and Sample Data

Please refer to the reference material supplied with the DB2 products if you have questions
regarding the use of SQL, DB2, or the sample database.

Select Query Example

Our first query consists of an inner join of the department and employee tables. It collects
all departments that have a manager and prints out the last and first names of the
managers, sorted by department number:

 SELECT deptno, deptname, lastname, firstnme
FROM userid.department dep, userid.employee emp
WHERE dep.mgrno = emp.empno ORDER BY dep.deptno

Figure 108 shows the NetRexx program that executes this query and prints out the results.

/* jdbc\JdbcQry.nrx

This NetRexx program demonstrate DB2 query using the JDBC API.
Usage: Java JdbcQry [<DB-URL>] [<userprefix>] */

Figure 108 (Part 1 of 3). JDBC NetRexx Query Program: JdbcQry.nrx

186 Creating Java Applications Using NetRexx

import java.sql.

parse arg url prefix -- process arguments
if url = ′ ′ then

url = ′ jdbc:db2:sample′
else do -- check for correct URL

parse url p1 ′ : ′ p2 ′ : ′ rest
if p1 \= ′ jdbc′ | p2 \= ′ db2′ | rest = ′ ′ then do

say ′ Usage: java JdbcQry [<DB-URL>] [<userprefix>]′
exit 8

end
end
if prefix = ′ ′ then prefix = ′ userid′

do -- loading DB2 support
say ′ Loading DB2 driver classes...′
Class.forName(′ COM.ibm.db2.jdbc.app.DB2Driver′) . newInstance()
-- Class.forName(′ COM.ibm.db2.jdbc.net.DB2Driver′) . newInstance()

catch e1 = Exception
say ′ The DB2 driver classes could not be found and loaded !′
say ′ Exception (′ e1 ′) caught : \n′ e1.getMessage()
exit 1

end -- end : loading DB2 support

do -- connecting to DB2 host
say ′ Connecting to:′ url
jdbcCon = Connection DriverManager.getConnection(url, ′ userid′ , ′ password′)

catch e2 = SQLException
say ′ SQLException(s) caught while connecting !′
loop while (e2 \= null)

say ′ SQLState:′ e2.getSQLState()
say ′ Message: ′ e2.getMessage()
say ′ Vendor: ′ e2.getErrorCode()
say
e2 = e2.getNextException()

end
exit 1

end -- end : connecting to DB2 host

do -- get list of departments with the managers
say ′ Creating query...′
query = ′ SELECT deptno, deptname, lastname, firstnme′ -

′ FROM′ prefix′ . DEPARTMENT dep,′ prefix′ . EMPLOYEE emp′ -
′ WHERE dep.mgrno=emp.empno ORDER BY dep.deptno′

stmt = Statement jdbcCon.createStatement()
say ′ Executing query:′
loop i=0 to (query.length()-1)%75

say ′ ′ query.substr(i*75+1,75)
end
rs = ResultSet stmt.executeQuery(query)
say ′ Results:′
loop row=0 while rs.next()

say rs.getString(′ deptno′) rs.getString(′ deptname′) -
′ is directed by′ rs.getString(′ lastname′) rs.getString(′ firstnme′)

end
rs.close() -- close the ResultSet
stmt.close() -- close the Statement

Figure 108 (Part 2 of 3). JDBC NetRexx Query Program: JdbcQry.nrx

Chapter 10. Database Connectivity with JDBC 187

jdbcCon.close() -- close the Connection
say ′ Retrieved′ row ′ departments.′

catch e3 = SQLException
say ′ SQLException(s) caught !′
loop while (e3 \= null)

say ′ SQLState:′ e3.getSQLState()
say ′ Message: ′ e3.getMessage()
say ′ Vendor: ′ e3.getErrorCode()
say
e3 = e3.getNextException()

end
end -- end: get list of departments

Figure 108 (Part 3 of 3). JDBC NetRexx Query Program: JdbcQry.nrx

We compile and run this program; the results are shown in Figure 109.

 d:\NrxRedBk\jdbc>java JdbcQry jdbc:db2:sample userid
 Loading DB2 driver classes...
 Connecting to: jdbc:db2:sample
 Creating query...
 Executing query:

SELECT deptno, deptname, lastname, firstnme FROM userid.DEPARTMENT dep,
userid.EMPLOYEE emp WHERE dep.mgrno=emp.empno ORDER BY dep.deptno

 Results:
 A00 SPIFFY COMPUTER SERVICE DIV. is directed by HAAS CHRISTINE
 B01 PLANNING is directed by THOMPSON MICHAEL
 C01 INFORMATION CENTER is directed by KWAN SALLY
 D11 MANUFACTURING SYSTEMS is directed by STERN IRVING
 D21 ADMINISTRATION SYSTEMS is directed by PULASKI EVA
 E01 SUPPORT SERVICES is directed by GEYER JOHN
 E11 OPERATIONS is directed by HENDERSON EILEEN
 E21 SOFTWARE SUPPORT is directed by SPENSER THEODORE
 Retrieved 8 departments.

Figure 109. JDBC NetRexx Query Results

This is—fortunately—exactly the same list that we would have found manually by searching
for all managers in the list of departments.

Query Sample Explanation

We begin our program with the import statement. All JDBC classes and interfaces, except
for the JDBC drivers, can be found in the java.sql package.

First we check the arguments. If the first argument does not contain two colons, we do not
have a valid URL and we print a message giving the proper usage. Note that this simple
check allows us to give a sensible response on a help request.

The second parameter contains the name of the owner of the sample database. This is the
name you logged on with when creating the sample database (using the DB2SAMPL
program) and DB2 used as the prefix for the tables. The prefix defaults to userid.

188 Creating Java Applications Using NetRexx

Loading the DB2 Support

Now we begin with the JDBC specific parts. We have to load the JDBC drivers of the DB2
product, so that the DriverManager can “choose” the right one. We use the forName
method of the Class class to load the driver classes:

 Class.forName(db2drivername).newInstance()

The forName method throws a ClassNotFoundException if it fails to load the class. Loading
a driver class in this way automatically calls the registerDriver method:

DriverManager.registerDriver()

The registerDriver method adds the driver to the list of drivers in the sql.drivers system
property that the DriverManager uses to accept the appropriate driver class when
connecting to a URL.

Connecting to the DB2 Host

Next we connect to the given URL, using the getConnection method:

 jdbcCon = Connection DriverManager.getConnection(url,userid,password)

The DriverManager steps through the list of drivers by calling each driver′s acceptsURL
method:

Driver.acceptsURL(String)

Each JDBC driver class replies if it can connect to the data resource described in the given
URL. If none of them is successful, an exception is thrown, and we must be prepared to
catch these SQLExceptions.

The JDBC drivers have to implement the Driver interface. This interface declares—besides
the above-mentioned acceptsURL() method—the connect method that the DriverManager
calls when the specific driver accepts the given URL. It returns an object that implements
the Connection interface.

The second and third parameter of the DriverManager.getconnection() method are the user
ID and password. We use the default USERID and PASSWORD combination that normally
works for local access. On most systems this default user ID is granted access to the
sample database no matter who created it. The user ID and the password are stored in the
system properties. When you supply a user ID and password combination that is not valid,
the DB2 driver returns the message:

 SQLState: S1501
 Message: [IBM][CLI Driver] SQL1001N ″ ″ is not a valid
 database name. SQLSTATE=2E000

Get the List of Departments

Now we are ready to create an SQL statement:

 -- method createStatement of the Connection class
 stmt = Statement jdbcCon.createStatement()

We use the Statement object to execute our SQL query, using this code:

 -- method executeQuery of the Statement class
 rs = ResultSet stmt.executeQuery(′ SELECT′)

Execution of the SQL query returns a ResultSet that consists of multiple rows that qualify the
WHERE clause of the select statement. We loop through the result set, using:

Chapter 10. Database Connectivity with JDBC 189

 -- method next of the ResultSet class
 rs.next()

Under the covers, a database cursor is created and used to browse the ResultSet. More
information about the use of cursors can be found in the JDBC API reference
documentations.

Fields of the current (selected) row are retrieved, using these methods:

 -- method getXxxxx of the ResultSet class
 rs.getXxxxx(column)

where Xxxxx is the data type of the column.

JDBC provides many get methods, depending on the data type of the respective SQL column
(see Table 10).

Table 10 also shows the standard mapping between the SQL and Java types. Some of the
get methods can be used for a number of SQL types because they are more generic. For
example, ResultSet.getBytes() can also be used to receive a CHAR, VARCHAR,
LONGVARCHAR, or LONGVARBINARY field. The most generic method,
ResultSet.getObject(), converts the SQL type to the “nearest” Java class.

The parameter to these methods is either the column number or the column name.
Therefore, we have two signatures for all of the get methods:

• getXxxxx(int)

• getXxxxx(String)

Table 10. Get Methods for Table Columns by SQL Data Type

SQL Type Java Type

getString CHAR String

getString VARCHAR String

getString LONGVARCHAR String

getAsciiStream LONGVARCHAR InputStream

getUnicodeStream LONGVARCHAR InputStream

getBigDecimal NUMERIC java.math.BigDecimal

getBigDecimal DECIMAL java.math.BigDecimal

getBoolean BIT boolean

getByte TINYINT byte

getShort SMALLINT short

getInt INTEGER int

getLong BIGINT long

getFloat REAL float

getDouble FLOAT double

getDouble DOUBLE double

getDate DATE java.sql.Date

getTime TIME java.sql.Time

getTimestamp TIMESTAMP java.sql.Timestamp

getBinaryStream LONGVARBINARY InputStream

getBytes <every SQL type> byte array

getObject <every SQL type> Object

190 Creating Java Applications Using NetRexx

Column names are case insensitive and are obviously preferred because changes in the
select statement could change the column number.

Ending the Program

Our last job is to end the program properly. We call the close method on the ResultSet,
Statement, and Connection. Because database resources can consume a lot of memory,
you should release the resource as soon as possible.

NULL Values

After they are retrieved by the respective get method, check columns that allow null values,
using:

ResultSet.wasNull()

The get method will have returned the default initializer of its return type.

Note: Be careful when using a Rexx string as the result of the getString method. In
NetRexx Version 1.0, an exception is thrown if a null value is returned; this is fixed in
NetRexx Version 1.1. We suggest using a Java String for columns with potential null values.

Meta Data

For advanced queries with varying numbers of returned columns, you can examine the result
set, using the getMetaData method:

 -- method getMetaData of ResultSet
 md = ResultSetMetaData rs.getMetaData()

The object of the ResultSetMetaData interface class provides a number of methods to
analyze the number and types of the returned columns, such as:

getColumnCount() Number of columns

getColumnName(int) Name of column

getColumnLabel(int) Suggested title of column for output

getColumnTypeName(int) Type of column (as String)

isNullable(int) Is null allowed for column

getColumnDisplaySize(int) Required width for output

Consult the JDBC API documentation for more details.

SQL Update in Practice
Database access, and by consequence JDBC, is more than making queries. The SQL insert,
update, and delete statements change the content of a database table. Because delete is a
very simple statement, and insert and update are quite similar, we only provide an example
of an update statement.

In this example we pass program variables—also called host variables— through a prepared
SQL statement.

Chapter 10. Database Connectivity with JDBC 191

Prepared Stat ements

The JDBC Statement class has two descendants: CallableStatement and PreparedStatement.
Callable statements are used for calling precompiled SQL statements as a stored procedure
(see “Stored Procedures” on page 195).

A prepared statement object represents a statement that can be parameterized. By
inserting question marks (?) instead of exact values in the SQL statement, you change the
statement into a parameterized statement. The following SQL statement allows us to
change the firstnme column value in the row that matches the employee number empno
given as the second parameter:

 updateQ = ′ UPDATE USERID.EMPLOYEE SET firstnme = ? WHERE empno = ?′

We prepare the statement, using the prepareStatement method of the Connection object:

 -- method prepareStatement of Connection
 updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)

The parameters can be assigned real values before executing the statement, using set
methods that are counterparts of the get methods (Table 10 on page 190).

 PreparedStatement.setXXXXXX(index, value)

The first argument, index, is the sequence number of the question mark in the SQL
statement, the second one is the value that replaces the question mark. For example, we
change the first name of the employee with number 000010:

 updateStmt.setString(1, ′ Christine′)
 updateStmt.setString(2, ′000010′)

Instead of using a prepared statement, we could also construct a new SQL statement for
every update operation by inserting the real values into the statement:

 UPDATE USERID.EMPLOYEE SET firstnme = ′ Christine′ WHERE empno = ′000010′

In this case we have to create a new statement for every SQL update call, instead of using
one prepared statement and setting the parameters before each update call. In most cases
the prepared statement executes faster, because the underlying database manager can
store it in optimized format. The degree of optimization depends on how the database
product implements statement preparation.

Executing a Prepared SQL Statement

There are three of executing prepared statements:

Statement.executeQuery() Execute a prepared select statement and return a result set

Statement.executeUpdate() Execute an update, insert, or delete statement and return the
number of rows that were updated. This method is also used
to execute data definition language (DDL; see “Data Definition
Language” on page 195). Use executeUpdate for SQL
statements that do not return a result set.

Statement.execute() Excecute a statement that returns multiple result sets.
Consult the JDBC documentation for more information.

192 Creating Java Applications Using NetRexx

SQL Update Example

In this NetRexx program (see Figure 110) we change the first names of all employees to
start with an uppercase letter and turn the rest of the name into lowercase.

/* jdbc\JdbcUpd.nrx

This NetRexx program demonstrate DB2 update using the JDBC API.
Usage: Java JdbcUpd [<DB-URL>] [<userprefix>] [U] */

import java.sql.

parse arg url prefix lowup -- process arguments
if url = ′ ′ then

url = ′ jdbc:db2:sample′
else do -- check for correct URL

parse url p1 ′ : ′ p2 ′ : ′ rest
if p1 \= ′ jdbc′ | p2 \= ′ db2′ | rest = ′ ′ then do

say ′ Usage: java JdbcUpd [<DB-URL>] [<userprefix>] [U]′
exit 8

end
end
if prefix = ′ ′ then prefix = ′ userid′
if lowup \= ′ U′ then lowup = ′ L′

do -- loading DB2 support
say ′ Loading DB2 driver classes...′
Class.forName(′ COM.ibm.db2.jdbc.app.DB2Driver′) . newInstance()
-- Class.forName(′ COM.ibm.db2.jdbc.net.DB2Driver′) . newInstance()

catch e1 = Exception
say ′ The DB2 driver classes could not be found and loaded !′
say ′ Exception (′ e1 ′) caught : \n′ e1.getMessage()
exit 1

end -- end : loading DB2 support

do -- connecting to DB2 host
say ′ Connecting to:′ url
jdbcCon = Connection DriverManager.getConnection(url, ′ userid′ , ′ password′)

catch e2 = SQLException
say ′ SQLException(s) caught while connecting !′
loop while (e2 \= null)

say ′ SQLState:′ e2.getSQLState()
say ′ Message: ′ e2.getMessage()
say ′ Vendor: ′ e2.getErrorCode()
say
e2 = e2.getNextException()

end
exit 1

end -- end : connecting to DB2 host

do -- retrieve employee, update firstname

say ′ Preparing update...′ -- prepare UPDATE
updateQ = ′ UPDATE′ prefix′ . EMPLOYEE SET firstnme = ? WHERE empno = ?′
updateStmt = PreparedStatement jdbcCon.prepareStatement(updateQ)
say ′ Creating query...′ -- create SELECT
query = ′ SELECT firstnme, lastname, empno FROM′ prefix′ . EMPLOYEE′

Figure 110 (Part 1 of 2). JDBC NetRexx Update Program: JdbcUpd.nrx

Chapter 10. Database Connectivity with JDBC 193

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query) -- execute select

loop row=0 while rs.next() -- loop employees
firstname = String rs.getString(′ firstnme′)
if lowup = ′ U′ then firstname = firstname.toUpperCase()
else do

dChar = firstname.charAt(0)
firstname = dChar || firstname.substring(1).toLowerCase()

end
updateStmt.setString(1, firstname) -- parms for update
updateStmt.setString(2, rs.getString(′ empno′))
say ′ Updating′ rs.getString(′ lastname′) firstname ′ : \0′
say updateStmt.executeUpdate() ′ row(s) updated′ -- execute update

end

rs.close() -- close the ResultSet
stmt.close() -- close the Statement
updateStmt.close() -- close the PreparedStatement
jdbcCon.close() -- close the Connection
say ′ Updated′ row ′ employees.′

catch e3 = SQLException
say ′ SQLException(s) caught !′
loop while (e3 \= null)

say ′ SQLState:′ e3.getSQLState()
say ′ Message: ′ e3.getMessage()
say ′ Vendor: ′ e3.getErrorCode()
say
e3 = e3.getNextException()

end
end -- end: empoyees

Figure 110 (Part 2 of 2). JDBC NetRexx Update Program: JdbcUpd.nrx

When you execute this program, you will see one print line per employee:

 d:\NrxRedBk\jdbc>java JdbcUpd jdbc:db2:sample userid
 ...
 Updating MEHTA Ramlal : 1 row(s) updated
 Updating LEE Wing : 1 row(s) updated
 Updating GOUNOT Jason : 1 row(s) updated
 Updated 32 employees.

Note: To reset the sample database to its original form, rerun the program with the third
parameter set to U (java JdbcUpd jdbc:db2:sample userid U), or delete the sample database
and rebuild it, using the DB2SAMPL program (see “DB2 Sample Database” on page 184):

 db2 connect reset
 db2 drop database sample
 db2sampl

Update Sample Explanation

The first part of the program is identical to Figure 108 on page 186.

In the second part of the program we construct two statements: one prepared statement
that updates the firstnme field of the current employee, and one query statement to loop
through the employee table.

For the manipulation of the first name we use the Rexx concatenate operator (||) together
with methods of the Java String class:

• String.charAt()
• String.substring()

194 Creating Java Applications Using NetRexx

• String.toLowerCase()

To set the two parameters of the prepared update statement, we use the setString method.
The same update statement is executed for each employee, each time with the current value
of the employee number and the changed first name. The actual update is invoked with
executeUpdate, which returns the number of rows that were affected by the statement. In
our case this will always be one row because we use the primary key column of the table to
specify the row to be updated.

At the end of the program we close the different JDBC objects to release the resources.

Now you can rerun our sample select program (Figure 108 on page 186) to appreciate the
changes the update program made to the employee table (see Figure 111).

Loading DB2 driver classes...
Connecting to jdbc:db2:sample
Creating query...
Executing query : SELECT deptno, deptname, lastname, firstnme
FROM stade2.DEPARTMENT dep, stade2.EMPLOYEE emp WHERE dep.mgrno=emp.empno
ORDER BY dep.deptno
Result :
A00 SPIFFY COMPUTER SERVICE DIV. is directed by HAAS Christine
B01 PLANNING is directed by THOMPSON Michael
C01 INFORMATION CENTER is directed by KWAN Sally
D11 MANUFACTURING SYSTEMS is directed by STERN Irving
D21 ADMINISTRATION SYSTEMS is directed by PULASKI Eva
E01 SUPPORT SERVICES is directed by GEYER John
E11 OPERATIONS is directed by HENDERSON Eileen
E21 SOFTWARE SUPPORT is directed by SPENSER Theodore
Retrieved 8 departments.

Figure 111. JDBC NetRexx Query Results after Update

Data Definition Language
In addition to the SQL data manipulation language (DML)—select, insert, update, and
delete—we also have the SQL DDL. The DDL commands create, delete, or alter the table
layout and are usually not part of a (user) program.

Executing DDL consists of basically setting up the correct SQL string and passing it to the
database manager by using the executeUpdate method. We do not discuss DDL statements
and execution in this redbook.

Stored Procedures
Another part of the JDBC API is dedicated to stored procedures, which are supported by
many database engines.

JDBC SQL statements are executed as dynamic SQL. Stored procedures enable you to code
a set of SQL statements in a compiled language, using static SQL, and then call such
procedures from user programs written in NetRexx (Java) and other languages.

JDBC provides the callable statement to execute a stored procedure. The usage of stored
procedures is, however, beyond the scope of this redbook.

Chapter 10. Database Connectivity with JDBC 195

Wrapping Up with a Complete JDBC GUI Program
We conclude this chapter with a full-blown database application that lets us list, change, add,
and delete departments of our sample database.

The application is a fully functional GUI that uses the techniques described in Chapter 7,
“Creating Graphical User Interfaces” on page 75. It could be a starting point for writing your
own NetRexx client/server applications that use relational database access.

Figure 112 shows the program in action.

Figure 112. JDBC GUI Application

Figure 113 shows the source of the JDBC GUI application.

196 Creating Java Applications Using NetRexx

/* jdbc\JdbcGui.nrx

JDBC + AWT in one sample application interfacing to the sample DEPARTMENT table
Usage: Java JdbcGui [<DB-URL>] [<userprefix>] */

import Redbook.
import java.sql.

prefix = Rexx -- table prefix
url = Rexx -- database URL

parse arg url prefix -- process arguments
if url = ′ ′ then

url = ′ jdbc:db2:sample′
else do -- check for correct URL

parse url p1 ′ : ′ p2 ′ : ′ rest
if p1 \= ′ jdbc′ | p2 \= ′ db2′ | rest = ′ ′ then do

say ′ Usage: java JdbcGui [<DB-URL>] [<userprefix>]′
exit 8

end
end
if prefix = ′ ′ then prefix = ′ userid′

say ′ Creating GUI...′
GUI(′ JDBC Sample Application′ , url, prefix)

/********************************** class GUI *********************************/

class GUI uses GridBagConstraints

Properties constant
UPDATE = int 0
ADD = int 1
DELETE = int 2
RETRIEVE = int 3

Properties static
ctr = Controller -- controller object

Properties inheritable
tf_depno = TextField(3)

 tf_depname = TextField(29)
 tf_manager = TextField(6)
 tf_mgrDept = TextField(3)

l_departments = List(10)
 ta_message = TextArea(2,30)
 b1 = Button
 b2 = Button
 b3 = Button
 b4 = Button
 b5 = Button

method GUI(title = String, pUrl, pPrefix)
win = Frame(title) -- frame window
gbl = SimpleGridbagLayout(win) -- use gridbag layout
ws = WindowSupport(win) -- close window support

buildLayout(gbl,ws)

win.pack()
RedbookUtil.positionWindow(win)
win.setVisible(1)

ctr = Controller(pUrl, pPrefix)

b1.addActionListener(DoAction(this,ctr,UPDATE))
b2.addActionListener(DoAction(this,ctr,ADD))
b3.addActionListener(DoAction(this,ctr,DELETE))
b4.addActionListener(DoAction(this,ctr,RETRIEVE))
l_departments.addItemListener(DoAction(this,ctr))

setMessage(′ Loading DB2 driver classes and connecting...′)
msg = ctr.connect()
setMessage(msg)
setDepartmentsList(ctr.retrieveListDep())

Figure 113 (Part 1 of 6). JDBC GUI Application: JdbcGui.nrx

Chapter 10. Database Connectivity with JDBC 197

method buildLayout(gbl = SimpleGridbagLayout, ws=WindowSupport)
gbl.addFixSize(Label(′ Number′) , 0,0,Insets(10,10,5,30))

 gbl.addFixSize(Label(′ Name′) , 0 , 1 , Insets(5,10,5,30))
gbl.addFixSize(Label(′ Manager′) , 0 , 2 , Insets(5,10,5,30))
gbl.addFixSize(Label(′ Mgr Dept′) , 0 , 3 , Insets(5,10,5,30))

gbl.addVarSize(tf_depno ,1,0,Insets(10,0,5,5),1.0,0.0)
gbl.addVarSize(tf_depname,1,1,Insets(0,0,5,5),1.0,0.0)
gbl.addVarSize(tf_manager,1,2,Insets(0,0,5,5),1.0,0.0)
gbl.addVarSize(tf_mgrDept,1,3,Insets(0,0,5,5),1.0,0.0)
tf_depno.addTextListener(LimitTextField(tf_depno,3))
tf_depname.addTextListener(LimitTextField(tf_depname,29))
tf_manager.addTextListener(LimitTextField(tf_manager,6))
tf_mgrDept.addTextListener(LimitTextField(tf_mgrDept,3))

gbl.addVarSize(l_departments,0,4,Insets(10,10,15,5),1.0,2.0,2)
gbl.addVarSize(ta_message, 0,5,Insets(0,10,10,5),1.0,1.0,2)

b1=Button gbl.addFixSize(Button(′ Update′) ,2,0,Insets(10,0, 5,10),1,1,HORIZONTAL)
b2=Button gbl.addFixSize(Button(′ Add′) ,2,1,Insets(0,0, 5,10),1,1,HORIZONTAL)
b3=Button gbl.addFixSize(Button(′ Delete′) ,2,2,Insets(0,0, 5,10),1,1,HORIZONTAL)
b4=Button gbl.addFixSize(Button(′ Retrieve′) , 2 , 3 , Insets(0,0, 5,10),1,1,HORIZONTAL)
b5=Button gbl.addFixSize(Button(′ Exit′) ,2,5,Insets(0,0,10,10),1,1,HORIZONTAL,SOUTHWEST)
b5.addActionListener(ws.getCloseWindow())

cb = ControlButtons()
cb.addButton(b1)
cb.addButton(b2)
cb.addButton(b3)
tf_depno.addTextListener(cb)
cb.disable

method setDepartmentsList(aList = Rexx)
l_departments.removeAll()
loop i = 0 for aList[′ count′]

l_departments.add(aList[i])
end
setMessage(aList[′ message′])

method setDepno(s=String)
tf_depno.setText(s)

method setName(s=String)
tf_depname.setText(s)

method setMgNo(s=String)
tf_manager.setText(s)

method setMgDepNo(s=String)
tf_mgrDept.setText(s)

method getDepno() returns String
return tf_depno.getText()

method getName() returns String
return tf_depname.getText()

method getMgNo() returns String
if tf_manager.getText() = ′ ′ then return null

else return tf_manager.getText()

method getMgDepNo() returns String
return tf_mgrDept.getText()

/*----------------------------- interface to display messages -----------------*/
method setMessage(msg = String)

say msg
ta_message.append(′ \n′ msg)

/********************************** class DoAction ****************************/

class DoAction implements ActionListener, ItemListener uses GUI
Properties inheritable

ui = GUI -- reference to user interface
ctr = Controller -- reference to the controller

Figure 113 (Part 2 of 6). JDBC GUI Application: JdbcGui.nrx

198 Creating Java Applications Using NetRexx

act = int -- which action

method DoAction(aGui=GUI,aControl=Controller,what=int 0)
ui = aGui
ctr = aControl
act = what

method actionPerformed(e=ActionEvent)
select

when act = UPDATE then do
ui.setMessage(′ Updating a row in the DEPARTMENT table...′)
msg = ctr.update(ui.getDepno(),ui.getName(),ui.getMgNo(),ui.getMgDepNo())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = ADD then do

ui.setMessage(′ Inserting a row in the DEPARTMENT table...′)
msg = ctr.add(ui.getDepno(),ui.getName(),ui.getMgNo(),ui.getMgDepNo())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = DELETE then do

ui.setMessage(′ Deleting a row in the DEPARTMENT table...′)
msg = ctr.delete(ui.getDepno())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = RETRIEVE then do

ui.setDepartmentsList(ctr.retrieveListDep())
ui.setDepno(′ ′) -- clear the fields
ui.setName(′ ′)
ui.setMgNo(′ ′)
ui.setMgDepNo(′ ′)

end
end

method itemStateChanged(e=ItemEvent)
s = (List e.getItemSelectable()).getSelectedItem()
if s \= null then do

parse s depno ′ -′ .
msg = ctr.select(depno.strip())
ui.setMessage(msg)
ui.setDepno(depno) -- set the fields
ui.setName(ctr.getDepName())
ui.setMgNo(ctr.getMgNo)
ui.setMgDepNo(ctr.getMgDepNo())

end

/********************************** class ControlButtons **********************/

class ControlButtons implements TextListener
 Properties inheritable

buttons = Vector()
enabled = boolean 1

 method addButton(aButton = Button)
buttons.addElement(aButton)

 method textValueChanged(e = TextEvent)
field = TextField e.getSource()
text = field.getText()
if text \= null then

if text = ′ ′ then disable()
else enable()

else disable()

 method enable()
if enabled then return
enabled = 1
change()

 method disable()
if \enabled then return
enabled = 0
change()

Figure 113 (Part 3 of 6). JDBC GUI Application: JdbcGui.nrx

Chapter 10. Database Connectivity with JDBC 199

 method change()
loop i=0 for buttons.size

(Button buttons.elementAt(i)).setEnabled(enabled)
end

/********************************** class Controller **************************/

class Controller

/*-------------------------- variables ------------------------------*/
Properties inheritable

prefix = Rexx ′ userid′ -- table prefix
url = Rexx ′ ′ -- DB URL
jdbcCon = Connection -- DB Connection
selDepNo = String ′ ′ -- selected row values
selName = String ′ ′
selMgNo = String ′ ′

 selMgDepNo = String ′ ′

/*-------------------------- constructor -----------------------------*/
method Controller(pUrl = Rexx, pPrefix = Rexx)

url = pUrl
prefix = pPrefix

/*-------------------------- connect() -------------------------------*/
method connect() returns String

do
Class.forName(′ COM.ibm.db2.jdbc.app.DB2Driver′) . newInstance()
-- Class.forName(′ COM.ibm.db2.jdbc.net.DB2Driver′) . newInstance()
jdbcCon = Connection DriverManager.getConnection(url, ′ userid′ , ′ password′)
msg = ′ Connected to′ url

catch e2 = SQLException
msg = ′ SQLException(s) caught while connecting !′
loop while (e2 \= null)

say ′ SQLState:′ e2.getSQLState()
say ′ Message: ′ e2.getMessage()
say ′ Vendor: ′ e2.getErrorCode()
say
e2 = e2.getNextException()

end
catch e1 = Exception

msg = ′ Exception in DB2 Driver loading !′
say ′ Exception (′ e1 ′) caught : \n′ e1.getMessage()

end
return msg

/*-------------------------- retrieveListDep() -----------------------*/
method retrieveListDep() returns Rexx

deptarr = Rexx ′ ′
do

query = ′ SELECT deptno, deptname, mgrno, admrdept′ -
′ FROM′ prefix′ . DEPARTMENT ORDER BY deptno′

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query)
loop row=0 while rs.next()

deptarr[row] = rs.getString(′ deptno′) ′ -′ rs.getString(′ deptname′)
end
deptarr[′ count′] = row
rs.close() -- close the result set
stmt.close() -- close the statement
deptarr[′ message′] = ′Retrieved′ row ′ departments′

catch ex=SQLException
deptarr[′ message′] = ex.getMessage()
deptarr[′ count′] = 0

end
return deptarr

/*-------------------------- update() ---------------------------------*/
method update(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String
do

if depNo = ′ ′ then
return ′ Missing department number for update !′

if depNo <> selDepNo then -- If depNo already exists you′ ll
do -- loose the department at selDepNo

tempDepNo = selDepNo -- Room for improvement...

Figure 113 (Part 4 of 6). JDBC GUI Application: JdbcGui.nrx

200 Creating Java Applications Using NetRexx

add(depNo, name, mgNo, mgDepNo)
delete(tempDepNo)
return ′ Department number updated (delete old, add new)′

end
updQuery = ′ UPDATE′ prefix′ . DEPARTMENT′ -

″SET deptname = ′ ″ name″ ′ , ″ -
″mgrno = ′ ″ mgNo″ ′ , ″ -
″admrdept = ′ ″ mgDepNo″ ′ ″ -

″WHERE deptno = ′ ″ depNo″ ′ ″
say ′ Update SQL query :′ updQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(updQuery)
msg = ′ Replaced a department.′
stmt.close()
selDepNo = ′ ′

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- delete() -------------------------------*/
method delete(depNo=String) returns String

do
if depNo = ′ ′ then

return ′ Missing department number for delete′
delQuery = ′ DELETE FROM′ prefix′ . DEPARTMENT′ -

″WHERE deptno = ′ ″ depNo″ ′ ″
say ′ Delete SQL query :′ delQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(delQuery)
msg = ′ Deleted a department.′
stmt.close()
selDepNo = ′ ′

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- add() ----------------------------------*/
method add(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String
do

query = ′ SELECT deptno, deptname, mgrno, admrdept′ - --test uniqueness of depNo
′ FROM′ prefix′ . DEPARTMENT′ -
″WHERE deptno = ′ ″ depNo″ ′ ″

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query)
if rs.next() then

return ′ ′ depNo ′ is in use, choose another department number.′
rs.close() -- Close the result set
stmt.close() -- Close the statement
addQuery = ′ INSERT INTO′ prefix′ . DEPARTMENT′ -

′ (deptno, deptname, mgrno, admrdept)′ -
″VALUES (′ ″ depNo″ ′ , ′ ″ name″ ′ , ′ ″ | | -
mgNo″ ′ , ′ ″ mgDepNo″ ′) ″

say ′ Insert SQL query :′ addQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(addQuery)
msg = ′ Inserted a department.′
stmt.close()

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- select() -------------------------------*/
method select(depNo=String) returns String

if (selDepNo <> depNo) then
do

msg = ′ Select(′ depNo′) ′
query = ′ SELECT deptno, deptname, mgrno, admrdept′ -

′ FROM′ prefix′ . DEPARTMENT′ -
″WHERE deptno = ′ ″ depNo″ ′ ″

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query)
rs.next()

Figure 113 (Part 5 of 6). JDBC GUI Application: JdbcGui.nrx

Chapter 10. Database Connectivity with JDBC 201

selDepNo = depNo
selName = rs.getString(′ deptname′)
selmgNo = rs.getString(′ mgrno′)
selmgDepNo = rs.getString(′ admrdept′)
rs.close() -- Close the result set
stmt.close() -- Close the statement

catch ex=SQLException
msg = ′ Select() : ′ ex.getMessage()

end
else msg = ′ Selected department number did not change′
return msg

/*-------------------------- getDepName() ------------------------------*/
method getDepName() returns String

return selName

/*-------------------------- getMgNo() ---------------------------------*/
method getMgNo() returns String

return selMgNo

/*-------------------------- getMgDepNo() ------------------------------*/
method getMgDepNo() returns String

return selMgDepNo

-- end JdbcGui

Figure 113 (Part 6 of 6). JDBC GUI Application: JdbcGui.nrx

The JDBC GUI application can be divided into three parts:

• The main part, which parses the arguments and constructs the GUI

• The GUI part, which consists of three classes and uses some classes of the Redbook
package

• The Controller class, which encapsulates the JDBC part of the program

The Controller class does not reference the user interface; all communication to the GUI is
through the returned data from the controller′s methods. Thus, it would be easy to write
another user interface (maybe a character-based one) instead of the GUI presented here.

The user interface invokes the controller program logic through the following interface:

Controller(pUrl = Rexx, pPrefix = Rexx)
Provides the user interface with a Controller (the arguments are the URL
and table prefix for the database connection)

connect() Connects the Controller object to the database

retrieveListDep() Returns the list of departments as a formatted indexed Rexx string. The
count index contains the number of departments, and indexes 0 to count
contain the rows.

select(depNo=String)
Selects the department with the given department number to be the
current department. Select must be used to set the current department
before the get methods are used to access the different fields of the
department.

delete(depNo=String)
Deletes the department identified by depNo

update(depNo=String, name=String, mgNo=String, mgDepNo=String)
Updates the current department with the given values. If the department
number is changed, this request is translated into an add new and delete
old department combination.

add(depNo=String, name=String, mgNo=String, mgDepNo=String)
Creates a new department in the table if the given depNo does not
already exist

202 Creating Java Applications Using NetRexx

getDepName() Gives the name of the current department as a String object

getMgNo() Gives the employee number of the manager of the current department as
a String object

getMgDepNo() Gives the department number of the managing department (field admrdep
of the department table) as a String object

Most methods return a Java string with a message that the GUI displays to the user.

This program does contain some flaws; for example, when changing the department number
on an update, and the new department already exists (see comment in the source code of
the update method). However, considering the length of the code, you have a small program
that shows all of the basic database capabilities with a reasonable amount of checking.

Client/Server Program
We use this example again in Chapter 11, “Network Programming” on page 205, where we
split the code to run the controller with the database access on a machine different from the
client with the GUI. See “Wrapping Up with a Complete RMI Program” on page 227 for
further information.

Chapter 10. Database Connectivity with JDBC 203

204 Creating Java Applications Using NetRexx

Chapter 11. Network Programming
In this chapter we discuss the (basic) networking features of NetRexx and how they can help
you develop client/server applications.

Because NetRexx implies Java, and Java implies the Internet, everything is based on the
(good old) TCP/IP protocol. The most frequently used TCP/IP interface is the socket
interface that was originally developed for UNIX.

Another interesting feature of Java that we touch on in this chapter is remote method
invocation (RMI), that is, remotely invoking methods on Java server objects, and providing
you with a simple way to create your own server classes.

We also touch on the built-in World Wide Web related facilities of Java, namely the URL
classes.

We do not explain the use of the Datagram classes because that would lead us too far into
explaining the Internet protocol (IP) details. Please consult the appropriate books (for
example, UNIX Networking Programming) in combination with the JDK API reference on such
subjects.

In summary, in this chapter we explain how to work with sockets, invoke remote methods
from within NetRexx, and interact with the Web.

Socket Interface
The basic socket operations are provided through the Socket and ServerSocket classes, both
part of the java.net package.

Socket

A Socket object is a high-level representation of an IP socket. A socket is uniquely defined
by the combination of an IP address and port number, and that is all you need to construct
an object of the Socket class:

 ourFirstSocket = Socket(′ www.ibm.com′ , 8 0)

For such a socket we have two properties, inputStream and outputStream, that can be
accessed through the respective get methods, getInputStream and getOutputStream. An
HTTP server usually listens to port 80.

Let us extend our example to read the first lines of a home page. HTTP communication uses
this protocol to start a conversation:

• The client sends a message asking for a file and optionally supplies additional
parameters (that are beyond the scope of this book). The request message has the
form:

 GET /file.html

 Copyright IBM Corp. 1997 205

• The HTTP server reads the message and sends the page (file) for which the client
asked.

Sending a Request to an HTTP Server

Figure 114 shows a simple implementation of the HTTP protocol. The client sends a request
to an HTTP server, asking for an HTTP page, and prints out the response of the server as
plain text.

/* network\net\ClntSock.nrx

Client HTTP program, sends a request to an HTTP server:
Usage: Java ClntSock <server> <portnumber> <requeststring> */

parse arg server port str -- capture + test arguments
if server=′ ′ | port=′ ′ then
do
say ′ Usage: java ClntSock <server> <portnumber> <requeststring>′
exit 1

end

parse str get rest -- check requeststring
if get <> ′ ′ then do

if get <> ′ GET′ then do
say ′ Request string must be: GET /http-page′
exit 8

end
str = ′ GET′ rest -- make get uppercase

end

do -- ready to process
say ′ Connecting to server:′ server ′ (port:′ port′) ′
mysocket = Socket(server, port) -- actual connect
say ′ Requesting:′ str -- what we want
say

-- output: send
out = PrintWriter(OutputStreamWriter(mysocket.getOutputStream()))

-- input: receive
 in = BufferedReader(InputStreamReader(mysocket.getInputStream()))
out.printLn(str) -- send our requeststring
out.flush() -- needed on some platforms !
say ′ Response:′
line = String(in.readLine()) -- read response
loop while line \= null

say ′ ′ line -- print it out
line = in.readLine()

end
catch e=IOException
say ′ IOException (′ e ′) caught:\n′ e.getMessage()

end
-- end ClntSock

Figure 114. Simple HTTP Client Program: CnltSock.nrx

The first thing this program does is check the user′s input supplied on the command line.
This is really simple to do through the NetRexx parse facility.

Next, we create our Socket object and initialize local variables to refer to the input and
output streams associated with the socket. All communication through a socket is really
done through file i/o.

Then the request is sent by using the print output stream object, and the results from the
server are read and printed by using the input stream object.

206 Creating Java Applications Using NetRexx

We also check for possibly raised exceptions (see “Exceptions” on page 30). If an exception
occurs, we print it out with its short description (implicit invocation of toString on the
exception object e) and full message text. This full message text gives a specific description
of the current exception, if the specific exception supports this. Otherwise you get the short
description as returned by the toString method.

Testing the Simple HTTP Client

The client program is started with:

 d:\NrxRedBk\network\net>java ClntSock w3.ibm.com 80 get /
java ClntSock www.any.business.com 80 get /somepage.html

Sending the “GET /” request to a server usually results in the return of the default page.

Adjust the name of the server so that it points to an HTTP server that is directly accessible
within your Intranet.

You can also send commands to other ports of a server, for example, to the FTP port (21):

 d:\NrxRedBk\network\net>java ClntSock w3.almaden.ibm.com 21
 Connecting to server: w3.almaden.ibm.com (port: 21)
 ...
 Response:

220 spider.almaden.ibm.com FTP server (Version 4.4 Tue Aug 8 15:39:30 CDT 1995) ready.
500 ′ ′ : command not understood.

ServerSocket

Let us now look at the sibling of the Socket class on the server side, the ServerSocket. To
register a server on a port, for example, HTTP port 80, we construct an object of the
ServerSocket class:

 ourFirstServerSocket = ServerSocket(80)

Then we listen to that port and accept a possible client. This is done by invoking the accept
method on the ServerSocket object. The accept method waits for a client request:

 clientSocket = ourFirstServerSocket.accept()

The accept method blocks the execution of the current thread until a client makes a
connection. An object of the Socket class is returned when a client connects, the so-called
service or session socket. This socket represents the actual socket through which the client
and server communicate.

To support simultaneous connections from multiple clients to the server, we have to run the
code that handles the conversation with the client in a separate thread (see “Extended
Server with Threads” on page 210).

Accepting an HTTP Client Request

TO illustrate basic server coding, let us now write a simple HTTP server class that does not
use threads. This HTTP server runs on your own machine. Therefore, contact your
administrator to ask whether you are allowed to register additional socket services on your
machine.

Figure 115 shows the simple HTTP server code.

Chapter 11. Network Programming 207

/* network\net\SrvSock.nrx -- <pre>

Server HTTP program, accepts a request from an HTTP client:
Usage: Java SrvSock <portnumber> */

do
if arg = ′ ′ then arg = 80 -- default port
serverS = ServerSocket(arg) -- register at port: server socket
say ′ Server:′ serverS
loop forever
serviceS = serverS.accept() -- listen/accept client: service socket
say serviceS ′ \n connected at:′ Date()
ptrW = PrintWriter(OutputStreamWriter(serviceS.getOutputStream()))
sIS = BufferedReader(InputStreamReader(serviceS.getInputStream()))
loop while sIS.ready() -- consume HTTP request
line = String(sIS.readLine())

end
filename = ′ SrvSock.nrx′ -- always returning the source file
fileBR = BufferedReader(FileReader(filename))
line = String(fileBR.readLine())
loop while(line <> null) -- add lines of source file

ptrW.printLn(line)
line = fileBR.readLine()

end -- end loop while(line <> null)
ptrW.close() -- close output and socket
serviceS.close()

catch e=IOException
say ′ IOException caught:′ e.getMessage() -- error messaging

end -- end loop forever
end
-- end SrvSock -- </pre>

Figure 115. Simple HTTP Server Program: SrvSock.nrx

Here we first register our code on the port number that was supplied as an argument.
(Notice the bad use of arg; the input should be checked!)

The default method, toString, is invoked in the say ′Server:′ serverS instruction. It returns
much of the available information of the socket in a formatted string.

After creating the ServerSocket, we start a loop that listens (forever) to incoming clients.

When a client is accepted, we store the references to the input and output streams that are
used for communication.

We then run a loop that empties the input stream. It seems that on some platforms
additional lines might be present, so, to fulfill the Java promise of real platform
independence, we adapt the code to the most demanding platform.

Our simple server always returns the source code of the server program itself. Note the
< p r e > tag in the first line of the server source; it ensures that browsers do not format the
source program. To optimize performance, we use a buffer to read the source file.

We end our main loop by closing the output stream and service socket.

Exception handling is used to catch any input/output errors on the port.

208 Creating Java Applications Using NetRexx

Testing the Simple HTTP Server

Start the simple HTTP server:

 d:\NrxRedBk\network\net>java SrvSock 80

Start your favorite browser and point it to the server:

http://serverhostname/

The result should be the unformatted source code of the server program.

You can also combine the simple client and server. Start the simple client in a separate
window, or on a separate machine, and send this request:

 d:\NrxRedBk\network\net>java ClntSock serverhostname 80

To end the simple server, use Ctrl-C in its window.

More on Sockets

Both the Socket and ServerSocket classes are implemented by the SocketImpl class.
Therefore, you can apply the same methods to both the Socket and the ServerSocket objects
to obtain more information from them. This information is stored in the four attributes of
their SocketImpl object:

address The IP address of the remote end of this socket

fd The file descriptor object for this socket

localport The serviceport to which this socket is connected

port The port number on the remote machine

Remote in the first and last definition means the server, if you are using the socket on the
client side, and the client, if you are invoking the methods on a ServerSocket.

These attributes enable you to use a set of the most commonly used methods:

• getInetAddress()
• getInputStream()
• getOutputStream()
• getLocalPort()
• getPort()
• toString()

To use the input and output streams returned by the getInputStream and getOutputStream
methods, you convert them to one of the—more useful—subclasses of InputStream and
OutputStream.

For textual (character) communication you should convert these streams to Reader and
Writer (sub)classes, using the InputStreamReader and OutputStreamWriter adapter classes.
The use of Readers and Writers greatly simplifies internationalization problems of having to
deal with many code pages, keyboard layouts, and so forth. These I/O classes are the same
as discussed in Chapter 9, “Handling Files” on page 165.

Chapter 11. Network Programming 209

Extended Server with Threads

To enable the server to talk with multiple clients simultaneously, server sockets should hand
over the conversation with a client socket to a separate thread. (For more explanation on
threads, see Chapter 8, “Threads” on page 153.)

The new thread that gets the client socket should be created just after the acceptance of a
client, that is, after calling this method:

ServerSocket.accept()

We also extend the server program to check the argument and to accept a file name in the
request. If the specified file does not exist, the server returns an error message; if a file
name is not given, it returns its own source code.

Note: This version of our server provides any surfing client within your Intranet with a
(simple) viewer to inspect all files accessible through the file system of your computer.

Figure 116 shows the extended server with threads.

/* network\net\SrvSockT.nrx

Server HTTP program, accepts a request from an HTTP client using a Thread:
Usage: Java SrvSockT <portnumber> */

parse arg port . -- capture + test argument
if port = ′ ′ then port = 80
if \port.datatype(′ W′) then
do
say ′ Usage: java SrvSockT <portnumber>′
exit 8

end

do -- main program loop
serverS = ServerSocket(port) -- register at port: server socket
say ′ Server:′ serverS
loop forever
serviceS = serverS.accept() -- listen/accept client: service socket
st = ServerThread(serviceS) -- create a Thread (constructor)
Thread(st).start() -- start the Thread

end -- end loop forever
catch e=IOException
say ′ IOException caught:′ e.getMessage() -- error messaging

end

/*-------------------------- class ServerThread -----------------------*/
class ServerThread implements Runnable
Properties inheritable
serviceS = java.net.Socket
html = byte 0

method ServerThread(s = java.net.Socket) -- constructor
serviceS = s

method getRequest() returns Rexx -- analyze request string
line = Rexx

 socketInputStream = serviceS.getInputStream()
socketBufferedReader = BufferedReader(InputStreamReader(socketInputStream))

Figure 116 (Part 1 of 2). HTTP Server Program Using Threads: SrvSockT.nrx

210 Creating Java Applications Using NetRexx

-- first line has ″get″ request
line = socketBufferedReader.readline()

-- skip the rest
socketBufferedReader.skip(socketInputStream.available())
say ′ Request received:′ line -- analyze the line
parse line get ′ / ′ file ′ ′ .
if file = ′ ′ | get \= ′ GET′ then file = ′ SrvSockT.nrx′
say ′ File requested:′ file -- requested file
return file

method run() -- run the Thread
do
say serviceS ′ \n connected at:′ Date()
ptrW = PrintWriter(OutputStreamWriter(serviceS.getOutputStream()))
file = getRequest() -- read the request of the client
if file.right(4) = ′ . htm′ | -

file.right(5) = ′ . html′ then html = 1
do -- open requested file
fileBR = BufferedReader(FileReader(file))
line = String(fileBR.readLine())
if html=0 then ptrW.printLn(′ < ′ | | ′ pre>′) -- make page: unformatted file
loop while(line <> null) -- add lines of file

ptrW.printLn(line)
line = fileBR.readLine()

end -- end while(line <> null)
if html=0 then ptrW.printLn(′ < ′ | | ′ / pre>′)

catch FileNotFoundException -- notify when file not found
ptrW.printLn(′ Sorry, file ″ ′ file′ ″ not found′)

end
ptrW.close() -- close file and socket
serviceS.close()

catch e=IOException
say ′ IOException caught in ServerThread.run():′ e.getMessage()

end
-- end SrvSockT

Figure 116 (Part 2 of 2). HTTP Server Program Using Threads: SrvSockT.nrx

The extended server defines two classes:

• The SrvSockT class, with the—implicitly defined—static main method

• The ServerThread class, which implements Runnable

After checking and initializing the parameter, we register our code and start listening.

When a client is connected, we create an object of the ServerThread class and pass it the
session socket; then we start the thread.

We continue the loop and wait for another client.

The run method of the ServerThread starts reading the request sent by the client.

We retrieve the first input line and extract the file name from the request. Note that
browsers add additional information after the file name. A call to getRequest filters out the
requested file. For invalid or empty requests, we use the source of the program instead.

We return the file in unformatted mode, using the <pre> tag, unless the file is an HTML file
(.htm or .html).

If the file cannot be found, we write an error message in return.

Chapter 11. Network Programming 211

Testing the Extended HTTP Server

Start the extended HTTP server:

 d:\NrxRedBk\network\net>java SrvSockT

Start your favorite browser and point it to the server:

http://serverhostname/test.html
http://serverhostname/
http://serverhostname/c:\anydirecory\any.file

The first example returns a small HTML file that is supplied in the server directory; the
second returns the server program source code.

You can also combine the simple client and the extended server. Start the simple client in a
separate window, or on a separate machine, and send this request:

 java ClntSock serverhostname 80 get /test.html
 java ClntSock serverhostname 80 get /c:\anydirectory\any.file

Using the two programs, you get the same effect as printing files from your server source
directory with system commands such as type or cat.

To end the extended server, use Ctrl-C in its window.

Socket Conclusion

The three examples in this section demonstrate the use of the high-level socket
implementation of Java to establish a general IP conversation in NetRexx between any two
machines connected to the Internet.

In the next section we discuss an even more specific class for interfacing with the Internet.
It fully implements the different higher level protocols, such as FTP and HTTP.

URL Handling
The URL class provides an easy way of manipulating URLs. The URL strings define
everything that can be accessed through the Internet, so you can use URL objects in your
NetRexx programs to access Internet resources.

A common URL string contains five fields:

<protocolname>://<hostname>[:<portnumber>]/<filepath>[#<reference>]

See “Database URLs” on page 182 for database specific URL notation.

You can access the URL fields with these methods:

• getProtocol()
• getHost()
• getPort()
• getFile()
• getRef()
• set(String, String, int, String, String)

Other useful methods of the URL class include:

equals(Object) Compares two URLs, including the reference field. This method
overrides the Object.equals method and therefore accepts an object
as its argument.

212 Creating Java Applications Using NetRexx

sameFile(URL) Compares two URLs, excluding the reference field

getContent() Returns the contents of the URL, that is, the remote object to which
the URL refers

openConnection() Returns a URLConnection object that represents a connection to the
remote object to which the URL refers

openStream() Opens a connection to the URL, and returns an InputStream for
reading from that connection

toExternalForm() and toString()
Constructs a string representation of the URL using the
URLStreamHandler.toExternalForm method, which formats the URL
by using the conventions of the specified protocol

The most common action we want to apply to URLs is asking the server to return the object
behind the URL; whatever the content-type is. The content-types are also known as
MIME-types. We do this by using the getContent method.

Because the getContent method returns an object of type Object, you should cast the result
to the right type upon reception. Standard types include AudioClip, ImageProducer, and
InputStream. Let us look at how this powerful method manages to get the requested object.

Getting the Content of an URL

The getContent method of our URL object passes this message to the associated
URLConnection object that it gets using its own method:

URLConnection.openConnection()

The URLConnection class represents an active connection with the host. The first time the
getContent method gets called, the URL object sends a message (openConnection(URL)) to
the appropriate URLStreamHandler (obtained from the URLStreamHandlerFactory) to get the
URLConnection object.

The URLConnection then calls the ContentHandlerFactory to get an appropriate
URLContentHandler. A contenthandler handles a certain content-type.

The URLConnection instance then sends the getContent message to this URLContentHandler
object, which then—finally—returns the object behind the URL.

Refer to Figure 117 for an abstract representation of this process.

Chapter 11. Network Programming 213

Figure 117. URL Content Handling

This complex construction—which we did not even explain in full detail—ensures a very
flexible way of extending the model later on with new protocols and content-types.

Design Pattern Background

This construction is based on the Abstract Factory design pattern (see Design Patterns:
Elements of Reusable Object-Oriented Software). The pattern fully decouples the abstract
structure of a design from its implementations. It offers users of abstract classes more
flexibility than subclassing the implementations offers. Users do not have to decide or know
which implementation of the classes will be used in the end.

The Factory Methods (for URLs, the createURLStreamHandler(String) and
createContentHandler(String) methods) of the factory provide the client (the code that asks
for an URL object) with the appropriate (concrete) version of the object, for which the client
only has to know its interface.

The pairs Socket (and ServerSocket) and SocketImpl are also based on a design pattern
(described in Design Patterns: Elements of Reusable Object-Oriented Software), the Bridge
pattern, also known as Handle/Body. This design pattern is based on the delegation
paradigm—a class encapsulates an object of another class to delegate a part of its
responsibilities.

HTTP Client Using URLs

The getContent method makes the writing of an HTTP client very easy. We can use
getContent to get the (string) contents of an URL, similar to the Socket example (see
“Sending a Request to an HTTP Server” on page 206). Note, however, that this version is
more robust; it will handle firewalls (as long as they are configured in your Java Virtual
Machine) so that you can reach everything on the Internet like a normal browser. This is the
advantage of using high-level classes such as URLs. You do not need to know the process
of the protocol on the socket in order to communicate using this protocol. All you need is
the name of the protocol, the first part of a URL string.

The sample program in Figure 118 can print out any freely accessible file on the Internet.

214 Creating Java Applications Using NetRexx

/* network\url\UrlTest.nrx

Client HTTP program, sends a URL request to an HTTP server:
Usage: Java UrlTest <URLstring> */

parse arg prot ′ : / / ′ request -- protocol & servername are required
if prot = ′ ′ | request = ′ ′ then
do
say ′ Usage: java UrlTest <URLString>′
exit 8

end

do
ourURL = URL(arg) -- create URL object
say ′ Connect to:′ ourURL
content = ourURL.getContent() -- get the URL content
say ′ \nContent:\n′
bR = BufferedReader(InputStreamReader(InputStream content))
line = String(bR.readLine()) -- read and print file
loop while(line <> null)

say ′ ′ line
line = bR.readLine()

end
catch e=IOException
say ′ IOException caught:′ e ′ \n ′ e.getMessage()

end
-- end UrlTest

Figure 118. HTTP Client Using URLs: UrlTest.nrx

First we perform a quick validation of the supplied argument by checking for the sequence
:// and return the proper form of invoking the program if the sequence is missing. This test
also covers arguments such as /h, /?, -help, and -?.

Other arguments that contain the :// sequence but are invalid URLs are captured by an
IOException. For example, if the protocol part of the URL string is mistyped, we get:

 d:\NrxRedBk\network\url>java UrlTest httx://host
 IOException caught: java.net.MalformedURLException: unknown protocol: httx

unknown protocol: httx

We elaborate on exceptions in “Typical Network Exception Types” on page 218.

Next the program creates a URL object and uses the getContent method to obtain the
requested object. The content is converted—using the InputStreamReader class—into a
BufferedReader for an easy way of reading the lines in the file and writing them to the
console.

Testing the URL Client Program

Examples of running the URL client program are:

 d:\NrxRedBk\network\url>java UrlTest http://w3.icm.com
java UrlTest http://hostname/some.html
java Urltest file://hostname/directory/free.file

You can also run the program against the server program used in “Extended Server with
Threads” on page 210.

Chapter 11. Network Programming 215

Content Handlers

When you experiment with the sample program, you will soon encounter yet another kind of
exception, such as:

java.lang.ClassCastException:
at UrlTest.main(UrlTest.nrx:18)

This exception indicates that the createContentHandler method derived a content-type (using
the response header or by guessing the type) and associated it with a specific
contentHandler. The corresponding object was created but could not be converted to an
object of type InputStream, hence the ClassCastException. For example, you get this
exception when you try to access a picture:

 java UrlTest http://hostname/some.gif

Useful information for gaining insight into the supported MIME-types and their associated
content-types is available in this file:

<Java-home-directory>/lib/content-types.properties

You can also make your own content handler class for some unimplemented existing
MIME-type, or for a content-type that is the fruit of your own imagination. For writing content
handlers we advise you to read the example that lists the files in a UNIX tar file in Exploring
Java.

Images: Images are usually converted to objects of a class that implements the
ImageProducer interface. Objects that implement ImageProducer (in the java.awt.image
package) can be connected to an (object that implements) ImageConsumer, which—in
turn—can be part of a GUI. For more details on how to interact with images, consult
“Images” on page 118.

Audio: For objects of type AudioClip (in the java.applet package), we can call the message:

AudioClip.play()

which plays the audio file one time, always starting from the beginning.

Extended HTTP Client Using URLs

If we now use the <= operator of NetRexx, which is the equivalent of Java′s instanceOf
operator, to determine the object type, we can start to access other URL content types and
act on them appropriately.

Figure 119 shows an example of how to handle a few of the standard content handlers. It
can form a base implementation for a more general ULR-test utility.

/* network\url\UrlXTest.nrx

Client HTTP program, sends a URL request to an HTTP server
and handles a few content types:
Usage: Java UrlXTest <URLstring> */

parse arg prot ′ : / / ′ request -- protocol & servername are required
if prot = ′ ′ | request = ′ ′ then

Figure 119 (Part 1 of 2). Extended HTTP Client Using URLs: UrlXTest.nrx

216 Creating Java Applications Using NetRexx

do
say ′ Usage: java UrlXTest <URLString>′
exit 8

end

do
ourURL = URL(arg) -- create URL object
say ′ Connect to :′ ourURL
urlConn = ourURL.openConnection() -- get connection object
conttype = Rexx urlConn.getContentType() -- content type
say ′ Content-type:′ conttype
content = urlConn.getContent() -- get the URL content
say ′ Class :′ content.getClass().getName()
select
when content <= ImageProducer then -- picture ?

say ′==> Content is an ImageProducer′
when content <= AudioClip then -- music ?

do
say ′==> Content is an AudioClip, playing.....′
(AudioClip content).play()

end
when content <= InputStream then -- InputStream implementers

do
say ′==> Content is an InputStream′
say ′ \nFile content:\n′
bR = BufferedReader(InputStreamReader(InputStream content))
line = String(bR.readLine())
loop while(line <> null)

say ′ ′ line
line = bR.readLine()

end
end

otherwise
say ′==> Sorry, content type not handled!′

end -- end select
catch e=IOException
say ′ IOException caught:′ e ′ \n ′ e.getMessage()

end
-- end UrlXTest

Figure 119 (Part 2 of 2). Extended HTTP Client Using URLs: UrlXTest.nrx

The skeleton of this program is much the same as the first URL example (Figure 118 on
page 215). Here, using the <= operator, we introduce a select clause that examines the
type of the content.

Of course, this example only works with audio clips when your sound support is installed
correctly. In addition, depending on your Java run time (the installed
ContentHandlerFactory), some types are not recognized. In this case you just receive the
document as an InputStream and the program prints the content to the screen. You can
install a new StreamHandlerFactory to extend the default one with unrecognized types:

URLConnection.setURLStreamHandlerFactory(...)

This only works if you are permitted to do so by the security manager. We do not discuss
this issue further, as it would lead us to a detailed discussion of the Java run time and its
security features, which are not within the scope of this book.

The multiplicity of content types and the fact that everybody can create new protocols and
content types do not make the life of a programmer using URLs easy. Java therefore allows
a more general solution to this problem. ProtocolHandler and ContentHandler classes can
be loaded dynamically into the Java virtual machine (JVM). Such classes can be located on
the same server where the pages reside that use irregular protocols or content types. When
a client attempts to load a resource of an unknown content type, or a URL with an unknown

Chapter 11. Network Programming 217

protocol, it can ask the server to serialize the class and send it. Using this technique, the
client can learn new protocols or content types.

The HotJava browser includes this kind of dynamic loading. Let us hope that the JDK will be
enhanced so that the getContent method can search for such ProtocolHandlers and
ContentHandlers at a remote host. For a more detailed discussion of downloadable
ProtocolHandlers and ContentHandlers, refer to Exploring Java.

Testing the Extended URL Client Program

This is the output of the program when given a URL of a .GIF file:

 d:\NrxRedBk\network\url>java UrlXTest http://hostname/some.gif
 Connect to : http://hostname/some.gif
 Content-type: image/gif
 Class : sun.awt.image.URLImageSource
 ==> Content is an ImageProducer

Typical Network Exception Types
The exception mechanism (see “Exceptions” on page 30) enables you to react to the various
exceptional situations that can occur when making and using connections to other
computers on the Internet. Comparing Internet programs that are written in traditional
languages, such as C, with functionally identical programs written in NetRexx (Java)
immediately reveals the advantages of using exceptions.

When you are interacting with a network, nearly everything can go wrong, at any time. This
implies that—in traditional languages—you have to check for every possible error when using
the network. With exceptions, however, you can defer the handling of these situations at an
appropriate level. Exceptions also allow a clear separation of the code that handles these
network problems and the main logic of your methods.

All of the exceptions that can be thrown out of the java.net package are subclasses of
IOException (part of the java.io package).

The exceptions are:

• MalformedURLException
• ProtocolException
• SocketException
• UnknownHostException
• UnknownServiceException

The SocketException itself is refined in these subclasses:

• BindException
• ConnectException
• NoRouteToHostException

In Figure 120 we provide you with sample source code that you can include in your own
networking applications, before you refine them to more useful versions.

218 Creating Java Applications Using NetRexx

/* network\url\NetExcpt.nrx

Skeleton code for exception handling in network programs */

catch e1=MalformedURLException
say ′ The port is not available (connection refused):′
say ′ - port is not registered on the server′
say ′ - the server is down′
say ′ MalformedURLException (′ e1 ′) caught: \n′ e1.getMessage()

catch e2=ProtocolException
say ′ An error occured in the level of the used protocol (FTP, HTTP,...)′
say ′ ex.: Error in the format of the HTTP request string (GET /...).′
say ′ ProtocolException (′ e2 ′) caught: \n′ e2.getMessage()

catch e3=BindException
say ′ The binding of a socket to a local address and port failed.′
say ′ This occurs when you want to register code on′
say ′ (one of the IP addresses) on your server:′
say ′ - port is not avialable′
say ′ - the specified IP address was not found on this server′
say ′ BindException (′ e3 ′) caught: \n′ e3.getMessage()

catch e4=ConnectException
say ′ The port is not available (connection refused):′
say ′ - port is not registered on the server′
say ′ - the server is down′
say ′ IOException (′ e4 ′) caught: \n′ e4.getMessage()

catch e5=NoRouteToHostException
say ′ The attempt to connect to the host timed out.′
say ′ - host is unreachable′
say ′ - host is too far′
say ′ NoRouteToHostException (′ e5 ′) caught: \n′ e5.getMessage()

catch e6=SocketException
say ′ A socket creation failed or an attempt was made′
say ′ to register a socketfactory when one has already been set.′
say ′ Older versions of classes can throw this instead a the recent,′
say ′ more specialized versions.′
say ′ SocketException (′ e6 ′) caught: \n′ e6.getMessage()

catch e7=UnknownHostException
say ′ A hostname (′ e7.getMessage ′) ′
say ′ could not be resolved to its IP address.′
say ′ Try to use the IP (numerical) address instead.′
say ′ UnknownHostException (′ e7 ′) caught: \n′ e7.getMessage()

catch e8=UnknownServiceException
say ′ There is something wrong with an URLConnection, either:′
say ′ - the MIME type returned by a URL connection does not make sense′
say ′ - you tried to write to a read-only connection′
say ′ - you tried to read a connection that does not support inputstreams′
say ′ IOException (′ e8 ′) caught: \n′ e8.getMessage()

Figure 120. Exception Handling Code for Networking Programs

The exceptions that are caught provide a brief explanation of the possible causes in their
respective catch clause.

You should comment out the exceptions that cannot be signaled by your actual code; they
are reported when you run the NetRexx compiler. Include the full catch code the first time in
your application to ensure that you will not forget implementing the handling of all potential
exceptions.

Chapter 11. Network Programming 219

The exceptions that can be thrown are listed in Table 11, together with the methods that
explicitly declare the respective exceptions in their throw list. Note, however, that some
methods only declare one of the superclasses of the exceptions.

The subclasses of SocketException (BindException, ConnectException, and
NoRouteToHostException) are not yet explicitly declared in any method of JDK 1.1.1.

Table 11. Table of Exceptions Thrown in java.net

Explicitly Thrown by

MalformedURLException • URL constructors

• RMIClassLoader.loadClass()

• LoaderHandler.loadClass()

ProtocolException • HttpURLConnection.setRequestMethod()

SocketException
(BindException,
ConnectException*,
NoRouteToHostException)

• ServerSocket.setSoTimeout(), setSocketFactory()

• Socket constructor, setSocketFactory(),
setSoTimeout()

• SocketOutputStream.write()

• DatagramSocket constructors, create(),
getSoTimeout(), setSoTimeout()

• MulticastSocket.create(), setInterface(), getInterface()

• RMISocketFactor.setSocketFactory()

UnknownHostException* • InetAddress constructor, getByName(),
getAllByName(), getLocalHost()

• Socket constructor

• (URL, implicitly)

UnknownServiceException • URL constructors, getInputStream(),
getOutputStream()

(*) The ConnectException and the UnknownHostException are also defined in the java.rmi
package.

Remote Method Invocation
Similar to the Socket classes that encapsulate the traditional socket library, we now have
RMI, the object-oriented counterpart of the remote procedure call (RPC) mechanism. The
RMI classes are contained in separate packages:

java.rmi
java.rmi.server

Remote Procedure Call

The RPC mechanism offers a more hassle-free mechanism to support client/server
applications than the I/O-streams provided by the sockets. This protocol lets you call remote
functions from within your code like normal function calls. These remote function calls are
in fact calls to a client stub that runs on the local machine and handles all the
communication-related activities transparently. This client stub has its counterpart on the
server side (server stub) that handles the socket protocols, such as listen and accept, also
transparent to the programmer.

220 Creating Java Applications Using NetRexx

The RPC model is built on top of the socket implementations, thus keeping a clear layered
structure.

RMI

The RMI is based on the same layered structure as RPC. Instead of providing a way to
remotely call functions, however, we now speak object-oriented; we send messages to
remote objects, that is, we invoke remote methods. Under the cover we still rely on the
UNIX sockets; at least with their object-oriented counterparts, the Socket classes.

To pass arguments and return values, RMI uses marshalling streams, input and output
streams that are generated by the code that implements the RMI communication. This code
is in fact divided into two layers:

• Remote reference layer

• Transport layer

The client stubs and the server skeletons use these layers to pass the message arguments
to the remote method and the return values to the caller. They serialize (see
“Object-Oriented I/O Using Serialization” on page 176) local objects (by copy) and the
references to remote objects (by reference) to the marshaling streams.

More information about the remote reference layer and the transport layer can be found in
the documentation that comes with the JDK. We do not go any deeper into this subject here,
because you only have to understand the abstract concepts for your first steps in using the
RMI package.

Server-locating facilities and error handling and recovery are also strictly defined in the RMI
model.

RMI Registry and URLs

To enable RMI, a registration service program called the registry must be running on the
server:

 d:\NrxRedBk\network\rmi>start rmiregistry.exe <=== Windows
start rmiregst.exe <=== OS/2

Note: The registry process must have access to the stub classes produced by the RMI
compiler (see “RMI Compiler” on page 225).

A client can locate RMI servers by asking the registry to return a reference to the remote
object described by a URL that is passed as an argument to the method:

Naming.lookup(urlstring)

The Naming class is the bootstrap mechanism for obtaining references to remote objects
based on the URL syntax. You specify the URL for a remote object, using the usual host,
port, and name:

 rmi://<host>:<port>/<object name>

where rmi is the protocol. The other three parameters are:

host Host name of the registry (defaults to current host)

port Port number of the registry (defaults to 1099)

object name Name of the remote object, as registered by the server

Chapter 11. Network Programming 221

The first three fields are optional, so this simple call would be enough to connect to the
remote object MyFirstRMIServer, which happens to reside on the same machine:

rmi:///MyFirstRMIServer

You register a server object, using the bind or rebind method of the Naming class:

Naming.bind(urlstring,serverobject)

Error notification and handling are accomplished through the basic exception throwing and
catching mechanisms. All remote methods, and client methods invoking remote methods,
can throw RemoteException objects (or more specialized subclasses).

RMI Listener Example

When programming with distributed objects, we advise you to first create a working
implementation of the application without distribution. Because the RMI model allows you to
split the object model with only minor code changes, it eliminates much of the confusion in
resolving errors.

Our first small example implements an RMI server that listens to clients and displays (using
say) the text sent.

RMI Client

We begin by writing a very simple RMI construction that passes a string from a local object
to a remote object, which we call Listener.

Figure 121 shows the client program that sends user-entered text to the server object. We
start with the client part to convince you of the simplicity of the changes to your code.

/* network\rmi\RmiClnt.nrx

Client RMI program, sending user text to the server object:
Usage: Java RmiClnt <serverhostname> */

package network.rmi

import java.rmi.

parse arg serverAdr . -- server host name
urlstring = ′ rmi://′ serverAdr′ / Listener′
if serverAdr = ′ ′ then serverAdr = ′ (local)′

do
say ′ Registering the Security Manager ...′
System.setSecurityManager(RMISecurityManager())
say ′ Looking up the Listener on′ serverAdr ′ . . . Please Wait !′
listener = RmiSrvrI Naming.lookup(urlstring) -- server object
loop forever

say ′ What should I say to the server ? (or type: end)′
smalltalk = ask
listener.listen(smalltalk) -- RMI call to server
say ′ Your input has been sent to the server.\n′
if smalltalk = ′ end′ then leave

Figure 121 (Part 1 of 2). RMI Client Program: RmiClnt.nrx

222 Creating Java Applications Using NetRexx

end
catch e1=RemoteException
say ′ Something is wrong with the RMI connection!′
say ′ RemoteException caught: \n′ e1.getMessage()

catch e2=java.net.MalformedURLException
say ′ The URL is not valid:′ urlstring
say ′ MalformedURLException caught: \n′ e2.getMessage()

catch e3=Exception
say ′ Exception (′ e3 ′) caught: \n′ e3.getMessage()

end
say ′ End of RMI Client′
-- end RmiClnt

Figure 121 (Part 2 of 2). RMI Client Program: RmiClnt.nrx

The argument you supply when running this sample client program is the host name where
the remote object can be found.

There are only two special lines of code in this program:

• Looking up the listener object on the server:

 listener = RmiSrvrI Naming.lookup(′ rmi://′ serverAdr′ / Listener′)

This call looks up the server object that implements the Listener; it is of the RmiSrvI
class (see Figure 122 on page 224). As mentioned before, the lookup method returns a
reference to the remote object located by the URL. The Naming class is part of the
java.rmi package.

• Invoking the listen method of the server object, using RMI:

listener.listen(userstring)

The rest of the program is a loop asking the user for input that is passed to the server
object. An input of end ends the client program.

If you run the program without the registry running on the server you get:

 d:\NrxRedBk\network\rmi>java RmiClnt
 Looking up the Listener on ... Please Wait !
 Something is wrong with the RMI connection!
 RemoteException caught:
Connection refused to host; nested exception is:

java.net.ConnectException: Connection refused

This message is returned because there is no RMI registry registered on the port. We
explain how to set up the registry when we discuss the coding on the server side.

If the registry is running, but the server is not running, you get:

 d:\NrxRedBk\network\rmi>java RmiClnt fundy
 Looking up the Listener on fundy ... Please Wait !
 Exception (java.rmi.NotBoundException: Listener)caught:
Listener

RMI Server Interface

The server part of our RMI construction is a bit more complicated. You have to know that
for every object you want to publish as a remote object, you need an interface describing the
services of its class. In this way you (as a user or client of the object) are totally
independent of the implementation of the class. Only the methods defined in the interface
are available to be called from the outside.

Chapter 11. Network Programming 223

Because we only provide one method, called listen, to the clients, the interface definition is
very short (see Figure 122).

/* network\rmi\RmiSrvrI.nrx

RMI server interface definition */

package network.rmi

import java.rmi.

class RmiSrvrI interface implements Remote

method listen(str = String) public signals RemoteException

Figure 122. RMI Server Interface: RmiSrvrI.nrx

To register a server as a remote object, an RMI interface class must implement (extend in
Java terms) the interface:

java.rmi.Remote

The remote methods must be declared as public and signal the RemoteException.3

RMI Server Implementation

Figure 123 shows the sample server program that implements the RmiSrvrI interface.

/* network\rmi\RmiSrvr.nrx

Server RMI program, listening to clients sending user text.
Implements the ″listen″ method */

package network.rmi

import java.rmi.
import java.rmi.server.

/*-------------------------- class RmiSrvr -----------------------------*/

class RmiSrvr public extends UnicastRemoteObject implements RmiSrvrI

method main(args=String[]) public static
do
hostname = ′ ′
if args.length = 1 then hostname = args[0]

Figure 123 (Part 1 of 2). RMI Server Implementation: RmiSrvr.nrx

3 Currently the NetRexx compiler warns you that this RemoteException is not thrown in the method when compiling
the implementation of the server. Ignore this message:

 Warning: Checked exception ′ java.rmi.RemoteException′ is in SIGNALS list but is not signalled within the method

224 Creating Java Applications Using NetRexx

say ′ Registering the Security Manager ...′
System.setSecurityManager(RMISecurityManager())
say ′ Publishing the ″Listener″ object: rmi://′ hostname′ / Listener′
listener = RmiSrvr() -- server object
Naming.rebind(′ rmi://′ hostname′ / Listener′ , listener) -- bind Listener
say ′ I am listening ...′

catch e=Exception
say ′ Exception (′ e ′) caught: \n′ e.getMessage()

end

method RmiSrvr() signals RemoteException -- constructor

-- public interface
method listen(str = String) public signals RemoteException
do
say ′ Client′ getClientHost() ′ says:\n ′ str

catch ServerNotActiveException
say ′ Only a client can invoke listen′

end

-- end RmiSrvr

Figure 123 (Part 2 of 2). RMI Server Implementation: RmiSrvr.nrx

The server class must extend a class derived from—the abstract class—Remote Server. For
our class (RmiSrvr) we extend the UnicastRemoteObject class. This class implements an
RMI server that accepts many clients but does not replicate itself.

The first thing the server program does is registering a security manager, so that the RMI
mechanism can load classes. Without a security manager that checks classes for their good
behavior, you cannot remotely load a new class into the JVM.

After creating an object of our class, we proceed with publishing our remote object in the
RMI registry. We use one of these methods:

 Naming.bind(String, Remote)
 Naming.rebind(String, Remote)

We used rebind to make it possible to register new versions without having the problem of
unbinding them first.

From now on your object is prepared to accept client messages that perform its remote
listen method.

We explicitly declare the empty constructor to focus on the fact that remote objects can
throw a RemoteException when they are constructed.

The implementation of listen is rather trivial; feel free to change it to something more
original.

RMI Compiler

All remote objects have to be compiled again—after the NetRexx compile—by the RMI
compiler (rmic) to generate the stub and the skeleton classes for the remote objects. The
recompile uses the class file as input and is done with the following call:

 d:\NrxRedBk\network\rmi>rmic RmiSrvr

The RMI compiler creates two classes, RmiSrvr_Stub and RmiSrvr_Skel; be sure to copy the
classes into a directory of the CLASSPATH because the registry process must be able to find
them.

Chapter 11. Network Programming 225

Testing the RMI Listener

To test the server with at least one client, be sure to start the registry, before starting the
server:

 d:\NrxRedBk\network\rmi>start rmiregistry.exe
 d:\NrxRedBk\network\rmi>java RmiSrvr

Now start one or multiple clients, on the same or different machines, and enter text to be
displayed in the server window:

 d:\NrxRedBk\network\rmi>java RmiClnt serverhostname
 Looking up the Listener on serverhostname ... please Wait!
 What should I say to the server ?
 To Sell: 1 dog, only 5 years old Tel: 5896 <=== client input
 Your input has been sent to the sever <=== response
 What should I say to the server ?
 ...

You can use this construction to have a rudimentary advertising board to which everyone
can write. Figure 124 shows the sample server output.

 d:\NrxRedBk\network\rmi>java RmiSrvr
 Registering the Security Manager ...
 Publishing the ″Listener″ object: rmi:///Listener
 I am listening. ...
 Client SALLY says:

To Sell: 1 dog, only 5 years old Tel: 5896
 Client HARRY says:

Seeking an Audi 100. Tel: 2761
 Client DOLE says:

Lost my wallet, finder will be rewarded with 5% of the cash - Email: me@ibm.com
 Client PAT says:

Selling a mountain bike for $100, in good condition. Juoko, Tel: 3666
 Client BIGSAVER says :

Coffee machine broken, free coffee in E2 ...

Figure 124. RMI Listener Sample Output

Close the client by typing end, and close the server and the registry with Ctrl-C.

Running RMI on a Single Machine

RMI works well on a single machine that is connected through TCP/IP to a network (LAN or
Internet). However, if you are not connected to a network, make sure that:

• TCP/IP is configured
• Loopback is configured (ping localhost gets a reply from address 127.0.0.1)
• The TCP/IP properties (Control Panel, Network) specify a DNS configuration with a host

name of localhost and no domain

You should be able to get RMI working with a localhost configuration.

226 Creating Java Applications Using NetRexx

RMI Parameters and Return Values

The parameter objects that are passed to a remote method must be serializable. The same
is true for the return value of a method.

The NetRexx Rexx class of NetRexx 1.0 is not serializable; therefore be sure not to use Rexx
strings as arguments and return values. The Rexx class of NetRexx 1.1 is serializable.

RMI Chat Application

The listener client/server example is a simple RMI application where the client does not
receive any feedback from the server about messages posted by other clients.

We also implemented a more complete chat application where the server sends every
message received from a client to all connected clients. In this RMI application every client
is also an RMI server, to receive the asynchronous client messages sent from the server.

We do not describe this example in detail. Here are the components of the application:

ChatRMIServerI The public interface of the chat server consists of two methods:
newClient to register a new chat client, and sendMessage, to accept a
message from a client.

ChatRMIServer Chat server that implements the ChatRMIServerI interface

ChatRMIClientI The public interface of the chat client consists of one method,
addMessage, to receive a message from the chat server.

ChatClient The chat client applet contains the ChatRMIClient class that implements
the ChatRMIClientI interface.

Chat.htm HTML file to run the chat client applet

The code of the RMI chat application is stored in the network\rmichat directory.

Wrapping Up with a Complete RMI Program

We use RMI to split up the program presented in “Wrapping Up with a Complete JDBC GUI
Program” on page 196.

The GUI part runs in the virtual machine of the client. The controller object that handles all
database access runs on an RMI server machine, which in turn may connect to a real server
where the DB2 database system runs.

We can build a three-tiered model, using RMI, with the advantage that the DB2 native drivers
needed for JDBC are only on the middle-tier server.

We take the existing JDBC program (Figure 113 on page 197) and split the code into two
programs; one with the Controller class (RmiCont), and one with the GUI classes (RmiGui,
DoAction, ControlButtons).

The Controller class is modified to be a remote class, and the GUI class must be able to use
the Controller. We name the classes RmiCont and RmiGui, and the interface of the
controller, RmiContI.

Chapter 11. Network Programming 227

Controller Interface

The controller class exports the following methods:

connect()
retrieveListDep()
select(depNo)
 update(depNo, name, mgNo, mgDepNo)
 delete(depNo)
 add(depNo, name, mgNo, mgDepNo)
 getDepName()
 getMgNo()
 getMgDepNo()

Figure 125 shows the controller interface class.

/* network\rmijdbc\RmiContI.nrx

RMI - JDBC Program: JDBC Controller Interface */

package network.rmijdbc

import java.rmi.

class RmiContI interface implements Remote

method connect() returns String public signals RemoteException
method retrieveListDep() returns String[] public signals RemoteException
method select(depNo=String) returns String public signals RemoteException
method delete(depNo=String) returns String public signals RemoteException
method add(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String public signals RemoteException
method update(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String public signals RemoteException
method getDepName() returns String public signals RemoteException
method getMgNo() returns String public signals RemoteException
method getMgDepNo() returns String public signals RemoteException

Figure 125. RMI JDBC Application Controller Interface: RmiContI.nrx

RMI JDBC Controller Server

We make the controller class a RemoteServer. Because a point to point implementation of
the RemoteServer is not available (yet) in the JDK package, we use the
UnicastRemoteObject.

The controller registers itself with the RMI registry. The exported methods are made public,
with the proper exception, but otherwise the only change to the code is in the
retrieveListDep method that returns a Java string array instead of a Rexx string (see
Figure 126).

228 Creating Java Applications Using NetRexx

/* network\rmijdbc\RmiCont.nrx

RMI - JDBC Program: JDBC Controller Implementation
Usage: Java RmiCont [<DB-URL>] [<userprefix>] */

package network.rmijdbc

import java.rmi.
import java.rmi.server.

import java.sql.

class RmiCont public extends UniCastRemoteObject implements RmiContI

/*-------------------------- variables ------------------------------*/
Properties static

prefix = Rexx ′ userid′ -- table prefix
url = Rexx ′ jdbc:db2:sample′ -- database URL
conthost = Rexx ′ ′ -- host name of controller

Properties inheritable
jdbcCon = Connection -- database Connection
selDepNo = String ′ ′ -- selected row values
selName = String ′ ′
selMgNo = String ′ ′

 selMgDepNo = String ′ ′

/*-------------------------- methods --------------------------------*/
method main(args=String[]) public static

do
if args.length > 0 then url = args[0]
if args.length > 1 then prefix = args[1]
say ′ Registering the Security Manager ...′
System.setSecurityManager(RMISecurityManager())
say ′ Publishing the ″Controller″ object: rmi://′ conthost′ / Controller′
controller = RmiCont() -- controller object
Naming.rebind(′ rmi://′ conthost′ / Controller′ , controller) -- bind controller
say ′ RMI Controller is ready ...′

catch e=Exception
say ′ Exception (′ e ′) caught: \n′ e.getMessage()

end

/*-------------------------- constructor -----------------------------*/
method RmiCont() signals RemoteException

/*-------------------------- connect() -------------------------------*/
method connect() returns String public signals RemoteException

do
Class.forName(′ COM.ibm.db2.jdbc.app.DB2Driver′) . newInstance()
-- Class.forName(′ COM.ibm.db2.jdbc.net.DB2Driver′) . newInstance()
say ′ Connecting to database:′ url
jdbcCon = Connection DriverManager.getConnection(url, ′ userid′ , ′ password′)
msg = ′ Connected to′ url
say msg

catch e2 = SQLException
msg = ′ SQLException(s) caught while connecting !′
loop while (e2 \= null)

say ′ SQLState:′ e2.getSQLState()
say ′ Message: ′ e2.getMessage()
say ′ Vendor: ′ e2.getErrorCode()
say
e2 = e2.getNextException()

end
catch e1 = Exception

msg = ′ The DB2 driver classes could not be found and loaded !′
say ′ Exception (′ e1 ′) caught : \n′ e1.getMessage()

end
return msg

/*-------------------------- retrieveListDep() -----------------------*/
method retrieveListDep() returns String[] public signals RemoteException

deptarr = Rexx ′ ′
do

query = ′ SELECT deptno, deptname, mgrno, admrdept′ -
′ FROM′ prefix′ . DEPARTMENT ORDER BY deptno′

stmt = Statement jdbcCon.createStatement()

Figure 126 (Part 1 of 3). RMI JDBC Controller Server: RmiCont.nrx

Chapter 11. Network Programming 229

rs = ResultSet stmt.executeQuery(query)
loop row=1 while rs.next()

deptarr[row] = rs.getString(′ deptno′) ′ -′ rs.getString(′ deptname′)
end
row = row-1
deptarr[′ count′] = row
rs.close() -- close the result set
stmt.close() -- close the statement
deptarr[′ message′] = ′Retrieved′ row ′ departments′

catch ex=SQLException
deptarr[′ message′] = ex.getMessage()
deptarr[′ count′] = 0

end
deptstr = String[row+1] -- convert Rexx to: string[]
loop i=1 to row

deptstr[i] = deptarr[i]
end
deptstr[0] = deptarr[′ message′]
return deptstr -- return the string array

/*-------------------------- update() ---------------------------------*/
method update(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String public signals RemoteException
do

if depNo = ′ ′ then
return ′ Missing department number for update !′

if depNo <> selDepNo then -- If depNo already exists you′ ll
do -- loose the department at selDepNo

tempDepNo = selDepNo -- Room for improvement...
add(depNo, name, mgNo, mgDepNo)
delete(tempDepNo)
return ′ Department number updated (delete old, add new)′

end
updQuery = ′ UPDATE′ prefix′ . DEPARTMENT′ -

″SET deptname = ′ ″ name″ ′ , ″ -
″mgrno = ′ ″ mgNo″ ′ , ″ -
″admrdept = ′ ″ mgDepNo″ ′ ″ -

″WHERE deptno = ′ ″ depNo″ ′ ″
say ′ Update SQL query :′ updQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(updQuery)
msg = ′ Replaced a department.′
stmt.close()
selDepNo = ′ ′

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- delete() -------------------------------*/
method delete(depNo=String) returns String public signals RemoteException

do
if depNo = ′ ′ then

return ′ Missing department number for delete′
delQuery = ′ DELETE FROM′ prefix′ . DEPARTMENT′ -

″WHERE deptno = ′ ″ depNo″ ′ ″
say ′ Delete SQL query :′ delQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(delQuery)
msg = ′ Deleted a department.′
stmt.close()
selDepNo = ′ ′

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- add() ----------------------------------*/
method add(depNo=String, name=String, mgNo=String, mgDepNo=String) -

returns String public signals RemoteException
do

query = ′ SELECT deptno, deptname, mgrno, admrdept′ - --test uniqueness of depNo
′ FROM′ prefix′ . DEPARTMENT′ -
″WHERE deptno = ′ ″ depNo″ ′ ″

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query)

Figure 126 (Part 2 of 3). RMI JDBC Controller Server: RmiCont.nrx

230 Creating Java Applications Using NetRexx

if rs.next() then
return ′ ′ depNo ′ is in use, choose another department number.′

rs.close() -- Close the result set
stmt.close() -- Close the statement
addQuery = ′ INSERT INTO′ prefix′ . DEPARTMENT′ -

′ (deptno, deptname, mgrno, admrdept)′ -
″VALUES (′ ″ depNo″ ′ , ′ ″ name″ ′ , ′ ″ | | -
mgNo″ ′ , ′ ″ mgDepNo″ ′) ″

say ′ Insert SQL query :′ addQuery
stmt = Statement jdbcCon.createStatement()
stmt.executeUpdate(addQuery)
msg = ′ Inserted a department.′
stmt.close()

catch ex=SQLException
msg = ex.getMessage()

end
return msg

/*-------------------------- select() -------------------------------*/
method select(depNo=String) returns String public signals RemoteException

if (selDepNo <> depNo) then
do

msg = ′ Select(′ depNo′) ′
query = ′ SELECT deptno, deptname, mgrno, admrdept′ -

′ FROM′ prefix′ . DEPARTMENT′ -
″WHERE deptno = ′ ″ depNo″ ′ ″

stmt = Statement jdbcCon.createStatement()
rs = ResultSet stmt.executeQuery(query)
rs.next()
selDepNo = depNo
selName = rs.getString(′ deptname′)
selmgNo = rs.getString(′ mgrno′)
selmgDepNo = rs.getString(′ admrdept′)
rs.close() -- close the result set
stmt.close() -- close the statement

catch ex=SQLException
msg = ′ Select():′ ex.getMessage()

end
else msg = ′ Selected department number did not change′
return msg

/*-------------------------- getDepName() ------------------------------*/
method getDepName() returns String public signals RemoteException

return selName

/*-------------------------- getMgNo() ---------------------------------*/
method getMgNo() returns String public signals RemoteException

return selMgNo

/*-------------------------- getMgDepNo() ------------------------------*/
method getMgDepNo() returns String public signals RemoteException

return selMgDepNo

-- end RmiCont

Figure 126 (Part 3 of 3). RMI JDBC Controller Server: RmiCont.nrx

RMI JDBC GUI Client

We change the GUI client to run as an applet instead of an application. Instead of a main
method, we use the init method to initialize the applet. The applet looks up the RMI
controller object on the host from where the applet′s code came.

The GUI code is basically unchanged, with only a few lines commented out because they do
not apply for an applet (see Figure 127).

Chapter 11. Network Programming 231

/* network\rmijdbc\RmiGui.nrx

RMI - JDBC Applet: GUI Implementation */

package network.rmijdbc

import java.rmi.

import Redbook.

class RmiGui public extends Applet uses GridBagConstraints

Properties constant
UPDATE = int 0
ADD = int 1
DELETE = int 2
RETRIEVE = int 3

Properties static
ctr = RmiContI -- RMI controller
conthost = Rexx ′ ′ -- host name of controller

Properties inheritable
tf_depno = TextField(3)

 tf_depname = TextField(29)
 tf_manager = TextField(6)
 tf_mgrDept = TextField(3)

l_departments = List(10)
 ta_message = TextArea(2,30)
 b1 = Button
 b2 = Button
 b3 = Button
 b4 = Button
 b5 = Button

/*-------------------------- methods --------------------------------*/
method init()

do
win = this -- applet frame
showStatus(′ RMI JDBC GUI′) -- status message
gbl = SimpleGridbagLayout(win) -- use gridbag layout
-- ws = WindowSupport(win) -- close window support

buildLayout(gbl) -- ,ws)

-- win.pack()
-- RedbookUtil.positionWindow(win)
-- win.setVisible(1)
repaint()

setMessage(′ Registering the Security Manager ...′)
do

System.setSecurityManager(RMISecurityManager())
catch SecurityException

end

conthost = getCodeBase().getHost() -- controller host
setMessage(′ Finding the RMI Controller on:′ conthost)
ctr = RmiContI Naming.lookup(′ rmi://′ conthost′ / Controller′)
setMessage(′ RMI is ready...′)

b1.addActionListener(DoAction(this,ctr,UPDATE))
b2.addActionListener(DoAction(this,ctr,ADD))
b3.addActionListener(DoAction(this,ctr,DELETE))
b4.addActionListener(DoAction(this,ctr,RETRIEVE))
l_departments.addItemListener(DoAction(this,ctr))

setMessage(′ Connecting to database...′)
msg = ctr.connect()
setMessage(msg)

setMessage(′ Retrieving departments...′)
setDepartmentsList(ctr.retrieveListDep())

catch e1=RemoteException
say ′ RMI RemoteException caught in init: \n′ e1.getMessage()

catch e=Exception

Figure 127 (Part 1 of 4). RMI JDBC GUI Client: RmiGui.nrx

232 Creating Java Applications Using NetRexx

setMessage(′ Exception (′ e ′) caught: \n′ e.getMessage())
end

method buildLayout(gbl = SimpleGridbagLayout) -- , ws=WindowSupport)
gbl.addFixSize(Label(′ Number′) , 0,0,Insets(10,10,5,30))

 gbl.addFixSize(Label(′ Name′) , 0 , 1 , Insets(5,10,5,30))
gbl.addFixSize(Label(′ Manager′) , 0 , 2 , Insets(5,10,5,30))
gbl.addFixSize(Label(′ Mgr Dept′) , 0 , 3 , Insets(5,10,5,30))

gbl.addVarSize(tf_depno ,1,0,Insets(10,0,5,5),1.0,0.0)
gbl.addVarSize(tf_depname,1,1,Insets(0,0,5,5),1.0,0.0)
gbl.addVarSize(tf_manager,1,2,Insets(0,0,5,5),1.0,0.0)
gbl.addVarSize(tf_mgrDept,1,3,Insets(0,0,5,5),1.0,0.0)
tf_depno.addTextListener(LimitTextField(tf_depno,3))
tf_depname.addTextListener(LimitTextField(tf_depname,29))
tf_manager.addTextListener(LimitTextField(tf_manager,6))
tf_mgrDept.addTextListener(LimitTextField(tf_mgrDept,3))

gbl.addVarSize(l_departments,0,4,Insets(10,10,15,5),1.0,2.0,2)
gbl.addVarSize(ta_message, 0,5,Insets(0,10,10,5),1.0,1.0,2)

b1=Button gbl.addFixSize(Button(′ Update′) ,2,0,Insets(10,0, 5,10),1,1,HORIZONTAL)
b2=Button gbl.addFixSize(Button(′ Add′) ,2,1,Insets(0,0, 5,10),1,1,HORIZONTAL)
b3=Button gbl.addFixSize(Button(′ Delete′) ,2,2,Insets(0,0, 5,10),1,1,HORIZONTAL)
b4=Button gbl.addFixSize(Button(′ Retrieve′) , 2 , 3 , Insets(0,0, 5,10),1,1,HORIZONTAL)
-- b5=Button gbl.addFixSize(Button(′ Exit′) ,2,5,Insets(0,0,10,10),1,1,HORIZONTAL,SOUTHWEST)
-- b5.addActionListener(ws.getCloseWindow())

cb = ControlButtons()
cb.addButton(b1)
cb.addButton(b2)
cb.addButton(b3)
tf_depno.addTextListener(cb)
cb.disable

method setDepartmentsList(aList = String[])
l_departments.removeAll()
loop i = 1 for aList.length - 1

l_departments.add(aList[i])
end
setMessage(aList[0])

method setDepno(s=String)
tf_depno.setText(s)

method setName(s=String)
tf_depname.setText(s)

method setMgNo(s=String)
tf_manager.setText(s)

method setMgDepNo(s=String)
tf_mgrDept.setText(s)

method getDepno() returns String
return tf_depno.getText()

method getName() returns String
return tf_depname.getText()

method getMgNo() returns String
if tf_manager.getText() = ′ ′ then return null

else return tf_manager.getText()

method getMgDepNo() returns String
return tf_mgrDept.getText()

/*----------------------------- interface to display messages -----------------*/
method setMessage(msg = String)

say msg
ta_message.append(′ \n′ msg)

/********************************** class DoAction ****************************/

class DoAction implements ActionListener, ItemListener uses RmiGui
Properties inheritable

Figure 127 (Part 2 of 4). RMI JDBC GUI Client: RmiGui.nrx

Chapter 11. Network Programming 233

ui = RmiGui -- reference to user interface
ctr = RmiContI -- reference to the controller
act = int -- which action

method DoAction(aGui=RmiGui,aControl=RmiContI,what=int 0)
ui = aGui
ctr = aControl
act = what

method actionPerformed(e=ActionEvent)
select

when act = UPDATE then do
ui.setMessage(′ Updating a row in the DEPARTMENT table...′)
msg = ctr.update(ui.getDepno(),ui.getName(),ui.getMgNo(),ui.getMgDepNo())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = ADD then do

ui.setMessage(′ Inserting a row in the DEPARTMENT table...′)
msg = ctr.add(ui.getDepno(),ui.getName(),ui.getMgNo(),ui.getMgDepNo())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = DELETE then do

ui.setMessage(′ Deleting a row in the DEPARTMENT table...′)
msg = ctr.delete(ui.getDepno())
ui.setMessage(msg)
ui.setDepartmentsList(ctr.retrieveListDep())

end
when act = RETRIEVE then do

ui.setDepartmentsList(ctr.retrieveListDep())
ui.setDepno(′ ′) -- clear the fields
ui.setName(′ ′)
ui.setMgNo(′ ′)
ui.setMgDepNo(′ ′)

end
catch e1=RemoteException

say ′ RMI RemoteException caught in action′ act′ : \n′ e1.getMessage()
end

method itemStateChanged(e=ItemEvent)
s = (List e.getItemSelectable()).getSelectedItem()
if s \= null then

do
parse s depno ′ -′ .
msg = ctr.select(String depno.strip())

ui.setMessage(msg)
ui.setDepno(depno) -- set the fields
ui.setName(ctr.getDepName())
ui.setMgNo(ctr.getMgNo())
ui.setMgDepNo(ctr.getMgDepNo())

catch e1=RemoteException
say ′ RMI RemoteException caught in itemChanged: \n′ e1.getMessage()

end

/********************************** class ControlButtons **********************/

class ControlButtons implements TextListener
 Properties inheritable

buttons = Vector()
enabled = boolean 1

 method addButton(aButton = Button)
buttons.addElement(aButton)

 method textValueChanged(e = TextEvent)
field = TextField e.getSource()
text = field.getText()
if text \= null then

if text = ′ ′ then disable()
else enable()

else disable()

 method enable()
if enabled then return

Figure 127 (Part 3 of 4). RMI JDBC GUI Client: RmiGui.nrx

234 Creating Java Applications Using NetRexx

enabled = 1
change()

 method disable()
if \enabled then return
enabled = 0
change()

 method change()
loop i=0 for buttons.size

(Button buttons.elementAt(i)).setEnabled(enabled)
end

-- end RmiGui

Figure 127 (Part 4 of 4). RMI JDBC GUI Client: RmiGui.nrx

Testing the RMI JDBC Applet

To test the applet you have to prepare a server machine with the code of the server and the
applet:

• Make sure that the stub classes generated by the RMI compiler are in the CLASSPATH.

• Start the RMI registry program on the server:

 d:\NrxRedBk\network\rmijdbc>start rmiregistry.exe

• Start the controller server with defaults or with the user ID that created the sample
database:

 d:\NrxRedBk\network\rmi>java RmiCont
java RmiCont jdbc:db2:sample userid

• Make sure that DB2 is up and running.

• Start the JDBC daemon (db2strt 8888) if JDBC access is through the network.

• Display the applet′s HTML page (RmiGui.htm) and run the distributed RMI JDBC applet,
using a browser or the appletviewer of the JDK:

 d:\NrxRedBk\network\rmi>appletviewer RmiGui.htm

The applet should look identical to Figure 112 on page 196.

Figure 128 shows the HTML file for the applet.

<HTML>
<HEAD>
<TITLE>RMI JDBC Applet</TITLE>
</HEAD>
<BODY>
<H1>RMI JDBC Applet</H1>
<applet code=″network.rmijdbc.RmiGui.class″ width=500 height=500
 alt=′ Please enable Java to see the applet′>
Sorry but your browser does not support Java applets.
</applet>
</HTML>

Figure 128. RMI JDBC Applet HTML: RmiGui.htm

Chapter 11. Network Programming 235

Enhancements for the RMI Controller

The current implementation assumes that only one GUI connects to the controller object at
any given time.

We could modify our code so that the GUI registers itself on a ControllerFactory object,
which then makes a new Controller object for this client. This new Controller object can be
allocated on a pool of machines. This approach is preferred because it truly makes use of
the UnicastRemoteObject.

After adapting the client code to run as an applet on a Web page, we have a highly scalable
solution:

• The applet can be accessed from multiple HTTP servers.

• The ControllerFactory can be put on a server. It then can distribute controller objects
running on different servers. Once the GUIs have a reference to the controller object,
they can talk directly to the server running the control object.

• The existing DB2 distribution services can be applied to optimize the access from the
controller objects to the database.

Figure 129 summarizes this three-tier construction, which demonstrates the power of
distributing objects, using tailorable GUI clients, dedicated code servers (HTTP), distributed
database access code on dedicated machines, and optimized DB2 access.

Figure 129. Highly Distributed Client/Server Program Using RMI

236 Creating Java Applications Using NetRexx

Chapter 12. Using NetRexx for CGI Programs
In this chapter we use NetRexx to write Common Gateway Interface (CGI) programs on a
Web server. We use the DB2 sample database discussed in “DB2 Sample Database” on
page 184 as a base to generate Web pages from real data.

We used the IBM Internet Connection Server (ICS) as a Web server on Windows 95 (or
Windows NT). All programs were placed into a JAVA\NRX subdirectory of the main directory
of ICS.

Most servers do or will support CGI programs written in Java, also called server-side Java.
Here is a partial list of servers that support Java:

• IBM Internet Connection Server 4.2
• Microsoft Internet Information Server 3.0
• Netscape Enterprise Server 2.01
• Netscape Fast Track Server 2.01
• Web Site Professional 1.1
• Web Star 2.02

CGI Concepts
Not all Web pages can be predefined on a Web server. In many cases users ask for
information that is stored in a database, and a Web page that contains the data retrieved
from the database must be dynamically generated.

For this purpose Web servers provide the CGI, a standardized API for invoking programs
with parameters supplied from a Web browser and accepting a Web page from such a
program to be returned to the Web browser.

CGI programs can be written in many languages, such as C, C++, Rexx, and Java.

Passing Parameters to a CGI Program

Every language has its own way of accepting parameters from a caller. For CGI the
designers decided to prepare the parameters in environment variables and let the programs
look up the parameters themselves.

Java, and therefore NetRexx, do not allow direct access to environment variables. Web
servers were modified to prepare the parameters for Java programs in system properties
matching the names of the environment variables.

For our sample programs we access the following environment variables:

SCRIPT_NAME Name of invoked CGI program

REMOTE_ADDR TCP/IP address of remote client

 Copyright IBM Corp. 1997 237

QUERY_STRING The parameter string passed from the client′s Web browser when the
get method is used in the HTML form

CONTENT_LENGTH Number of bytes passed through standard input from the client′s Web
browser when the post method is used in the HTML form

These environment variables are available by using the getProperty method of the System
class:

System.getProperty(′ QUERY_STRING′)

Get Method

The QUERY_STRING variable is the most important. It contains the data of the Web browser
page. In many cases such data is prepared by using an HTML form. The query string has
the general format of variable name and value pairs, separated by & signs:

varname1=value1&varname2=value2&...

The query string format is based on a few special rules:

• Special characters are replaced by a % sign, followed by their ASCII code, for example,
%25 for a % sign.

• Blanks are replaced by + signs.

There are more rules and conventions that you need to know for serious Web CGI
programming, but for our simple example these two rules are enough.

Post Method

HTML forms can also use the post method to pass data to the CGI program through
standard input. Forms with many fields generally specify the post method.

Our example uses the get method, and the CGI program retrieves the client data through the
QUERY_STRING environment variable. The following code extract can be used to construct
the query string for the post method:

 query = BufferedReader(InputStreamReader(System.in)).readLine()

We also implemented one of the programs by using the post method (see “CGI Program for
Employee Details: Post Method” on page 246).

Returning a Web Page from a CGI Program

The Web page that is returned to the Web browser is written to the standard output by the
CGI program, where it is picked up by the Web server.

In NetRexx, we can use the say instruction to write the lines of the Web page.

Two special lines must be generated before the Web page:

 Content-Type: text/html <=== describes the format
<=== blank line

 <html> <=== start of HTML page
... <=== body of page

 </html> <=== end of page

The first line describes the type of file (MIME type) that is generated, and the second line
must be an empty line.

238 Creating Java Applications Using NetRexx

The program can also return a file containing a preformatted HTML page instead of
generating a new one, for example, to return an error message. The output of the program
would consist of only two lines: a line specifying the URL of a file that contains the Web
page, and a blank line:

 Location: /directory/subdir/filename.ext <=== URL of file
<=== blank line

Note: The location tag can specify a complete URL with protocol, server, and document.

Sample CGI Programs with DB2 Access
Our NetRexx CGI sample consists of two programs:

• The first program searches for matching names of employees in the DB2 sample
EMPLOYEE table for a given partial name. It then creates a Web page containing a list
of matches.

• The second program lists the details of one employee selected in the list produced by
the first program.

HTML Form for Employee Search

The first program is started from a Web page displaying a form where the user can enter a
partial employee name (see Figure 130).

Figure 130. HTML Form for Employee Search

A partial name in the form of a DB2 LIKE clause can be entered, and a percent sign is added
at the end. For example, P looks for all employee names starting with P, %N for all names
having an N somewhere, and _E looks for names where the second character is an E. The
program also allows using an asterisk (*) instead of the percent sign.

Figure 131 shows the HTML file that produces the HTML page.

Chapter 12. Using NetRexx for CGI Programs 239

 <! cgi\EmpName.html

NetRexx CGI program for DB2: Employees by name >

 <html> <head> <title>DB2 - Employee Table </title> </head>
 <body>
 <h2> Retrieve employees by name </h2>
 <hr>
 <form method=″GET″ action=″ / cgi-bin/java/nrx/EmpName.class″>

<p> <pre>Employee partial name: <input name=″name″ type=″text″ size=″10″> <input type=″submit″>
</pre>

 </form>
 <hr>
 IBM ITSO San Jose - NetRexx Redbook
 </body></html>

Figure 131. HTML Code for Employee Search: EmpName.html

The program that is invoked is named in the action specification:

action=″ / cgi-bin/java/nrx/EmpName.class″

It is the Web server′s job to locate the program on the basis of the relative directory
information, prepare the query string, and invoke the program. Because of the class
extension, the Web server knows that the program is a Java program.

The query string is prepared from the form; in this simple case it contains the data of the
single input field:

name=xxxxxxxxxx
 name=P%25 <=== from P%

where xxxxxxxxxx is the partial name entered by the user.

CGI Program for Employee Search

Figure 132 lists the CGI program for the employee search.

/* cgi\EmpName.nrx

NetRexx CGI program for DB2: Employees by name */

import java.sql.

Class EmpName

/*-------------------------- variables ------------------------------*/
properties static
prefix = Rexx ′ USERID′ -- table prefix
con = Connection -- DB2 connection
driver = String ″COM.ibm.db2.jdbc.net.DB2Driver″

 --driver = String ″COM.ibm.db2.jdbc.app.DB2Driver″
url = String ″jdbc:db2:/loopback:8888/sample″
--url = String ″jdbc:db2:sample″
partialname = String

/*-------------------------- main -----------------------------------*/

Figure 132 (Part 1 of 3). CGI Program for Employee Search: EmpName.nrx

240 Creating Java Applications Using NetRexx

method main(args=String[]) static
args = args
say ′ Content-Type: text/html′ -- control lines
say ′ ′
say ′<html>′ -- start HTML
say ′<head><title>Employee Information</title></head>′
say ′<body>′
say ′<H2>Employee List</H2>′
say ′
 Program:′ System.getProperty(′ SCRIPT_NAME′)
say ′
 Client :′ System.getProperty(′ REMOTE_ADDR′)

list = Rexx System.getProperty(′ QUERY_STRING′) -- query string
list = queryTranslate(list)
list = list.translate(′ % ′ , ′*′) -- DB2 LIKE
say ′
 Query :′ list
parse list ′ name=′ partialnamex ′ ′ -- get partial name
partialname = partialnamex.upper″%″

jdbcConnect() -- JDBC connect to DB
performRetrieve() -- DB2 SQL

say ′ < /body>′ -- end HTML
say ′ < /html>′
return

/*-------------------------- Query translate ------------------------*/
method queryTranslate(qry=Rexx) private static returns Rexx
qryt = qry.translate(′ ′ , ′ + ′) -- + are blanks
ist = qryt.pos(′%′)
loop while ist > 0

c = qryt.substr(ist+1,2).x2c
qryt = qryt.substr(1,ist-1)′ ′ c′ ′ qryt.substr(ist+3)
ist = qryt.pos(′%′ ,ist+1)

end
return qryt

/*-------------------------- JDBC connect ---------------------------*/
method jdbcConnect() private static
do

-- say ′<p> JDBC driver:′ driver
say ′
Connection :′ url
Class.forName(driver)
con = Connection DriverManager.getConnection(url,″userid″ , ″password″)
if con.getWarnings() \= null then do

say ′<p> Error′ con.getWarnings().getMessage()
return

end
dma = DatabaseMetaData con.getMetaData()
say ″
Driver :″ dma.getDriverName() dma.getDriverVersion()

catch ex=SQLException
say ″<p> *** SQLException caught ***″
say ′
′ ex.getMessage()
loop while (ex \= null)

say ″
SQLState:″ ex.getSQLState()
say ″
Message: ″ ex.getMessage()
say ″
Vendor: ″ ex.getErrorCode()
ex = ex.getNextException()

Figure 132 (Part 2 of 3). CGI Program for Employee Search: EmpName.nrx

Chapter 12. Using NetRexx for CGI Programs 241

say ″
″
end

catch ex2=java.lang.Exception
-- Got some other type of exception. Dump it.

say ′<p> Error:′ ex2.getMessage()
ex2.printStackTrace()

end
return

/*-------------------------- retrieve employee -----------------------*/
method performRetrieve() private static

say ′<p> Retrieving employees:′ partialname
do -- DB2

query = ″SELECT empno, lastname, firstnme″ -
″FROM″ prefix″ . employee″ -
″WHERE lastname LIKE ′ ″ partialname″ ′ ″

/* say ′
′ query */
say ′<p>′
say ′<table border=2 cellpadding=0>′
say ′<tr>′
say ′<th>Number</th> <th>Lastname</th> <th>Firstname</th> ′
say ′<tr>′
stmt = Statement con.createStatement()
rs = ResultSet stmt.executeQuery(query)
more = boolean rs.next()
loop row=0 by 1 while (more)

num = Rexx rs.getString(′ empno′)
say ′<td>′ ′ ′ num ′ < /b></td>′
say ′<td>′ rs.getString(′ lastname′) ′ < /td>′
say ′<td>′ rs.getString(′ firstnme′) ′ < /td>′
say ′<tr>′
more = rs.next()

end
say ′ < /table>′
rs.close() -- Close the result set
stmt.close() -- Close the statement
say ′<p> Retrieved′ row ′ employees′

catch ex=SQLException
say ′<p> Error:′ ex.getMessage()

end
-- end EmpName

Figure 132 (Part 3 of 3). CGI Program for Employee Search: EmpName.nrx

The program starts by writing the two control lines and the start of the Web page. It then
accesses the environment variables through the system properties.

The query string is analyzed by the queryTranslate method that reformats special characters
and blanks.

The jdbcConnect method is invoked next; it uses JDBC to connect to DB2 (see “JDBC
Concepts” on page 181 for details). The performRetrieve method runs the SQL statement to
find matching employees and formats the list of matches as an HTML table.

The employee number is formatted in the first column of the table as a hot reference:

 ′ num ′ < /b>

Clicking on the employee number in the browser invokes the second CGI program,
EmpNum.class, with the number as the single parameter:

number=xxxxxx

242 Creating Java Applications Using NetRexx

HTML Table of Employees

The first program displays the matching employees in an HTML table (see Figure 133).

Figure 133. HTML Table of Matching Employees

Clicking on one of the employee numbers invokes the second program to display the
employee ′s details.

CGI Program for Employee Details

Figure 134 shows the CGI program for employee details.

/* cgi\EmpNum.nrx

NetRexx CGI program for DB2: Employee by number (using GET) */

import java.sql.

Class EmpNum

/*-------------------------- variables ------------------------------*/
properties static

Figure 134 (Part 1 of 3). CGI Program for Employee Details: EmpNum.nrx

Chapter 12. Using NetRexx for CGI Programs 243

prefix = Rexx ′ USERID′ -- table prefix
con = Connection -- DB2 connection
driver = String ″COM.ibm.db2.jdbc.net.DB2Driver″

 --driver = String ″COM.ibm.db2.jdbc.app.DB2Driver″
url = String ″jdbc:db2:/loopback:8888/sample″
--url = String ″jdbc:db2:sample″
empno = String

/*-------------------------- main -----------------------------------*/
method main(args=String[]) static
args = args
say ′ Content-Type: text/html′ -- special lines
say ′ ′
say ′<html>′ -- start HTML
say ′<head><title>Employee Information</title></head>′
say ′<body>′
say ′<H2>Employee Data</H2>′
say ′
 Program:′ System.getProperty(′ SCRIPT_NAME′)
list = System.getProperty(′ QUERY_STRING′) -- query string
-- list = queryTranslate(list) -- not necessary here
parse list ′ number=′ empno ′ ′

jdbcConnect() -- JDBC connect to DB2
performRetrieve() -- DB2 SQL

say ′ < /body>′ -- end HTML
say ′ < /html>′
return

/*-------------------------- JDBC Connect ---------------------------*/
method jdbcConnect() private static
do

Class.forName(driver)
con = Connection DriverManager.getConnection(url,″userid″ , ″password″)
if con.getWarnings() \= null then do

say ′<p> JDBC driver:′ driver
say ′
Connection :′ url
say ′<p> Error′ con.getWarnings().getMessage()
return

end

catch ex=SQLException
say ″<p> *** SQLException caught ***″
say ′
′ ex.getMessage()
loop while (ex \= null)

say ″
SQLState:″ ex.getSQLState()
say ″
Message: ″ ex.getMessage()
say ″
Vendor: ″ ex.getErrorCode()
ex = ex.getNextException()
say ″
″

end
catch ex2=java.lang.Exception

-- Got some other type of exception. Dump it.
say ′<p> Error:′ ex2.getMessage()
ex2.printStackTrace()

end
return

Figure 134 (Part 2 of 3). CGI Program for Employee Details: EmpNum.nrx

244 Creating Java Applications Using NetRexx

/*-------------------------- retrieve employee -----------------------*/
method performRetrieve() private static

say ′
 Retrieving employee:′ empno
do -- DB2

query = ″SELECT empno, firstnme, midinit, lastname,″ -
″phoneno, sex, birthdate, hiredate, job, edlevel,″ -
″salary, bonus, comm, workdept″ -

″FROM″ prefix″ . employee″ -
″WHERE empno = ′ ″ empno″ ′ ″

stmt = Statement con.createStatement()
rs = ResultSet stmt.executeQuery(query)
more = boolean rs.next()
say ′<pre>′
loop row=0 by 1 while (more)

say ′<p>′
say ′ Emp-num :′ rs.getString(′ empno′)
say ′ Name :′ rs.getString(′ firstnme′) rs.getString(′ midinit′) -

rs.getString(′ lastname′)
say ′ Phone :′ rs.getString(′ phoneno′)
say ′ Sex :′ rs.getString(′ sex′)
say ′ Birthdate:′ rs.getString(′ birthdate′)
say ′ Hiredate :′ rs.getString(′ hiredate′)
say ′ Job :′ rs.getString(′ job′)
say ′ Educ-lev :′ rs.getString(′ edlevel′)
say ′ Salary :′ rs.getString(′ salary′)
say ′ Bonus :′ rs.getString(′ bonus′)
say ′ Commiss :′ rs.getString(′ comm′)
if rs.getString(′ workdept′) \= null then
say ′ Dept :′ rs.getString(′ workdept′)
more = rs.next()

end
say ′ < /pre>′
rs.close() -- close the result set
stmt.close() -- close the statement
if row=0 then say ′<p> Employee′ empno ′ not found′

catch ex=SQLException
say ′<p> Error:′ ex.getMessage()

end
-- end EmpNum

Figure 134 (Part 3 of 3). CGI Program for Employee Details: EmpNum.nrx

The second program is very similar to the first one. It writes the two control lines and the
start of the Web page, and accesses the environment variables through the system
properties.

The query string is not translated because no special characters are passed. The
jdbcConnect method is invoked to connect to DB2, and the performRetrieve method runs the
SQL statement to retrieve the details of one employee.

The employee details are written as preformatted HTML lines (see Figure 135).

Chapter 12. Using NetRexx for CGI Programs 245

Figure 135. HTML Page with Employee Details

CGI Program for Employee Details: Post Method

We also implemented the employee detail program, using the post method.

With the post method, there is no QUERY_STRING; the data from the form is passed through
standard output and must be read by the CGI program. The post method is convenient for
large forms with many data items.

Figure 136 shows an extract of the CGI program for employee details using the post method.
Note that, in contrast to the CGI program in Figure 134 on page 243, in the main method the
query string is constructed by reading the form′s data from standard input.

246 Creating Java Applications Using NetRexx

/* cgi\EmpNum2.nrx

NetRexx CGI program for DB2: Employee by number (using POST) */

......

/*-------------------------- main -----------------------------------*/
method main(args=String[]) static
args = args
say ′ Content-Type: text/html′ -- special lines
say ′ ′
say ′<html>′ -- start HTML
say ′<head><title>Employee Information</title></head>′
say ′<body>′
say ′<H2>Employee Data</H2>′
say ′
 Program:′ System.getProperty(′ SCRIPT_NAME′) -

′ query length′ System.getProperty(′ CONTENT_LENGTH′)

-- read the posted data (it is in one line)
list = BufferedReader(InputStreamReader(System.in)).readLine()
-- list = queryTranslate(list) -- not necessary here
parse list ′ number=′ empno ′ ′

jdbcConnect() -- JDBC connect to DB2
performRetrieve() -- DB2 SQL

say ′ < /body>′ -- end HTML
say ′ < /html>′
return
......

Figure 136. CGI Program for Employee Details Using Post: EmpNum2.nrx

These simple programs show that NetRexx can be used to quickly write CGI programs.

Chapter 12. Using NetRexx for CGI Programs 247

248 Creating Java Applications Using NetRexx

Chapter 13. Creating JavaBeans With NetRexx
In this chapter we use NetRexx to create JavaBeans that can be used by other products,
such as VisualAge for Java. We create simple beans only and do not elaborate on all of the
techniques and concepts associated with JavaBeans.

JavaBeans Concepts
A JavaBean has:

Properties Attributes of the class, usually with both a get and a set method, to be
retrieved and changed from outside. Properties can be simple, bound, or
constrained. Simple properties do not fire an event when they are changed.
Bound properties fire a PropertyChange event when they are changed, and
other beans (classes) can add themselves to the list of
PropertyChangeListeners. Constrained properties allow outside classes to
verify and potentially veto the change.

Methods Public methods that can be invoked from outside

Events Events that happen inside the bean and that trigger actions in outside
classes that are registered on the event. The PropertyChange event is an
event associated with bound or constrained properties. Additional user
defined events can be added.

A JavaBean class is usually accompanied by a bean information class that defines the
names of the properties, methods, and events.

The bean information is optional for properties and methods, but it is required for events.
The properties and methods information can be extracted from the bean itself by using
Java′s introspection and reflection support.

Writing a Bean in NetRexx
Let us define a simple nonvisual bean for an employee. The bean has three properties, two
methods, and one event.

Properties The properties are the employee number, employee name, and the salary.
The salary only has a public get method; the set method is private.
Changing the salary is possible only through special public methods.

Methods Two methods, increaseSalary and decreaseSalary, are provided to change
the employee′s salary.

Events An action event is triggered when the salary exceeds a certain limit.

 Copyright IBM Corp. 1997 249

Bean Class

A bean definition starts with an import of the java beans package and the class instruction:

 import java.beans.
 package beanlab
 class EmpBean public binary

We use a binary class to omit references to the Rexx class.

Properties

The properties are defined as private, because accessor methods for get and set will be
defined:

properties private
fieldNumber = int 0
fieldName = String null
fieldSalary = float 0

Note: NetRexx provides experimental support for indirect properties that automatically
generates get and set methods:

properties indirect
fieldNumber = int 0

The generated variable is a private instance variable with a get and set method. For more
information see nrbean.htm in the NetRexx directory.

Property Get Methods

For each property there is a public get method:

method getNumber() public returns int
return fieldNumber

method getName() public returns String
if fieldName == null then fieldName = String ′ ′
return fieldName

method getSalary() public returns float
return fieldSalary

The set methods are somewhat more complex because we have to trigger the
PropertyChange event for bound properties.

PropertyChange Event

Whenever a bound property changes, we have to invoke the PropertyChange event, using an
attribute and three methods:

properties inheritable
propertyChange = PropertyChangeSupport(this)

method addPropertyChangeListener(listener=PropertyChangeListener) public protect
propertyChange.addPropertyChangeListener(listener)

method removePropertyChangeListener(listener=PropertyChangeListener) public protect
propertyChange.removePropertyChangeListener(listener)

method firePropertyChange(propertyName=String, oldValue=Object, newValue=Object) public

250 Creating Java Applications Using NetRexx

propertyChange.firePropertyChange(propertyName, oldValue, newValue)

Other classes that want to be notified when a property changes have to:

• Invoke the addPropertyChangeListener method to be added to the list of classes that
are notified

• Implement the PropertyChangeListener interface, that is, provide a propertyChange
method.

The firePropertyChange method of the employee bean invokes the propertyChange method
of all classes that are registered for the ProperyChange event.

Property Set Methods

The set methods of bound properties invoke the firePropertyChange method. In our case we
define the set method for salary private, because the salary can change only through
increase and decrease methods:

method setNumber(number=int) public
oldValue = int fieldNumber
fieldNumber = number
firePropertyChange(″number″ , Integer(oldValue), Integer(number))

method setName(name=String) public
oldValue = String fieldName
fieldName = name
firePropertyChange(″name″ , oldValue, name)

method setSalary(salary=float) private
oldValue = float fieldSalary
fieldSalary = salary
firePropertyChange(″salary″ , Float(oldValue), Float(salary))

Note that the old and new values of the property must be passed as subclasses of Object
(Integer or Float), and not using the basic int and float types.

Public Methods

Changes to the salary are made by using two public methods:

method increaseSalary(amount=float) public
setSalary(getSalary() + amount)

method decreaseSalary(amount=float) public
setSalary(getSalary() - amount)

These methods use the private setSalary method and therefore trigger the PropertyChange
event.

Action Event

An action event is implemented through a fire method and two other methods to maintain a
Vector of listeners. Classes that want to be notified add themselves to the Vector, using the
addActionListener method:

properties inheritable
aActionListener = Vector null

method addActionListener(newListener=ActionListener) public
if aActionListener == null then aActionListener = Vector()
aActionListener.addElement(newListener)

Chapter 13. Creating JavaBeans With NetRexx 251

method removeActionListener(newListener=ActionListener) public
if aActionListener \= null then

aActionListener.removeElement(newListener)

method fireActionPerformed(e=ActionEvent)
if aActionListener == null then return
currentListeners = aActionListener.clone().elements()
loop while currentListeners.hasMoreElements()

(ActionListener currentListeners.nextElement()).actionPerformed(e)
end

The fireActionPerformed method must be invoked within the class when the event occurs. It
sends the event to every registered listener.

Triggering the Action Event

In our sample we want to trigger an action when the salary exceeds a certain limit:

properties constant
salaryLimit = float 100

method setSalary(salary=float) private
oldValue = float fieldSalary
fieldSalary = salary
if salary > salaryLimit then do -- over the limit

salary = salaryLimit
fieldSalary = salaryLimit
fireActionPerformed(ActionEvent(this, -

ActionEvent.ACTION_FIRST, -
″SALARY-LIMIT″))

end
firePropertyChange(″salary″ , Float(oldValue), Float(salary))

To fire the action event, we must create an Action Event object containing the source of the
action (the employee), an action code, and a string.

Bean Information Class

It is enough to write the class of the bean (in our example, EmpBean) if the bean consists
only of properties and methods. Java′s introspection support allows other programs to
analyze the class and find its public interface.

However, if a bean has an action event, we have to create a bean information class with
additional information:

 import java.beans.
 package beanlab
 class EmpBeanBeanInfo extends SimpleBeanInfo public binary

The constructor records the name of the class:

properties private
beanClass = Class

method EmpBeanBeanInfo() public
beanClass = Class.forName(″beanlab.EmpBean″)

The action event is defined by using a descriptor method:

252 Creating Java Applications Using NetRexx

method getEventSetDescriptors() returns EventSetDescriptor[] public
eventDesc = EventSetDescriptor[1]
do

eventDesc[0] = EventSetDescriptor(beanClass, ″actionPerformed″ , -
ActionListener.class, ″actionPerformed″)

eventDesc[0].setDisplayName(″empEvent″)
eventDesc[0].setShortDescription(″employee event″)
return eventDesc

catch Throwable
end
return null

Optionally you can describe properties and methods in the bean information class, using
xxxxxPropertyDescriptor and xxxxxMethodDescriptor methods, where xxxxx is the name of
the property or method.

The source code for the nonvisual employee bean (EmpBean.nrx and EmpBeanBeanInfo.nrx)
is in the nrxbeans\sample subdirectory.

Using the NetRexx Bean in VisualAge for Java
First compile the NetRexx source into Java source code:

 nrc EmpBean -keep
 nrc EmpBeanBeanInfo -keep

Rename the source code from EmpBean.java.keep to EmpBean.java, and from
EmpBeanBeanInfo.java.keep to EmpBeanBeanInfo.java.

Import the Java source code into a VisualAge for Java project. A package named
nrxbeans.sample is created.

Open the EmpBean class, and go to the BeanInfo page. Select each property and change
the value of the bound attribute to true. This process regenerates the full EmpBeanBeanInfo
class.

Using the Bean in an Applet

Open the Visual Composition Editor of a new applet. Place the employee bean on the free
form surface. Connect the properties to entry fields in the applet frame, and connect push
buttons to the public methods of the bean, increaseSalary and decreaseSalary. Use the
bean action event to trigger methods in the applet frame, for example, to change the text in
entry fields, or to disable push buttons.

Figure 137 shows the Visual Composition Editor with an applet and the sample employee
bean.

Chapter 13. Creating JavaBeans With NetRexx 253

Figure 137. Visual Composition Editor with NetRexx Bean

To initialize the applet use the Initialize button. The employee number and name are set to
a string, the increase field to 30, and the message to display Initialized. The Increase Salary
push button is enabled.

The employee bean is connected in many ways:

• Properties are connected to entry fields in the applet frame.

• Methods are connected to push buttons; the Initialize button is connected to the
decreaseSalary method to set the salary to 0, and the Increase Salary button is
connected to the increaseSalary method with the increase entry field value as a
parameter.

• The action event, which is triggered when the salary limit is reached, is connected to
the message to display Salary limit reached and to the Increase Salary push button to
disable it.

Figure 138 shows the applet in action when the salary has exceeded 100 after four
increases. The message field has been set, and the push button is disabled.

254 Creating Java Applications Using NetRexx

Figure 138. VisualAge for Java Applet with NetRexx Bean in A ction

The executable applet (EmpBeanApplet.class) was exported from VisualAge for Java and
stored in the nrxbeans\sample subdirectory, together with an HTML file to run the applet
(EmpBean.htm)

Creating an Animated JavaBean
This example takes the animated applet (see Figure 67 on page 122) and turns it into a
bean.

The code changes are minimal:

• We name the class AnimBean.

• Instead of an applet, we use a subclass of Frame.

• We add a default constructor.

• We rename the init method to animate and accept a text string as a parameter; this is
the external interface.

We compile the program into Java code and import the source code into VisualAge for Java.

We open the AnimBean class and generate the bean information, that is, the
AnimBeanBeanInfo class.

Now we create an applet, AnimTest, and add the bean to the free form surface. We define
an Animate push button and connect it to the animate method of the bean. We use an entry
field for the text and connect it as a parameter to the previous connection. We use the same
technique to set the text string as the title of the frame window.

Figure 139 shows the Visual Composition Editor with the applet in the dashed rectangle and
the bean (frame) outside.

Chapter 13. Creating JavaBeans With NetRexx 255

Figure 139. VisualAge for Java Applet with Animated Bean

When we run the applet as an application (a feature of VisualAge for Java), we can see the
text running from right to left and being squeezed to the border. A snapshot is shown in
Figure 140.

Figure 140. Animated Bean in Action

The source code of the animated bean (AnimBean.nrx) and the HTML file to run the applet
(AnimTest.htm) are in the nrxbeans\sample subdirectory. The executable applet
(AnimTest.class) was exported from VisualAge for Java into the same directory.

256 Creating Java Applications Using NetRexx

Sample NetRexx Beans
We created a number of additional beans with NetRexx:

NrxCounter A simple counter with two bound properties: count and step. The count is
initialized with 0 and the step with 1. The changeCount method changes
the counter by adding the step value.

NrxLED An LED display that displays a string, using bitmaps that represent the
numbers (0 to 9) and the characters blank, colon, period, and minus. The
numberOfDigits property defines the size of the LED, and the text
property, the string that is displayed; both properties are not bound. The
setText method changes the text and displays it, using the paint method.
The paint method uses an array of preloaded GIF files to display the text.

NrxTimer A timer bean that signals an event in a specified interval, using a thread.
Three bound properties are provided: interval (default 1000 milliseconds),
enabled (0), and tickAtBeginning (0). The setEnabled method starts and
stops the timer. The setTickAtBeginning method can be used to send an
event when the timer is started. Other beans that want to be notified at
each time interval register with the timer by using the addActionListener
method.

NrxLight A light bulb with three bound properties: lightOn (default 0), onColor
(green), and offColor (red). The switchLight method changes the state of
the light bulb from off to on and vice versa. The paint method displays
the light bulb in the on or off color. The bean also implements the
ActionListener interface and switches the light when the actionperformed
method is invoked. Thus you can add a light as an ActionListener to the
timer, and the light switches at each timer interval.

We created a number of applications and applets, using the sample NetRexx beans:

ViewTime An applet that displays the time it runs in seconds. It uses the timer to
signal the seconds, the counter to count, and the LED to display the
counter.

Timer An applet that displays the time it runs in hours, minutes, and seconds. It
uses the timer to signal the seconds, the counter to count, and the LED to
display the time in the format h:mm:ss.

CountDown An application that simulates a countdown timer. You enter the time in
seconds to count down, and click on Start . It uses the timer to signal the
seconds, the LED to display the remaining time, and two light bulbs. One
light bulb is on when the timer is running, and the other switches on and
off at each tick of the timer (see Figure 141).

Figure 141. CountDown Applet with NetRexx Beans

StopWatch An applet that simulates a stop watch. It uses the timer to signal every
1/10th of a second, the LED to display the elapsed time, and a light that is
on when the stop watch is running. Three push buttons enable you to
start, stop, and reset the stop watch (see Figure 142).

Chapter 13. Creating JavaBeans With NetRexx 257

Figure 142. StopWatch Applet with NetRexx Beans

We also imported the NetRexx beans into VisualAge for Java and implemented the
stopwatch using the imported beans. Figure 143 shows how we created the applet with the
Composition Editor.

Figure 143. StopWatch Applet in VisualAge for Java

The sample NetRexx beans are in the nrxbeans\lab directory. The sample applets,
applications, and HTML files to run the applets are in the nrxbeans\sample directory.

258 Creating Java Applications Using NetRexx

Chapter 14. Why NetRexx?
By now you are familiar with many of the features of NetRexx and Java. So why should you
use NetRexx and not Java directly? Let′s look at some advantages of using NetRexx.

Simplicity of Coding

• NetRexx programs are very easy to read.

• You have a choice of nested comments and line comments:

 /* this is a comment
with /* a nested */ comment */

 a = b * b -- calculating the square (line comment)

• Variable declariations with type, and optionally an initial value or constructor, are easy
to understand:

 var1 = int
 var2 = float 6.6
 var3 = Frame()

• Say and ask provide simple console input and output:

 say ′ Enter your age:\-′ -- no newline
 age = ask -- ask keyword for input

• Automatic generation of class and main method allows for simple scripting programs:

 /* my program */
 say ′ There is no need for a class or main method′

See “Our First NetRexx Program” on page 7 for more information.

• Scripting programs can have subroutines and functions coded as static methods:

 /* my program */
 say ′ result=′ factorial(13)

 method factorial(num=int) static returns Rexx
res = 1
loop i=2 to num
res = res * i

end
return res

See “Subroutines and Functions” on page 50 for more information.

• Methods with optional parameters generate multiple Java methods, one for each
signature. This example generates three methods in Java:

 method myroutine(p1=int, p2=float 6.0, p3=String ″A″)

 Copyright IBM Corp. 1997 259

• The syntax for exception handling using do blocks, loops, and select groups is simple
and easy to read:

 loop i=1 to 10 while ...
....
....

catch Exception
....

finally
....

 end

See “Control Statements” on page 39 for more information.

• The compiler automatically adds exceptions to the signal list of methods if they are
signaled in a method and not caught by a catch clause.

Rexx Class

• Provides arithmetic to any precision

• Combines numeric and string processing into one class

• Provides a multitude of methods for string handling (see “Built-In Methods” on page 31)

• Provides a simple parsing mechanism to analyze string data (see “Parsing a String” on
page 30)

• Indexed strings provide great flexibility for handling collections of strings with any kind
of indexes (see “Indexed Strings” on page 38).

See “The Rexx Class for Strings” on page 30 for more information.

Compiler Functions

• The compiler reports variables that are declared but never used.

• The compiler checks each variable against the Java class library; this includes very
strict checking of assignments and method parameters.

• Case insensitivity facilitates finding Java classes (even if they are not spelled with the
exact case).

• The binary option provides Java-equivalent performance.

• Each statement can be traced at execution time (see “Trace Instruction” on page 47).

 Conclusions

• NetRexx makes Java programming easy.

• NetRexx is a great scripting language.

• Everything you can do in Java you can do in NetRexx, much more easily.

• The whole Java class library is at your fingertips.

• NetRexx is the language for server programming (GUI programming might be easier
with a visual programming tool).

• The move from classic Rexx to NetRexx is simple; don ′ t wait, step up now!

260 Creating Java Applications Using NetRexx

Appendix A. Redbook Package Reference
The redbook package is a set of utility classes that help you create programs fast. Most
parts of the package are discussed in Chapter 7, “Creating Graphical User Interfaces” on
page 75.

Note: To use the redbook package you must add the NRXREDBK directory to the
CLASSPATH:

 SET CLASSPATH=.;.........;d:\NRXREDBK

CloseWindow Class
The CloseWindow class implements an ActionListener and a WindowListener that closes
your window. The objects of the class can be configured to shut down the application and
destroy or hide the window.

The window listener part of the class implements the windowClosing method, which is called
every time the window is closed from the system menu.

Constants

DESTROY Destroys the window when activated

HIDE Sets the visibility to false when activated

SHUTDOWN
Exits the application with exit 0 when activated

Constructors

CloseWindow(cWindow=Frame)
Creates a CloseWindow object for the given frame. The behavior is set to
SHUTDOWN.

CloseWindow(cWindow=Dialog, theBehaviour=int DESTROY)
Creates a CloseWindow object for the given dialog window. When the dialog
window is closed, the parent of the dialog is brought to the front.

CloseWindow(parent=Window, cWindow=Window, theBehaviour=int DESTROY)
Creates the CloseWindow object for cWindow. If the window is a modal dialog
only DESTROY and SHUTDOWN are excepted as behavior. If HIDE is defined,
DESTROY is used. When the window is closed, the parent window is brought to
the front.

 Copyright IBM Corp. 1997 261

EqualSizePanel Class
The EqualSizePanel class implements a panel that makes all its component the same size.
The size is determined by the component with the largest preferred size.

Constants

HORIZONTAL
The components are added to one row.

VERTICAL
The components are added to one column.

Constructor

EqualSizePanel(alignment=int HORIZONTAL, gap=int 5)
Creates a panel with the given alignment and the given gap between the
components

Methods

add(comp=Component) returns Component
Adds the component to the panel and returns the reference of the component

getFlowLayout()
Returns a reference of the FlowLayout manager that is used

setGaps(hgap=int , vgap=int)
Set the gaps around the components

ExtendedLabel
The ExtentedLabel class is a lightweight component that supports multiple line labels. The
horizontal and vertical alignment can be specified.

The lines in the text are separated by \n if no other separator is specified.

Constants

BOTTOM Vertical alignment, at the bottom of the component

CENTER Vertical and horizontal alignment, in the center of the component

LEFT Horizontal alignment, to the left of the component

RIGHT Horizontal alignment, to the right of the component

TOP Vertical alignment, on top of the component

Constructors

ExtendedLabel(ltext=Rexx, hAlign=int LEFT, vAlign=int TOP)
Creates an ExtendedLabel with the given text and alignment

ExtendedLabel(ltext=Rexx, aInsets=Insets, hAlign=int LEFT, vAlign=int TOP)
Creates an ExtendedLabel with the given text and alignment. The Insets
parameter defines the margins around the text.

Methods

getHorizontalAlignment() returns int
Returns the current horizontal alignment

262 Creating Java Applications Using NetRexx

getInsets() returns Insets
Returns the current margins of the component

getMinimumSize() returns int
Returns the minimum size (the size of the text without any margins)

getPreferredSize() returns int
Returns the preferred size (the size of the text with the margins)

getVerticalAlignment() returns int
Returns the current vertical alignment

setFont(f=Font)
Sets the font and calculates the new size

setForeground(c=Color)
Sets the color of the text

setHorizontalAl ignment(al ign=int)
Sets the horizontal alignment

setInsets(newInsets=Insets)
Sets new margins for the component

setSeparator(sep=char)
Sets a new separator and reparses the label text with the new separator

setText(lText=String)
Changes the text of the label

setUpdate(update=boolean)
If update is false, the component suppresses any painting of itself. If update is
true, the component restarts the painting.

setVert icalAl ignment(al ign=int)
Sets the vertical alignment

FieldSelect Class
The FieldSelect class is a FocusListener that can be used for TextField objects. It selects the
contents of a text field when the focus is set to the field and removes any selection when the
focus is lost.

The FieldSelect class is automatically used by the WindowSupport class (see
“WindowSupport Class” on page 270).

Constructor

FieldSelect()
Default constructor

ImagePanel Class
The ImagePanel class is a lightweight component that supports the use of images. The
source for an image can be a file or a URL. The image is loaded with a MediaTracker and
shown only when loaded completely.

Margins (Insets) can be defined for the component.

The image is scaled with the component, when the component is scaled. The aspect ratio of
the image is kept when scaling.

Appendix A. Redbook Package Reference 263

Constants

BOTTOM Vertical alignment, at the bottom of the component

CENTER Vertical and horizontal alignment, in the center of the component

LEFT Horizontal alignment, to the left of the component

RIGHT Horizontal alignment, to the right of the component

TOP Vertical alignment, at the top of the component

Constructors

ImagePanel()
Default constructor

ImagePanel(anImage=Image, newInsets=Insets null)
Creates the component using the given image and insets (margins)

ImagePanel(anImage=Image, hAl ign=int, vAl ign=int, newInsets=Insets nul l)
Creates the component using the given image, insets (margins), and alignment

ImagePanel(anImageURL=URL, newInsets=Insets null)
Creates the component and loads the image from a URL. Signals a
LoadImageException if loading fails.

ImagePanel(anImageURL=URL, hAl ign=int, vAl ign=int, newInsets=Insets nul l)
Creates the component and loads the image from a URL, using the given
alignment and insets. Signals a LoadImageException if loading fails.

ImagePanel(imageFile=String, newInsets=Insets null)
Creates the component and loads the image from a file. Signals a
LoadImageException if loading fails.

ImagePanel(imageFile=Str ing, hAl ign=int, vAl ign=int, newInsets=Insets nul l)
Creates the component and loads the image from a file, using the given
alignment and insets. Signals a LoadImageException if loading fails.

Methods

getHorizontalAlignment() returns int
Returns the horizontal alignment

getMinimumSize() returns Dimension
Returns the original size of the image

getImage() returns Image
Returns the current image

getImageSize() returns Dimension
Returns the current scaled size of the image

getInsets() returns Insets
Returns the current insets (margins)

getOriginalImageSize() returns Dimension
Returns the original size of the image

getPreferredSize() returns Dimension
Returns the original size plus the insets (margins)

getVerticalAlignment() returns int
Returns the vertical alignment

setHorizontalAl ignment(hAlign=int)
Sets the horizontal alignment

264 Creating Java Applications Using NetRexx

setImage(newImage=Image)
Sets the current image to newImage and repaints the component if visible

setImage(anUrl=URL)
Loads an image from the given URL and repaints the component if visible.
Signals a LoadImageException if loading fails.

setImage(f i leName=String)
Loads an image from the given file and repaints the component if visible. Signals
a LoadImageException if loading fails.

setInsets(newInsets=Insets)
Sets the insets (margins) of the component by cloning the given Insets object

set Insets(i top=int , i lef t=int , ibot tom=int , i r ight=int)
Sets the insets (margins) of the component

setScal ing(on=boolean)
If on is true, the image is scaled to the size of the component; if on is false, the
image is always shown in its original size

setVert icalAl ignment(vAlign=int)
Sets the vertical alignment

KeyCheck Class
The KeyCheck class is a key listener that can be used to control the input of text fields.

A key checker can be configured to translate lowercase characters to uppercase and allow
only characters of a given set.

A string of specified characters is used to define the allowed set of characters.

Constants

ALL Set that includes all available characters

ALPHA Set that includes alphabetic characters and the blank character only

ALPHANUM
Set that includes numeric and alphabetic characters only

HEXADECIMAL
Set that includes hexadecimal characters only

NUMERIC Set that includes only the numbers from 0 to 9

Constructor

KeyCheck(set=Rexx ALL, toUpperCase=boolean 1)
Creates a key checker object with the given set. If toUpperCase is true, all keys
are translated to uppercase.

Methods

setMode(set=Rexx)
Sets the set of allowed characters

setMode(toUpperCase=boolean)
Sets the translation mode of the key checker object. If toUpperCase is true, all
keys are translated to uppercase.

setMode(set=Rexx, toUpperCase=boolean)
Sets the set of allowed characters and the translation mode of the key checker
object

Appendix A. Redbook Package Reference 265

LimitTextField Class
The LimitTextField class is a text listener that can be used to limit the number of characters
in a text field.

If more characters are typed in the field, the right-most characters are deleted. If characters
are deleted, the field warns with a beep.

Constructor

LimitTextField(theField=TextField, l imit=int)
Creates a LimitTextField object for the given field to the given number of
characters

MessageBox Class
The MessageBox class implements a dialog window that shows text in an ExtendedLabel
object, with an optional image to the left of the text.

One or more buttons can be added to the message box.

A message box can be created with a default button (Ok) that closes the box.

A newly created message box is invisible. To make it visible, the setVisible(1) method must
be used.

The parent of a message box must be a frame window. If a component is specified as the
parent of the message box, the parent chain of the given component is searched for a frame
window. If no frame window is found, a NoFrameWindow exception is signaled.

Constructors

MessageBox(theParent=Frame, t i t le=Str ing, message=Str ing, aButton=Button
Button(′Ok′))
Creates a message box with the given title and the given text. If the text contains
\n characters, it is split into multiple lines. If null if used for aButton, a button is
not added to the box.

MessageBox(theParent=Frame, t i t le=Str ing, message=Str ing, imageFi le=Str ing,
aButton=Button Button(′Ok′))
Creates a message box as above with the given image to the left of the text. No
exception is signaled if the image cannot be loaded.

MessageBox(theParent=Frame, t i t le=Str ing, message=Str ing, anImage=Image,
aButton=Button Button(′Ok′))
Creates a message box as above with the given image to the left of the text.

MessageBox(theParent=Component, t i t le=Str ing, message=Str ing, aButton=Button
Button(′Ok′))
Creates a message box with the given title and the given text. If the text contains
\n characters, it is split into multiple lines. If null is used for aButton, a button is
not added to the box. The parent of the message box is a component. The box
itself searches for a frame window in the parent chain. If a frame window is not
found, a NoFrameWindow exception is signaled.

MessageBox(theParent=Component, t i t le=Str ing, message=Str ing, imageFi le=Str ing,
aButton=Button Button(′Ok′))
Creates a message box as above with the given image to the left of the text. No
exception is signaled if the image cannot be loaded.

266 Creating Java Applications Using NetRexx

MessageBox(theParent=Component, t i t le=Str ing, message=Str ing, anImage=Image,
aButton=Button Button(′Ok′))
Creates a message box as above with the given image to the left of the text

Methods

addButton(text=String) returns Button
Creates a button with the given text, adds it to the message box, and attaches a
CloseWindow listener to it

addButton(text=String, l istener=ActionListener, closeDialog=boolean 1) returns Button
Creates a button with the given text and adds it to the message box. The given
action listener is attached to the button, and a CloseWindow listener is attached
to the button if closeWindow is true.

setCloseBehaviour(newBehaviour=int)
Sets the close behavior of the CloseWindow object (see “CloseWindow Class” on
page 261). Possible values are CloseWindow.DESTROY, CloseWindow.HIDE, and
CloseWindow.SHUTDOWN.

setVisible(visible=boolean)
If visible is true, the message box is made visible. The position of the message
box is dependent on the parent window.

PromptDialog
The PromptDialog class creates a dialog window that prompts the user to enter a value.

A newly created prompt dialog box is invisible. To make it visible the setVisible(1) method
must be used.

The parent of a prompt dialog must be a frame window. If a component is specified as the
parent of the prompt dialog, the parent chain of the given component is searched for a frame
window. If a frame window is not found, a NoFrameWindow exception is signaled.

Constructors

PromptDialog(parent=Frame, modal=boolean, t i t le=Rexx ′′, label text=Rexx ′′,
f ieldText=Rexx ′′, f ieldsize=int 20)
Creates a prompt dialog. If modal is true, the dialog is created as a modal
dialog; otherwise, as a modeless dialog. The fieldSize parameter defines the
visible size of the text field.

PromptDialog(parent=Component, modal=boolean, t i t le=Rexx ′′, label text=Rexx ′′,
f ieldText=Rexx ′′, f ieldsize=int 20)
Same as the constructor above, except that the parent is a component. If a frame
window is not found in the parent chain of the component, a NoFrameWindow
exception is signaled.

Methods

addButton(text=String) returns Button
Creates a button with the given text, adds it to the prompt dialog, and attaches a
CloseWindow listener to it.

addButton(text=String, l istener=ActionListener, closeDialog=boolean 1) returns Button
Creates a button with the given text and adds it to the prompt dialog. The given
action listener is attached to the button, and a CloseWindow listener is attached
to the button if closeWindow is true.

getText() returns Rexx
Returns the text in the entry field

Appendix A. Redbook Package Reference 267

setCloseBehaviour(newBehaviour=int)
Sets the close behavior of the CloseWindow object (see “CloseWindow Class” on
page 261). Possible values are CloseWindow.DESTROY, CloseWindow.HIDE, and
CloseWindow.SHUTDOWN.

setKeyMode(set=Rexx)
Sets the set of allowed characters for the entry field (see “KeyCheck Class” on
page 265)

setTextLimit(l imit=int)
Limits the text field to the given number of characters (see “LimitTextField Class”
on page 266)

setUpperCase(toUpperCase=boolean)
Sets the translation mode for the entry field. If toUpperCase is true, all characters
are translated to uppercase.

setVisible(visible=boolean)
If visible is true, the prompt dialog window is made visible. The position of the
window is dependent on the parent window.

PromptDialogActionListener Class
The PromptDialogActionListener class can be used to automate working with prompt
dialogs. It implements an action listener that can be attached to any component in your
application that fires action events.

When an action event is received, the getPromptDialog method in your application is called.
This method must create and return a prompt dialog. The action listener makes the prompt
dialog visible and waits for its results.

When the prompt dialog is closed successfully, the action listener calls the promptReady
method in your application with the value of the text field as a parameter.

Your application has to implement the PromptDialogAction interface to make use of the
PromptDialogActionListener class (see “PromptDialogAction Interface”).

Constructor

PromptDialogActionListener(application=PromptDialogAction)
Creates an action listener. The application specified as a parameter is called
back when an action event occurs.

PromptDialogAction Interface
The PromptDialogAction interface is used by the PromptDialogActionListener. Two methods
are defined by the interface; one to create a prompt dialog, and one to return the value of
the prompt dialog. See Figure 85 on page 149 for an example.

Methods

getPromptDialog(source=ActionListener) returns PromptDialog
This method is invoked when a PromptDialogActionListener receives an action
event from a source that is not part of its prompt dialog.

The source parameter is a reference to the PromptDialogActionListener. The
reference enables the application to use multiple PromptDialogActionListeners.

The application must build a prompt dialog, attach the given action listener to the
Ok button, and return the dialog.

268 Creating Java Applications Using NetRexx

promptReady(text=Str ing, source=ActionListener)
This method is invoked when a PromptDialogActionListener reveives an action
event from the prompt dialog. The text parameter is the value of the text field of
the prompt dialog.

The source parameter is a reference to the PromptDialogActionListener. The
reference enables the application to use multiple PromptDialogActionListeners.

RedbookUtil Class
The RedbookUtil class contains class methods that implement some shortcuts used by many
Redbook package classes.

Methods

f indParentFrame(aComponent=Component) returns Frame
Searches in the parent chain of the given component for a frame window. If a
frame window is not found in the chain, a NoFrameWindow exception is signaled.

findParentWindow(aComponent=Component) returns Window
Searches in the parent chain of the given component for a window. If a window
is not found in the chain, a NoWindow exception is signaled.

posit ionWindow(currentWindow=Window, xoffset=int 0, yoffset=int 0)
Sets the position of the given window to the middle of the screen plus the given
offsets

posit ionWindow(parent=Component,currentWindow=Window,xoffset=int 20,yoffset=int 20)
Sets the position of the given window relative to the position of the window of the
parent component plus the given offset. If the window would fall outside the
screen, the position is corrected so that the window is fully visible.

s leep(ms=long)
Suspends the execution for the given number of milliseconds

SimpleGridbagLayout Class
The SimpleGridbagLayout class is a subclass of the GridbagLayout class. It is designed to
make the usage of a gridbag layout manager more efficient.

The main advantage of the class is that it automatically creates the GridbagConstraints
objects that are used to define the position and size of a component in a gridbag layout.

The class uses the constants defined by the GridbagConstraints class.

Constructor

SimpleGridbagLayout(aContainer=Container)
Creates an instance of the SimpleGridbagLayout class and sets the layout
manager of the given container to the newly created instance

Methods

addFixSize(comp=Component, x=int, y=int) returns Component
Adds a component to the layout manager at the given position (x,y). The
component does not resize. The default values for anchor and insets are used.
The component is returned for further use.

Appendix A. Redbook Package Reference 269

addFixSize(comp=Component, x=int, y=int, newInsets=Insets, s izex=int 1, s izey=int 1,
fi l l=int NONE, anchor=int NORTHWEST) returns Component
Adds a component to the layout manager at the given position (x,y). The
component does not resize and is returned for further use.

addVarSize(comp=Component, x=int , y=int , weightx=double, weighty=double, s izex=int
1, sizey=int 1, fi l l=int BOTH, anchor=int NORHTWEST) returns Component
Adds a component to the layout manager at the given position (x,y). The
component can be resized according to the weightx and weighty parameters.
The default insets object is used for the insets. The component is returned for
further use.

addVarSize(comp=Component, x=int , y=int , newInsets=Insets, weightx=double,
weighty=double, s izex=int 1, s izey=int 1, f i l l= int BOTH, anchor=int
NORHTWEST) returns Component
Adds a component to the layout manager at the given position (x,y). The
component can be resized according to the weightx and weighty parameters.
The component is returned for further use.

newConstra ints(x=int , y=int , s izex=int , s izey=int , f i l l= int , anchor=int , weightx=double,
weighty=double) returns GridbagConstraints
Creates and returns a GridbagConstraints object with the given parameters

setAnchor(newAnchor=int)
Sets the default anchor value to the newAnchor parameter

set Insets(top=int , lef t= int , bot tom=int , r ight=int)
Sets the default insets object to the new values

WindowFocus Class
The WindowFocus class implements a FocusListener that sets the focus to a component of
the window, whenever the window itself receives the focus.

When the window is deactivated, the component that owns the focus is stored. When the
window is activated again, the focus is set to the stored component.

When the window is destroyed, the specified component is stored to receive the focus at the
next activation.

Constructor

WindowFocus(aWindow=Window, focusRecipient=Component)
Creates the WindowFocus object and attaches it to the window. The focus is set
to the focusRecipient component every time the window becomes visible.

WindowSupport Class
The WindowSupport class concentrates the usage of the CloseWindow class, the
WindowFocus class, and the FieldSelect class in a single class.

The WindowSupport class creates and adds a CloseWindow object to the given window. The
WindowSupport class uses the constants defined by the CloseWindow class.

Constructors

WindowSupport(aFrame=Frame, getFocus=Component null)
Creates the WindowSupport object for the given frame window. Adds a
CloseWindow object for the frame (with SHUTDOWN as behavior) and a
WindowFocus object for the focus recipient getFocus.

270 Creating Java Applications Using NetRexx

WindowSupport(aDialog=Dialog, getFocus=Component nul l , closeBehaviour=int
DESTROY)
Creates the WindowSupport object for the given dialog window. Adds a
CloseWindow object for the dialog with the given behavior and a WindowFocus
object for the focus recipient getFocus. When the dialog is closed, the parent of
the dialog is brought to the front.

WindowSupport(parent=Window, cWindow=Window, getFocus=Component nul l ,
closeBehaviour=int DESTROY)
Creates the WindowSupport object for cWindow. Adds a CloseWindow object for
the window with the given behavior and a WindowFocus object for the focus
recipient getFocus. When the window is closed, the parent window is brought to
the front.

Methods

getCloseWindow() returns CloseWindow
Returns the CloseWindow object that is used by WindowSupport. The
CloseWindow object can be used as an action listener for menu items or push
buttons.

setCloseBehaviour(newBehavior=int)
Sets the close behavior of the internal CloseWindow object (see “CloseWindow
Class” on page 261)

setFocusRecipient(aComponent=Component)
Sets the focus recipient used by WindowFocus

Exceptions
The redbook package defines a basic exception class, RedbookException, and some
subclasses of it. You can catch every exception thrown by the redbook package classes by
catching the single RedbookException class.

Table 12 shows the exception classes of the redbook package.

Table 12. Exception Classes of the Redbook Package

Class Description

RedbookException Base class for all exceptions signaled by the redbook package

LoadImageException The load of an image using an ImagePanel component failed

NoFrameWindow The findFrameWindow method of the RedbookUtil class could not find
any frame window in the parent chain of the given window or
component.

NoWindow The findFrameWindow method of the RedbookUtil class could not find
any window in the parent chain of the given component.

Appendix A. Redbook Package Reference 271

272 Creating Java Applications Using NetRexx

Appendix B. Special Notices
This publication is intended to help programmers write Java applications by using an
easy-to-use language called NetRexx. The information in this publication is not intended as
the specification of any programming interfaces that are provided by NetRexx. See the
PUBLICATIONS section of the IBM Programming Announcement for NetRexx for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only IBM′s product,
program, or service may be used. Any functionally equivalent program that does not
infringe any of IBM′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been
exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589
USA.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The information about non-IBM (″vendor″) products in this manual
has been supplied by the vendor and IBM assumes no responsibility for its accuracy or
completeness. The use of this information or the implementation of any of these techniques
is a customer responsibility and depends on the customer ′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation in
the United States and/or other countries:

DATABASE 2 DB2
IBM ThinkPad
VisualAge

 Copyright IBM Corp. 1997 273

The following terms are trademarks of other companies:

• C-bus is a trademark of Corollary, Inc.

• Java and HotJava are trademarks of Sun Microsystems, Incorporated.

• Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

• PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

• Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or registered
trademarks of Intel Corporation in the U.S. and other countries.

• UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

• Other company, product, and service names may be trademarks or service marks of
others.

274 Creating Java Applications Using NetRexx

Appendix C. Related Publications
The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

NetRexx and Java Documentation
Refer to “NetRexx Documentation” on page 5 for documentation about NetRexx, and to
“Java Toolkit Documentation” on page 6 for documentation about the JDK.

International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO Redbooks” on
page 277.

• Getting Started with VisualAge for Java, Prentice Hall, IBM number SG24-2232 (in press)

• Object Rexx for OS/2 Warp, by Trevor Turton and Ueli Wahli, published by Prentice Hall,
1996, ISBN 0-13-273467-2, IBM number SG24-4586-00

• Object Rexx for Windows 95/NT with OODialog, by Ueli Wahli, Ingo Holder, and Trevor
Turton, published by Prentice Hall, 1997, ISBN 0-13-858028-6, IBM number SG24-4825-00

Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive updates 2-4
times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

 Copyright IBM Corp. 1997 275

Other Publications
These publications are also relevant as further information sources:

• UNIX Network Programming, by W. Richard Stevens, published by Prentice Hall, ISBN
0-13-949876

• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, published by Addison-Wesley
Professional Computing Series, ISBN 0-201-63361

• Exploring Java, by Patrick Niemeyer and Joshua Peck, published by O′Reilly, ISBN
1-56592-184

• The Java Class Libraries: An Annotated Reference, by Patrick Chan and Rosanna Lee,
published by Addison-Wesley, ISBN 0-201-63458-9

• “Communicating Sequential Processes,” by C.A.R Hoare, Communications of the ACM,
Vol. 21, No. 8, August 1978

276 Creating Java Applications Using NetRexx

How to Get ITSO Redbooks
This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

 Copyright IBM Corp. 1997 277

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress;
not all redbooks become redpieces, and sometimes just a few chapters will be published this way.
The intent is to get the information out much quicker than the formal publishing process allows.

278 Creating Java Applications Using NetRexx

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress;
not all redbooks become redpieces, and sometimes just a few chapters will be published this way.
The intent is to get the information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

How to Get ITSO Redbooks 279

IBM Redbook Order Form
Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

280 Creating Java Applications Using NetRexx

Index

A
abbrev 31
abs 32
abstract 25, 28, 59, 66
adapter 115
animator.nrx 122
applet 75, 76

structure 77
tag 76

application 75, 79
chat 227
JDBC GUI 196
philosophers′ forks 163
photograph album 150
RMI JDBC GUI 227

array 39
ask 20

B
b2x 32
beans 249

animated 255
information 252

binary 15, 26, 48
borderlayout 98
bordlay.nrx 99
browser 76
buffered reader 168
buffered writer 169
button 86

same size 133
byte-oriented I/O 170

C
c2d 32
c2x 32
cardlay.nrx 109
cardlayout 108
case sensitivity 19
catch 40, 42, 43
center 32
CGI 237

JDBC 239

CGI (continued)
post 246

changestr 32
chat application 227
checkbox 86
checktst.nrx 87
choice 89
class 25, 57

abstract 66
libraries 70, 72
method 28
Rexx 30
variable 26

CLASSPATH 3, 5, 71, 261
close window 124
closewindow.nrx 126
closewindowa.nrx 125
cnltsock.nrx 206
codebase 76
command files 11
comments 19
compare 32
compiler 11

invoking from Java 14
options 14

component 82
event cross-reference 116
image 139
lightweight 123

constant 27, 29, 58
constructor 28, 59, 61
consumer.nrx 158
content handling 214
continuation character 20
copies 32
counter 257
countstr 32

D
d2c 33
d2x 33
data types 20
data-oriented I/O 172

 Copyright IBM Corp. 1997 281

database connectivity 181
dataio.nrx 172
dataio2.nrx 175
datatype 33
DB2 184

UDB 181
DDL 195
delstr 33
delword 33
dialog 110, 143

prompt 147
do 40
driver

JDBC 183

E
empname.nrx 240
empnum.nrx 243
empnum2.nrx 247
end-of-file 179
equalsizepanel.nrx 134
event 111, 249

component cross-reference 116
handling 111
listener 112

exception 30, 179, 218
exists 34
exit 47
extendedlabel.nrx 135
extends 26
exttest.nrx 138

F
factor.nrx 7
fieldselect.nrx 129
file 165

class 166
file types 9
fileinfo.nrx 166
final 25, 29, 59
finally 40, 42, 44
flowlay.nrx 98
flowlayout 97
focus 127
font 116
format 34
frame 110
functions 50

G
game.nrx 50
game2.nrx 51
game3.nrx 52
grbagla2.nrx 107

grbaglay.nrx 105
gridbaglayout 102
gridlay.nrx 101
gridlayout 100
GUI 75

JDBC 202
JDBC RMI 231

guiapp.nrx 79
guiapplt.nrx 81
guifirst.nrx 78

H
hello.nrx 3
hexprint.nrx 170
HTML 75, 239
HTTP 205, 207

I
if 41
image 118, 139

animated 121
draw 120
load 118

imagepanel.nrx 140
implements 26
import 70
indexed string 38
inheritable 27, 28, 58
inheritance 63
init 77
input.nrx 52
insert 34
insets 103
instance

method 28
variable 26

instructions
ask 20
class 25
do 40
exit 47
if 41
import 70
iterate 45
leave 46
loop 43
method 28
numeric 47
options 48
package 70
parse 30
properties 26
return 46
say 20
select 41
signal 30

282 Creating Java Applications Using NetRexx

instructions (continued)
trace 47

interface 25, 68
runnable 153

Internet
sample code ii

Internet Connection Server 237
iterate 45

J
Java

beans 249
classes 72
compiler 13

Java Development Kit
See JDK

JDBC 181
CGI 239
daemon 184
driver 183
GUI 202

jdbcgui.nrx 197
jdbcqry.nrx 186
jdbcupd.nrx 193
JDK xvii, 4

browser 76
documentation 6, 275
event handling 111
GUI 75
I/O support 165
lightweight components 123
packages 72
user interface controls 82

K
keyboard input 131
keycheck.nrx 132

L
label 83, 134
lastpos 34
layout manager 96
leave 46
LED display 257
left 34
length 34
libraries 70, 72
light 257
lightweight component 123
limittextfield.nrx 133
line mode 168
lineio.nrx 168
lineio2.nrx 169
list 88

listener
automatic add 129
event 112

load
image 118

loop 43
low-level event 112, 113
lower 35

M
main 55, 79
max 35
media tracker 119
menu 90, 92
menubar 92
menubarx.nrx 90
menuitem 93
message box 145
messagebox.nrx 146
method 28, 249

class 28
constructor 28, 61
external 51
instance 28
main 55, 79
overloading 61
signature 60

methods 59
min 35
monitor 157

N
native 29, 60
NetRexx

beans 249
classes 57
command files 11
compiler 11
design objectives 1
documentation 5
file types 9
home page 6
installation 2
Internet 6
language 19
properties 58
sample code 4
why 259

netrexxc.bat 11
netrexxc.cmd 11
network exception 218
network programming 205
non-Java programs 53
nonjava.nrx 53
notify 157

Index 283

nrtools.zip 2
nrxredbk.zip 4
null values 191
numeric 47

O
object-oriented I/O 176
ODBC 181
operators 22
options

compiler 14
instruction 48

overlay 35

P
package 52, 70

JDK 72
naming 71
redbook 261
RMI 220

paint 77
parameters 55
parse 30
pftext.nrx 161
philosophers′ forks 159
photoalbum.nrx 151
photograph album 150
polymorphism 68
pop-up menu 93
popup.nrx 95
pos 35
prepared statement 192
print writer 168
private 25, 27, 28, 60
prompt dialog 147
promptdialog.nrx 148
promptdialogaction.nrx 150
properties 26, 58, 249
protect 29, 40, 42, 43, 157
public 25, 26, 28, 58, 60

R
redbookdialog.nrx 144
registry 221
remote method invocation

See RMI
remote procedure call

See RPC
return 46
returns 29
reverse 35
Rexx class 30
right 35
RMI 220

chat 227

RMI (continued)
compiler 225
JDBC GUI 231
listener 222
parameter 227
registry 221

rmiclnt.nrx 222
rmicont.nrx 229
rmiconti.nrx 228
rmigui.nrx 232
rmisrvr.nrx 224
rmisrvri.nrx 224
RPC 220
runnable interface 153

S
sample code 4

animator.nrx 122
bordlay.nrx 99
cardlay.nrx 109
checktst.nrx 87
closewindow.nrx 126
closewindowa.nrx 125
cnltsock.nrx 206
consumer.nrx 158
dataio.nrx 172
dataio2.nrx 175
empname.nrx 240
empnum.nrx 243
empnum2.nrx 247
equalsizepanel.nrx 134
extendedlabel.nrx 135
exttest.nrx 138
factor.nrx 7
fieldselect.nrx 129
fileinfo.nrx 166
flowlay.nrx 98
game.nrx 50
game2.nrx 51
game3.nrx 52
grbagla2.nrx 107
grbaglay.nrx 105
gridlay.nrx 101
guiapp.nrx 79
guiapplt.nrx 81
guifirst.nrx 78
hexprint.nrx 170
imagepanel.nrx 140
input.nrx 52
Internet ii
jdbcgui.nrx 197
jdbcqry.nrx 186
jdbcupd.nrx 193
keycheck.nrx 132
limittextfield.nrx 133
lineio.nrx 168
lineio2.nrx 169

284 Creating Java Applications Using NetRexx

sample code (continued)
menubarx.nrx 90
messagebox.nrx 146
nonjava.nrx 53
pftext.nrx 161
photoalbum.nrx 151
popup.nrx 95
promptdialog.nrx 148
promptdialogaction.nrx 150
redbookdialog.nrx 144
rmiclnt.nrx 222
rmicont.nrx 229
rmiconti.nrx 228
rmigui.nrx 232
rmisrvr.nrx 224
rmisrvri.nrx 224
seriaio.nrx 176
simplegridbaglayout.nrx 106
srvsock.nrx 208
srvsockt.nrx 210
thrdtst1.nrx 154
thrdtst2.nrx 155
urltest.nrx 215
urlxtest.nrx 216
windowfocus.nrx 128
windowsupport.nrx 130

sample database 184
say 20
scheduling 156
script 49
scrollbar 90
select 41
semantic event 112
semantic listener 114
sequence 35
seriaio.nrx 176
serialization 176
server socket 207
sign 36
signal 30
signature 60
simplegridbaglayout.nrx 106
skeleton 225
socket 205
space 36
SQL

DDL 195
select 184
update 191

srvsock.nrx 208
srvsockt.nrx 210
start 77
static 27, 29
stop 77
stored procedure 195
stream 165
strictassign 16
strictsignal 17

string
indexed 38
Rexx 30

strip 36
stub 225
subroutines 50
substr 36
subword 36
super 29
synchronization 157

T
tabbing support 111
TCP/IP 205
text selection 128
textarea 85
textfield 84

limit length 133
this 29
thrdtst1.nrx 154
thrdtst2.nrx 155
thread 153, 210

life cycle 154
timer 257
trace 47, 48
translate 36
trunc 36

U
update 77
upper 36
URL 212

database 182
RMI 221

urltest.nrx 215
urlxtest.nrx 216
user interface 82
uses 26

V
variable 24

class 26, 58
instance 26

vector 39, 68
verify 37
VisualAge for Java 253
volatile 27

W
wait 157
Web page 238
window

focus 127

Index 285

windowfocus.nrx 128
windowsupport.nrx 130
word 37
wordindex 37
wordlength 37
wordpos 37
words 37

X
x2b 37
x2c 37
x2d 38

Z
zip files 71

286 Creating Java Applications Using NetRexx

ITSO Redbook Evaluation
Creating Java Applications Using NetRexx
SG24-2216-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 287

IBML 

Printed in U.S.A.

SG24-2216-00

	Contents
	Figures
	Tables
	Preface
	How This Document is Organized
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	What Is NetRexx?
	Design Objectives
	Why NetRexx?

	Installation
	Installation Verification
	Software Prerequisites

	Installing the Sample Programs
	Installing the Packages of this Redbook
	NetRexx Documentation
	NetRexx Home Page on the Internet
	Java Toolkit Documentation

	Chapter 2. Starting with NetRexx
	Our First NetRexx Program
	File Types Used by NetRexx

	Chapter 3. The NetRexx Compiler
	Command Files
	Arguments and Return Codes
	How Does the Compiler Work?
	Invoking the Compiler from NetRexx or Java
	Compile Options
	Compiler- Only Options
	Options Keyword
	More Details on Options

	Chapter 4. The NetRexx Language
	Case Sensitivity
	Comments
	Continuation Character
	Input and Output
	Data Types
	Operators and Expressions
	String Expressions
	Arithmetic Expressions
	Comparative Expressions
	Logical Expressions

	Variables
	Class Definition
	Class Instruction
	Properties Instruction
	Method Instruction
	Special Keywords Used in Methods

	Exceptions
	The Rexx Class for Strings
	Parsing a String
	Built- In Methods

	Indexed Strings
	Arrays
	Control Statements
	Do Instruction
	Conditional Instructions
	Repetitive Tasks
	Exit a Control Structure
	Exit a Method
	Exit a Program
	Trace Instruction
	Numeric Instruction

	Options
	Binary Option
	Trace Option

	Chapter 5. Using NetRexx As a Scripting Language
	Why Scripts?
	Straightforward Programs
	Subroutines and Functions
	External Methods
	External Methods in a Package

	Calling Non-Java Programs
	Behind the Scenes
	Handling Parameters in a NetRexx Script

	Chapter 6. Creating and Using NetRexx Classes
	Definition of Class
	Why Use Classes?
	Classes
	Properties
	Methods
	Signature of Methods
	Overloading Methods
	Constructor Methods
	Invoking Methods

	Inheritance
	Definition of Inheritance
	Why Use Inheritance?
	Overriding Methods
	Overriding and Usage of Property Variables
	Usage or Inheritance

	Abstract Classes
	Polymorphism

	Interfaces
	Class Libraries
	Packages
	Packages in Zip Files
	Globally Unique Package Names
	Using Java Classes
	Java Class Libraries
	Using NetRexx Classes from Java

	Chapter 7. Creating Graphical User Interfaces
	Applets and Applications
	Applets
	The Applet Tag
	Structure of an Applet

	Applications
	Running As an Applet or an Application
	User Interface Controls
	Label
	TextField
	TextArea
	Button
	Checkbox
	List
	Choice
	Scrollbar
	Menus

	Layout Manager
	FlowLayout
	BorderLayout
	GridLayout
	GridBagLayout
	CardLayout

	Frame and Dialog Windows
	Frame Windows
	Dialog Windows
	Tabbing Support

	Event Handling
	Events
	Event Listener Interface
	Adapters
	Event and Component Cross Reference

	Fonts
	Images
	Loading an Image
	Loading an Image Locally or from the Web
	MediaTracker
	Drawing an Image
	Animated Images

	Lightweight Components
	Problem Solutions and Examples
	Closing Windows
	Action Events from Menus and Buttons
	Setting the Focus in Windows
	Automatic Selection in TextField Objects
	Adding Listeners Automatically
	Controlling Keyboard Input
	Limiting the Length of a TextField
	Using Buttons of the Same Size
	Extended Label Component
	Image Component
	Dialogs
	Photograph Album Sample Application

	Chapter 8. Threads
	The Thread Class
	Creating and Starting Threads
	Controlling Threads
	Lifetime of a Thread
	Scheduling

	Synchronization
	Monitors and the Protect Keyword
	Wait and Notify

	Philosophers¢ Forks
	Designing the Philosophers¢ Forks
	Enhancing the Philosophers¢ Forks with a GUI

	Chapter 9. Handling Files
	Streams
	File Class
	Line Mode I/O
	Line I/ O Using BufferedReader and PrintWriter
	Line I/ O Using BufferedReader and BufferedWriter

	Byte-Oriented I/ O
	Data-Oriented I/ O
	Data- Oriented I/ O Using Data Streams
	Data- Oriented I/ O Using Rexx Strings

	Object-Oriented I/O Using Serialization
	Handling an End-of-File Condition
	Check the Return Value
	Catch the I/ O Exception

	Chapter 10. Database Connectivity with JDBC
	JDBC and ODBC
	JDBC Concepts
	Database URLs
	JDBC Drivers
	JDBC Compliance

	SQL Select in Practice
	DB2 Sample Database
	Select Query Example

	SQL Update in Practice
	Prepared Statements
	Executing a Prepared SQL Statement
	SQL Update Example

	Data Definition Language
	Stored Procedures
	Wrapping Up with a Complete JDBC GUI Program
	Client/Server Program

	Chapter 11. Network Programming
	Socket Interface
	Socket
	ServerSocket
	More on Sockets
	Extended Server with Threads
	Socket Conclusion

	URL Handling
	Getting the Content of an URL
	Content Handlers

	Typical Network Exception Types
	Remote Method Invocation
	Remote Procedure Call
	RMI
	RMI Registry and URLs
	RMI Listener Example
	RMI Parameters and Return Values
	RMI Chat Application
	Wrapping Up with a Complete RMI Program

	Chapter 12. Using NetRexx for CGI Programs
	CGI Concepts
	Passing Parameters to a CGI Program
	Returning a Web Page from a CGI Program

	Sample CGI Programs with DB2 Access
	HTML Form for Employee Search
	CGI Program for Employee Search
	HTML Table of Employees
	CGI Program for Employee Details
	CGI Program for Employee Details: Post Method

	Chapter 13. Creating JavaBeans With NetRexx
	JavaBeans Concepts
	Writing a Bean in NetRexx
	Bean Class
	Bean Information Class

	Using the NetRexx Bean in VisualAge for Java
	Using the Bean in an Applet

	Creating an Animated JavaBean
	Sample NetRexx Beans

	Chapter 14. Why NetRexx?
	Appendix A. Redbook Package Reference
	CloseWindow Class
	EqualSizePanel Class
	ExtendedLabel
	FieldSelect Class
	ImagePanel Class
	KeyCheck Class
	LimitTextField Class
	MessageBox Class
	PromptDialog
	PromptDialogActionListener Class
	PromptDialogAction Interface
	RedbookUtil Class
	SimpleGridbagLayout Class
	WindowFocus Class
	WindowSupport Class
	Exceptions

	Appendix B. Special Notices
	Appendix C. Related Publications
	NetRexx and Java Documentation
	International Technical Support Organization Publications
	Redbooks on CD-ROMs
	Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Index
	ITSO Redbook Evaluation

